

Mastering PowerShell: Unleashing the Power of Automation

Christopher Ford

2023

	[image: image]

	
	[image: image]

[image: image]

Chapter 1: Introduction to PowerShell

[image: image]

	[image: image]

	
	[image: image]

[image: image]

What is PowerShell?

[image: image]

Microsoft PowerShell is a scripting language and automation system. It is intended for system administrators and power users who want to control and automate processes in Windows operating systems. PowerShell combines the characteristics of a CLI and a scripting language, allowing users to interact with the system via text-based commands and scripts.

PowerShell allows you to handle files and directories, configure network settings, manipulate the Windows Registry, manage services and processes, and interface with numerous Windows components and technologies. It also enables users to automate repetitive processes, configure complex systems, and create bespoke administrative tools.

PowerShell's ability to work with objects and pipelines is one of its most important features. PowerShell interprets data as structured objects with properties and methods, rather than just text, allowing for more versatile and efficient information management. PowerShell cmdlets (pronounced "command-lets") are short, single-purpose commands that can be concatenated to create more complicated automation workflows.

PowerShell is built on the.NET framework and makes use of its numerous libraries and APIs to provide users with a wide variety of functionality. It enables scripting in both interactive and script file modes. It also has comprehensive support for variables, loops, conditionals, error handling, and functions, making it a powerful programming tool.

PowerShell has become an essential aspect of Windows system administration, and it is frequently used for activities such as Active Directory management, customising server roles and features, automating programme installations, monitoring system performance, and many more. It comes standard with newer versions of Windows and is also available for other platforms such as Linux and macOS via PowerShell Core.

	[image: image]

	
	[image: image]

[image: image]

History and evolution of PowerShell

[image: image]

Microsoft PowerShell was first launched in November 2006 as part of the Windows Management Framework, and it has gone through several significant evolutions since then. Let's look at PowerShell's history and evolution:

	PowerShell 1.0 (2006):

PowerShell was first included in Windows Management Framework (WMF) 1.0, which was available as an optional download for Windows XP, Windows Server 2003, and Windows Vista.

It provided a command-line shell and scripting environment for system administration duties, with a focus on scripting to automate repetitive operations.

	PowerShell 2.0 (2009):

PowerShell 2.0 was featured in Windows 7 and Windows Server 2008 R2 as part of the Windows Management Framework 2.0.

It added enhanced scripting capabilities, remoting capabilities for running instructions on remote systems, and the ability to develop graphical user interfaces (GUI) using Windows Presentation Foundation (WPF).

	PowerShell 3.0 (2012):

PowerShell 3.0 was featured in Windows 8 and Windows Server 2012 as part of the Windows Management Framework 3.0.

Significant upgrades included workflow features for performing long-running processes, greater remote administration support, and the ability to develop dynamic modules.

	PowerShell 4.0 (2013):

PowerShell 4.0 was included in Windows 8.1 and Windows Server 2012 R2 as part of the Windows Management Framework 4.0.

It added preferred State Configuration (DSC), which allows administrators to define and enforce a system's preferred state, as well as improved debugging and diagnostic capabilities.

	PowerShell 5.0 (2014):

PowerShell 5.0 was included in Windows 10 and Windows Server 2016 as part of the Windows Management Framework 5.0.

It included object-oriented programming classes, support for developing and using PowerShell modules via the PowerShell Gallery, and enhancements to the PowerShell Integrated Scripting Environment (ISE).

	PowerShell 5.1 (2016):

PowerShell 5.1 was included in the Windows 10 Anniversary Update and Windows Server 2016 as part of the Windows Management Framework 5.1.

Rather than introducing new features, it concentrated on bug repairs and stability enhancements.

	PowerShell 6.0 (2018):

PowerShell 6.0 was a watershed moment since it was created as an open-source project and released on several platforms, including Windows, macOS, and Linux.

It was built using the.NET Core framework rather than the standard Windows-only.NET Framework, allowing it to support several platforms.

	PowerShell 7.0 (2020):

PowerShell 7.0 extended the cross-platform journey by supporting Windows PowerShell modules.

It introduced numerous enhancements, including as additional language capabilities, improved performance, and wider operating system support.

	PowerShell 7.1 (2020):

PowerShell 7.1 prioritised quality enhancements, bug fixes, and compatibility enhancements for existing modules.

	PowerShell 7.2 (2021):

PowerShell 7.2 enhanced performance and stability even further.

It also introduced new features and compatibility updates, such as support for the macOS ARM64 platform.

While PowerShell 7.x is a cross-platform version, Windows PowerShell (pre-6.0) is continuously maintained and receives necessary upgrades, but it is no longer actively developed with new features. Microsoft routinely releases updates and new versions of PowerShell to increase its capabilities and answer user demands in controlling and automating IT infrastructure and services.

	[image: image]

	
	[image: image]

[image: image]

Key features and advantages of PowerShell

[image: image]

Here are some of the key features and advantages of PowerShell:

	Object-Oriented: As PowerShell is built on the.NET framework, it treats data as objects rather than plain text. This object-oriented approach enables rich data manipulation, filtering, and formatting, making complicated systems easier to deal with.

	Cross-Platform Support: PowerShell is no longer restricted to Windows-based computers. PowerShell Core is now available for a variety of platforms, including Linux and macOS, enabling cross-platform administration and automation.

	Extensive Integration: PowerShell integrates with a wide range of Microsoft products and technologies, including Active Directory, Exchange Server, SQL Server, SharePoint, and others. Administrators can manage and automate different parts of these systems using a uniform command-line interface.

	PowerShell has a robust command pipeline that allows you to chain commands together, passing the output of one as the input to another. This feature allows for more efficient and simple scripting, eliminating the need for intermediate variables and simplifying complex processes.

	PowerShell is a full-featured scripting language that supports variables, loops, conditional statements, functions, error handling, and more. It provides a familiar and expressive syntax for writing strong and reusable scripts.

	Remote Management and Automation: PowerShell enables remote system management, making it easier to administrate and automate activities across numerous machines. It supports a variety of remote administration protocols, including PowerShell Remoting and SSH, allowing for secure and quick remote administration.

	Script Sharing and Reusability: PowerShell scripts can be readily shared and reused by others, facilitating administrative collaboration and knowledge sharing. PowerShell Gallery is a public repository where users may upload and discover PowerShell scripts, modules, and extensions.

	Extensive Documentation and Community: PowerShell has a large user, administrator, and developer community that actively contributes to its development and provides support. Microsoft provides extensive literature, videos, and forums to help you understand and troubleshoot PowerShell issues.

	DevOps Tool Integration: PowerShell interfaces nicely with numerous DevOps tools and workflows. It may be seamlessly linked into build and release pipelines, configuration management systems, and infrastructure provisioning tools, allowing for DevOps process automation and orchestration.

These features and benefits make PowerShell a powerful tool for system administrators, IT professionals, and developers, allowing them to manage and automate a wide range of operations in a variety of situations.

	[image: image]

	
	[image: image]

[image: image]

Installing PowerShell on different platforms

[image: image]

To install PowerShell on different platforms, follow the instructions provided below:

	Windows:

PowerShell is included by default on Windows 10, starting from version 1809 (October 2018 Update). If you have an older version, you can install the latest version from the Microsoft website:

	Go to the PowerShell GitHub repository releases page: https://github.com/PowerShell/PowerShell/releases

	Under "Assets," find the release that matches your system architecture (x86 or x64) and click to download the installer.

	Run the installer and follow the on-screen instructions to complete the installation.

	macOS:

PowerShell can be installed on macOS using Homebrew, a popular package manager for macOS:

	Open the Terminal application.

	Install Homebrew if you don't have it installed already. Run the following command in the Terminal:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

	Once Homebrew is installed, use the following command to install PowerShell:

brew install—cask powershell

	Linux:

PowerShell is available for various Linux distributions through package managers or as standalone packages. Here's an example for some popular distributions:

	Ubuntu or Debian:

Open a terminal and run the following commands:

arduino

wget -q https://packages.microsoft.com/config/ubuntu/$(lsb_release -rs)/packages-microsoft-prod.deb

sudo dpkg -i packages-microsoft-prod.deb

sudo apt-get update

sudo apt-get install -y powershell

	CentOS or RHEL:

Open a terminal and run the following commands:

sudo rpm -Uvh https://packages.microsoft.com/config/rhel/7/packages-microsoft-prod.rpm

sudo yum install -y powershell

	Fedora:

Open a terminal and run the following commands:

sudo dnf install -y compat-openssl10

sudo rpm -Uvh https://packages.microsoft.com/config/fedora/34/packages-microsoft-prod.rpm

sudo dnf install -y powershell

Refer to the official documentation for other distributions: https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux

These instructions should assist you in installing PowerShell on the appropriate platforms. Remember to check the official documentation or the GitHub source for any updated platform-specific instructions.

