

[image: image]

Ultimate Elastic Stack
for Observability and
Real-Time Analytics

[image:]

Design, Build, Secure and Optimize Elastic
Stack Environments for Data Analytics,
Monitoring and Real-Time Search
Across Modern Infrastructures

[image:]

Agus Kurniawan

[image:]

www.orangeava.com

Copyright © 2025 Orange Education Pvt Ltd, AVA®

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First Published: October 2025

Published by: Orange Education Pvt Ltd, AVA®

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN (PBK): 978-81-97396-65-6

ISBN (E-BOOK): 978-81-97396-62-5

Scan the QR code to explore our entire catalogue

[image:]

www.orangeava.com

Dedicated To

My Wife, Ela Juitasari

And

My Children, Thariq and Zahra

About the Author

Agus Kurniawan stands out as an emblem of dedication and innovation in the world of Information Technology (IT). Boasting an illustrious career as an IT consultant, advisor, trainer, and author, he has carved a niche for himself as a beacon of knowledge and expertise.

Recognized for his exceptional contributions, he was honored with the prestigious Microsoft MVP Award continuously from 2004 to 2022. Such an accolade speaks volumes about his commitment to excellence, and his prowess in the realm of technology.

Specializing in Software Engineering, Agus's interests are diverse and encompassing. He has ventured deep into the avenues of Machine Learning (ML), exploring its endless possibilities, and bringing innovations to life. His intrigue does not stop there, as the domains of Internet of Things (IoT) and Cloud Computing have also seen his pioneering touch. As the digital era evolves, Agus has continually emphasized the importance of DevOps, ensuring streamlined operations in IT projects.

Beyond his technical pursuits, he is an advocate for continuous learning. His belief that adaptability and knowledge are the pillars of success in the tech landscape shines through in his role as a trainer. Through his courses, he empowers individuals, from novices to seasoned professionals, ensuring that they are well-equipped with the latest skills and knowledge.

In personal spheres, he enjoys exploring the technological advancements of the modern age, while valuing the lessons of the past. His approach to technology is holistic, viewing it as a tool to bridge gaps, connect cultures, and pave the way for a brighter, more integrated future.

About the Technical Reviewers

Saravanan Shanmugam is a product-driven technology leader with 13+ years of experience delivering scalable infrastructure, observability, and DevOps solutions aligned with business goals. With expertise spanning product management and deep technical execution, he builds platforms that enhance operational efficiency, developer productivity, and customer outcomes.

Saravanan’s product leadership is rooted in collaboration with engineering, operations, and business teams. He excels at defining strategic roadmaps, prioritizing features, and delivering infrastructure and observability products that drive measurable value.

He brings strong expertise in Linux systems, automation, and scripting with Shell and Python, and has designed highly available, cloud-native environments. With eight years in observability and data platforms, he’s built end-to-end pipelines for ingestion, processing, and analytics, specializing in Elasticsearch for scalable search and real-time insights. An advocate of CNCF and open source, he has implemented Kubernetes, Prometheus, and Fluentd to build resilient, automated systems that reduce downtime, accelerate releases, and improve services.

Rahul Shriram Funde is a seasoned software engineer and technical consultant with 9+ years of experience designing and delivering scalable software systems across industries including hospitality, GPS tracking, CRM, legal tech, and telecommunications. He specializes in building tailored solutions that solve complex business challenges.

Rahul is a full-stack developer skilled in Angular, Node.js, TypeScript, and Couchbase, with expertise in backend API design, Linux (CentOS), and Hyper-V virtualization. His DevOps experience with Chef, Docker, Grafana, Prometheus, and the ELK Stack enables him to build reliable, observable systems. As a Technical Reviewer for Ultimate Elastic Stack for Observability and Real-Time Analytics published by Orange Education Pvt Ltd, he contributes expert insights on log analytics and enterprise observability. Having worked on fleet tracking, CRM, and telecom backends, Rahul combines versatility with a passion for clean code, mentoring, and continuous learning.

Acknowledgements

I would like to express my sincere gratitude to the vibrant Elastic community whose contributions, discussions, and shared experiences have been invaluable in shaping this handbook. Special thanks to the Elastic team for creating such powerful and innovative tools that continue to transform how we handle data at scale.

My appreciation extends to the system administrators, developers, and data analysts who shared their real-world challenges and solutions, providing the practical insights that make this book truly useful. Their feedback during the writing process helped ensure that the content addresses the genuine needs in the field.

I am grateful to the technical reviewers who meticulously examined each chapter, offering constructive feedback that significantly improved the accuracy and clarity of the content. Their expertise in various aspects of the Elastic Stack was instrumental in creating a comprehensive and reliable resource.

Finally, I want to thank my family and colleagues for their patience and support throughout this writing journey. Their encouragement made it possible to dedicate the time and energy necessary to create a handbook that truly serves the Elastic Stack community.

Preface

The Elastic Stack has revolutionized the way organizations collect, store, search, and analyze their data. What began as a simple search engine has evolved into a comprehensive platform capable of handling everything from application logs and system metrics to complex business analytics and security monitoring. This handbook represents a culmination of years of hands-on experience, community insights, and practical implementations across diverse industries and use cases.

In today's data-driven world, the ability to quickly ingest, process, and gain insights from vast amounts of information is not just an advantage—it is a necessity. The Elastic Stack, comprising Elasticsearch, Logstash, and Kibana, along with the broader ecosystem of Beats, APM, and other Elastic products, provides the tools to meet these challenges. However, mastering these tools requires more than just understanding their individual capabilities; it demands knowledge of how they work together, how to deploy them effectively, and how to optimize them for real-world scenarios.

Ultimate Elastic Stack for Observability and Real-Time Analytics bridges the gap between basic tutorials and enterprise-level implementations. Hence, whether you are just starting your journey with the Elastic Stack or looking to enhance your existing knowledge with advanced techniques, this book provides practical guidance based on real-world experience.

Rather than focusing solely on theoretical concepts, this handbook emphasizes practical application. Each chapter builds upon the previous one, creating a comprehensive learning path that takes you from initial setup to advanced deployment strategies. The inclusion of real-world case studies demonstrates how organizations across various industries have successfully leveraged the Elastic Stack to solve complex challenges.

The book covers not just the traditional ELK stack, but also explores the broader Elastic ecosystem, including Beats for data shipping, Elastic APM for application performance monitoring, and advanced features like machine learning and security. This comprehensive approach ensures that readers gain a complete understanding of what is possible with modern Elastic deployments.

This handbook is designed to be both a learning guide and a reference resource. If you are new to the Elastic Stack, start with Chapter 1, and work through sequentially. Each chapter builds upon concepts from previous sections, creating a solid foundation of knowledge.

For experienced users, individual chapters can serve as focused deep-dives into specific topics. The extensive table of contents and cross-references make it easy to find information about particular features or implementation strategies.

The case studies in Chapter 9 are particularly valuable for understanding how theoretical concepts translate into practical solutions. These real-world examples demonstrate the decision-making process behind successful Elastic Stack implementations, and can serve as templates for your own projects.

The Elastic Stack continues to evolve rapidly, with new features and capabilities being added regularly. While this book focuses on stable, production-ready features, the principles and best practices covered will remain relevant as the platform continues to grow. The foundation you build with this handbook will serve you well as you explore new developments in the Elastic ecosystem.

So, welcome to your journey into the world of the Elastic Stack! Whether you are building your first search application, implementing enterprise-wide logging, or creating sophisticated analytics platforms, this handbook will be your trusted companion in unlocking the full potential of these powerful tools.

Get a Free eBook

We hope you are enjoying your recently purchased book! Your feedback is incredibly valuable to us, and to all other readers looking for great books.

If you found this book helpful or enjoyable, we would truly appreciate it, if you could take a moment to leave a short review with a 5 star rating on Amazon. It helps us grow, and lets other readers discover our books.

As a thank you, we would love to send you a free digital copy of this book, and a 30% discount code on your next cart value on our official websites:

www.orangeava.com

www.orangeava.in (For Indian Subcontinent)

[image:] Here's how:

Leave a review for the book on Amazon.

Take a screenshot of your review, and send an email to info@orangeava.com (it can be just the confirmation screen).

Once, we receive your screenshot, we will send you the digital file, within 24 hours.

Thank you so much for your support - it means a lot to us!

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-Elastic-Stack-for-Observability-and-Real-Time-Analytics

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/bfb068

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA® Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction and Initial Setup

Introduction

Welcome to the “Ultimate Elastic Stack Handbook,” your comprehensive guide to mastering Elastic Stack, a powerful trio of tools for searching, analyzing, and visualizing data in real-time. Whether you are a system administrator, a developer, a data analyst, or just an enthusiast looking to extract valuable insights from your data, this handbook is designed to take you from the basics to advanced implementations of the Elastic Stack.

In this first chapter, we will start by laying the groundwork for your Elastic Stack journey. We will cover the overview and evolution of the Elastic Stack, discuss its benefits and various use cases, detail the system requirements you will need to get started, walk through the installation and configuration of Elasticsearch, Logstash, and Kibana, and finally, show you how to verify your installation to ensure that you are ready to proceed.

By the end of this chapter, you will have a strong foundational understanding of what the Elastic Stack is, and how it can be a game-changer for your data needs. You will also have a fully functioning Elastic Stack environment set up, and ready for action. So, let us dive in!

Structure

In this chapter, we will discuss the following topics:

	Overview and Evolution of the Elastic Stack

	Benefits and Use Cases

	System Requirements: Hardware, Software, and Cluster Considerations

	Installing and Configuring: Elasticsearch, Logstash, and Kibana

	
Setting up Lab Environment

	Verifying Your Installation

Overview and Evolution of the Elastic Stack

The Elastic Stack — formerly known as the ELK Stack — comprises three open-source projects: Elasticsearch, Logstash, and Kibana, often complemented by Beats, a collection of lightweight, single-purpose data shippers. It is a robust suite of tools that allows for the ingestion, storage, analysis, and visualization of data.

[image:]

Figure 1.1: Relationship between the Elastic Stack Components

Figure 1.1 provides a simplistic representation of the core components of the Elastic Stack, often referred to as the ELK stack. At the center, we have Elasticsearch, the heart of the system, responsible for indexing and querying data. Logstash is positioned on the left, emphasizing its role as a data processing and ingestion pipeline that feeds data into Elasticsearch. On the right, Kibana stands as the visualization and user interface tool, enabling users to create dashboards, and visualize the data stored in Elasticsearch. Lastly, at the bottom, Beats acts as lightweight data shippers that collect and send data directly to either Elasticsearch or Logstash, showcasing its role as the foundation for data collection in the stack. Together, these components form a cohesive and powerful ecosystem for data analysis and visualization.

Elasticsearch: The Heart of Elastic Stack

Elasticsearch is much more than just a search engine; it is a versatile, distributed data store that allows for the storage, retrieval, and analysis of large volumes of data in near real-time. At its core, Elasticsearch is built on the Apache Lucene library, which provides robust, reliable full-text search capabilities. However, Elasticsearch enhances Lucene with distribution features, RESTful API, and a JSON-based query DSL (Domain-Specific Language), making it both powerful and user-friendly.

The distributed nature of Elasticsearch means it is inherently scalable. You can start with a single node on your laptop, and scale out to hundreds of nodes, handling petabytes of data seamlessly. This scalability is managed by dividing each index into shards which can be distributed across the cluster of nodes. Each shard can have zero or more replicas, providing high availability and redundancy. This design allows Elasticsearch to handle large-scale operations, without compromising performance.

Elasticsearch is schema-less, which means that documents can be indexed without predefining the structure of the data. When a document is indexed, Elasticsearch automatically infers the data structure, creates an index if necessary, and adds the document to the index. This dynamic mapping makes it easy to get started with Elasticsearch, but it also offers the power and flexibility of defining custom mappings to optimize your data storage and search capabilities.

The search capabilities of Elasticsearch are one of its most powerful features. It is not limited to simple full-text searches, but also supports structured searches, filters, geospatial searches, and many more. It offers complex query combinations and aggregations, providing the ability to perform advanced analytics and summaries of your data directly within the search engine.

To demonstrate making a request to an Elasticsearch server, let us imagine you have an Elasticsearch cluster running, and want to index a new document into the products index. You would issue an HTTP POST request with a JSON body representing the document:

POST /products/_doc/

{

"name": "Ultimate Elastic Stack Handbook",

"description": "A comprehensive guide to mastering the Elastic Stack.",

"price": 42.00,

"in_stock": true

}

This request can be made using tools like curl, Postman, or any HTTP client in a programming language of your choice. Elasticsearch will then respond with a JSON object indicating the successful creation of the document, including a generated ID, if one was not specified.

For a search example, if you want to find products with the word Elastic in their name, your HTTP request would look like this:

GET /products/_search

{

"query": {

"match": {

"name": "Elastic"

}

}

}

This search request tells Elasticsearch to look into the products index for any documents where the name field contains the word, Elastic. The response will be a JSON object containing the search results, including the document itself, and metadata such as the document’s _id.

Elasticsearch’s real-time analytics and full-text search capabilities are revolutionizing the way companies approach their data. From log and event data analysis to full-blown search engines, the application possibilities are nearly limitless which has solidified Elasticsearch’s role as the heart of the Elastic Stack.

Logstash: The Data Processing Pipeline

Logstash is a powerful open-source data processing pipeline that ingests data from a multitude of sources simultaneously, transforms it, and then sends it to a “stash” like Elasticsearch. It is an integral part of the Elastic Stack, providing the muscle to handle data intake and filtration, before it is indexed into Elasticsearch.

Designed with an emphasis on versatility and performance, Logstash has a pluggable framework featuring over 200 plugins to connect with various types of inputs, filters, and outputs. This flexibility allows Logstash to unify data processing across different databases, applications, and log files. For instance, it can ingest data from sources such as log files, metrics, web applications, data stores, and various AWS services, apply sophisticated transformations, and then send it to Elasticsearch for indexing.

The configuration files for Logstash are separated into three parts: Input, filter, and output. The input plugins consume data from various sources, the filter plugins modify the data as you specify, and the output plugins write the data to a destination, often Elasticsearch. Logstash filters can perform numerous transformations and enhancements to the data, such as geo-enrichment, anonymization, splitting, and grokking to structure the unstructured log data.

Logstash’s pipeline is capable of buffering the incoming data, and applying back-pressure when the system is processing at peak volumes, which is critical for maintaining the integrity of a system under load. It is also fault-tolerant, with a number of features designed to ensure that data processing can continue without loss, even when there are network or hardware failures.

The power of Logstash lies not just in its ability to process large volumes of data, but also in its rich ecosystem of input and output plugins that can be easily mixed and matched to create a customized data processing pipeline that suits any requirement.

Here is an example of how you could send data to Elasticsearch using Logstash. Assume that you have a simple log file, weblogs.log, which you want to parse and send to Elasticsearch. You would create a Logstash configuration file, logstash.conf, with the following content:

input {

file {

path => "/path/to/your/weblogs.log"

start_position => "beginning"

}

}

filter {

grok {

match => { "message" => "%{COMBINEDAPACHELOG}" }

}

date {

match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]

}

geoip {

source => "clientip"

}

}

output {

elasticsearch {

hosts => ["http://localhost:9200"]

index => "weblogs-%{+YYYY.MM.dd}"

}

}

In this configuration:

	The input section defines the path to the log file.

	The filter section uses the grok plugin to parse and structure the log data, the `date` plugin to parse the timestamp, and the geoip plugin to add geographical information about the IP addresses found in the logs.

	The output section specifies that the processed data should be sent to an Elasticsearch server running on localhost, and indexing the data into daily indices named weblogs-YYYY.MM.dd.

To run Logstash with this configuration, and start processing the data, you would use the following command:

bin/logstash -f path/to/your/logstash.conf

Upon execution, Logstash reads the log file, processes each line using the specified filters, and sends the transformed data to the Elasticsearch server, where it is indexed and stored. This setup allows for real-time monitoring and analysis of log data through Elasticsearch and Kibana, demonstrating just one of the many powerful capabilities of Logstash within the Elastic Stack.

Kibana: The Window to Your Elastic Data

Kibana is the visualization layer of the Elastic Stack that allows users to create powerful visualizations and dashboards from their Elasticsearch data. It provides a user-friendly web interface that enables users to explore, analyze, and visualize the data stored in Elasticsearch indices. By translating the complexities of raw data into graphical representations, Kibana facilitates a better understanding of the data patterns, trends, and anomalies.

The strength of Kibana lies in its ability to provide real-time summary and analysis of large datasets in a coherent and user-friendly manner. It supports a variety of charts, tables, and maps which can be combined to create comprehensive dashboards that provide actionable insights. These dashboards are dynamic, easily shareable among team members, and can be customized to the unique requirements of each user.

One of Kibana’s key features is its deep integration with Elasticsearch. All the visualizations and searches in Kibana are made possible through Elasticsearch’s aggregation capabilities which can handle complex queries and aggregations at scale. This tight integration ensures that Kibana can provide a fast and responsive experience, even when working with large data sets and complex queries.

Kibana also offers features like machine learning, graph exploration, and log and infrastructure monitoring out of the box. These advanced features empower users to detect anomalies, build relevant relationships in data, and monitor their infrastructure and applications, all within the same tool. Moreover, with the addition of Canvas, users can create pixel-perfect infographics and presentations that pull the live data directly from Elasticsearch.

The continuous development and integration of new features keep Kibana at the forefront of data visualization tools. Elastic’s commitment to enhancing user experience is evident in features like Lens, which simplifies the process of creating complex visualizations through a more intuitive interface, and the introduction of “Spaces”, which allows for better organization and management of dashboards and visualizations across different teams within an organization.

Kibana has evolved from a simple visualization tool to a powerful application capable of handling a variety of use cases, from simple log data visualizations to complex business analytics. It stands out not only for its ability to visualize data, but also for its role in the operational management of the Elastic Stack, including features for managing indices, users, and advanced settings. Kibana’s versatility, ease of use, and extensive customization options make it an indispensable tool for anyone working with the Elastic Stack.

[image:]

Figure 1.2: Kibana Portal

Figure 1.2 showcases the initial landing page of the Kibana web portal which is a part of the Elastic Stack offering a visual interface for users to manage their Elasticsearch data. Upon successful setup and access configuration, users are greeted with this home screen that provides a user-friendly dashboard for navigating the platform’s features. The portal is divided into sections such as Search, Observability, Security, and Analytics, each representing a core capability of the Elastic Stack. Search offers tools to create search experiences, Observability consolidates various data points for system monitoring, Security aids in threat detection and infrastructure protection, and Analytics provides tools for data visualization and analysis. The homepage also prompts users to get started by adding data integrations, uploading files, or experimenting with sample datasets, making it straightforward for newcomers to begin exploring the full potential of Elastic services. The interface’s clean and structured layout, with clear call-to-action buttons such as 'Add Integrations' and 'Try sample data', illustrate Kibana’s focus on the ease of use, and swift user onboarding.

Beats: The Data Shippers of the Elastic Stack

Beats form the collection layer of the Elastic Stack, a suite of lightweight, single-purpose data shippers that can be installed on servers to capture all sorts of operational data from logs, metrics, network packet data, to runtime metrics, and ship them directly into Elasticsearch or Logstash for further processing. As the agents on the ground, Beats are responsible for the initial collection of data points that form the foundation of the stack’s powerful analytics capabilities.

Each Beat is designed to be lean and performant, with a small footprint which ensures that they can efficiently collect the data, without impacting the system performance. This design philosophy makes Beats an ideal solution for a decentralized data collection strategy where data is generated across multiple servers, containers, and even cloud environments. With various types of Beats available, such as Filebeat for log files, Metricbeat for metrics, Packetbeat for network data, and many more, users can choose the specific Beat that fits their data collection needs.

Beats are incredibly easy to deploy and manage which is a significant advantage for operation teams. They come with a range of modules that can be enabled with minimal configuration, allowing for the automatic setup of data collection, parsing, and visualization for common log formats and systems. This modularity and ease of configuration mean that Beats can start sending the relevant data to Elasticsearch or Logstash within minutes of installation, greatly simplifying the operational overhead, typically associated with data shippers.

The versatility of Beats is further enhanced by their extensibility. If the existing Beats do not cover a specific use case, developers can create custom Beats, using the libbeat framework. This developer-friendly aspect allows for the creation of custom data shippers tailored to unique requirements, ensuring that the Elastic Stack can be extended to cover practically any data collection scenario that might arise.

Beats play a crucial role in securing and monitoring data flows as well. With the addition of features like SSL encryption for data in transit, and integration with Elasticsearch security features, they ensure that the sensitive data is protected from the endpoint to Elasticsearch. Moreover, Beats come with built-in monitoring and diagnostic features that provide insights into their operational health, ensuring that any issues can be identified and rectified quickly.

In the context of the Elastic Stack, Beats are not just the first step in the data pipeline, but are also key to providing the granularity and specificity required for advanced data analysis and insight. They are often the unsung heroes of the stack, quietly and efficiently collecting and delivering the data that drives analysis, visualization, and decision-making in Kibana. The evolution of Beats continues to reflect the broader trends in data collection and monitoring, focusing on the ease of use, automation, and integration with the ever-growing ecosystem of technologies in the IT landscape.

The evolution of the Elastic Stack has been marked by its transformation from a set of independent products into a tightly integrated platform. The continuous addition of new features and tools, such as Elastic APM for application performance monitoring, Elastic SIEM for security information and event management, and various other solutions, are a testament to its expanding capabilities and adaptability to modern data needs.

Benefits and Use Cases

The Elastic Stack has a myriad of benefits, making it an invaluable tool across various industries. Its real-time data processing capabilities, powerful search functions, and flexible data ingestion options make it suitable for numerous applications. It shines in situations such as log and event data management, security analytics, performance monitoring, and many more.

Some of the key use cases include:

	
Log Analysis: Centralizing logs from various systems and applications to detect anomalies, track events, and troubleshoot issues.

	
Security Information and Event Management (SIEM): Providing insights into security-related data for real-time analysis of security events.

	
Application Performance Monitoring (APM): Capturing data about application performance and errors, helping developers and operation teams understand the performance of their software.

	
Full-Text Search: Enabling sophisticated search functionalities across diverse sets of documents.

	
Data Visualization: Allowing businesses to visualize their data in various formats to extract business intelligence.

System Requirements: Hardware, Software, and Cluster Considerations

Before diving into the setup of the Elastic Stack, it is crucial to understand the system requirements needed to run the software efficiently. These requirements vary, based on the scale at which you plan to operate.

	
Hardware: Depending on your data volume, you will need to consider the CPU, memory, and disk space. Elastic provides guidelines for hardware sizing to help make the right choices.

	
Software: Elasticsearch and Kibana are Java applications, so you will need a supported Java Runtime Environment (JRE). Logstash and Beats have specific requirements, depending on the operating system.

	
Cluster Considerations: For production environments, you will need to consider the setup of an Elasticsearch cluster to ensure high availability and failover capabilities.

The Elastic Cloud Enterprise, commonly known as the ELK Stack, is a robust and scalable platform designed for comprehensive data search, analysis, and visualization. To ensure optimal performance and reliability, specific hardware prerequisites must be met. The following is a concise list of these requirements:

	
Physical Memory (RAM): At least 64GB, with half or more dedicated to the Elastic Stack.

	
CPU Cores: A minimum of 16 cores.

	
Disk Space: Fast storage with at least 1TB SSDs. It is advised to use RAID 0 and NVMe storage.

	
Network: 10GbE network recommended. High bandwidth and low latency internal networks are crucial for efficient node-to-node communication.

	
Operating System: Elastic Cloud Enterprise supports various Linux distributions.

	
Other Considerations: Hardware isolation is vital. It is advisable to run Elastic Cloud Enterprise on dedicated hosts, and not share with other services. This ensures optimal performance.

For further details and considerations, refer to the official website for Elastic Cloud Enterprise Hardware Requirements, https://www.elastic.co/guide/en/cloud-enterprise/current/ece-hardware-prereq.html.

Installing and Configuring: Elasticsearch, Logstash, and Kibana

When diving into the installation and configuration of the Elastic Stack, it is paramount to consider the variety of hosting and deployment options available. Your choice will significantly influence performance, scalability, and management complexity. Hence, whether you are looking to leverage the raw power of dedicated hardware, the flexibility of cloud services, or the reproducibility of containerized environments, each option has its distinct advantages and trade-offs. Let us now delve into the most popular installation avenues for the Elastic Stack (Elasticsearch, Logstash, and Kibana) and explore the pros and cons of each.

Bare Metal

Installing the Elastic Stack directly onto physical hardware means that there is no virtualization layer in between the software and the machine’s resources. This method harks back to traditional computing setups where software applications had direct access to server hardware. Opting for a bare-metal installation is often a choice for those who prioritize performance, and seek the fullest control over their environment, ensuring that there is no additional layer potentially inhibiting the software’s operations. While it offers raw power and extensive customization options, it requires a careful selection of hardware components, and a more hands-on approach to management.

	
Method: Installing the Elastic Stack directly on physical hardware, without any virtualization layers.

	
Pros:

	Maximum performance due to no virtualization overhead.

	Full control over hardware specifications and configurations.

	Better resource utilization as there is no intermediary layer.

	Extended customization possibilities tailored to specific needs.

	Often results in predictable performance metrics.

	
Cons:

	Scaling requires significant manual intervention.

	Higher upfront costs due to hardware investments.

	Physical failures can lead to longer downtimes.

	More complex disaster recovery scenarios.

	Potentially underutilized resources, if not managed efficiently.

Virtual Machines (VMs)

Virtual Machines have revolutionized IT infrastructures by allowing multiple operating systems to run on a single physical server. By using hypervisors, VMs abstract the Elastic Stack from the underlying hardware, offering flexibility and efficiency. This method is like having several computers operating within one physical machine. Each VM has its own dedicated resources, and runs independently, ensuring isolation from others. It is a preferred choice for organizations that seek a balance between performance, scalability, and resource management, allowing for more dynamic IT operations.

[image:]

Figure 1.3: Deploying ELK Stack on VMWare

Figure 1.3 showcases a virtual machine environment for deploying the Elastic Stack. The author has opted for VMWare for running instances of Elasticsearch and Kibana. While VMWare is a robust solution for virtualization, allowing fine control over resource allocation and offering strong isolation, it is important to note that there are other viable options for setting up your Elastic Stack. You can use VirtualBox, Hyper-V, or any other virtualization software of your choice. These alternatives include running on bare metal for performance-critical applications, leveraging containerization with Docker for portability, or utilizing cloud services for their elasticity and managed services.

	
Method: Installing on virtual machines that run on hypervisors.

	
Pros:

	Enhanced scalability by easily creating or cloning VMs.

	Effective resource isolation, ensuring smooth operations.

	Snapshots make backup and recovery simpler.

	Migration between hardware becomes feasible.

	Hardware maintenance, without affecting the virtual environment.

	
Cons:

	Performance overhead because of virtualization.

	
Additional licensing costs for hypervisor software.

	Requires robust hardware for optimal performance.

	VM sprawl can lead to management challenges.

	Dependencies on the underlying host system.

Cloud Services

The evolution of cloud computing has brought about a paradigm shift in how software is hosted and accessed. Leveraging cloud services for the Elastic Stack means utilizing the infrastructure of providers such as AWS, Azure, or GCP. Instead of investing in and maintaining physical hardware, organizations can rent resources on-demand, making it easier to scale as needs change. Cloud-based installations offer a blend of convenience, scalability, and managed services, ideal for businesses that want to focus more on their core operations, and less on infrastructure management.

[image:]

Figure 1.4: Deploying ELK Stack on Cloud Services

Figure 1.4 showcases a cloud-based environment for deploying the Elastic Stack. The author has opted for the GCP for running instances of Elasticsearch and Kibana. While GCP is a robust solution for cloud computing, allowing fine control over resource allocation, and offering strong isolation, it is important to note that there are other viable options for setting up your Elastic Stack. You can use Azure, GCP, or any other cloud services of your choice. These alternatives include running on bare metal for performance-critical applications, leveraging containerization with Docker for portability, or utilizing virtual machines for their flexibility and resource management.

	
Method: Using cloud providers like AWS, Azure, or GCP to host the Elastic Stack.

	
Pros:

	Seamless scalability in tune with demands.

	Outsourcing of hardware and software management.

	Potential cost savings with pay-as-you-go models.

	Geographical distribution for better user experiences.

	Managed services often include updates and security patches.

	
Cons:

	Costs can surge if not properly managed.

	Data transfer fees can add up.

	Limited control over the underlying infrastructure.

	Vendor lock-in may dictate future technical decisions.

	Potential concerns around data privacy and sovereignty.

Docker and Containerization

Containerization with Docker being a prime example, is an approach that packages software and all of its dependencies into a standardized unit for software development. By deploying the Elastic Stack in containers, you achieve an unparalleled level of consistency and speed in deployment. Unlike traditional VMs, containers share the host system’s kernel, rather than emulating an entire operating system. This lightweight nature means faster start-up times, and efficient resource utilization. Adopting a containerized approach is well-suited for organizations that lean towards microservices architectures, and seek agility in their development and deployment processes.

	
Method: Deploying Elastic Stack components within Docker containers, or using orchestration tools like Kubernetes.

	
Pros:

	Rapid and consistent deployments.

	Isolated environments reducing conflicts and dependencies.

	Efficient use of resources with shared OS kernels.

	Portability across different platforms and environments.

	Microservices architecture aligns well with containerization.

	
Cons:

	Steeper learning curve for container orchestration.

	
Complexity in managing stateful applications.

	Overhead and potential security concerns with container runtime.

	Networking complexities in distributed environments.

	Resource contention, if not properly configured.

The choice of the right method should be grounded in the specific requirements of your project, budgetary considerations, and available technical expertise. Each approach offers unique benefits and potential challenges. For instance, bare metal deployments provide maximum performance and control, but require significant upfront investment and manual management. On the other hand, cloud services offer high scalability and flexibility, but can be costly and might not be suitable for all use cases. Docker and containerization provide a middle ground, offering rapid deployment and scalability, but they require a solid understanding of containerization principles and tools.

Installing the Elastic Stack can be an adventure in its own right. Here, we will provide step-by-step instructions for installing Elasticsearch, Logstash, and Kibana on your system, as well as some initial configurations to get you started.

	
Elasticsearch: From downloading the package to setting up the initial cluster.

	
Logstash: Installing the correct version, and configuring your first pipeline.

	
Kibana: Setting up Kibana to connect to your Elasticsearch cluster and basic configuration.

Next, we will walk you through the installation and configuration of the Elastic Stack components. We will cover the installation of Elasticsearch and Kibana on Ubuntu Server 22.04 LTS, as well as some initial configurations to get you started.

Setting up Lab Environment

In this lab setup for the “Ultimate Elastic Stack Handbook,” the author has opted for VMWare for running instances of Elasticsearch and Kibana. While VMWare is a robust solution for virtualization, allowing fine control over resource allocation, and offering strong isolation, it is important to note that there are other viable options for setting up your Elastic Stack. You can use VirtualBox, Hyper-V, or any other virtualization software of your choice. These alternatives include running on bare metal for performance-critical applications, leveraging containerization with Docker for portability, or utilizing cloud services for their elasticity and managed services.

For readers looking to replicate a similar environment, VMWare is an excellent tool! So, feel free to explore these other options, based on your preferences, requirements, and available resources.

Hands-On Lab: Building Elasticsearch and Kibana on Ubuntu Server 22.04 LTS

Now, let me guide you through a hands-on lab to build and run Elasticsearch as well as Kibana as daemons on Ubuntu Server 22.04 LTS. The lab environment is shown in Figure 1.5.

[image:]

Figure 1.5: Lab Environment

Prerequisites:

	Ubuntu Server 22.04 LTS installed on a VM or physical machine.

	Sudo privileges or root access.

	Internet access for downloading packages.

When this book was written, the latest version of Elasticsearch was 8.10.4, and Kibana was 8.10.4. You can check the latest version of Elasticsearch and Kibana at https://www.elastic.co/downloads/elasticsearch and https://www.elastic.co/downloads/kibana.

Steps to Install Elasticsearch Server

The following steps will guide you through the installation of Elasticsearch on Ubuntu Server 22.04 LTS:

	
Log into Elasticsearch Server Machine
Use the VMWare console or SSH to connect to the Elasticsearch Server Machine.

	
Install Java Runtime Environment (JRE)
Since we are using Elasticsearch and Kibana 8.x, there is no need to install the Java Runtime Environment (JRE). Elasticsearch and Kibana both come bundled with JRE 11.0.12. However, if you are using Elasticsearch and Kibana 7.x, you will need to install JRE 11.0.12.

If you want to install the default JRE, you can use the following command:

sudo apt update

sudo apt install default-jre

	
Import Elasticsearch PGP Key
Securely download and install the signing key:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo gpg --dearmor -o /usr/share/keyrings/elasticsearch-keyring.gpg

	
Add Elasticsearch Repository
You may need to install the apt-transport-https package on Debian before proceeding:

sudo apt update

sudo apt-get install apt-transport-https

Save the repository definition to /etc/apt/sources.list.d/elastic-8.x.list:

echo "deb [signed-by=/usr/share/keyrings/elasticsearch-keyring.gpg] https://artifacts.elastic.co/packages/8.x/apt stable main" | sudo tee /etc/apt/sources.list.d/elastic-8.x.list

Make sure you do not have issues with unsigned repositories. Please check that your Elasticsearch PGP Key is imported correctly.

	
Install Elasticsearch
Update your package lists, and install Elasticsearch using the following command:

sudo apt update

sudo apt install elasticsearch

During the installation, you will use security configurations that include a generated password for the superuser `elastic`, as shown in Figure 1.6. Save this password to sign in to Elasticsearch and Kibana later. You can change the password later.

[image:]

Figure 1.6: Displaying Passing during Elasticsearch Installation

	
Start and Enable Elasticsearch Service
Enable Elasticsearch to start on boot, and then start the service using systemd:

sudo systemctl enable elasticsearch.service

sudo systemctl start elasticsearch.service

To check the status of the Elasticsearch service, run:

sudo systemctl status elasticsearch.service

If you see "Active: active (running)..", it means Elasticsearch is running.

Steps to Install Kibana Server

The following steps will guide you through the installation of Kibana on Ubuntu Server 22.04 LTS.

	
Log into Kibana Server Machine.
Use the VMWare console or SSH to connect to the Kibana Server Machine.

	
Install Prerequisites.
Following the same steps as in Elasticsearch, specifically steps 3 and 4.

	
Install Kibana
Still using the same repository, install Kibana using the following command:

sudo apt update

sudo apt install kibana

	
Configure Kibana
By default, Kibana listens on localhost only. To allow external access, you need to configure Kibana to listen on all interfaces.

Edit the Kibana configuration file on /etc/kibana/kibana.yml:

sudo nano /etc/kibana/kibana.yml

Uncomment and set the server.host configuration to 0.0.0.0:

server.host: "0.0.0.0"

	
Start and Enable Kibana Service
Enable Kibana to start on boot, and then start the service:

sudo systemctl enable kibana.service

sudo systemctl start kibana.service

To check the status of the Kibana service, run:

sudo systemctl status kibana.service

If you see "Active: active (running)..", it means Kibana is running, as shown in Figure 1.7. You can see a code (..?code=xxxx) that you need to enter on Kibana configuration later. Keep this code for later use.

[image:]

Figure 1.7: Kibana Service is Running and Displaying a Code

Steps to Connect Kibana to Elasticsearch

In this section, you will connect Kibana to Elasticsearch. You will need to generate a token from Elasticsearch, and use it to connect to Kibana. The following steps will guide you through the process:

	
Log into Kibana Server Machine: Use the VMWare console or SSH to connect to the Kibana Server Machine.

	
Access Kibana: Once both services are running, you can access Kibana by navigating to http://<kibana-server-ip>:5601 from a web browser. You will see the Kibana login page, as shown in Figure 1.8. Enter the token generated by Elasticsearch. You can generate the token by running the following command on the Elasticsearch server:
sudo /usr/share/elasticsearch/bin/elasticsearch-create-enrollment-token -s kibana

[image:]

Figure 1.8: Configuring Elasticsearch on Kibana

	
Code Confirmation: You may be asked to enter a code from Kibana, as shown in Figure 1.9. You can obtain the code by checking messages from the Kibana server service, as demonstrated in Figure 1.7.

[image:]

Figure 1.9: Enter a Code from Kibana for Confirmation

	
Finished: After completion, you will be redirected to the Kibana home. Enter the username and password for the `elastic` user. You can find the password in step 5 of the Elasticsearch installation. You can change the password later.

By following these steps, you will have a basic Elastic Stack setup running on Ubuntu Server 22.04 LTS. Remember, this is a starting point, and for production environments, you should consider additional configurations for security, scalability, and performance tuning.

Verifying Your Installation

Once installation is complete, we must ensure that all the components of the Elastic Stack are communicating correctly, and are ready for use. We will cover how to check each component’s status, and some initial tests to confirm that the data is being ingested and indexed.

We will also explore these sub-sections in greater detail in the following pages, providing you with the knowledge and tools to set up your Elastic Stack effectively. So, let us get started on your path to mastering the Elastic Stack.

Before we dive into the script, it is important to understand what we are trying to accomplish. In the realm of network services and web applications, ensuring that critical services such as Elasticsearch and Kibana are operational is key to maintaining system reliability and availability. For those who administer these services, particularly in a Windows environment, PowerShell provides a robust and versatile toolset for system management. The following PowerShell script is designed to check the health and accessibility of Elasticsearch and Kibana services. It sends a simple HTTP request to the respective service endpoints, and checks the response. If the service is active and responsive, you will receive a confirmation message; if not, the script will provide a status indicating that the service is not accessible, or is experiencing issues. This proactive monitoring step can be a fundamental part of a larger automation strategy, ensuring that administrators are alerted to potential issues as soon as they occur, thus allowing for swift remediation.

Next, we create Bash and PowerShell scripts to check Elasticsearch and Kibana status.

Checking Elasticsearch and Kibana Status using Bash Script

Here is a simple Bash script that checks if Elasticsearch and Kibana are up by making an HTTP request to each service. This script uses `curl` to send a request, and then checks the HTTP status code to see if the service is responding correctly.

Make sure to replace elasticsearch-server-ip with the IP address of your Elasticsearch server and kibana-server-ip with the IP address of your Kibana server. The default ports are used in this script (9200 for Elasticsearch and 5601 for Kibana), but you can change them, if your setup uses different ports.

#!/bin/bash

Elasticsearch variables

ELASTICSEARCH_IP="elasticsearch-server-ip"

ELASTICSEARCH_PORT="9200"

ELASTICSEARCH_URL="http://${ELASTICSEARCH_IP}:${ELASTICSEARCH_PORT}"

Kibana variables

KIBANA_IP="kibana-server-ip"

KIBANA_PORT="5601"

KIBANA_URL="http://${KIBANA_IP}:${KIBANA_PORT}"

Timeout in seconds

TIMEOUT=5

Function to check service status

check_service() {

response=$(curl -k -m $TIMEOUT -s -o /dev/null -w '%{http_code}' -I $1)

if ["$response" == "000"]; then

echo "HTTP service at $1 did not respond."

elif ["$response" == "401"]; then

echo "HTTP service at $1 is running (authentication required)."

elif ["$response" -ge 200] && ["$response" -lt 300]; then

echo "HTTP service at $1 is reachable and running."

else

echo "HTTP service at $1 returned status code $response."

fi

}

Check Elasticsearch (with self-signed certificate)

check_service $ELASTICSEARCH_URL

Check Kibana

check_service $KIBANA_URL

Save this script to a file, for example, check_elk_services.sh, give it execute permission using chmod +x check_elk_services.sh, and run it with ./check_elk_services.sh. You should see the output as shown in Figure 1.10.

[image:]

Figure 1.10: Checking ELK Service Using Bash Scripts

Checking Elasticsearch and Kibana Status Using PowerShell Script

Here is a simple PowerShell script that checks if Elasticsearch and Kibana are up by making an HTTP request to each service. This script uses Invoke-WebRequest to send a request, and then checks the HTTP status code to see if the service is responding correctly.

URLs for Elasticsearch and Kibana

$ElasticsearchUrl = "elasticsearch-server-ip"

$KibanaUrl = "kibana-server-ip" # include port

Check if the TrustAllCertsPolicy class has already been defined

if (-not ([System.Management.Automation.PSTypeName]'TrustAllCertsPolicy').Type) {

add-type @"

using System.Net;

using System.Security.Cryptography.X509Certificates;

public class TrustAllCertsPolicy : ICertificatePolicy {

public bool CheckValidationResult(

ServicePoint srvPoint, X509Certificate certificate,

WebRequest request, int certificateProblem) {

return true;

}

}

"@

}

Apply the TrustAllCertsPolicy

[System.Net.ServicePointManager]::CertificatePolicy = New-Object TrustAllCertsPolicy

Function to check service status

function Check-Service {

param (

[string]$url

)

try {

$response = Invoke-WebRequest -Uri $url -Method Head -UseBasicParsing -TimeoutSec 30 -ErrorAction Stop

if ($response.StatusCode -eq 401) {

Write-Host "HTTP service at $url is running (authentication required)."

} elseif ($response.StatusCode -ge 200 -and $response.StatusCode -lt 300) {

Write-Host "HTTP service at $url is reachable and running."

} else {

Write-Host "HTTP service at $url returned status code $($response.StatusCode)."

}

} catch [Net.WebException] {

Output more detailed error info

if ($_.Exception.Response.StatusCode -eq 401) {

Write-Host "HTTP service at $url is running (authentication required)."

} else {

Write-Host "A WebException occurred: $_"

Write-Host "The error message was: $($_.Exception.Message)"

}

} catch {

Write-Host "An unexpected error occurred: $_"

}

}

Check Elasticsearch

Check-Service -url $ElasticsearchUrl

Check Kibana

Check-Service -url $KibanaUrl

Now, make sure to replace elasticsearch-server-ip and kibana-server-ip with the actual IP addresses for your Elasticsearch and Kibana instances.

To run this script, you can save it with a .ps1 extension, for instance, CheckElkServices.ps1. You may need to adjust your PowerShell execution policy to run the script. You can do this by running PowerShell as an administrator, and executing the following command:

Set-ExecutionPolicy RemoteSigned

Or, if you want to run the script with your current user policy, you can run it with the following command:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

After that, you can run the script by navigating to the directory containing the script and running:

.\CheckElkServices.ps1

You should see the output as shown in Figure 1.11:

[image:]

Figure 1.11: Checking ELK Service Using PowerShell Scripts

Be aware that if your services require authentication or use non-default ports, you will need to modify the URLs, and potentially add headers or other options to the Invoke-WebRequest calls to handle those requirements.

In closing our journey through the initial setup and configuration of Elasticsearch and Kibana, has been both challenging and enlightening. We have traversed the nuances of establishing a working environment, learned to adapt our tools to the specifics of network and security settings, and developed a troubleshooting acumen that will undoubtedly serve us in future endeavors. As we prepare to move forward, the experiences documented in this chapter will provide a sturdy foundation from which we can expand our understanding and mastery of these robust search and analytics platforms. Now, we stand on the threshold of deeper discovery, ready to delve into the advanced functionalities that lie in the chapters ahead.

Conclusion

As we reach the conclusion of our first chapter, you have laid down the first stones of your Elastic Stack foundation. We have traveled through the rich history and evolution of this powerful suite of tools which has grown from a simple search engine into an expansive ecosystem capable of handling complex, real-time data processing, and analysis tasks.

You have discovered the key benefits and use cases of the Elastic Stack which are as varied as the industries it serves. From processing and visualizing log data to powering search engines, from monitoring application health to safeguarding networks as part of an SIEM system, the versatility of the Elastic Stack is clear.

We have also navigated the critical preparatory steps, detailing the hardware, software, and cluster configurations necessary to get you started. Thus, whether you are planning a small deployment, or gearing up for a large-scale, distributed environment, you now have the knowledge to plan appropriately.

Following the systematic installation and configuration instructions, you should now have a working Elastic Stack environment. Your Elasticsearch is quietly humming, ready to index the data; Logstash is prepared to process and filter the incoming data stream; and Kibana is waiting to cast your data in visual splendor.

Finally, we have looked at how to verify your installation, ensuring that all the systems are go, and you are ready to take the next steps into the world of data exploration with Elastic.

In the upcoming chapter, we are going to take a comprehensive look under the hood of Elasticsearch, the core engine of the Elastic Stack. Chapter 2, Deep Dive: Elasticsearch, will equip you with a robust understanding of its distributed nature, exploring essential concepts such as indexing, search, data modeling, and cluster management. You will also learn the best practices for scaling your setup, ensuring high availability, and securing your data. Hence, whether it is fine-tuning performance or harnessing advanced features for complex queries, the next chapter is your guide to becoming proficient with the powerhouse, that is “Elasticsearch”.

OEBPS/images/qr1.jpg

OEBPS/images/qr.jpg

OEBPS/images/tick.jpg

OEBPS/images/Figure-1.7.jpg
- gesin - X oot - % ConmnPrompt B - o

© kibana. service - Kibana
Loaded: Loaded (/Lib/systend/systen/kibana.service; enabled; vendor preset: enabled)
Active: ctive Crunning) since Sat 2023-11°04 05:67:15 UTC; Umin U6s ago
Docs: https://wm.elastic.co
Main PID: 3304 (node)
Tasks: 11 (linit: Us16)
297,50
15.6u1s
+ /systen. slice/kibana. service
L3360 Jusr/share/kibana/bin/ . . /node/bin/node /ust/share/kibana/bin/ . ./sre/cli/dist

Nov. :27 kibanadl kibana[3304]: [2023-11-94T05:67:27.007+00:00] (NFO][plugins-service] Plugin
Nov 127 kibanadl kibana(3304]: [2023-11-94T05:07:27.008+00:00] [INFO][plugins-service] Plugin
Nov 27 kibanadl kibana(3364]: [2023-11-0uTos: J(INFO] (plugins-service] Plugin
Nov :27 kibanadl kibana[3304]: [2023-11-04T05 1001 [INFO] [plugins-service] Plugin

Nov 27 kibanadl kibana[33u]: [2023-11-6uTos: 00]{INFO J(http. server.Preboot] http se

Nov :27 kibanadl kibana[3304]: [2623-11-64Te5 :00] [INFO] [plugins-systen.preboot] Sett
Nov 127 kibanadl kibana[3304]: [2023-11-9UT5:07:27.569+00:00] [TNFO][preboot] "interactiveSetup”
Nov. 27 kibana0l kibana[33u]: [2023-11-6uTos: 586+00:00] [TNFO] [root] Holding setup until py
Nov 27 kibanadl kibana(3304]

Nov 27 kibanaol kibana(3304]:[Go to http://6. 5661/7c0de=183172 to get starte

OEBPS/images/Figure-1.9.jpg
&

Verification required

OEBPS/images/Figure-1.8.jpg
&

Configure Elastic to get started

s

© Conture manusty

OEBPS/images/cqr.jpg

OEBPS/images/Figure-1.1.jpg
Logstash Elasticsearch

OEBPS/images/Figure-1.10.jpg
- sgugesicon -

aguskgelasticol::

HTTP service at
HTTP service at

agusk@elasticol:~$

x [

$./check_elk_services.sh
https://192.168.199.142:9200 is running (authentication required).
http://192.168.199.143:5601 returned status code 302.

I

OEBPS/images/Figure-1.11.jpg
PS E:\GitHub\ilnudata-book-elk-stack\codes> .\CheckEUkServices.ps1
HTTP service at https://192.168.199.142:9200 is running (authentication required)
HTTP service at http://192.168.199.1u3:5601 is reachable and running

PS E:\GitHub\ilnudata-book-elk-stack\codes>

OEBPS/images/Figure-1.2.jpg
‘Welcome home

Search Observability security Anaiytics

Get started by adding integrations [——

e

OEBPS/images/Figure-1.3.jpg
& Ware - o x
e B Vew WM Tbs Hep | B - 6 =)

[ewk stack

OEBPS/images/cover.jpg
AVA

for
Observability and
Real-Time Analytics

Design, Build, Secure and Optimize
Elastic Stack Environments for
Data Analytics, Monitoring and
Real-Time Search Across

Modern Infrastructures

Agus Kurniawan

OEBPS/images/Figure-1.4.jpg
e o casesd asa@n
® castc ©0
Welcome to lstic Cloud

L

LY & St
ettt s) oy

OEBPS/images/Figure-1.5.jpg
Kibana
1P: 192.168.199.143

Elasticsearch
IP: 192.168.199.142

LAN Mehaork

OEBPS/images/Figure-1.6.jpg
CperT—— X oot - x| - o

Security autoconfiguration information

Authentication and authorization are ensbled.

TUS for the transport and HTTP Layers is enabled and configured /
The generated password for the elastic built-in superuser is : XUVS2UbKEM3KAPVRNGR

TF this node should join an existing cluster, you can reconfigure this With

* Juse/share/elast icsearch/bin/elasticsearch-reconfigure-node —-enrollment-token <token-heres"
after creating an enrollment token on your existing cluster.

You can conplete the folloming actions at any time:

Reset the password of the elastic built-in superuser with
* Just/share/elasticsearch/bin/elasticsearch-reset-password -u elastic’

Generate an enrollnent token for Kibana instances with
* Just/share/elasticsearch/bin/elasticsearch-create-enrollnent-token -s kibana'.

Generate an enrollnent token for Elasticsearch nodes with
Juse/share /elasticsearch/bin/elasticsearch-create-enrol laent—token -s node’ .

488 NOT starting on installation, please execute the following statements to configure elasticsearch servic
© to start automatically using systead

sudo systenctl daenon-reload

sudo systenctl enable elasticsearch.service

488 You can start elasticsearch service by executing

sudo_systenctl start elasticsearch. service

Scanning processes.

Scanning Linux inages. ..

Running kernel seens to be up-to-date.

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewers

		Acknowledgements

		Preface

		Get a Free eBook

		Errata

		Table of Contents

		1. Introduction and Initial Setup

		Introduction

		Structure

		Overview and Evolution of the Elastic Stack

		Elasticsearch: The Heart of Elastic Stack

		Logstash: The Data Processing Pipeline

		Kibana: The Window to Your Elastic Data

		Beats: The Data Shippers of the Elastic Stack

		Benefits and Use Cases

		System Requirements: Hardware, Software, and Cluster Considerations

		Installing and Configuring: Elasticsearch, Logstash, and Kibana

		Bare Metal

		Virtual Machines (VMs)

		Cloud Services

		Docker and Containerization

		Setting up Lab Environment

		Hands-On Lab: Building Elasticsearch and Kibana on Ubuntu Server 22.04 LTS

		Steps to Install Elasticsearch Server

		Steps to Install Kibana Server

		Steps to Connect Kibana to Elasticsearch

		Verifying Your Installation

		Checking Elasticsearch and Kibana Status using Bash Script

		Checking Elasticsearch and Kibana Status Using PowerShell Script

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		2. Deep Dive: Elasticsearch

		Introduction

		Structure

		Elasticsearch Dev Tools on Kibana

		Introduction to Dev Tools

		Getting Started with Dev Tools

		HTTP Request Methods in Elasticsearch’s Dev Tools

		GET

		PUT

		POST

		HEAD

		DELETE

		PATCH (less common in Elasticsearch)

		Tips for Effective Use of Dev Tools

		Summary

		Index Lifecycle Management

		Creation and Ingestion

		Rollover and Growth

		Hot-Warm-Cold-Frozen Phases

		Retention and Deletion

		Snapshot and Restore

		Hands-On Lab: Index Lifecycle Management in Elasticsearch Using Kibana Dev Tools

		Prerequisites

		Part 1: Creation and Ingestion

		Part 2: Rollover and Growth

		Part 3: Hot-Warm-Cold-Frozen Phases

		Part 4: Retention and Deletion

		Part 5: Snapshot Lifecycle Management

		Part 6: Restore from Snapshot

		Wrap-Up

		Understanding Document IDs in Elasticsearch

		Auto-generated IDs

		Custom IDs

		When to Use Custom IDs

		When to Use Auto-generated IDs

		Best Practices

		Summary

		Advanced Querying Techniques

		Boolean Queries

		must

		should

		must_not

		filter

		Example of a Boolean Query

		Full-text Search Enhancements

		Aggregation for Data Analysis

		Scoring and Relevance Tuning

		Autocomplete and Suggestions

		Geo-Searches and Proximity Queries

		Joining Queries

		Cross-Cluster Search

		Hands-On Lab: Uploading NDJSON File to Elasticsearch Using Dev Tools

		Understanding NDJSON Format

		Prerequisites

		Step-by-Step Guide

		Summary

		Hands-On Lab: Elasticsearch Querying Techniques Using Dev Tools

		Lab Steps

		Summary

		Hands-On Lab: Simulating Joining Queries in Elasticsearch

		Prerequisites

		Step 1: Create Index with Relationship Mapping

		Step 2: Indexing Parent and Child Documents

		Step 3: Perform Joining Queries

		Summary

		Next Steps

		Optimizing for Search Speed and Relevance

		Optimizing for Speed

		Optimizing for Relevance

		Balancing Speed and Relevance

		Monitoring and Iterative Improvements

		Data Modeling and Schema Design

		Understanding Elasticsearch Data Modeling

		Best Practices in Schema Design

		Strategies for Schema Evolution

		Data Modeling for Specific Use Cases

		Validation and Testing

		Summary

		Hands-On Lab: Data Modeling and Schema Design in Elasticsearch

		Part 1: Understanding Requirements

		Part 2: Designing the Index Mapping

		Part 3: Indexing Documents

		Part 4: Querying the Data

		Part 5: Updating Like Counts

		Part 6: Analyzing and Reporting

		Part 7: Cleanup (Optional)

		Summary

		Understanding Elasticsearch Geolocation Data

		Geolocation Data Types

		Indexing Geolocation Data

		Geo-Queries

		Geo-Aggregations

		Example Use Cases

		Challenges with Geolocation Data

		Summary

		Hands-On Lab: Working with Geolocation Data in Elasticsearch

		Prerequisites

		Step 1: Set Up a Geolocation-Enabled Index

		Step 2: Indexing Geolocation Data

		Step 3: Basic Geo-Queries

		Step 4: Advanced Geo-Queries

		Step 5: Aggregations with Geo-Data

		Summary

		Working with Binary Data in Elasticsearch

		Understanding the Binary Field Type

		Use Cases for Binary Data in Elasticsearch

		Steps to Index the Binary Data

		Example

		Considerations

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		3. Deep Dive: Integrations

		Introduction

		Structure

		Selecting Elastic Integrations

		Logstash

		Overview and Core Concepts

		Advantages and Disadvantages

		Use Cases and Applications

		Architecture and Components

		Setting Up Logstash

		Writing Logstash Configuration Files

		Hands-On Lab: Setting Up Logstash for Data Ingestion with User Permissions

		Prerequisites

		Summary

		Hands-on Lab: My First Logstash Pipeline

		Prerequisites

		Lab Steps

		Hands-On Lab Notes

		How to Test the Setup

		Summary

		Hands-on Lab: Running My First Logstash Pipeline as Service

		Plugins, Filters, and Codecs

		Plugins

		Filters

		Codecs

		Hands-On Lab: Building a Comprehensive Logstash Pipeline

		Objectives

		Prerequisites

		Summary

		Advanced Pipelines and Data Processing

		Handling Large Datasets and Scalability

		Elastic Agent

		Understanding Elastic Agent: Benefits and Architecture

		Benefits of Elastic Agent

		Architecture of Elastic Agent

		Deploying and Configuring Elastic Agent

		Deploying Elastic Agent

		Configuring Elastic Agent

		Integrating with Beats and Endpoints

		Understanding Beats and Endpoints

		Integrating Beats with Elastic Agent

		Integrating Endpoint Security

		Hands-On Lab: Monitoring Ubuntu System with Elastic Agent

		Objective

		Requirements

		Lab Steps

		Hands-On Lab: Monitoring Windows System with Elastic Agent

		Objective

		Requirements

		Lab Steps

		Troubleshooting and Best Practices

		Troubleshooting Elastic Agent

		Best Practices for Elastic Agent

		Web Crawler

		Introduction to Web Crawling with Elastic

		Key Components of Elastic for Web Crawling

		Setting Up a Web Crawler with Elastic

		Use Cases of Web Crawling with Elastic

		Data Connectors

		Understanding Pre-built Connectors

		Key Features of Pre-built Connectors

		Common Types of Pre-built Connectors

		Utilizing Pre-built Connectors

		Set Up Data Connectors

		API Integrations

		Basics of Elastic Stack APIs

		Working with Elasticsearch APIs

		Using Kibana APIs

		Best Practices for API Integration

		Hands-On Lab: CRUD Operations with Elasticsearch API

		Objective

		Requirements

		Setup Steps

		Lab Exercises

		Advanced Features and Bulk Operations

		Understanding Bulk Operations

		Key Features of Bulk API

		Sample Bulk Operation Using curl

		Advanced API Features

		Notes

		Securing and Monitoring Your API Calls

		Securing API Calls

		Monitoring API Calls

		Notes

		Elastic Language Clients

		Overview of Official Elastic Language Clients

		Key Official Elastic Language Clients

		Features of Elastic Language Clients

		Best Practices for Using Elastic Language Clients

		Hands-On Lab: CRUD Operations in Elasticsearch Using Python Client

		Objective

		Requirements

		Setup Steps

		Lab Exercise

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		4. Deep Dive: Kibana

		Introduction

		Structure

		Practical Use Cases and Scenarios for Kibana

		Introduction to Kibana Visualization

		Kibana Lens

		Time Series Visual Builder (TSVB)

		Aggregation-Based Visualizations

		Kibana Maps

		Custom Visualizations

		Hands-On Lab: Basic Data Visualization Using Kibana

		Objective

		Prerequisites

		Additional Exercises

		Summary

		Developing Custom Visualizations

		Introduction to Vega Visualizations in Kibana

		Getting Started with Vega in Kibana

		Vega in Kibana

		Vega-Lite in Kibana

		Choosing Between Vega and Vega-Lite

		Hands-On Lab: Hello World in Kibana with Vega and Vega-Lite

		Part 1: Hello World with Vega in Kibana

		Part 2: Hello World with Vega-Lite in Kibana

		Summary

		Hands-On Lab: Developing Custom Visualizations

		Summary

		Overview of Kibana Dashboard

		Components of a Kibana Dashboard

		Creating and Managing Dashboards

		Use Cases for Kibana Dashboards

		Hands-On Lab: Building a Kibana Dashboard

		Objective

		Prerequisites

		Summary

		Using Canvas Features

		Exploring Canvas in Kibana

		Canvas vs. Visualize Library

		Canvas in Kibana

		Visualize Library in Kibana

		Comparison

		Hands-On Lab: Creating a Simple Canvas in Kibana

		Objective

		Prerequisites

		Summary

		Alerting and Reporting

		Understanding Alerting in Kibana

		Exploring Reporting in Kibana

		Best Practices for Alerting and Reporting

		Hands-On Lab: Creating Basic Alerts

		Objective

		Prerequisites

		Summary

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		5. Developing for the Elastic Stack

		Introduction

		Structure

		Building Custom Elasticsearch Plugins

		Introduction to Elasticsearch Plugins

		Setting Up the Development Environment

		Creating Your First Plugin

		Testing and Deployment

		Advanced Topics

		Best Practices and Common Pitfalls

		Hands-On Lab: Building Elasticsearch Plugins

		Objective

		Prerequisites

		Lab Steps

		Summary

		Extending Logstash with Ruby

		Hands-On Lab: Extending Logstash with Ruby

		Summary

		Kibana Plugin Development

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		6. Troubleshooting and Best Practices

		Introduction

		Structure

		Common Pitfalls and Their Solutions

		Inadequate Planning and Configuration

		Ignoring Security Best Practices

		Poor Data Modeling

		Neglecting Log and Error Monitoring

		Overlooking Hardware and Infrastructure Needs

		Complex Scaling without Strategy

		Inefficient Query Design

		Lack of Regular Maintenance and Optimization

		Optimizing for Large-Scale Deployments

		Hardware Optimization

		Cluster and Index Design

		Data Modeling and Management

		Caching and Memory Management

		Query Optimization

		Monitoring and Alerting

		Scalability Planning

		Security Considerations

		Maintenance and Continuous Improvement

		ELK Stack Security Best Practices

		Use Built-in Security Features

		Data Encryption

		Access Control

		Audit Logging

		Regularly Update and Patch

		Network Security

		Secure Kibana

		Backup and Recovery

		Incident Response Plan

		Security Monitoring and Anomaly Detection

		Secure Integration and API Use

		Maintenance and Upgrades

		Routine Maintenance

		Version Upgrades

		Plugin Management

		Index Management and Optimization

		Backup and Recovery Planning

		Hardware and Infrastructure Monitoring

		Performance Tuning

		Security Audits and Updates

		Documentation and Change Management

		Community and Support Engagement

		Hands-On Lab: Maintenance and Upgrades for Elasticsearch and Kibana

		Part 1: Maintenance of Elasticsearch

		Part 2: Upgrading Elasticsearch

		Part 3: Maintenance of Kibana

		Part 4: Upgrading Kibana

		Part 5: Upgrade Assistant

		Summary

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		7. High Availability, Fault Tolerance, and Security

		Introduction

		Structure

		Strategies for High Availability and Fault Tolerance

		Cluster Architecture Design

		Replication and Sharding

		Cross-Cluster Replication (CCR)

		Snapshots and Restore

		Monitoring and Alerting

		Load Balancing

		Failure Testing and Chaos Engineering

		Security Measures

		Elasticsearch Cluster Management for HA

		Node Configuration

		Dedicated Node Roles

		Shard Allocation and Replication

		Cluster Configuration

		Discovery and Coordination

		Cluster State Management

		Resource Management

		Hardware and Infrastructure

		Load Balancing

		Monitoring and Maintenance

		Monitoring Tools

		Backup and Recovery

		Hands-On Lab: Building an Elasticsearch Cluster with Docker Compose

		Prerequisites

		Step 1: Setup Docker Compose File

		Step 2: Launch the Cluster

		Step 3: Verify the Cluster

		Step 4: Access Elasticsearch

		Step 5: Scaling the Cluster

		Step 6: Cleanup

		Summary

		Security and Access Control

		Role-Based Access Control (RBAC)

		Transport Layer Security (TLS)

		Encryption at Rest

		Security Monitoring and Alerts

		Backup and Restore for Disaster Recovery

		Understanding Snapshots in Elasticsearch

		Configuring Snapshot Repositories

		Creating Snapshots

		Restoring Snapshots

		Best Practices for Backup and Restore

		Disaster Recovery Plan

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		8. Advanced Deployment Strategies

		Introduction

		Structure

		Pre-deployment Planning: Sizing, Capacity, and Topology

		Sizing

		Capacity Planning

		Topology Design

		Cloud Deployments

		Deploying on Elastic Cloud

		AWS: Using Amazon Elasticsearch Service

		GCP: Leveraging Google Cloud Platform’s Services

		Azure: Integrating with Azure’s Elasticsearch Solutions

		Docker and Kubernetes Deployments

		Dockerizing Elastic Stack Components

		Helm Charts and Kubernetes Operators for Elastic Stack

		Helm Charts for Elasticsearch

		Kubernetes Operators for Elasticsearch

		Hybrid Deployments: Combining On-Premises with Cloud

		Benefits of Hybrid Deployments

		Strategies for Hybrid Elasticsearch Deployment

		Scaling Strategies: Horizontal vs. Vertical Scaling

		Horizontal Scaling

		Vertical Scaling

		Performance Tuning and Optimization

		Key Areas for Performance Tuning

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		9. Case Studies

		Introduction

		Structure

		Logs: Real-time Log Analysis for E-commerce

		Challenge Overview

		Solution Architecture

		Benefits and Outcomes

		Metrics: Monitoring System Performance for a Global SaaS Platform

		Challenge Overview

		Solution Architecture

		Benefits and Outcomes

		Application Performance Monitoring (APM): Enhancing User Experience for an Online Banking Application

		Challenge Overview

		Solution Architecture

		Benefits and Outcomes

		Uptime: Ensuring 99.999% Availability for a Healthcare Portal

		Challenge Overview

		Solution Architecture

		Benefits and Outcomes

		SIEM (Security Information and Event Management): Proactive Threat Detection for a Large Enterprise Network

		Challenge Overview

		Solution Architecture

		Benefits and Outcomes

		Endpoint: Enhancing Endpoint Security for a Distributed Workforce

		Challenge Overview

		Solution Architecture

		Benefits and Outcomes

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		10. Beyond ELK: Integrating Other Elastic Products

		Introduction

		Structure

		Introduction to Beats

		Beats vs. Logstash: Understanding the Differences

		Lightweight vs. Heavyweight Data Ingestion

		Data Transformation and Enrichment

		Scalability and Resource Usage

		Deployment and Configuration

		Choosing between Beats and Logstash

		Combining Beats and Logstash

		Using APM for Application Performance Monitoring

		Best Practices for Using APM for Application Performance Monitoring

		Deploy APM Agents Strategically

		Define Key Performance Indicators (KPIs)

		Optimize Sampling for Performance Efficiency

		Leverage Distributed Tracing

		Monitor Errors and Exceptions

		Analyze and Optimize Slow Transactions

		Integrate APM with Logging and Metrics

		Regularly Review and Tune APM Settings

		Secure APM Data and Access

		Use Kibana Dashboards for Visualization

		Exploring Elastic Enterprise Search

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction and Initial Setup

OEBPS/images/line.jpg

OEBPS/images/logo.jpg

