

Jonathan Rigdon

Data and databases bundle

UUID: 304e2ca4-058b-49d4-bb8e-d729f40cdaae

This ebook was created with StreetLib Write

https://writeapp.io

 Data and Databases

Learn
 Data Analytics, Data Mining, and Operating Systems (2 in
 1)

 By Jonathan Rigdon

Databases

 System Concepts, Designs, Management, and Implementation

By
 Jonathan Rigdon

Table
of Contents:

1.
Introduction to Databases

-
 What is a Database?

-
 Importance of Databases in Modern Computing

-
 Evolution of Database Systems

2.
Database System Architecture

-
 Components of a Database System

-
 Database Models: Relational, NoSQL, NewSQL

-
 Client-Server vs. Peer-to-Peer Architectures

3.
Relational Database Management Systems (RDBMS)

-
 Fundamentals of Relational Databases

-
 SQL: Structured Query Language

-
 Normalization and Denormalization

4.
Database Design Principles

-
 Entity-Relationship Modeling

-
 Data Modeling Techniques

-
 Database Schema Design

5.
Data Storage and Indexing

-
 Storage Structures: Files and Pages

-
 Indexing Techniques: B-Trees, Hash Indexes

-
 Clustered vs. Non-Clustered Indexes

6.
Query Processing and Optimization

-
 Query Execution Plans

-
 Cost-Based Optimization

-
 Query Tuning Techniques

7.
Transaction Management

-
 ACID Properties

-
 Concurrency Control

-
 Locking Mechanisms

8.
Distributed Databases

-
 Distributed Database Architecture

-
 Replication and Fragmentation

-
 Consistency Models

9.
Data Warehousing and Data Mining

-
 Data Warehouse Concepts

-
 OLAP vs. OLTP

-
 Data Mining Algorithms

10.
Big Data and NoSQL Databases

-
 Introduction to Big Data

-
 NoSQL Database Types: Document, Key-Value, Columnar, Graph

11.
Conclusion

1.
Introduction to Databases

An
introduction to databases involves understanding their role in
storing, organizing, and managing data. Databases are structured
collections of data that enable efficient retrieval, insertion,
updating, and deletion of information. They serve as the foundation
for various applications, from simple contact lists to complex
enterprise systems. Key concepts include tables, which organize
data
into rows and columns; relationships, which define connections
between tables; and SQL (Structured Query Language), used to
interact
with databases by querying and manipulating data.

What
is a Database?

As
mentioned, A database is a structured collection of data that is
organized and stored electronically in a way that allows it to be
easily accessed, managed, and updated. It typically consists of one
or more tables, each containing rows and columns, where each row
represents an individual record and each column represents a
specific
attribute or field of the data. Databases are commonly used in
various applications and industries to store and retrieve
information
efficiently. They serve as a central repository for data that can
be
accessed and manipulated by users and applications as
needed.

Importance
of Databases in Modern Computing

Databases
play a crucial role in modern computing for several reasons:

1.
Data Management: Databases provide a centralized and organized way
to
store vast amounts of data, ensuring data integrity, consistency,
and
security.

2.
Efficient Data Retrieval: With databases, users can quickly
retrieve
specific information using queries, which can be optimized for
performance, allowing for fast and efficient data access.

3.
Scalability: Databases can handle large volumes of data and scale
to
accommodate growing needs, making them suitable for applications
with
increasing data requirements.

4.
Data Integrity and Consistency: Databases enforce constraints and
rules to maintain data integrity, ensuring that only valid and
accurate information is stored and preventing data duplication or
inconsistencies.

5.
Concurrency Control: Databases manage concurrent access to data by
multiple users or applications, ensuring that transactions are
executed reliably and without interference.

6.
Data Security: Databases offer various security features such as
authentication, authorization, and encryption to protect sensitive
information from unauthorized access or manipulation.

7.
Support for Transactions: Databases support transactions, allowing
multiple database operations to be grouped together and executed
atomically, ensuring data consistency and reliability.

8.
Analytics and Reporting: Databases provide tools and features for
data analysis, reporting, and business intelligence, enabling
organizations to gain insights from their data and make informed
decisions.

Overall,
databases are essential for powering a wide range of applications
and
services in modern computing, from e-commerce platforms and social
media networks to enterprise resource planning systems and
scientific
research databases.

Evolution
of Database Systems

The
evolution of database systems can be broadly categorized into
several
key stages:

1.
Hierarchical and Network Models (1960s): Early database systems
were
based on hierarchical and network models. These models represented
data as a tree-like or graph-like structure, allowing for
parent-child relationships between records. Examples include IMS
(Information Management System) and CODASYL databases.

2.
Relational Model (1970s): The introduction of the relational model
by
Edgar Codd in the 1970s revolutionized database management.
Relational databases organize data into tables with rows and
columns,
and they establish relationships between tables using keys. SQL
(Structured Query Language) emerged as the standard language for
querying and manipulating relational databases.

3.
Object-Oriented and Object-Relational Databases (1980s-1990s):
Object-oriented databases extended the relational model to support
complex data types and inheritance, allowing for more flexible data
modeling. Object-relational databases combined the features of
relational and object-oriented databases, offering the benefits of
both paradigms.

4.
NoSQL Databases (2000s): With the rise of web applications and big
data, NoSQL (Not Only SQL) databases emerged as an alternative to
traditional relational databases. NoSQL databases are designed to
handle large volumes of unstructured or semi-structured data and
offer features such as horizontal scalability and flexible schema
design. Examples include MongoDB, Cassandra, and Redis.

5.
NewSQL Databases (2010s): NewSQL databases aim to combine the
scalability and flexibility of NoSQL databases with the
transactional
capabilities of traditional relational databases. These databases
are
designed to meet the performance and scalability requirements of
modern web applications while ensuring ACID (Atomicity,
Consistency,
Isolation, Durability) compliance.

6.
Distributed Databases and Cloud Databases (Present): Distributed
databases and cloud databases leverage distributed computing and
cloud infrastructure to provide scalability, fault tolerance, and
high availability. These databases distribute data across multiple
nodes or data centers and offer features such as automatic
replication, load balancing, and data partitioning.

Overall,
the evolution of database systems reflects the changing needs of
organizations and the advancements in technology, from early
hierarchical models to modern distributed and cloud-based
architectures.

2.
Database System Architecture

Database
system architecture refers to the overall structure and components
of
a database management system (DBMS) that enable the storage,
retrieval, and management of data.

Components
of a Database System

A
database system consists of several key components:

1.
Database: The core component that stores the data in an organized
manner.

2.
Database Management System (DBMS): Software that facilitates the
creation, maintenance, and use of databases. Examples include
MySQL,
PostgreSQL, Oracle, and MongoDB.

3.
Database Schema: Defines the structure of the database, including
tables, fields, relationships, and constraints.

4.
Query Language: Allows users to interact with the database to
retrieve, insert, update, and delete data. SQL (Structured Query
Language) is the most common query language used in relational
databases.

5.
Database Engine: The core software component responsible for
managing
data storage, retrieval, indexing, and query processing.

6.
Data Models: Define how data is organized and represented in the
database. Common data models include the relational model,
hierarchical model, network model, object-oriented model, and
document-oriented model.

7.
Indexing Mechanisms: Improve the performance of data retrieval
operations by creating indexes on specific columns or fields in the
database tables.

8.
Concurrency Control: Manages simultaneous access to the database by
multiple users or applications to ensure data consistency and
integrity.

9.
Backup and Recovery System: Provides mechanisms for backing up data
and restoring it in case of system failures, data corruption, or
accidental deletion.

10.
Security Mechanisms: Enforce access control policies to protect the
database from unauthorized access, ensuring data confidentiality,
integrity, and availability.

11.
Data Dictionary: Stores metadata about the database, including
information about tables, fields, indexes, and
relationships.

12.
Transaction Management: Ensures the atomicity, consistency,
isolation, and durability (ACID properties) of database
transactions.

These
components work together to create a robust and efficient database
system that meets the data management needs of organizations and
applications.

Database
Models: Relational, NoSQL, NewSQL

Database
models are frameworks that define the structure and organization of
data within a database system. Here's an overview of three
prominent
database models:

1.
Relational Model:

-
 Description: In the relational model, data is organized into
 tables
 consisting of rows and columns. Each table represents an entity,
 and
 each row represents a specific instance of that entity, while
 each
 column represents an attribute of the entity.

-
 Key Features:

-
 Tables with rows and columns.

-
 Relationships established through keys.

-
 ACID transactions for data integrity.

-
 SQL (Structured Query Language) for querying and
 manipulation.

-
 Examples: MySQL, PostgreSQL, Oracle, SQL Server.

2.
NoSQL (Not Only SQL) Model:

-
 Description: NoSQL databases are non-relational databases
 designed to
 handle large volumes of unstructured or semi-structured data.
 They
 offer flexibility in data models and scalability for distributed
 systems.

-
 Key Features:

-
 Flexible schema design.

-
 Horizontal scalability.

-
 Support for unstructured and semi-structured data.

-
 Eventual consistency.

-
 Types:

-
 Document-oriented (e.g., MongoDB).

-
 Key-value stores (e.g., Redis).

-
 Column-family stores (e.g., Cassandra).

-
 Graph databases (e.g., Neo4j).

-
 Use Cases: Big data analytics, real-time web applications,
 content
 management systems.

3.
NewSQL Model:

-
 Description: NewSQL databases aim to combine the scalability and
 flexibility of NoSQL databases with the transactional
 capabilities of
 traditional relational databases. They are designed to handle
 both
 structured and unstructured data efficiently while maintaining
 ACID
 compliance.

-
 Key Features:

-
 Scalability similar to NoSQL databases.

-
 ACID transactions for data consistency.

-
 Support for relational data models.

-
 High performance for OLTP (Online Transaction Processing)
 workloads.

-
 Examples: Google Spanner, CockroachDB, NuoDB.

-
 Use Cases: Online transaction processing, distributed databases,
 cloud-native applications.

Each
database model has its strengths and weaknesses, and the choice
depends on factors such as data requirements, scalability needs,
performance goals, and application architecture.

Client-Server
vs. Peer-to-Peer Architectures

Client-server
and peer-to-peer architectures are two different approaches to
organizing and distributing computing tasks and resources. Here's a
comparison of both:

1.
Client-Server Architecture:

-
 Description: In client-server architecture, tasks and resources
 are
 divided between clients and servers. Clients request services or
 resources from servers, which provide these services in response
 to
 client requests.

-
 Key Features:

-
 Centralized control: Servers control access to resources and
 data.

-
 Scalability: Servers can handle multiple client requests
 concurrently, allowing for scalability by adding more
 servers.

-
 Reliability: Centralized servers can be monitored and maintained
 more
 easily, leading to better reliability and uptime.

-
 Security: Access to resources can be controlled and monitored
 centrally, enhancing security.

-
 Examples: Web servers serving web pages to browsers, database
 servers
 serving data to client applications.

2.
Peer-to-Peer (P2P) Architecture:

-
 Description: In peer-to-peer architecture, tasks and resources
 are
 distributed among peers or nodes in the network. Peers
 communicate
 directly with each other, sharing resources and services without
 the
 need for central coordination.

-
 Key Features:

-
 Decentralization: No single central server controls access to
 resources. Peers communicate directly with each other.

-
 Scalability: P2P networks can scale dynamically as more peers
 join
 the network, without the need for additional central
 servers.

-
 Fault tolerance: P2P networks are resilient to single points of
 failure since resources are distributed across multiple
 peers.

-
 Resource sharing: Peers can share resources such as files,
 processing
 power, and bandwidth directly with each other.

-
 Examples: File sharing networks like BitTorrent, decentralized
 cryptocurrency networks like Bitcoin.

Comparison:

-
Centralization vs. Decentralization: Client-server architecture
relies on centralized servers for resource management and control,
while peer-to-peer architecture distributes tasks and resources
among
peers without central coordination.

-
Scalability: Client-server architecture can scale by adding more
servers, whereas peer-to-peer architecture can scale dynamically as
more peers join the network.

-
Fault Tolerance: Peer-to-peer architecture tends to be more
resilient
to failures because there is no single point of failure, whereas
client-server architecture may suffer from downtime if the central
server fails.

-
Resource Sharing: Peer-to-peer architecture enables direct resource
sharing among peers, whereas client-server architecture requires
requests to go through a central server for resource access.

Both
architectures have their advantages and are suitable for different
types of applications and use cases. Client-server architectures
are
common in centralized systems where control and security are
paramount, while peer-to-peer architectures are preferred for
distributed systems requiring decentralization and
scalability.

3.
Relational Database Management Systems (RDBMS)

Relational
Database Management Systems (RDBMS) are software systems that
facilitate the creation, maintenance, and usage of relational
databases. They use tables to store data, with each table
consisting
of rows and columns. RDBMSs ensure data integrity, security, and
provide powerful querying capabilities through SQL (Structured
Query
Language). Examples include MySQL, PostgreSQL, Oracle, and
Microsoft
SQL Server.

Fundamentals
of Relational Databases

The
fundamentals of relational databases encompass several key
elements:

1.
Tables: Relational databases organize data into tables, with each
table consisting of rows and columns. Tables represent entities or
concepts, and each row represents a single record or instance of
that
entity.

2.
Columns and Data Types: Columns define the attributes or properties
of the data stored in a table. Each column has a data type, such as
integer, string, date, or boolean, which specifies the kind of data
it can hold.

3.
Primary Keys: A primary key is a unique identifier for each row in
a
table. It ensures that each record is uniquely identifiable and
provides a reference for establishing relationships with other
tables.

4.
Relationships: Relationships define how data in different tables
are
related to each other. Common types of relationships include
one-to-one, one-to-many, and many-to-many. Foreign keys are used to
establish these relationships between tables.

5.
Normalization: Normalization is the process of organizing data in a
database to minimize redundancy and dependency. It involves
breaking
down tables into smaller, more manageable parts and adhering to
specific normal forms to ensure data integrity and reduce
anomalies.

6.
SQL (Structured Query Language): SQL is the standard language for
interacting with relational databases. It provides commands for
querying data (SELECT), modifying data (INSERT, UPDATE, DELETE),
defining database structure (CREATE, ALTER, DROP), and managing
access permissions (GRANT, REVOKE).

Understanding
these fundamentals is essential for designing, implementing, and
querying relational databases effectively.

SQL:
Structured Query Language

SQL,
or Structured Query Language, is a domain-specific language used in
programming and designed for managing and manipulating relational
databases. It provides a standardized way of querying and
manipulating data stored in a relational database management system
(RDBMS). SQL commands can perform various operations,
including:

1.
Data Querying: Retrieving data from one or multiple tables using
the
SELECT statement. SQL queries can filter, sort, and aggregate data
to
extract the desired information.

2.
Data Manipulation: Modifying existing data in a database using
commands like INSERT (adding new records), UPDATE (modifying
existing
records), and DELETE (removing records).

3.
Data Definition: Defining the structure of a database, including
creating tables (CREATE TABLE), modifying table structure (ALTER
TABLE), and removing tables (DROP TABLE).

4.
Data Control: Managing access permissions to database objects using
commands like GRANT (granting permissions) and REVOKE (revoking
permissions).

SQL
syntax is standardized across different relational database
management systems (RDBMS), although each RDBMS may have its own
variations and additional features. Understanding SQL is essential
for anyone working with relational databases, as it enables
efficient
data manipulation and retrieval.

Normalization
and Denormalization

Normalization
and denormalization are two opposite strategies used in database
design to optimize data storage and query performance:

1.
Normalization: This process involves organizing the data in a
database efficiently to reduce redundancy and dependency. It
typically consists of breaking down large tables into smaller,
related tables and ensuring that each table serves a single
purpose.
The goal of normalization is to eliminate data anomalies (such as
update anomalies, insert anomalies, and delete anomalies) and
maintain data integrity. Normalization follows a set of rules known
as normal forms, such as First Normal Form (1NF), Second Normal
Form
(2NF), Third Normal Form (3NF), and Boyce-Codd Normal Form
(BCNF).

2.
Denormalization: Denormalization, on the other hand, involves
intentionally introducing redundancy into a database design to
improve query performance. By duplicating data and storing it in
multiple places, denormalization reduces the need for joins and can
speed up data retrieval in certain scenarios, especially for
complex
queries involving multiple tables. Denormalization can be useful
for
read-heavy applications where query performance is critical and
where
the trade-off between storage space and performance is
acceptable.

The
choice between normalization and denormalization depends on various
factors, including the specific requirements of the application,
the
frequency and complexity of data queries, the size of the dataset,
and the resources available. In practice, a combination of both
normalization and denormalization techniques is often used to
strike
a balance between data integrity and query performance.

4.
Database Design Principles

Database
design principles are fundamental guidelines used to create
efficient, scalable, and maintainable database structures.

Entity-Relationship
Modeling

Entity-Relationship
(ER) modeling is a popular technique used in database design to
visually represent the structure of a database. It helps to define
the entities (things about which data is stored) and their
relationships (how the entities are connected to each
other).

Here
are the key components of ER modeling:

1.
Entity: An entity represents a real-world object or concept, such
as
a person, place, thing, or event. Each entity is typically depicted
as a rectangle in an ER diagram, with its name written
inside.

2.
Attributes: Attributes are the properties or characteristics of
entities. They describe the data that can be stored about an
entity.
Attributes are usually shown as ovals connected to their respective
entities in an ER diagram.

3.
Relationships: Relationships represent associations between
entities.
They describe how entities are related to each other. Relationships
are depicted as lines connecting entities in an ER diagram, with
labels indicating the nature of the relationship (e.g., one-to-one,
one-to-many, many-to-many).

4.
Cardinality: Cardinality defines the maximum number of instances of
one entity that can be associated with instances of another entity.
It is expressed using symbols such as "1" (one), "0..1"
(zero or one), "" (zero or more), and "1..n" (one
or more).

5.
Keys: Keys are attributes or combinations of attributes that
uniquely
identify each instance of an entity. They ensure that each entity
instance is uniquely identifiable within the database.

ER
modeling provides a clear and concise way to represent the
structure
of a database, making it easier to understand and communicate
database requirements among stakeholders. It serves as a blueprint
for designing the database schema and helps ensure that the
database
accurately reflects the real-world domain it represents.

Data
Modeling Techniques

Data
modeling encompasses various techniques for representing the
structure, behavior, and requirements of a database system:

Entity-Relationship
(ER) Modeling: This technique focuses on identifying entities,
their
attributes, and the relationships between them. It provides a
graphical representation of the database schema to visualize and
understand the data structure.

Relational
Modeling: Relational modeling adheres to relational database theory
principles, designing tables, specifying primary and foreign keys,
and defining relationships between tables. It aims to create
normalized schemas to minimize redundancy and ensure data
integrity.

Dimensional
Modeling: Commonly used in data warehousing and business
intelligence, dimensional modeling organizes data into fact tables
and dimension tables for efficient querying and analysis. It often
employs star or snowflake schema designs.

Object-Oriented
Modeling: Object-oriented modeling represents data as objects, each
with its attributes and methods. It's suitable for modeling complex
systems with rich behaviors and interactions, commonly used in
object-oriented programming languages and databases.

UML
(Unified Modeling Language): Primarily used in software
engineering,
UML visualizes, specifies, constructs, and documents software
systems. It can also be applied to data modeling, particularly in
complex systems where data and behavior are intertwined.

NoSQL
Data Modeling: NoSQL databases require different modeling
techniques,
focusing on optimizing data access patterns, scalability, and
flexibility. It varies based on the specific type of NoSQL
database,
such as document, key-value, column-family, or graph
databases.

The
choice of data modeling technique depends on factors such as the
nature of the data, application requirements, and the underlying
database technology. Often, a combination of techniques is used to
create comprehensive and effective data models.

Database
Schema Design

Database
schema design involves structuring the organization of a database
to
efficiently store and manage data. Key steps include identifying
entities and attributes, defining relationships, normalizing data
to
minimize redundancy, choosing appropriate data types, establishing
keys for data integrity, indexing for performance, considering
partitioning and sharding for scalability, implementing security
measures, and documenting the design decisions. Overall, effective
schema design ensures data integrity, performance, and scalability
while meeting application requirements.

5.
Data Storage and Indexing

Data
storage and indexing are crucial components of database management
systems, ensuring efficient data retrieval and manipulation.

Storage
Structures: Files and Pages

In
database systems, data storage structures like files and pages play
a
vital role in organizing and managing data efficiently.

1.
Files: Files are the basic unit of storage in a database system.
They
contain records, which represent individual data entries. Files are
typically organized into tables, with each table corresponding to a
separate file. Files can be stored on disk or in memory, depending
on
the database system's architecture.

2.
Pages: Pages are fixed-size blocks of data used for reading and
writing operations within files. Database systems often use a
page-based storage model, where data is organized into pages to
optimize disk access and storage efficiency. Pages are typically a
few kilobytes in size and contain multiple records. The database
system manages page allocation and deallocation to efficiently
store
and retrieve data.

By
using files and pages effectively, database systems can optimize
data
storage, access, and retrieval, leading to improved performance and
scalability.

Indexing
Techniques: B-Trees, Hash Indexes

Indexing
techniques such as B-Trees and hash indexes are essential for
optimizing data retrieval in database systems:

1.
B-Trees: B-Trees are balanced tree structures commonly used for
indexing in database systems. They provide efficient access to data
by storing keys in a sorted order within each node. B-Trees are
well-suited for range queries and range-based operations because
they
maintain sorted order, allowing for efficient range scans.
Additionally, B-Trees are self-balancing, ensuring that operations
like insertion and deletion remain efficient even as the size of
the
index grows. They are widely used in relational database management
systems (RDBMS) to index primary keys, secondary keys, and columns
frequently used in search operations.

2.
Hash Indexes: Hash indexes use hash functions to map keys to their
corresponding locations in the index. Unlike B-Trees, hash indexes
do
not maintain sorted order, making them less suitable for range
queries. However, hash indexes provide fast lookup operations,
especially for exact match queries, as they directly compute the
location of the desired data based on its hash value. Hash indexes
are commonly used in NoSQL databases and for indexing columns with
unique values or low cardinality.

Both
B-Trees and hash indexes have their strengths and weaknesses, and
the
choice between them depends on factors such as the types of queries
performed, the characteristics of the data, and the specific
requirements of the database system. Database administrators often
use a combination of indexing techniques to optimize performance
for
different types of queries.

Clustered
vs. Non-Clustered Indexes

Clustered
and non-clustered indexes are two types of indexes used in database
systems to optimize data retrieval:

1.
Clustered Indexes:

-
 A clustered index reorders the way records are physically stored
 in a
 table based on the indexed column(s).

-
 In a clustered index, the leaf nodes of the index contain the
 actual
 data rows of the table, sorted in the order defined by the index
 key(s).

-
 Each table can have only one clustered index because the physical
 order of the data can be sorted in only one way.

-
 Clustered indexes are well-suited for columns that are frequently
 used for range queries or when retrieving large portions of data
 from
 the table, as they minimize the number of disk I/O operations
 required to access the data.

2.
Non-Clustered Indexes:

-
 A non-clustered index is a separate structure from the table that
 stores a sorted list of key values and pointers to the
 corresponding
 data rows.

-
 In a non-clustered index, the leaf nodes of the index do not
 contain
 the actual data rows but rather pointers to the data rows in the
 table.

-
 Unlike clustered indexes, tables can have multiple non-clustered
 indexes, allowing for flexibility in indexing different columns
 or
 combinations of columns.

-
 Non-clustered indexes are suitable for columns that are
 frequently
 used in search operations but may not be ideal for range queries
 or
 retrieving large portions of data, as they require additional
 disk
 I/O operations to access the data rows after locating them
 through
 the index.

In
summary, clustered indexes physically reorder the data in the table
based on the index key(s), while non-clustered indexes store a
separate list of key values and pointers to the corresponding data
rows. Each type of index has its advantages and use cases, and the
choice between them depends on the specific requirements of the
database and the types of queries performed on the data.

6.
Query Processing and Optimization

Query
processing and optimization are essential components of database
management systems (DBMS) to efficiently execute database
queries.

Query
Execution Plans

Query
execution plans outline the step-by-step process used by a database
management system to retrieve data based on a given query. Here's a
summary:

1.
Parsing and Validation: The DBMS parses the SQL query to ensure its
syntax and semantics are correct. It checks for errors and
validates
the query against the database schema.

2.
Query Optimization: The optimizer generates multiple candidate
execution plans for the query and selects the most efficient one
based on factors such as index usage, join algorithms, and access
methods. Optimization aims to minimize the query's execution time
and
resource consumption.

3.
Execution Plan Generation: Once the optimal plan is chosen, the
DBMS
generates an execution plan detailing the steps needed to retrieve
the requested data. The plan includes operations such as table
scans,
index lookups, joins, filters, and aggregations.

4.
Plan Execution: The DBMS executes the generated plan by accessing
data from storage, performing necessary operations, and returning
the
results to the user or application.

5.
Monitoring and Adjustment: During execution, the DBMS may monitor
query performance and adjust the execution plan dynamically based
on
factors such as changing data statistics or system
resources.

Query
execution plans provide valuable insights into how the DBMS
processes
queries and can help database administrators optimize database
performance by identifying bottlenecks and inefficiencies in query
execution.

Cost-Based
Optimization

Cost-based
optimization is a strategy used by database management systems
(DBMS)
to select the most efficient query execution plan based on
estimated
costs. Here's a summary:

1.
Query Optimization: When processing a query, the DBMS generates
multiple candidate execution plans using various algorithms, access
methods, and join strategies.

