
[image: image]

Modern Web Applications
with Next.JS

[image:]

Learn Advanced Techniques to Build and Deploy
Modern, Scalable and Production Ready React
Applications with Next.JS

[image:]

Shubham Jain

Mathew Dony Chittezhath

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: November 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-97-6

www.orangeava.com

Dedicated To

those who have shaped my journey: my family, for their nurturing love; my friends, for their unwavering support; my mentors, for their guiding wisdom; and to the software engineering community.

Mathew Dony Chittezhath

To the dreamers and builders, the ones who breathe life into lines of code and turn ideas into digital reality. This book is dedicated to the passionate minds and relentless spirits that drive innovation in the world of web development. To those who embrace challenges as opportunities, and who find joy in the elegant dance of technology and creativity.

In particular, I dedicate this book to you, dear reader. Your curiosity and commitment to mastery inspire the very essence of these pages. May the knowledge within empower you to push the boundaries of what's possible with Next.js. Here's to the endless possibilities that unfold when we code with purpose, learn with enthusiasm, and create with heart.

My beloved Parents:

Shri Pushpendra Jain

Anjana Jain

and

My wife Riddhi Vanawat

Shubham Jain

About the Authors

Shubham Jain: Shubham Jain, an experienced full-stack software engineer, specializes in end-to-end web development and deployment. He holds a Master's degree in Information Technology, demonstrating his dedication to learning and expertise. With a profound passion for technology and a dedication to creating user-centric software, he remains at the forefront of the ever-evolving tech landscape, consistently delivering delightful experiences for users.

Mathew Dony Chittezhath: A full-stack software engineer with 5+ years of experience, Mathew Dony is an expert in React, Next.js, Typescript and Node.js. Having completed a Masters in Information Technology from Swinburne University, Australia, he has a strong passion for technology and likes to keep himself updated with the latest developments in the tech world and enjoys developing software that can offer a joyful experience to all humans using them.

About the Technical Reviewers

Gaurav Patel is working as a Senior Software Engineer (8+ years) and involved in developing and maintaining projects in various sizes in order to enhance capabilities and efficiency besides utilizing my skills in a technical industry having scope to learn and grow.

Worked with Web Services and implemented it in projects and UI implemented.

Extensively used JavaScript framework JQuery to build Ajax-driven web applications.

Good communication and quick learning skills are his strengths.

Specialties: Javascript, Angular JS/2/4/5/6, React JS, Redux, MySQL, Apache, Jquery, Web Services, HTML5, CSS3, Node JS, Express JS, Java Core, Docker, Kubernetes, GitLab, Spring Boot, Java, .NET, SQL, Database, Design, Agile, API, Testing, AWS, CI/CD, NoSQL, Python.

Supreet Sethi is a seasoned professional with over 10 years of experience in JavaScript and React. As a dedicated tech lead, Supreet brings a sharp focus to web development, creating advanced SaaS applications using Agile Scrum methodology. His technical skills encompass React.js, React Native, Redux, and Next.js, showcasing not only his execution abilities but also a seasoned perspective in the field. Beyond tech, Supreet’s leadership stands out in successfully guiding teams and projects. His excellent people skills, critical thinking, and goal-oriented approach create an environment where innovation thrives. Additionally, Supreet excels as a JavaScript teacher, simplifying complex concepts and providing practical insights from real-world scenarios. Whether leading a team, designing complex structures, or teaching the next generation of developers, Supreet Sethi embodies a well-rounded approach to excellence in technical skills, leadership, and education.

Acknowledgements

Shubham Jain: I am deeply grateful to several individuals and organizations who have played pivotal roles in the creation of this book. Their unwavering support and encouragement have been instrumental in bringing this project to fruition.

First and foremost, I extend my heartfelt thanks to my parents for their unwavering support and encouragement throughout the writing process. Your belief in me has been a constant source of motivation, and I couldn't have completed this book without your unyielding faith.

I would like to express my sincere appreciation to the educational institutions and companies that provided invaluable support during my journey of learning web scraping and mastering the associated tools. Your contributions were integral to the development of this book.

I am particularly grateful for the unspoken support that I received from various individuals whose guidance and assistance made a significant difference. Special thanks to Mr. Vibhu Bansal for his meticulous technical review and valuable insights, which greatly enhanced the quality of this book.

I would also like to acknowledge the incredible team that stood by me during this endeavor. Your unwavering support, patience, and understanding, especially in granting me the time to complete the first part of the book and allowing its publication in multiple segments, were essential. Given the vast and dynamic nature of image processing as a field of research, it was essential to explore various problem areas comprehensively without overwhelming the reader with an overly voluminous work.

Once again, thank you to everyone who has contributed to this book in various ways. Your support has been invaluable, and I am deeply appreciative of the trust and encouragement you have shown me throughout this journey.

Mathew Dony Chittezhath: First and foremost, I'd like to express my deepest gratitude to the innovative minds behind React – the team at Facebook – who not only transformed the landscape of front-end development but also fostered a dynamic and supportive community around it. Your vision and relentless commitment have empowered countless developers, including myself, to craft intuitive and scalable applications.

Special thanks go to the vast React community: the developers, mentors, educators, and enthusiasts. Your open-source contributions, insightful tutorials, and invaluable feedback have been the backbone of this book. It's the collective wisdom and experience of this community that has made understanding and mastering React achievable and enjoyable.

To my friends and family, thank you for your unyielding support and patience during this journey. Writing a book is no small feat, and your understanding, encouragement, and occasional cups of coffee were the fuel I needed to see this project through.

Lastly, to the readers: thank you for entrusting me with your time and effort in learning React. I hope this book provides you with the knowledge and skills needed to harness the full potential of React in your projects. Always remember that continuous learning and collaboration are the keys to growth in this ever-evolving field.

Preface

Welcome to "Modern Web Applications with Next..JS." In the ever-evolving world of web development, staying at the forefront of technology is essential. Next.js, a powerful framework built on top of React, has gained immense popularity for building robust and efficient web applications.

This book is designed to take you on a comprehensive journey through Next.js and JavaScript, providing you with the knowledge and skills needed to develop modern, performant web applications. Whether you are a seasoned developer looking to expand your skill set or a newcomer to the world of web development, this book will equip you with the tools to excel in your web application projects.

Chapter 1: Introduction to Web Applications with Next.js and JavaScript

What You'll Learn: An overview of web applications, Next.js, and JavaScript in the context of web development.

Chapter 2: Recall React

What You'll Learn: A review of key React concepts and principles to prepare for Next.js development.

Chapter 3: Next.js Fundamentals

What You'll Learn: Core principles and fundamentals of Next.js, including routing and server-side rendering.

Chapter 4: Next.js new version - Core Concepts

What You'll Learn: Exploring the latest version of Next.js and its core concepts for building modern web applications.

Chapter 5: Optimizing Next.js Applications

What You'll Learn: Techniques and strategies to optimize Next.js applications for performance and efficiency.

Chapter 6: Understanding Routing in Next.js

What You'll Learn: In-depth understanding of routing in Next.js and how to navigate between pages.

Chapter 7: State Management in Next.js

What You'll Learn: Implementing state management solutions in Next.js applications for data handling.

Chapter 8: Restful and GraphQL API Implementation

What You'll Learn: Implementing RESTful and GraphQL APIs in Next.js applications for data retrieval and manipulation.

Chapter 9: Using Different Types of Databases

What You'll Learn: Working with various types of databases and integrating them into Next.js applications.

Chapter 10: Client-Side and Server-Side Rendering in Next.js

What You'll Learn: Understanding client-side and server-side rendering and their applications in Next.js.

Chapter 11: Securing App with Next Auth

What You'll Learn: Implementing authentication and authorization mechanisms in Next.js applications using Next Auth.

Chapter 12: Developing a CRUD Application with Next.js

What You'll Learn: Building a CRUD (Create, Read, Update, Delete) application from scratch using Next.js.

Chapter 13: Deployment Architecture

What You'll Learn: Exploring deployment architectures and strategies for deploying Next.js applications to production environments.

We are excited to embark on this learning journey with you. Each chapter is carefully crafted to provide you with a deep understanding of Next.js and its practical applications. By the end of this book, you will have the knowledge and confidence to build modern web applications that meet the demands of today's digital landscape. Let's get started!

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Modern-Web-Applications-with-Next.JS

The code bundles and images of the book are also hosted on
https://rebrand.ly/546338

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Web Applications with Next.js and JavaScript

Introduction

Welcome to the world of web applications! In this chapter, we’ll explore how to build robust, high-performance web applications using Next.js and React. Whether you’re a seasoned web developer or just starting out, this book will provide you with a comprehensive introduction to the exciting world of web development. Next.js is a powerful framework for building server-side rendered React applications. By combining the power of React with the simplicity and ease-of-use of Next.js, we can create web applications that are both fast and scalable. So, let’s get started and build some amazing web applications together!

Structure

In this chapter, the following topics will be covered:

	What are web applications?

	What is Next.js and why it’s gaining popularity?

	Features and benefits of using Next.js for building dynamic web applications

	A review of JavaScript fundamentals, including data types, control structures, functions, and objects

	Advanced JavaScript concepts, such as asynchronous programming, promises, and ES6 features

	
How to use Next.js to build server-side and client-side rendered React applications

	How to create a simple Next.js application on your computer

Web applications and its building blocks

Web development is the process of building websites and web applications. A web application is a software program that runs on a web server and is accessed through a web browser. The three fundamental building blocks of web development are HTML, CSS, and JavaScript.

Difference between Websites and web applications

The terms website and web application are often used interchangeably, but they have some distinct differences. A website is a collection of static web pages that provide information or content to visitors. Websites are usually designed to be navigated by visitors, who are passive consumers of the content. Examples of websites include blogs, news sites, and company homepages. A web application, on the other hand, is a software program accessed through a web browser and provides interactive functionality to users. Web applications are more complex than websites and require user input and interaction to function. Examples of web applications include social media platforms, online marketplaces, and productivity tools. The main difference between websites and web applications is the level of interactivity and functionality they provide. While websites are primarily focused on providing information, web applications allow users to perform complex tasks and interact with other users. Another difference is the level of customization and personalization available in web applications. Websites generally provide a standardized experience for all visitors, while web applications can tailor their functionality and content to individual users based on their preferences and behavior. Concisely, while both websites and web applications are accessed through web browsers and are hosted on the internet, web applications provide a more interactive and customizable experience than websites.

HTML (Hypertext Markup Language)

HTML is the standard markup language used for creating web pages and applications. It provides the structure and content of web pages and applications by defining elements such as headings, paragraphs, images, and hyperlinks. HTML uses a tag-based language, where each tag represents a specific element on the page.

Here is an example of how an HTML element is defined:

<!DOCTYPE html>

<html>

<head>

<title>My Web App</title>

</head>

<body>

<h1>Welcome to my web app!</h1>

<p>My name is Mathew and we’re going to learn Next.js!</p>

</body>

</html>

The preceding code gives the following output when viewed in a web browser:

[image:]

Figure 1.1: Website output

In this example, we have defined a basic HTML page that includes a title, a header, and a paragraph. The <!DOCTYPE html> tag specifies the document type and the <html> tag is the root element of the HTML page. The <head> tag contains information about the page, such as the <title>, and the <body> tag contains the content of the page.

HTML provides a wide range of elements that can be used to create web pages and applications. These elements include headings (<h1> to <h6>), paragraphs (<p>), lists (and), links (<a>), images (), tables (<table>, <tr>, <td>), forms (<form>, <input>, <textarea>, <button>), and many more.

Cascading Style Sheets (CSS)

CSS is used for describing the presentation of web pages, including colors, fonts, and layout. It is used to style the HTML elements defined on the page. CSS can be used to apply styles to specific elements, or it can be used to apply styles globally to the entire web page.

Here is an example of how a CSS rule is defined:

h1 {

font-size: 24px;

color: red;

}

In the preceding example, we have defined a CSS rule that applies styles to all h1 elements on the page. We have set the font size to 24 pixels and the color to red.

If we link the preceding CSS code to our HTML page, we get the following output:

[image:]

Figure 1.2: Updated HTML page

CSS provides a wide range of properties that can be used to style HTML elements. These properties include font properties (font-size, font-family, font-weight, font-style), color properties (color, background-color), layout properties (margin, padding, border, width, height), and many more.

CSS also provides a wide range of selectors that can be used to apply styles to specific elements on the page. These selectors include tag selectors (h1, p, ul, li), class selectors (.my-class), ID selectors (#my-id), attribute selectors ([attribute=value]), and many more.

JavaScript

JavaScript is a high-level programming language that is used for creating interactive and dynamic web pages. It is used for adding functionality to web pages, such as event handling, form validation, and API requests and responses. JavaScript is executed by the web browser and is used to interact with the HTML and CSS on the page. JavaScript code can be added to HTML files using the script element, which can be placed in the head or body section of the HTML file. Alternatively, JavaScript code can be included in a separate file and linked to the HTML file using the src attribute.

We are now going to extend our original example and add some JavaScript magic to make our web application interactive:

<!DOCTYPE html>

<html>

<head>

 <title>My Web App</title>

</head>

<body>

<h1 style=”color:red;”>Welcome to my web app!</h1>

<p>My name is Mathew and we’re going to learn Next.js!</p>

<button id=”myButton”>Click me!</button>

<script>

 var button = document.getElementById(“myButton”);

 button.addEventListener(“click”, function() {

alert(“Wooho! You have clicked this button!”);

 });

 </script>

</body>

</html>

In the preceding example, we have added a new button with an onclick event listener to the button that will execute a browser alert using JavaScript. When we click the button, it will create the following browser alert notification:

[image:]

Figure 1.3: Browser alert

By combining these three building blocks, we can create powerful and interactive web applications that provide a great user experience.

Defining Next.js

Next.js is a popular open-source framework for building server-side rendered (SSR) and static site generated (SSG) React applications. Developed by Vercel, Next.js provides an intuitive and developer-friendly approach to building web applications, enabling developers to focus on building great user experiences without worrying about the underlying infrastructure.

With Next.js, developers can build dynamic and performant web applications that can run on any server or platform, thanks to its universal rendering capabilities. Next.js offers a range of features and benefits, including:

	Server-side rendering (SSR) and static site generation (SSG)

Next.js offers powerful server-side rendering capabilities that enable developers to create dynamic, interactive web applications that load quickly and provide great user experiences. Next.js also supports static site generation, allowing developers to generate static HTML files at build time that can be served quickly and efficiently.

	Built-in tooling and automatic optimization

Next.js includes a range of built-in tools and features that make it easy to optimize your application for performance and accessibility. With features like image optimization and automatic code splitting, Next.js helps to ensure that your application is fast, efficient, and accessible for all users.

	Automatic code splitting and optimization

Next.js automatically splits your code into smaller chunks and loads only the code that is required for each page, improving the initial load time and reducing the size of the JavaScript bundle.

	Hybrid approach

With Next.js, you can build hybrid applications that combine server-side rendering and client-side rendering, allowing you to take advantage of the benefits of both approaches.

Overall, Next.js is a powerful and flexible framework that enables developers to build high-quality, scalable web applications quickly and efficiently.

	Easy setup and deployment

Next.js is easy to set up and deploy, allowing developers to get started quickly and focus on building their applications. With built-in support for hosting on Vercel, Next.js provides a seamless deployment experience that makes it easy to deploy and scale your application.

	Community support and ecosystem

Next.js has a large and active community of developers and contributors, who provide support, share knowledge, and contribute to the development of the framework. In addition, Next.js has a robust ecosystem of plugins, tools, and resources that can help developers build better and more efficient web applications.

Use cases for Next.js

Next.js is suitable for a wide range of web application development use cases, including:

	eCommerce applications

	Content-driven websites and blogs

	Social networking sites

	Web-based tools and dashboards

	Progressive web applications (PWAs)

	Mobile applications using React Native

With its flexibility, scalability, and ease of use, Next.js is a versatile framework that can be used to build a wide range of web applications.

In summary, Next.js is a powerful, flexible, and easy-to-use framework for building high-quality web applications using React. With its built-in support for server-side rendering and static site generation, automatic code splitting and optimization, and easy deployment and scaling, Next.js is an ideal choice for developers looking to build dynamic, performant, and scalable web applications.

Reasons to use Next.js for web application development

Next.js is a popular framework for building web applications using React. Here are some of the key reasons why you might want to consider using Next.js for your web application development:

	Built-in server-side rendering

One of the main benefits of using Next.js is its built-in support for SSR. SSR allows your application to render on the server before being sent to the client, which can improve the initial load time and provide better SEO. With Next.js, you don’t need to set up a separate server or worry about managing the server-side rendering process, as it is all handled automatically by the framework.

	Automatic code splitting and optimization

Next.js comes with automatic code splitting and optimization features, which can help reduce the initial load time and improve the overall performance of your application. Code splitting allows you to split your code into smaller chunks, which are loaded on-demand, rather than all at once. This can help to reduce the amount of JavaScript that needs to be downloaded and parsed by the browser, which can speed up the initial load time. Next.js also supports image optimization and other performance optimizations out-of-the-box.

	Easy static site generation

Next.js also provides built-in support for SSG, which can be useful for building static websites, blogs, and other content-driven applications. SSG allows you to generate HTML pages at build-time, which can be served directly to the client, rather than being generated dynamically on the server. This can improve the performance and reduce the server load of your application.

	Easy to set up and deploy

Next.js is easy to set up and deploy, thanks to its built-in support for hosting on Vercel. Vercel provides a seamless deployment experience that makes it easy to deploy and scale your application, without having to worry about managing servers or infrastructure.

	Large and active community

Next.js has a large and active community of developers and contributors, who provide support, share knowledge, and contribute to the development of the framework. This has led to the creation of many useful plugins, tools, and resources that can help developers to build better and more efficient web applications.

In summary, Next.js is a powerful and versatile framework for building web applications using React. With its built-in support for server-side rendering, automatic code splitting and optimization, easy static site generation, easy deployment, and large and active community, Next.js is an ideal choice for building high-quality, performant, and scalable web applications.

	Improved developer experience

Next.js provides a great developer experience, thanks to its intuitive and easy-to-use APIs and features. The framework comes with built-in support for many common web development tasks, such as routing, data fetching, and styling, which can help streamline the development process and reduce the time and effort required to build and maintain your application.

	TypeScript support

Next.js also provides built-in support for TypeScript, a statically typed superset of JavaScript that can help to improve code quality and catch errors early in the development process. TypeScript support is particularly useful for larger applications or teams, where the codebase can become complex and difficult to manage.

	Flexible data fetching options

Next.js provides flexible data fetching options, which can help simplify the process of fetching and managing data in your application. The framework supports both server-side and client-side data fetching, as well as incremental static regeneration, which allows you to update your static pages with new data without rebuilding the entire page.

	Extensible and customizable

Next.js is highly extensible and customizable, allowing you to add your own plugins, middleware, and configuration options to tailor the framework to your specific needs. This can help improve the flexibility and scalability of your application, and enable you to add new features and functionality as your application grows and evolves.

	Built-in support for React

Finally, Next.js provides built-in support for React, a popular JavaScript library for building user interfaces. React is known for its simplicity, performance, and flexibility, and is widely used in the web development community. Next.js provides a seamless integration with React, allowing you to build powerful and dynamic web applications using a familiar and popular toolset.

In summary, Next.js provides a range of benefits and features that make it an ideal choice for building high-quality, performant, and scalable web applications. With its improved developer experience, TypeScript support, flexible data fetching options, extensibility, and built-in support for React, Next.js is a powerful and versatile framework that can help you build better and more efficient web applications.

JavaScript basics for Next.js

Before diving into Next.js development, it’s important to have a solid understanding of JavaScript basics. In this section, we’ll cover some of the fundamental concepts of JavaScript that are essential for developing Next.js applications.

Variables and data types

Variables are used to store data values in JavaScript. There are three ways to declare a variable in JavaScript as follows:

	var

	let

	const

var is the old way of declaring variables in JavaScript, and it has some quirks that can cause issues. let and const were introduced in ES6 JavaScript and are the preferred way of declaring variables in modern JavaScript.

Here is an example:

// Declare a variable using var

var x = 10;

// Declare a variable using let

let y = 20;

// Declare a variable using const

const z = 30;

// Trying to reassign a value to a const variable will result in an error

// z = 40; // This will throw an error

JavaScript has several built-in data types, including:

	number (for numerical values)

	string (for text values)

	Boolean (for true/false values)

	null (for a null value)

	undefined (for an undefined value)

	object (for complex data structures)

Here is an example:

// Declare a number variable

let a = 10;

// Declare a string variable

let b = “Hello, world!”;

// Declare a boolean variable

let c = true;

// Declare a null variable

let d = null;

// Declare an undefined variable

let e;

// Declare an object variable

let f = { name: “Mathew”, age: 28 };

Control flow statements

Control flow statements are used to control the flow of execution in JavaScript. The most common control flow statements are as follows:

	
if…else statement

	for loop

	while loop

	
switch statement

Here are examples of how each of these statements is used:

// If…else statement

let age = 20;

if (age >= 18) {

 console.log(“You are an adult.”);

} else {

 console.log(“You are not yet an adult.”);

}

// Output: You are an adult

// For loop

for (let i = 0; i < 5; i++) {

 console.log(i);

}

// Output: 0 1 2 3 4

// While loop

let i = 0;

while (i < 5) {

 console.log(i);

 i++;

}

// Output:

0 1 2 3 4

// Switch statement

let day = “Monday”;

switch (day) {

 case “Monday”:

console.log(“Today is Monday.”);

break;

 case “Tuesday”:

console.log(“Today is Tuesday.”);

break;

 default:

console.log(“Today is another day.”);

break;

}

// Output: Today is Monday

Functions

Functions are used to group a set of statements together and perform a specific task. In JavaScript, functions can be declared using the function keyword or using arrow function notation (=>).

Here is an example:

// Declare a function using function keyword

function add(x, y) {

 return x + y;

}

// Declare a function using arrow function notation

const subtract = (x, y) => {

 return x - y;

};

// Call the functions

console.log(add(5, 10)); // Output: 15

console.log(subtract(20, 5)); // Output: 15

Classes

Classes are used to create objects in JavaScript. In ES6, classes were introduced to make it easier to create objects and implement inheritance.

Here is an example:

class Person {

 constructor(name, age) {

this.name = name;

this.age = age;

 }

 sayHello() {

console.log(`Hello, my name is ${this.name} and I am ${this.age} years old.`);

 }

}

// Create a new Person object

const mathew = new Person(“Mathew”, 28);

// Call the sayHello method

mathew.sayHello(); // Output: “Hello, my name is Mathew and I am 28 years old.”

Modules

Modules are used to organize code into reusable pieces. In Next.js, we use modules to organize our code and make it easier to share between different parts of our application.

Here is an example:

// Export a function from a file math.js

export function add(x, y) {

 return x + y;

}

// Import the function into another module

import { add } from “./math.js”;

// Call the function

console.log(add(5, 10)); // Output: 15

Promises

Promises are used to handle asynchronous operations in JavaScript. They are a way to handle callback functions in a more readable and predictable way.

Here is an example of how to create a Promise in JavaScript:

// Create a new Promise

const promise = new Promise((resolve, reject) => {

 // Simulate an asynchronous operation

 setTimeout(() => {

// Resolve the Promise

resolve(“Data successfully retrieved!”);

 }, 2000);

});

// Call the Promise

promise.then((result) => {

 console.log(result); // Output: “Data successfully retrieved!”

});

Arrow functions

Arrow functions are a shorthand way of writing function expressions in JavaScript. They are a way to simplify the syntax of functions and make them easier to read.

Here is an example:

// Traditional function expression

const add = function(x, y) {

 return x + y;

}

// Arrow function expression

const add = (x, y) => x + y;

Destructuring

Destructuring is a way of extracting values from objects or arrays and assigning them to variables. It is a shorthand way of writing assignments and can make code more concise.

Here is an example:

// Destructuring an array

const [first, second, third] = [1, 2, 3];

console.log(first); // Output: 1

// Destructuring an object

const person = {

 name: “Mathew”,

 age: 28

};

const { name, age } = person;

console.log(name); // Output: “Mathew”

Spread operator

The spread operator is a way of expanding an array or object into individual elements. It can be used to combine multiple arrays or objects into a single array or object.

Here is an example:

// Using the spread operator to combine arrays

const arr1 = [1, 2, 3];

const arr2 = [4, 5, 6];

const combined = […arr1, …arr2];

console.log(combined); // Output: [1, 2, 3, 4, 5, 6]

// Using the spread operator to copy an object

const person = {

 name: “Mathew”,

 age: 28

};

const copy = { …person };

console.log(copy); // Output: { name: “Mathew”, age: 28 }

Async/Await

Async/await is a newer feature in JavaScript that simplifies working with promises. It allows you to write asynchronous code that looks and feels like synchronous code, making it easier to read and debug.

Here is an example of how to use async/await to handle a promise in JavaScript:

// Using async/await to handle a Promise

async function getData() {

 const response = await fetch(‘https://api.example.com/data’);

 const data = await response.json();

 return data;

}

// Call the async function

const data = await getData();

console.log(data);

Template literals

Template literals are a way to write strings that include variables and expressions. They use backticks (`) instead of quotes and allow you to interpolate variables directly into the string.

Here is an example:

// Using template literals to interpolate a variable

const name = “Mathew”;

const message = `Hello, ${name}!`;

console.log(message); // Output: “Hello, Mathew!”

Object-Oriented Programming (OOP)

Object-Oriented Programming is a programming paradigm that uses objects to represent real-world entities. It is a way of organizing code into reusable, modular components.

Here is an example:

// Using OOP to create a class

class Animal {

 constructor(name, species) {

this.name = name;

this.species = species;

 }

 speak() {

console.log(`${this.name} says hello!`);

 }

}

// Creating an instance of the Animal class

const dog = new Animal(“Dottie”, “Dog”);

// Calling the speak method

dog.speak(); // Output: “Dottie says hello!”

By understanding these additional JavaScript concepts, you will be able to write more powerful and flexible code in your Next.js web applications. In the following chapters, we will explore how to apply these concepts specifically to building full-stack web applications with Next.js.

Understanding server-side rendering (SSR) and client-side rendering (CSR)

When building web applications with Next.js, it’s important to understand the difference between SSR and CSR. Both approaches have their advantages and disadvantages, and it’s important to choose the right one for your use case.

Server-side rendering

SSR is the traditional way of rendering web pages. With SSR, the server sends a fully rendered HTML page to the client in response to a request. This means that the client only needs to download and display the page, without needing to do any additional rendering or data fetching.

SSR can improve the initial load time of your web pages, because the client receives a complete page right away. It can also improve the SEO of your web pages, because search engines can more easily crawl and index fully rendered HTML pages.

Here’s an example of using SSR with Next.js:

// A simple Next.js page that uses SSR

function HomePage({ data }) {

 return (

<div>

<h1>Hello, {data.name}!</h1>

<p>{data.description}</p>

</div>

);

}

export async function getServerSideProps() {

 // Fetch data from an external API

 const response = await fetch(‘https://api.example.com/data’);

 const data = await response.json();

 // Pass the data to the page component as props

 return { props: { data } };

}

export default HomePage;

In this example, the getServerSideProps function is a special function in Next.js that allows you to fetch data and pass it to your page component as props. When the client requests this page, the server will run this function to fetch the data and render the page, then send the fully rendered HTML page to the client.

Client-side rendering

CSR is a more modern approach to rendering web pages. With CSR, the client downloads a minimal HTML page, then fetches data and renders the page on the client side using JavaScript.

CSR can improve the user experience of your web application, because the client can fetch and render data dynamically, without needing to refresh the page. It can also reduce the load on your server, because the server only needs to send the initial HTML page, and the client can handle all subsequent rendering and data fetching.

Here’s an example of using CSR with Next.js:

// A simple Next.js page that uses CSR

function HomePage() {

 const [data, setData] = useState(null);

useEffect(() => {

// Fetch data from an external API

async function fetchData() {

const response = await fetch(‘https://api.example.com/data’);

const data = await response.json();

setData(data);

}

fetchData();

 }, []);

 if (!data) {

return <div>Loading…</div>;

 }

 return (

<div>

<h1>Hello, {data.name}!</h1>

<p>{data.description}</p>

</div>

);

}

export default HomePage;

In this example, we are using React hooks to fetch data and render the page on the client side. When the client requests this page, the server sends a minimal HTML page, and the client runs the JavaScript code to fetch the data and render the page.

Hybrid rendering

In addition to SSR and CSR, Next.js also supports hybrid rendering, which is a combination of both approaches. With hybrid rendering, you can fetch data on the server and send a partially rendered page to the client, then continue rendering and fetching data on the client side.

Hybrid rendering can provide the best of both worlds: the fast initial load time and SEO benefits of SSR, and the dynamic and responsive user interface of CSR. However, it can also be more complex to implement and may require additional server-side configuration and optimization.

Here’s an example of using hybrid rendering with Next.js:

// A simple Next.js page that uses hybrid rendering

function HomePage({ data }) {

 const [dynamicData, setDynamicData] = useState(null);

 useEffect(() => {

// Fetch dynamic data on the client side

async function fetchDynamicData() {

const response = await fetch(‘https://api.example.com/dynamic-data’);

const dynamicData = await response.json();

setDynamicData(dynamicData);

}

fetchDynamicData();

 }, []);

 return (

<div>

<h1>Hello, {data.name}!</h1>

<p>{data.description}</p>

{dynamicData && <p>{dynamicData.message}</p>}

</div>

);

}

export async function getServerSideProps() {

 // Fetch static data from an external API

 const staticResponse = await fetch(‘https://api.example.com/static-data’);

 const staticData = await staticResponse.json();

 // Pass the static data to the page component as props

 return { props: { data: staticData } };

}

export default HomePage;

In this example, we’re using getServerSideProps to fetch static data on the server and send it to the client as props. We’re also using React hooks to fetch dynamic data on the client side and update the page content dynamically.

In summary, when building web applications with Next.js, it’s important to understand the difference between SSR and CSR, and to choose the right approach for your use case. Next.js also supports hybrid rendering, which can provide the benefits of both approaches. By understanding these concepts, you’ll be able to build fast, dynamic, and SEO-friendly web applications with Next.js.

Setting up a development environment for Next.js

Setting up a development environment for Next.js is an important step toward building web applications with Next.js. In this section, we will guide you through the process of setting up a development environment for Next.js.

Step 1: Install Node.js and npm

The first step to setting up a development environment for Next.js is to install Node.js and npm. Node.js is a JavaScript runtime that allows you to run JavaScript on the server side, while npm is a package manager that allows you to install and manage dependencies for your project.

You can download and install Node.js from the official website at https://nodejs.org. Choose the appropriate version for your operating system and download it. Once the download is complete, follow the installation instructions to install Node.js.

Once you have installed Node.js, you can verify the installation by running the following commands in your terminal as shown in figure:

[image:]

Figure 1.4: Verifying the installation

These commands should output the versions of Node.js and npm that you have installed on your system.

Step 2: Create a new Next.js project

Once you have installed Node.js and npm, you can create a new Next.js project using the create-next-app command-line tool. This tool sets up a new Next.js project with all the necessary dependencies and configuration files.

To create a new Next.js project, open your terminal and run the following command:

npx create-next-app@latest

After running the command, you will be prompted with the following questions:

What is your project named? my-app

Would you like to use TypeScript? No / Yes

Would you like to use ESLint? No / Yes

Would you like to use Tailwind CSS? No / Yes

Would you like to use `src/` directory? No / Yes

Would you like to use App Router? (recommended) No / Yes

Would you like to customize the default import alias? No / Yes

What import alias would you like configured? @/*

This command will ask you some questions to bootstrap the project, which will create a new Next.js project in a directory called my-app. We have decided to use TypeScript instead of JavaScript in this example.

Step 3: Start the development server

Once you have created a new Next.js project, you can start the development server using the npm run dev command. This command starts a local development server that allows you to preview your Next.js application in the browser.

To start the development server, navigate to the project directory and run the following command in your terminal:

cd my-app

npm run dev

[image:]

Figure 1.5: Successful local server startup

This will start the development server at http://localhost:3000. You can open this URL in your web browser to view your Next.js application.

[image:]

Figure 1.6: Next.js local server start page

Step 4: Install additional dependencies

Depending on the requirements of your Next.js application, you may need to install additional dependencies. You can do this using the npm install command.

For example, to install the axios library for making HTTP requests, you can run the following command in your terminal:

npm install axios

This will install the axios library and add it to your project’s package.json file.

Setting up a development environment for Next.js is a crucial step in building web applications with Next.js. By following the steps outlined in this section, you can create a new Next.js project, start the development server, and install additional dependencies. With a fully functional development environment, you are ready to start building your own Next.js applications.

Creating a simple Next.js application

In this section, we will create a simple Next.js application from scratch. We will begin by setting up a new Next.js project using the create-next-app CLI tool. Then, we will create a basic Hello World application to familiarize ourselves with the structure of a Next.js application.

	Setting up a new Next.js project

Refer to the previous section on how to create a Next.js app from scratch.

Once the installation is complete, navigate to the project directory:

cd my-app

Now that we have our Next.js project set up, let’s take a look at the structure of the project.

	
Understanding the structure of a Next.js project

A typical Next.js project has the following structure:

my-app/

.next/

 node_modules/

 src/

pages/

styles/

 public/

 package.json

The .next directory is generated by Next.js and contains the built files of the application. The node_modules directory contains all the dependencies installed by npm. The pages directory contains all the pages of the application. The public directory contains all the static assets such as images, videos, and fonts. The styles directory contains all the CSS stylesheets used in the application. The package.json file contains the metadata about the project and the dependencies used.

Now that we have a basic understanding of the structure of a Next.js project, let’s create our first page.

	Creating a simple “Hello World” application

In Next.js, a page is a React component that is exported as the default export of a file in the pages directory. To create a simple Hello World application, let us replace the boilerplate code in the index.tsx:

// src/pages/index.tsx

function Home() {

 return <h1>Hello World!</h1>

}

export default Home;

In this code, we have defined a new component called Home that returns a simple <h1> element with the text Hello World!. We have also exported this component as the default export of the file.

Now, if you run the development server with the following command:

npm run dev

You should be able to view the application by opening your browser and navigating to http://localhost:3000/. You should see the text Hello World! displayed on the page.

[image:]

Figure 1.7: Next.js app running in the browser

Finally, you have successfully created a simple Next.js application!

Conclusion

In this chapter, we learned about web applications are, understood the basic workings of Next.js, its advantages, as well as the basic functionalities of HTML, CSS, and JavaScript. We also explored how easy it is to run a Next.js web application locally on our computer.

In the next chapter, we will recall the basics of React, which is the most popular JavaScript library that is used for building interactive web applications as well as cross-platform mobile apps.

CHAPTER 2

Recall React

Introduction

React is a powerful JavaScript library used for building user interfaces. In this chapter, we will provide a refresher on the essential concepts of React, which are crucial for building robust web applications.

We will begin by introducing the basic building blocks of React applications: components. We will discuss how to create and use components in React and how they enable developers to build reusable UI elements. We will also cover JSX, a syntax extension of JavaScript that allows developers to write HTML-like code in their JavaScript files.

Next, we will delve into the important concepts of props and state in React. We will explain how props allow data to be passed between components, while a state is used to manage data that changes over time within a component. We will cover best practices for working with props and state, and how they can be used to build complex and interactive user interfaces.

Finally, we will discuss the lifecycle methods in React, which allow developers to handle certain events in a component’s lifecycle. We will cover how to use these methods to control the behavior of a component and how they can be used to optimize performance and avoid bugs in React applications.

By the end of this chapter, you will have a solid understanding of the essential concepts of React and will be ready to start building robust and performant web applications using this powerful library.

Structure

In this chapter, the following topics will be covered:

	Introduction to React framework, including the virtual DOM and component-based architecture

	
React component lifecycle methods and their usage

	JSX syntax and its differences from traditional HTML

	Handling events in React and passing data between components

	Working with React state and props, including data flow between components

	Introduction to React Hooks and their usage

	Basic concepts of asynchronous programming in JavaScript and how to use them in React

Introducing React

What is React, and why does it matter? React is a popular JavaScript library developed and maintained by Meta (formerly known as Facebook) for building user interfaces, particularly web applications. It was created to address the need for a more efficient and scalable way to handle complex user interfaces while providing excellent performance. React has gained immense popularity over the years because it enables developers to build reusable, modular components that are both easy to maintain and scale.

One of the main reasons React is so popular is its focus on simplicity and maintainability. By breaking down the user interface into small, self-contained components, it enables developers to easily understand and modify the code, even in large and complex applications. Additionally, React’s performance optimizations, such as the virtual DOM, ensure that applications built with React are fast and responsive.

The virtual DOM and its benefits

The virtual DOM is one of the key features of React, and it’s the primary reason for its exceptional performance. The virtual DOM is a lightweight in-memory representation of the actual DOM (Document Object Model) that is used to track changes to the UI. Whenever a change occurs, React updates the virtual DOM instead of the actual DOM, which can be a slow and expensive operation.

React uses a process called reconciliation to compare the current virtual DOM with the new one generated by a change in the state or props of a component. It then calculates the most efficient way to update the actual DOM to match the new virtual DOM. This process minimizes the number of actual DOM updates, leading to significant performance improvements.

Consider the following example:

import React, { useState } from “react”;

function Counter() {

 const [count, setCount] = useState(0);

 return (

<div>

<p>You clicked {count} times</p>

<button onClick={() => setCount(count + 1)}>Click me</button>

</div>

);

}

export default Counter;

In this simple counter component, the state updates every time the button is clicked. React uses the virtual DOM to determine the minimal updates required for the actual DOM, ensuring optimal performance.

Component-based architecture in React

React’s component-based architecture is a major factor in its popularity and maintainability. Components are self-contained, reusable pieces of code that represent a part of the user interface. They can be combined and nested to create complex UI structures.

There are two main principles behind React’s component-based architecture as follows:

	
Single Responsibility Principle: Each component should have a single responsibility or purpose. This makes it easier to understand, test, and maintain the code.

	
Composition: Components can be composed together to build more complex UI structures. This allows developers to reuse components and create more maintainable code.

Here’s a simple example of a component-based UI:

import React from “react”;

import Header from “./Header”;

import Content from “./Content”;

import Footer from “./Footer”;

function App() {

 return (

<div>

<Header />

<Content />

<Footer />

</div>

);

}

export default App;

In this example, the App component is composed of three other components: Header, Content, and Footer. Each of these components has its responsibility, making the overall application easier to maintain and understand.

Understanding functional and class components

React components can be written as functional components or class components. Before the introduction of Hooks in React 16.8, functional components were stateless and only used for presenting data, whereas class components were stateful and used for more complex logic. However, with the introduction of Hooks, functional components can now have state and perform side effects, making them more powerful and flexible.

Functional components are simpler and more concise than class components, making them the preferred choice for many developers. They are simply JavaScript functions that take props as input and return JSX to render the UI.

Here’s an example of a functional component:

import React from “react”;

function Welcome(props) {

 return <h1>Hello, {props.name}!</h1>;

}

export default Welcome;

In contrast, class components are JavaScript classes that extend the React.Component class. They have a render() method that returns JSX and can have local state and lifecycle methods.

Here’s an example of a class component:

import React, { Component } from “react”;

class Welcome extends Component {

 render() {

return <h1>Hello, {this.props.name}!</h1>;

 }

}

export default Welcome;

While class components are still supported in React, the introduction of Hooks has made functional components more powerful and versatile. Hooks allow you to use state and other React features without writing a class, leading to cleaner and more readable code.

To illustrate the use of Hooks in functional components, let’s convert the previous class component example into a functional component with the state:

import React, { useState } from “react”;

function Welcome() {

 const [name, setName] = useState(“John”);

 const handleChange = (event) => {

setName(event.target.value);

 };

 return (

<div>

<h1>Hello, {name}!</h1>

<input type=”text” value={name} onChange={handleChange} />

</div>

);

}

export default Welcome;

In this example, we use the useState Hook to manage the name state in the functional component. We also define a handleChange function to handle the input change event and update the state.

In conclusion, React’s component-based architecture, virtual DOM, and emphasis on reusability make it a powerful and popular choice for building user interfaces. With the introduction of Hooks, functional components have become even more powerful and versatile, further solidifying React’s position as a leading JavaScript library. As you continue to explore React and its features, you’ll find that it provides an efficient and maintainable way to build complex and scalable web applications.

React component lifecycle methods and their usage

Let’s explain the lifecycle methods of the React component and their benefits.

	
Overview of lifecycle methods
Lifecycle methods are special methods in class components that allow you to run code at specific points during the component’s lifecycle. They are essential for managing side effects, such as fetching data, updating the DOM, and handling events. The lifecycle methods can be grouped into three main phases: mounting, updating, and unmounting.

Note: With the introduction of Hooks, functional components can now perform similar tasks using useEffect. This section focuses on lifecycle methods for class components, but it’s important to be aware of this alternative approach in functional components.

	
Mounting phase methods
The mounting phase occurs when a component is being created and inserted into the DOM. There are two lifecycle methods associated with this phase:

	
constructor: The constructor method is used to initialize the component’s state and bind event handlers. It’s called before the component is mounted.
Here’s an example:

class MyComponent extends React.Component {

 constructor(props) {

super(props);

this.state = { message: “Hello, World!” };

this.handleClick = this.handleClick.bind(this);

 }

}

	
componentDidMount: This method is called immediately after the component is inserted into the DOM. It’s the ideal place to fetch data, set up subscriptions, or perform other side effects.
Here’s an example:

class MyComponent extends React.Component {

 componentDidMount() {

console.log(“Component has been mounted.”);

 }

}

	
Updating phase methods
The updating phase occurs when a component’s state or props change, causing a re-render. There are two lifecycle methods associated with this phase:

	
shouldComponentUpdate: This method is called before a re-render, allowing you to determine if the component should update based on changes in state or props. By default, it returns true. If you return false, the component won’t update, and the remaining lifecycle methods won’t be called.
Here’s an example:

class MyComponent extends React.Component {

 shouldComponentUpdate(nextProps, nextState) {

return this.props.someValue !== nextProps.someValue;

 }

}

	
componentDidUpdate: This method is called immediately after a component has been updated. It’s useful for performing side effects, such as DOM manipulation or data fetching, in response to prop or state changes.
Here’s an example:

class MyComponent extends React.Component {

 componentDidUpdate(prevProps, prevState) {

if (this.props.someValue !== prevProps.someValue) {

console.log(“someValue has changed.”);

}

 }

}

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Authors

		About the Technical Reviewers

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to Web Applications with Next.js and JavaScript
		Introduction

		Structure

		Web applications and its building blocks

		Defining Next.js
		Use cases for Next.js

		Reasons to use Next.js for web application development

		JavaScript basics for Next.js
		Variables and data types

		Control flow statements

		Functions

		Classes

		Modules

		Promises

		Arrow functions

		Destructuring

		Spread operator

		Async/Await

		Template literals

		Object-Oriented Programming (OOP)

		Understanding server-side rendering (SSR) and client-side rendering (CSR)
		Server-side rendering

		Client-side rendering

		Hybrid rendering

		Setting up a development environment for Next.js

		Creating a simple Next.js application

		Conclusion

		2. Recall React
		Introduction

		Structure

		Introducing React
		The virtual DOM and its benefits

		Component-based architecture in React

		Understanding functional and class components

		React component lifecycle methods and their usage

		JSX syntax and its differences from traditional HTML
		JSX syntax rules and best practices

		Embedding JavaScript expressions in JSX

		Handling conditional rendering and looping in JSX

		Differences between JSX and HTML

		Handling events in React and passing data between components
		React event handling basics

		Synthetic events and event pooling

		Binding event handlers to components

		Passing data through props

		Using callback functions for parent-child communication

		Lifting state up and managing shared state

		React state and props

		Introducing React Hooks and their usage
		Other built-in Hooks and their use cases

		Asynchronous programming in JavaScript and its application in React

		Conclusion

		Multiple choice questions

		Answers

		3. Next.js Fundamentals
		Introduction

		Structure

		Introducing Next.js framework and its advantages
		Advantages of using Next.js

		Comparing with other frameworks

		Real-world use cases of Next.js

		Installing and creating a new Next.js project
		Prerequisites for installing Next.js

		Installing Next.js

		Creating your first Next.js project

		Understanding the initial setup

		Understanding the folder structure of a Next.js project
		Overview of the folder structure

		Exploring the ‘pages’ directory

		Exploring the public directory

		Exploring the styles directory

		Other files

		Understanding the role of pages in Next.js
		Introducing pages

		Creating and rendering a basic page in Next.js

		Implementing CSS styling in Next.js using CSS modules

		Conclusion

		Multiple choice questions

		Answers

		4. Next.js 13
		Introduction

		Structure

		Setting up a Next.js 13 app

		App Router

		Client and server components

		Routing

		Rendering

		Data fetching

		Conclusion

		Multiple choice questions

		Answers

		5. Optimizing Next.js Applications
		Introduction

		Structure

		Importance and benefits of optimizing the Next.js applications

		Adding metadata to pages using the Head component

		Implementing static file serving in Next.js

		Understanding the use of the Next.js image component for image optimization

		Understanding Next.js Architecture and how it works

		Configuring Next.js for optimal performance

		Implementing server-side caching

		Code splitting and dynamic imports

		Caching and improving data fetching

		Analyzing and reducing bundle size

		Deployment strategies and the best practices

		Monitoring performance

		Conclusion

		Multiple choice questions

		Answers

		6. Understanding Routing in Next.js
		Introduction

		Structure

		Understanding the role of Next.js router

		Understanding the Next.js Link component and its usage

		Navigating between pages in Next.js using the router

		Working with dynamic routes in Next.js

		Conclusion

		Multiple choice questions

		Answers

		7. State Management in Next.js
		Introduction

		Structure

		Introducing state management in Next.js and its importance

		Different state management options available in Next.js

		Pros and cons of state management options

		Implementing state management with React state and the use of hooks

		Best practices for managing state in Next.js applications

		Implementing state management using Redux in Next.js Application
		Flux

		Combining Redux and Flux

		Redux Thunk

		Implementing state management using React context in a simple Next.js application

		Case studies and examples

		Conclusion

		Multiple choice questions

		Answers

		8. Restful and GraphQL API Implementation
		Introduction

		Structure

		Introduction to APIs and their importance in modern web development
		API protocols and architectures

		RESTful versus GraphQL APIs
		Setting up and configuring a RESTful API in Next.js

		Setting up and configuring a GraphQL API in Next.js using Apollo Server

		Integrating the API endpoints with Client Side in Next.js

		Handling errors and exceptions in API calls

		Best practices for API security and authentication in Next.js applications

		Conclusion

		Multiple choice questions

		Answer:

		9. Using Different Types of Databases
		Introduction

		Structure

		Quick Overview of Database Management System

		Relational Database Management Systems

		NoSQL Database Management Systems

		Setting up a database connection in Next.js

		CRUD operations with the selected database

		Handling database errors and debugging techniques

		Database security best practices in Next.js

		Data modeling and schema design

		Scaling the database for performance and high availability

		Conclusion

		Multiple choice questions

		Answers

		10. Understanding Rendering in Next.js Applications
		Introduction

		Structure

		Understanding rendering in Next.js

		Benefits and drawbacks of CSR and SSR

		Next.js’s approach to CSR and SSR
		SSR with Next.js

		CSR with Next.js

		Dynamic client-side rendering

		Best practices for using CSR and SSR in Next.js applications

		Conclusion

		Multiple choice questions

		Answers

		11. Securing App with Next Auth
		Structure

		Introduction to authentication and security

		Overview of Next Auth

		Setting up Next Auth in a Next.js application

		Implementing different authentication providers

		Protecting pages and API routes with authentication

		Best practices for authentication and security in Next.js applications

		Conclusion

		Multiple Choice Questions

		Answers

		12. Developing a CRUD Application with Next.js
		Introduction

		Structure

		Setting up your development environment

		Displaying To-Do items (Read)

		Setting up the database using Supabase

		Adding new To-do items (Create)

		Editing To-Do items (Update)

		Deleting To-Do items (Delete)

		Deploying the application

		Conclusion

		13. Exploring Deployment Architecture in Next.js Applications
		Structure

		Understanding the deployment process in Next.js

		Setting up environment variables for deployment

		Deploying Next.js applications to different hosting platforms

		Optimizing the deployment process for faster and more efficient deployments

		Configuring the Next.js application for production

		Setting up (CI/CD) pipelines for Next.js applications

		Monitoring and debugging deployed applications

		Conclusion

		Multiple choice questions

		Answers

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Web Applications with Next.js and JavaScript

