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    It is a pleasure for me to write a foreword to the book titled, “Computational Toxicology for Drug Safety and a Sustainable Environment” edited by Tahmeena Khan and Saman Raza. Computational toxicology prediction is an important area to explore in present times when new chemical compounds are being developed for different applications. It is pertinent to know the fate of these chemicals on the environment for sustainable development. The book contains nine very informative chapters elaborating on different aspects and applications of computational toxicology for drug development and environmental risk assessment. The content of the book is well-written by eminent academicians and it will surely enlighten the readers to get acquainted with computational toxicology. An array of important topics like validation and sensitivity studies of computational models, computational approaches for drug profiling and development etc. has been included in the book. The book also reports original computational studies being done with chemical compounds to show the practical implementation of computational approaches. I recommend this book and hope it will be very useful to readers interested in toxicological studies.


    
      M. Shaheer Akhtar

      Jeonbuk National University

      Jeonju, South Korea
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    Toxicology is the branch of science related to the study of the toxicity of various chemicals, including their analysis and the determination of toxicity mechanisms. It finds application in various fields like food and pharmaceutical research, product development, and environmental studies. Drug toxicity is a serious issue in drug development and is the reason for almost one-third of drug attrition and late-stage failure, therefore, toxicity analysis of drug candidates at the designing stage and preclinical stage has become a must. While there are several tests and tools to detect the same, they may be costly, cumbersome, and time-consuming, consequently, computational methods and tools are being widely used nowadays to study the ADMET properties of drug candidates so that there is less financial loss and failure at a later stage. This new branch of science is called computational toxicology and it is not just being used in drug development but is also being used to study the toxicity of various chemicals that we are exposed to regularly, be it environmental pollutants, the food we eat, or the various products we use, like medicines, cosmetics, cleaning products, etc. Computational toxicology is a growing and multi-disciplinary research area merging diverse fields like bioinformatics and computer applications with molecular biology and chemistry.


    The nine chapters included in this book explain in detail the various computational models, tools and tests that are being used nowadays for the prediction and study of the toxicity of new drug candidates as well as environmental pollutants and other harmful chemicals. The importance of computational toxicology in pharmaceutical and other industries as well as environmental studies has been elaborated on in the very first chapter. The next chapter emphasizes the importance of verification and validation of the various models that are used to assess the toxicity of substances, for more accuracy and reliability of results. One of the chapters reviews the various computational toxicological approaches for drug profiling employed for the generation of data and molecular libraries, which are highly useful in drug development. Another chapter focuses on the use of computational toxicology in environmental studies for the removal of toxins, while in another chapter, computational toxicity studies on firecrackers have been reported. In two more chapters, original research work using in silico studies on harmful chemicals like organochlorine compounds and drug intermediates like anisole and glyoxylic acid derivatives, have been described. The concluding chapter illustrates a more recent application of computational toxicology i.e., nanotoxicology, that can be used to study the toxicity of nanoparticles and nanostructures.


    This book aims to provide a comprehensive overview of the recent developments in the field of toxicology with the help of review articles and original research papers that have been authored by expert academicians and scientists. The different chapters elaborate on the strengths and weaknesses of the existing methodologies and describe the newer developments and dimensions in computational tools that can be used for greater accuracy.



    

    

    

    

    

    

    

    

    

    


    The book would be useful for students pursuing post-graduation and research scholars who are pursuing a Ph.D in medicinal or environmental chemistry. Most of the books related to the topic are focused on the applications of computational strategies in medicinal chemistry, but this book is intended to explore the utility of computational strategies in medicinal as well as environmental chemistry, making it quite useful to its target readers.
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      Abstract


      Computational toxicology is a rapidly developing field that uses computational logarithms and mathematical models for a better understanding of the toxicity of compounds and test systems. This recent branch is a combination of various fields encompassing chemistry, computer science, biology, biochemistry, mathematics, and engineering. This chapter focuses on the usage of computational toxicology in various fields. This multifaceted field finds application in almost every pharmaceutical and industrial process which in turn offers safer environmental practices. Computational toxicology has revolutionized the field of drug discovery as it has helped in the production of significantly efficient drug molecules through time-saving and cost-effective methods. It has also proved a boon for various industries ranging from often-used cosmetics to daily-use food products, as toxicological assessment of chemical constituents in them provides quicker and safer production. All these computational assessments thereby save a lot of chemical wastage and thus give a helping hand in exercising healthy environmental practices. Besides this, pollutant categorization and waste management through computational tools have also been favoured by many agencies that work for environmental sustainability. Thus, to sum up, computational technology has completely transformed the processes and practices followed in pharmaceutics, environment protection and industries, and paved the way for efficient, cost-effective, and less hazardous routes.
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      INTRODUCTION


      Computational toxicology is a rapidly advancing technology that uses mathematical models designed from integrated data, through easy computer-based


      software applications or programs, for the prediction of metabolic and toxic properties of chemicals, drugs, edible items, pollutants and others [1]. This prediction can help reduce the synthesis time as well as the efficiency of many products without any detrimental effects to the environment. The branch of computational toxicology integrates various disciplines in it like chemistry, mathematics, biochemistry, medicine, computer science, biology and engineering [2, 3]. An integrated approach to various scientific fields in computational toxicology is depicted in Fig. (1). Besides toxicological predictions, it also predicts metabolic interaction predictions of chemicals at cellular and molecular levels in biological systems, thus making it a useful branch of study in multifarious fields [4]. The integrative approaches for toxicological research are modelled into computational tools for easy usage by researchers and scientists [5]. This predictive modelling assessment has greatly reduced the time consumed in the production of drugs, cosmetics, and food products, the unnecessary hazardous effects of chemical wastage on the environment, and the usage of in vivo methods and reliance on animal testing, and has improved the efficacy of drugs and cosmetic products with minimum health hazard risks [6].
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Fig. (1))

      Computational toxicology as an integrated sub-discipline of various disciplines.

      The integrated computational models for toxicological assessment are prepared through sequential steps. The general steps involved in the preparation of each model include a series of steps starting from the identification of user needs, followed by data collection, further followed by its expert assessment and data cleanup, succeeded by data harmonization or data standardization and finally ending at toxicity assessment [7, 8]. These basic steps form the basis of each artificial intelligence-based predictive model in computational toxicology. The first step ensures that the demand of the user is met i.e., a clear picture of user needs is required to be known; For example, if it’s toxicity assessment of some hazardous pollutant, data collection should be according to it, or if it is an assessment for toxicity of any chemical compound or permissible limits of any component in products, then the data must be collected accordingly as per those needs or if the manufacturer tends to prepare a new formulation, then the data for comparative toxicological limits of various chemical components must be curated [9, 10]. A clear start gives the best ending for our prediction models. Thus, the identification of appropriate users’ needs helps in identifying the regulatory endpoints for predictive assessment [11]. The second step includes data collection which is as per the requirements of the user. Sufficient metadata and reproducible data are the key points for the development of a reliable model. Data are collected from primary data reports, aggregated reports, repositories like PubChem, or through already existing computational predictive models.


      The third step takes into account expert assessment which involves the evaluation of data by subject matter experts for additional contexts to existing or incomplete data or the removal of irrelevant data. The fourth step involves data cleanup where erroneous data is identified and sorted out for better and more efficient assessment [12-14]. This step addresses any changes in spelling, special characters, and typographical errors incompatible with the computational tools and resolves these inconsistencies through automated workflow processing of data. The next step includes data harmonization or standardization where the sorted data is standardized for being compatible with the integrated chemical environment, to increase its interoperability like with EPA CompTox chemicals dashboard. In this step, data is standardized as per authoritative and regulatory standards [15, 16]. The final step uses the standardized data in conjunction with an integrated chemical environment or other descriptors for toxicity assessment. These sequential steps are diagrammatically explained in Fig. (2).


      Computational toxicology has numerous advantages over traditional toxicology testing methods. It is a timesaving, cost-effective, eco-friendly approach as compared to the in vivo approach where actual animal models are used for toxicity prediction studies causing loss of lives as well as chemicals and time. These in silico or in vitro models are accurate as well as advantageous in terms of time and economic and ecological practices. Thus, computational toxicology is highly advantageous over traditional toxicology testing.
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Fig. (2))

      Sequential steps for the development of a computational model for toxicity assessment.
    


    
      Applications of Computational Toxicology


      Computational toxicology has a wide number of applications in pharmaceutics, diagnostics, therapeutics, synthesis, cosmetics, food and beverages, and environmental risk assessments. Toxicogenomics, metabolomics, and proteomics create data sets for the working of computational software to generate an assessment of gene or protein expression or metabolite generation at a particular cell, tissue, or organ level [17, 18]. Thus, it helps in the risk assessment of different response pathways for toxic or non-toxic outcomes and also in the identification of major gene products that might regulate the biological behaviours that lead to toxicity [19]. Prediction of the toxicology of chemical compounds via QSAR (Quantitative Structure-activity relationship) was one of the first applications of computational toxicology [20]. These QSAR models combine chemical and biological descriptors for a better assessment of the toxicity of the chemical component itself as well as its toxic effect on the interaction with the biological systems [21]. Later, the high throughput screening of chemicals for their biological responses has proved to be a boon for pharmaceutical industries and has saved time, labour and cost for them [22]. Besides, high-throughput assays are also conducted by the National Institute of Health’s Chemical Genomics for the identification of biological processes that might affect the environment. Apart from risk assessment, computational models can help in the prediction of the mode of action of any chemical component or effluent, in dose-response predictions of drugs and in predicting the limits of pollutant exposure in the environment [23].


      Computational toxicology helps in the prediction of dosage or dose range or limit, in the prediction of toxicity endpoints, in the prediction of physicochemical properties, and in the prediction of health effects and risks. These predictions are governed by the SAR (Structure-activity Relationship) model. This improved technology helps in understanding the mechanism or mode of action and metabolism which might guide the researcher to the best possible route with minimum toxic effects [24]. This technology also assesses the chemical-biological molecular interactions and health risks. It helps in the enhancement of the MRL (Manufacturing Readiness Levels) approach in the processing and production of drugs and food products, as shown in Fig. (3) [25]. Computational toxicology can help predict susceptible populations for a particular health hazard in a short period by detection and simulation of the prevailing pollutants in that area [26]. Thus, overall this interdisciplinary approach has proved to be a boon for medical, environmental, and industrial fields by reducing the risks and time frames of diagnosis and production and enhancing efficiency and cost-effectiveness.
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Fig. (3))

      Manufacturing readiness levels.
    


    
      Applications of Computational Toxicology in Pharmaceuticals


      Computational toxicology has played a critical role in diagnostic and therapeutic areas. The high-throughput screening for chemical compounds, molecular simulations and docking studies used for drug-biosystem interactions have greatly reduced the risk of drug failures and enhanced the efficacy of drug production [27, 28]. Computational studies can also predict safety modifications in a drug at an early stage for its production as a more potent and less toxic drug, which was not possible earlier, and the drugs were removed from the market after a substantial loss and hazard were caused by them. Like nefazodone, a targeted antidepressant had to be retracted from the market in 2003, owing to its high hepato-toxicity [29]. In in vitro assays, the drug had also shown safety liabilities in general toxicity and mitochondrial dysfunction. Since, the advent of computational toxicology, such issues can be solved at an early stage of drug production, so that the risks of health hazards are reduced [30].


      The drug discovery process has been highly optimized due to investigative and computational toxicology. Through this process, the molecular target and disease are fixed first so that the target site is known or specific receptor protein is known, and then the data from chemical space is extracted and drug screening is performed [31]. This screening provides the best lead compounds which can be further optimized and put to clinical trials and finally to marketing and production. This computational screening saves time and reduces the use of animal models to a limit as well, thus proving to be more beneficial than traditional synthetic processes [32]. Besides the screening also detects the incompatible chemical components of drugs with the receptor, which can be modified or substituted with other groups to alter its toxicity and give more efficient drug molecules. For QSAR-based drug discovery, first chemogenomics data is accumulated through databases and then chemical descriptors are calculated as an aid for “wet lab” chemists or “bench” chemists [33]. These chemical descriptors include values for log P, log S, pKa/pKb, total polar surface area (TPSA), molecular polar surface area (MPSA), molecular volume, molecular weight (M.W.), number of Hydrogen bond acceptors (HBA), hydrogen bond donors (HBD) and number of rotatable bonds (nrotb). These descriptors are then checked for agreement or non-agreement with “Lipinski’s Rule of Five” or Ro5. This rule states that for a good, orally active, and biocompatible drug molecule, the following criteria need to be fulfilled:


      • Log P <5. The calculated octanol-water partition coefficient should not exceed 5.


      • M.W. <500 daltons. The molecular weight of the potential drug molecule should be less than 500Daltons.


      • Nrotb < 10. The number of rotatable bonds should be less than 10.


      • HBA <10. The number of hydrogen bond acceptors (nitrogen and oxygen atoms) should be limited to 10 or less.


      • HBD <5. The number of hydrogen bond donors (Nitrogen hydrogen and Oxygen hydrogen bonds) should not exceed 5.


      If the screened molecule violates more than one of these criteria, then it may have poor or problematic bioavailability [34]. Thus, these predictions help in assessing the potency of the screened drug molecules at an initial state and can be beneficial for the selection of lead compounds in a much less time and in and cost-effective way. Besides, the chemical descriptors of the drug candidates to be screened are also screened for some target families like kinase inhibitors, ion-channel modulators, nuclear receptor ligands, protease inhibitors, enzyme inhibitors and G-protein coupled receptor (GPCR) ligands. If the scores for the screened molecules lie between -0.5 to 0.0, the compounds are said to be fairly potent and moderately active. If the score is more than 0.0 then the compounds are considered to be highly potent and if the score is less than -0.5 then the compound is a poor candidate for being a drug molecule and requires modifications for its improvement [35-38]. These studies can easily help filter a large number of molecules and can help in separating chemical compounds from lead drug molecules, in a cost-effective and time-constrained manner. A process depiction of computationally modelled drug discovery can be seen in Fig. (4).
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Fig. (4))

      Application of computational toxicology studies in drug discovery/pharmaceutics.

      Molecular docking and molecular simulation studies have played a major role in the drug discovery field of pharmaceutics [39]. It is not only a tool for screening potent drug molecules but also helps in designing a potent drug molecule by the recognition of the targeted active binding site in the receptor [40]. Simulation studies help in predicting the possible risks of a particular chemical molecule when used for in vivo models, thereby limiting the usage of animal models only to high-success rate drug molecules [41, 42]. Molecular docking is an in silico method for recognizing the best docking pose or binding pose for a ligand with the active site of the targeted receptor molecule based on the docking scores, as shown in Fig. (5). The best score is ranked ordered in comparison to other poses and the most compatible target receptor site and ligand binding is used for the development or prediction of a potent drug molecule [43]. This technique combines and optimizes various parameters like hydrophobic, steric, and electrostatic interactions. When the active site is unknown, “blind docking” is used for the prediction of a suitable target active site for the synthesized compound, which could be implemented by knowing the mechanism of action of the synthesized compound. This docking could predict an agonist or antagonist mode of action for a receptor site and synthesized ligand [44]. Various docking software are available for docking based on ensemble, induced fit, and rigid models, which could easily predict the risk of a drug candidate to be used in in vivo models.
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Fig. (5))

      Molecular docking of the chemical compound at the active site.

      Computational toxicology simulation studies can also be used in the evaluation of the process interaction of genes. Like critical genes in somite formation formed in the embryo of vertebrates can be modelled for the development of somitic boundaries and their positional information, which could help in the assessment of any particular toxic compound prevalent in an area to cause a particular disease in the residents [45]. Thus, this could also serve as a diagnostic tool. Besides, physiologically based pharmacokinetic (PBPK) models help in projecting a relationship between administered doses and delivered doses i.e., a relationship between the amount of drug taken up by the patient and the amount of drug metabolized in the body [46]. This model uses a realistic mammalian physiology and biochemistry description as its algorithm. It can easily predict risk assessment in patients, can address the critical gap between in vitro and in vivo models and attempt to provide dose-response interactions between chemicals and biological systems. This might help the regulatory bodies to define limits of drug dosage for a particular drug in different age groups and set a standard for dosage all over the world [47].


      Thus, computational toxicology has proved to be a blessing for pharmaceutics in terms of drug discovery including both synthesis and modification, drug-gene interaction, diagnosis of prevalent diseases in a particular area as well as in terms of risk assessment of dose intake and hence maintaining the standards of drug-toxicity.

    


    
      Applications of Computational Toxicology in Environmental Practices


      The advent of computational toxicology has played a pivotal role in maintaining safe environmental hazards by risk assessment of various toxic pollutants discharged into the environment. The risk assessment ability of PBPK models can avoid many hazardous synthetic or interactive procedures and be helpful for environmental protection. The scientific standardization agencies rely on these innovations and technologies for setting standard limits regarding toxicity from hazardous pollutants or effluent exposures. Chemical toxicology can help in better characterization of effluents on the target site exposure. The dose-response relationships predicted through computational models can be useful in regularizing doses with minimum toxic emissions in the environment [48, 49]. The U.S.E.P.A. (United States Environmental Protection Agency) has developed many large data resource centres to assist this data-intensive technology. Along with PBPK models, benchmark dose (BMD) models are also assisting in risk assessment from toxic compounds [50]. The BMD model analyzes all the experimentally accumulated information of a dose-response relationship curve and with minimum extrapolations, provides a human health guide against toxic substances or gives the threshold of toxicological concern (TTC) [51, 52]. The TTC for some compounds was predicted as per Cramer’s classification:


      • Substances with simple chemical structures with identified metabolic pathways and non-hazardous end products propose a low toxicity profile, and its TTC is 30µg/kg body weight per day.


      • Substances with relatively complex chemical compounds with only a predictive mechanism of action, and no definite metabolic pathway are suggested to possess a certain level of toxicity and its TTC is 9µg/kg body weight per day.


      • Substances with complex chemical structures that interact with environmental factors, with an unidentified metabolic pathway are labelled to have high toxicity profile, with a TTC of 1.5µg/kg body weight per day.


      These models help in the prediction of adverse outcome pathways (AOP) which could help in dealing with environmental repercussions with a suggestive alternate route or limiting of compound dosage. An AOP is a theoretical framework that depicts current knowledge regarding the association between a direct molecular originating event and an adverse outcome, at a level of biological organization relevant to risk assessment, as depicted in Fig. (6). This could help in maintaining standards of ecotoxicology by various regulatory authorities [53].
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Fig. (6))

      Adverse outcome pathway depicting organism and population responses.

      Besides these direct applications, computational toxicology has implicitly facilitated a lot in bringing about a transformation in environmental sustainability procedures. The high throughput screening and QSAR studies and pharmacokinetic profiling of drug molecules have been a great aid in reducing the chemical effluents from the laboratory, produced during synthesis [54]. Earlier if hundreds of molecules were synthesized, only one molecule could be the lead molecule for drug discovery and there was a great deal of chemical wastage, dumped from laboratories to the natural environment. But, currently with the advent of computational toxicology, these practices have been transformed, and screening of chemical compounds through computational models can provide four to five lead molecules by screening over thousands of chemical components. So, once the lead molecule is identified, only these molecules are synthesized and optimized for drug discovery. This saves a whole deal of chemicals and time, and since it promotes less usage of chemicals, therefore less disposition of chemical wastes and subsequently lesser harm to the environment [55]. This also reduces the cost of each drug synthesis, thereby making it a cost-efficient technique as well. Apart from this, when current computational toxicology tools are used instead of traditional synthetic methods, only a few in vivo or animal models are required for their testing rather than testing each molecule as synthesized by traditional routes. This helps in time conservation, cost reduction, and animal preservation as well, thereby helping in maintaining the ecological pyramid of the environment [56].


      This interdisciplinary branch of computer and science gave rise to another branch called green chemistry which focuses on designing and production of processes that minimize the use and disposition of hazardous chemicals. This has helped chemistry in transforming its conservative synthetic methods. It is a branch that targets alternative sustainable technologies. Many of the principles of green chemistry are already included in computational toxicology studies like less hazardous chemical effluents, design of safer chemicals, design for energy efficiency, reduced derivative production, real-time analysis for pollution prevention, and safer alternative routes [57, 58].


      Thus, computational toxicology has helped a great deal in transforming the environmental practices causing hazards to the environment and has provided a much safer, and reliable alternative for environmental protection without hindering the product and development. This has given rise to the concept of green chemistry which is the best alternative to date for the conservational method.

    


    
      Applications of Computational Toxicology in Industrial Practices


      Computational toxicology has played a key role in industries as well. It has improved cost efficiency and has reduced the time and labour consumption required for the manufacturing process. The major industries that have benefitted from computational toxicology studies are the cosmetic and food and beverage industries. These industries make use of in silico studies for enhanced efficacy of the product and elimination of toxic compounds being generated or inadvertently added to the products [59]. Computational toxicology has been used by regulatory authorities like the United States Food and Drug Administration (U.S.F.D.A.) has ensured that selected compounds present in its in silico library (like Tox21, ToxML) should only be used in food products.
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Fig. (7))

      Application of computational toxicology in the food industry.

      With the ever-increasing chemical components in food and beverages, it is next to impossible to address their safety standards through traditional or classical approaches. Therefore, the advent of chemical toxicology studies has paved the way for first-line hazard assessment of the chemical components present in food [60]. Chemicals present in food may be compounds that are naturally occurring or intentionally added or inadvertently added or generated in food after a certain period, and exposure to them may lead to health hazards [61]. Around 130 million compounds are currently present in the market and about 500-1000 compounds are added to this list every year, making it very difficult to assess their safety in food products conventionally so in silico methods help in screening these huge numbers in a little amount of time [62, 63]. These techniques may also simulate and predict the risk of intake of certain compounds. In the food industry, computational toxicology studies use structure-activity relationship (SAR) and QSAR for proposing the properties of a chemical compound. Ligand-based virtual screening is also used to assess the effect of a particular compound on biological systems so that they can be labelled as “safe” or “unsafe” for consumption [64]. Molecular docking approaches assess the safety of chemical components in food by providing binding poses, ranked as per score based on their enthalpic and entropic molecular interactions. Molecular dynamic simulation studies help in assessing the impact of mutation or polymorphism resulting from conformational changes occurring over a period [65]. A process of usage of computational toxicology studies in the food industry is depicted in Fig. (7). Thus, helping in labelling the food products with an expiry date for a safe consumption period. Computational toxicology also helps in setting standard ranges of pesticides to be used in fields under safe parameters, so that the crops to be consumed do not possess any threat to human health. These techniques have also been used for deciphering the mechanism of action of some food components or in the discovery of novel xenoestrogens, food pollutants, mycotoxins generated in food after a certain time and related metabolites [66]. Thus, computational toxicology techniques in the food industry act as a funnel which could filter the first-line hazards in food products and ease the process of food safety standardization.


      The other industry which makes the maximum usage of computational toxicology studies is the cosmetic industry. In 2013, a ban on animal testing for cosmetic products was imposed by the European Union (EU) through EU regulation. This ban resulted in the search for alternate routes for testing [67]. Thus, at this time, the computational toxicology approaches came up as the best alternative, where no harm was imposed on the animals and the approaches could be safe, economical, and time-efficient. Currently, these technologies are applied to both internal exposure and hazard identification, thus providing information to act as keystones of risk assessment [68]. In the cosmetic industry, in silico dermal adsorption models are tailor-made for the safety assessment of topical creams. Safety assessment of fragrances used in cosmetics can also be covered by QSAR models by referring to the standard values set by the Research Institute for Fragrance Materials (RIFM), which provides the safe use standards of fragrance for consumer and environmental protection [69]. QSAR and PBPK models working in combination are important tools for providing predictions for the systemic bioavailability of cosmetics from dermal exposures. Thus, computational toxicity studies help in screening compounds with potentially high and low dermal absorption, thereby recommending their usage on a daily or occasional basis. PBPK models are also being used for the assessment of organ-level accumulation of chemical compounds by knowing the internal dose reaching the organs relative to the applied dose. This helps in maintaining the range of “safe” cosmetic standards for industries. For these studies, the PBPK model uses chemical information like solubility, hydrophobicity, and plasma protein binding along with physiological and anatomical information like organ volume and blood flow for the prediction of concentration-time curves at tissue and organ level. Computational studies make a direct prediction of potential hazards i.e., a particular cosmetic is related to a particular hazard, or groups of similar cosmetics based on a common functional group or mechanistic pathway. Molecular simulation studies have also been able to predict the carcinogenicity of chemical compounds to avoid the usage of such chemicals in cosmetics. These studies also assess the risk of prolonged usage of a chemical component by a person and also help in determining the shelf-life of cosmetic products. Some models like ChemTunes and ToxGPS are used for the prediction of mutagenicity which could predict conformational changes in a chemical on entering the biosystem or after a certain time frame [70]. Thus, defining the usage of such compounds in cosmetics, accordingly.


      Thus, there is a wide range of computational tools that assist the safety assessment as well as hazard identification and exposure evaluation of cosmetic-related materials. With advancing technologies, these are growing and becoming better and better for the development of safer and more efficient cosmetic products.

    


    
      conclusion


      To conclude, computational toxicology studies have transformed the research world and industries. The time that was taken for a traditional drug synthesis earlier was 10-20 years, but now with the modern computational toxicology studies, it has been reduced to 2-3 years without the risk of drug failure or the risk of major side effects. Owing to the computational toxicology studies environment, safe alternate routes have been suggested and carried out for synthesis. These studies have helped the regulatory authorities or agencies to a great extent in placing a limit on our exposure to hazardous effluents or chemicals. These studies have paved the way for cost-effective routes for the synthesis of drugs, food products and cosmetics. This has helped in the reduction of time, labour, and cost in many industries. Owing to these computational techniques, a great deal of chemical wastage has been put to an end and a cleaner greener approach to synthesis has been adopted. Thus, all in all, the computational toxicology branch has proved to be a boon for the entire world and has revolutionized the entire research, synthesis, and manufacturing process in the world.

    

  


  
    ACKNOWLEDGEMENT


    The authors are thankful to Dr. Tahmeena Khan for her insightful reviews in preparation of this chapter.


    REFERENCES


    
      
        	

        	
      


      
        	
[1]

        	Kavlock, R.J.; Ankley, G.; Blancato, J.; Breen, M.; Conolly, R.; Dix, D.; Houck, K.; Hubal, E.; Judson, R.; Rabinowitz, J.; Richard, A.; Setzer, R.W.; Shah, I.; Villeneuve, D.; Weber, E. Computational toxicology : A state of the science mini review. Toxicol. Sci., 2008, 103(1), 14-27.[http://dx.doi.org/10.1093/toxsci/kfm297] [PMID: 18065772]
      


      
        	
[2]

        	Merlot, C. Computational toxicology : A tool for early safety evaluation. Drug Discov. Today, 2010, 15(1-2), 16-22.[http://dx.doi.org/10.1016/j.drudis.2009.09.010] [PMID: 19835978]
      


      
        	
[3]

        	Kleinstreuer, N.C.; Tetko, I.V.; Tong, W. Introduction to special issue: Computational toxicology. Chem. Res. Toxicol., 2021, 34(2), 171-175.[http://dx.doi.org/10.1021/acs.chemrestox.1c00032] [PMID: 33583184]
      


      
        	
[4]

        	Nigsch, F.; Macaluso, N.J.M.; Mitchell, J.B.O.; Zmuidinavicius, D. Computational toxicology: An overview of the sources of data and of modelling methods. Expert Opin. Drug Metab. Toxicol., 2009, 5(1), 1-14.[http://dx.doi.org/10.1517/17425250802660467] [PMID: 19236225]
      


      
        	
[5]

        	Reisfeld, B.; Mayeno, A.N. What is computational toxicology? Methods Mol Biol, 2012, 929, 3-7.[http://dx.doi.org/10.1007/978-1-62703-050-2_1]
      


      
        	
[6]

        	Baskin, I.I. Machine learning methods in computational toxicology. Methods Mol Biol, 2018, 1800, 119-139.[http://dx.doi.org/10.1007/978-1-4939-7899-1_5]
      


      
        	
[7]

        	Kleinstreuer, N.C.; Tong, W.; Tetko, I.V. Computational toxicology. Chem. Res. Toxicol., 2020, 33(3), 687-688.[http://dx.doi.org/10.1021/acs.chemrestox.0c00070] [PMID: 32172570]
      


      
        	
[8]

        	Mangiatordi, G.F.; Alberga, D.; Altomare, C.D.; Carotti, A.; Catto, M.; Cellamare, S.; Gadaleta, D.; Lattanzi, G.; Leonetti, F.; Pisani, L.; Stefanachi, A.; Trisciuzzi, D.; Nicolotti, O. Mind the gap! A journey towards computational toxicology. Mol. Inform., 2016, 35(8-9), 294-308.[http://dx.doi.org/10.1002/minf.201501017] [PMID: 27546034]
      


      
        	
[9]

        	Mostrag-Szlichtyng, A.; Zaldívar Comenges, J.M.; Worth, A.P. Computational toxicology at the European Commission’s Joint Research Centre. Expert Opin. Drug Metab. Toxicol., 2010, 6(7), 785-792.[http://dx.doi.org/10.1517/17425255.2010.489551] [PMID: 20443752]
      


      
        	
[10]

        	Wang, X.; Li, F.; Chen, J.; Ji, C.; Wu, H. Integration of computational toxicology, toxicogenomics data mining, and omics techniques to unveil toxicity pathways. ACS Sustain. Chem.& Eng., 2021, 9(11), 4130-4138.[http://dx.doi.org/10.1021/acssuschemeng.0c09196]
      


      
        	
[11]

        	Hevener, K.E. Computational toxicology methods in chemical library design and high-throughput screening hit validation. Methods Mol Biol, 2018, 1800, 275-285.[http://dx.doi.org/10.1007/978-1-4939-7899-1_13]
      


      
        	
[12]

        	Benfenati, E.; Lombardo, A.; Roncaglioni, A. Computational toxicology and reach. Computational Toxicology: Risk Assessment for Chemicals, 2018, [http://dx.doi.org/10.1002/9781119282594.ch9]
      


      
        	
[13]

        	Valerio, L.G., Jr; Dixit, R. Computational toxicology. Toxicol. Mech. Methods, 2008, 18(2-3), 97-99.[http://dx.doi.org/10.1080/15376510801888209] [PMID: 20020906]
      


      
        	
[14]

        	Silva, M.H. Use of computational toxicology (CompTox) tools to predict in vivo toxicity for risk assessment. Regul. Toxicol. Pharmacol., 2020, 116, 104724.[http://dx.doi.org/10.1016/j.yrtph.2020.104724] [PMID: 32640296]
      


      
        	
[15]

        	Cronin, M.T.D. Computational toxicology is now inseparable from experimental toxicology. Altern. Lab. Anim., 2013, 41(1), 1-4.[http://dx.doi.org/10.1177/026119291304100101] [PMID: 23614541]
      


      
        	
[16]

        	Tetko, I.V.; Klambauer, G.; Clevert, D.A.; Shah, I.; Benfenati, E. Artificial intelligence meets toxicology. Chem. Res. Toxicol., 2022, 35(8), 1289-1290.[http://dx.doi.org/10.1021/acs.chemrestox.2c00196] [PMID: 35965447]
      


      
        	
[17]

        	Selvaraj, C.; Sakkiah, S.; Tong, W.; Hong, H. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food Chem. Toxicol., 2018, 112, 495-506.[http://dx.doi.org/10.1016/j.fct.2017.08.028] [PMID: 28843597]
      


      
        	
[18]

        	Rusyn, I.; Daston, G.P. Computational toxicology: Realizing the promise of the toxicity testing in the 21st century. Environ. Health Perspect., 2010, 118(8), 1047-1050.[http://dx.doi.org/10.1289/ehp.1001925] [PMID: 20483702]
      


      
        	
[19]

        	Fowler, B.A. Computational Toxicology: Methods and Applications for Risk Assessment., 2013,
      


      
        	
[20]

        	Sakkiah, S.; Kusko, R.; Tong, W.; Hong, H. Applications of molecular dynamics simulations in computational toxicology. Hong, H. Advances in Computational Toxicology. Challenges and Advances in Computational Chemistry and Physics, 2019, 30, 181-212.[http://dx.doi.org/10.1007/978-3-030-16443-0_10]
      


      
        	
[21]

        	Watford, S.; Edwards, S.; Angrish, M.; Judson, R.S.; Paul Friedman, K. Progress in data interoperability to support computational toxicology and chemical safety evaluation. Toxicol. Appl. Pharmacol., 2019, 380, 114707.[http://dx.doi.org/10.1016/j.taap.2019.114707] [PMID: 31404555]
      


      
        	
[22]

        	Zgheib, E.; Gao, W.; Limonciel, A.; Aladjov, H.; Yang, H.; Tebby, C.; Gayraud, G.; Jennings, P.; Sachana, M.; Beltman, J.B.; Bois, F.Y. Application of three approaches for quantitative AOP development to renal toxicity. Comput. Toxicol., 2019, 11, 1-13.[http://dx.doi.org/10.1016/j.comtox.2019.02.001]
      


      
        	
[23]

        	Sturla, S.J.; Boobis, A.R.; FitzGerald, R.E.; Hoeng, J.; Kavlock, R.J.; Schirmer, K.; Whelan, M.; Wilks, M.F.; Peitsch, M.C. Systems toxicology: From basic research to risk assessment. Chem. Res. Toxicol., 2014, 27(3), 314-329.[http://dx.doi.org/10.1021/tx400410s] [PMID: 24446777]
      


      
        	
[24]

        	Raunio, H. In silico toxicology : Non-testing methods. Front. Pharmacol., 2011, 2, 33.[http://dx.doi.org/10.3389/fphar.2011.00033] [PMID: 21772821]
      


      
        	
[25]

        	Lushington, G. Computational toxicology: Screening, chemistry, or much more? Comb. Chem. High Throughput Screen., 2014, 17(9), 733-733.[http://dx.doi.org/10.2174/138620731709141107145323] [PMID: 25403346]
      


      
        	
[26]

        	Myatt, G.J.; Ahlberg, E.; Akahori, Y.; Allen, D.; Amberg, A.; Anger, L.T.; Aptula, A.; Auerbach, S.; Beilke, L.; Bellion, P.; Benigni, R.; Bercu, J.; Booth, E.D.; Bower, D.; Brigo, A.; Burden, N.; Cammerer, Z.; Cronin, M.T.D.; Cross, K.P.; Custer, L.; Dettwiler, M.; Dobo, K.; Ford, K.A.; Fortin, M.C.; Gad-McDonald, S.E.; Gellatly, N.; Gervais, V.; Glover, K.P.; Glowienke, S.; Van Gompel, J.; Gutsell, S.; Hardy, B.; Harvey, J.S.; Hillegass, J.; Honma, M.; Hsieh, J.H.; Hsu, C.W.; Hughes, K.; Johnson, C.; Jolly, R.; Jones, D.; Kemper, R.; Kenyon, M.O.; Kim, M.T.; Kruhlak, N.L.; Kulkarni, S.A.; Kümmerer, K.; Leavitt, P.; Majer, B.; Masten, S.; Miller, S.; Moser, J.; Mumtaz, M.; Muster, W.; Neilson, L.; Oprea, T.I.; Patlewicz, G.; Paulino, A.; Lo Piparo, E.; Powley, M.; Quigley, D.P.; Reddy, M.V.; Richarz, A.N.; Ruiz, P.; Schilter, B.; Serafimova, R.; Simpson, W.; Stavitskaya, L.; Stidl, R.; Suarez-Rodriguez, D.; Szabo, D.T.; Teasdale, A.; Trejo-Martin, A.; Valentin, J.P.; Vuorinen, A.; Wall, B.A.; Watts, P.; White, A.T.; Wichard, J.; Witt, K.L.; Woolley, A.; Woolley, D.; Zwickl, C.; Hasselgren, C. In silico toxicology protocols. Regul. Toxicol. Pharmacol., 2018, 96, 1-17.[http://dx.doi.org/10.1016/j.yrtph.2018.04.014] [PMID: 29678766]
      


      
        	
[27]

        	Muster, W.; Breidenbach, A.; Fischer, H.; Kirchner, S.; Müller, L.; Pähler, A. Computational toxicology in drug development. Drug Discov. Today, 2008, 13(7-8), 303-310.[http://dx.doi.org/10.1016/j.drudis.2007.12.007] [PMID: 18405842]
      


      
        	
[28]

        	Hasselgren, C.; Myatt, G.J. Computational toxicology and drug discovery. Methods Mol Biol, 2018, 1800, 3-53.[http://dx.doi.org/10.1007/978-1-4939-7899-1_11]
      


      
        	
[29]

        	Ekins, S. Computational Toxicology: Risk Assessment for Chemicals, (Second edition. ), Second edition. 2018,
      


      
        	
[30]

        	Naven, R.T.; Louise-May, S. Computational toxicology. Hum. Exp. Toxicol., 2015, 34(12), 1304-1309.[http://dx.doi.org/10.1177/0960327115605440] [PMID: 26614820]
      


      
        	
[31]

        	Valerio, L.G. Predictive computational toxicology to support drug safety assessment. Methods Mol Biol, 2013, 930, 341-354.[http://dx.doi.org/10.1007/978-1-62703-059-5_15]
      


      
        	
[32]

        	Zakharov, A.; Lagunin, A. Computational toxicology in drug discovery: Opportunities and limitations. Gorb, L.; Kuz'min, V.; Muratov, E. Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, 2014, 17, 325-367.[http://dx.doi.org/10.1007/978-94-017-9257-8_11]
      


      
        	
[33]

        	Hall, A.H. Computer modeling and computational toxicology in new chemical and pharmaceutical product development. Toxicol. Lett., 1998, 102-103, 623-626.[http://dx.doi.org/10.1016/S0378-4274(98)00268-9] [PMID: 10022324]
      


      
        	
[34]

        	Chen, X.; Li, H.; Tian, L.; Li, Q.; Luo, J.; Zhang, Y. Analysis of the physicochemical properties of acaricides based on lipinski’s rule of five. J. Comput. Biol., 2020, 27(9), 1397-1406.[http://dx.doi.org/10.1089/cmb.2019.0323] [PMID: 32031890]
      


      
        	
[35]

        	Yamagata, Y.; Yamada, H.; Horii, I. Current status and future perspective of computational toxicology in drug safety assessment under ontological intellection. J. Toxicol. Sci., 2019, 44(11), 721-735.[http://dx.doi.org/10.2131/jts.44.721] [PMID: 31708530]
      


      
        	
[36]

        	Valerio, L.G., Jr In silico toxicology for the pharmaceutical sciences. Toxicol. Appl. Pharmacol., 2009, 241(3), 356-370.[http://dx.doi.org/10.1016/j.taap.2009.08.022] [PMID: 19716836]
      


      
        	
[37]

        	Varsou, D-D.; Nikolakopoulos, S.; Tsoumanis, A.; Melagraki, G.; Afantitis, A. Enalos suite: New cheminformatics platform for drug discovery and computational toxicology. Methods Mol Biol., 2018, 1800, 287-311.[http://dx.doi.org/10.1007/978-1-4939-7899-1_14]
      


      
        	
[38]

        	Valerio, L.G., Jr Computational science in drug metabolism and toxicology. Expert Opin. Drug Metab. Toxicol., 2010, 6(7), 781-784.[http://dx.doi.org/10.1517/17425255.2010.486789] [PMID: 20465524]
      


      
        	
[39]

        	Custer, L.; Sweder, K. The role of genetic toxicology in drug discovery and optimization. Curr. Drug Metab., 2008, 9(9), 978-985.[http://dx.doi.org/10.2174/138920008786485191] [PMID: 18991595]
      


      
        	
[40]

        	Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
      


      
        	
[41]

        	Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
      


      
        	
[42]

        	Chen, G.; Seukep, A.J.; Guo, M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs, 2020, 18(11), 545.[http://dx.doi.org/10.3390/md18110545] [PMID: 33143025]
      


      
        	
[43]

        	Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
      


      
        	
[44]

        	Gschwend, D.A.; Good, A.C.; Kuntz, I.D. Molecular docking towards drug discovery. J. Mol. Recognit., 1996, 9(2), 175-186.[http://dx.doi.org/10.1002/(SICI)1099-1352(199603)9:2<175::AID-JMR260>3.0.CO;2-D] [PMID: 8877811]
      


      
        	
[45]

        	Zhuang, X.; Lu, C. PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B, 2016, 6(5), 430-440.[http://dx.doi.org/10.1016/j.apsb.2016.04.004] [PMID: 27909650]
      


      
        	
[46]

        	Peters, S.A. Physiologically based pharmacokinetic (PBPK) modeling and simulations: Principles, methods, and applications in the pharmaceutical industry., (2nd. ), 2nd. 2021, [http://dx.doi.org/10.1002/9781119497813]
      


      
        	
[47]

        	Wagner, C.; Zhao, P.; Pan, Y.; Hsu, V.; Grillo, J.; Huang, S.M.; Sinha, V. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: Report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst. Pharmacol., 2015, 4(4), 226-230.[http://dx.doi.org/10.1002/psp4.33] [PMID: 26225246]
      


      
        	
[48]

        	Peyret, T.; Krishnan, K. QSARs for PBPK modelling of environmental contaminants. SAR QSAR Environ. Res., 2011, 22(1-2), 129-169.[http://dx.doi.org/10.1080/1062936X.2010.548351] [PMID: 21391145]
      


      
        	
[49]

        	Bois, F.Y.; Jamei, M.; Clewell, H.J. PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology, 2010, 278(3), 256-267.[http://dx.doi.org/10.1016/j.tox.2010.06.007] [PMID: 20600548]
      


      
        	
[50]

        	Peyret, T.; Poulin, P.; Krishnan, K. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals. Toxicol. Appl. Pharmacol., 2010, 249(3), 197-207.[http://dx.doi.org/10.1016/j.taap.2010.09.010] [PMID: 20869379]
      


      
        	
[51]

        	Munro, I.C.; Renwick, A.G.; Danielewska-Nikiel, B. The Threshold of Toxicological Concern (TTC) in risk assessment. Toxicol. Lett., 2008, 180(2), 151-156.[http://dx.doi.org/10.1016/j.toxlet.2008.05.006] [PMID: 18573621]
      


      
        	
[52]

        	Mons, M.N.; Heringa, M.B.; van Genderen, J.; Puijker, L.M.; Brand, W.; van Leeuwen, C.J.; Stoks, P.; van der Hoek, J.P.; van der Kooij, D. Use of the threshold of toxicological concern (TTC) approach for deriving target values for drinking water contaminants. Water Res., 2013, 47(4), 1666-1678.[http://dx.doi.org/10.1016/j.watres.2012.12.025] [PMID: 23312671]
      


      
        	
[53]

        	Cahill, T.M.; Cousins, I.; Mackay, D. Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ. Toxicol. Chem., 2003, 22(1), 26-34.[http://dx.doi.org/10.1002/etc.5620220104] [PMID: 12503743]
      


      
        	
[54]

        	Thomas, R.S.; Bahadori, T.; Buckley, T.J.; Cowden, J.; Deisenroth, C.; Dionisio, K.L.; Frithsen, J.B.; Grulke, C.M.; Gwinn, M.R.; Harrill, J.A.; Higuchi, M.; Houck, K.A.; Hughes, M.F.; Hunter, E.S., III; Isaacs, K.K.; Judson, R.S.; Knudsen, T.B.; Lambert, J.C.; Linnenbrink, M.; Martin, T.M.; Newton, S.R.; Padilla, S.; Patlewicz, G.; Paul-Friedman, K.; Phillips, K.A.; Richard, A.M.; Sams, R.; Shafer, T.J.; Setzer, R.W.; Shah, I.; Simmons, J.E.; Simmons, S.O.; Singh, A.; Sobus, J.R.; Strynar, M.; Swank, A.; Tornero-Valez, R.; Ulrich, E.M.; Villeneuve, D.L.; Wambaugh, J.F.; Wetmore, B.A.; Williams, A.J. The next generation blueprint of computational toxicology at the U.S. environmental protection agency. Toxicol. Sci., 2019, 169(2), 317-332.[http://dx.doi.org/10.1093/toxsci/kfz058] [PMID: 30835285]
      


      
        	
[55]

        	Judson, R.S.; Martin, M.T.; Egeghy, P.; Gangwal, S.; Reif, D.M.; Kothiya, P.; Wolf, M.; Cathey, T.; Transue, T.; Smith, D.; Vail, J.; Frame, A.; Mosher, S.; Hubal, E.A.C.; Richard, A.M. Aggregating data for computational toxicology applications: The U.S. Environmental Protection Agency (EPA) aggregated computational toxicology resource (ACToR) system. Int J Mol Sci, 2012, 13(2), 1805-1831.[http://dx.doi.org/10.3390/ijms13021805]
      


      
        	
[56]

        	Rim, K.T. In silico prediction of toxicity and its applications for chemicals at work. Toxicol. Environ. Health Sci., 2020, 12(3), 191-202.[http://dx.doi.org/10.1007/s13530-020-00056-4] [PMID: 32421081]
      


      
        	
[57]

        	Stevens, J. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry. Physical Sciences Reviews, 2017, 2(7). [http://dx.doi.org/10.1515/psr-2017-0005]
      


      
        	
[58]

        	Dell’Angelo, D. Computational chemistry and the study and design of catalysts. Green Chemistry and Computational Chemistry., 2022, , 299-332.[http://dx.doi.org/10.1016/B978-0-12-819879-7.00010-6]
      


      
        	
[59]

        	Marchant, C.A. Computational toxicology: A tool for all industries. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(3), 424-434.[http://dx.doi.org/10.1002/wcms.100]
      


      
        	
[60]

        	Piparo, E.L.; Worth, A.; Manibusan, M.; Yang, C.; Schilter, B.; Mazzatorta, P.; Jacobs, M.N.; Steinkellner, H.; Mohimont, L. Use of computational tools in the field of food safety. Regul. Toxicol. Pharmacol., 2011, 60(3), 354-362.[http://dx.doi.org/10.1016/j.yrtph.2011.05.003] [PMID: 21600952]
      


      
        	
[61]

        	Allen, T.E.H.; Gutsell, S.; Punt, A. The role of computational toxicology in the risk assessment of food products. Present Knowledge in Food Safety., 2023, , 643-659.[http://dx.doi.org/10.1016/B978-0-12-819470-6.00007-X]
      


      
        	
[62]

        	Demchuk, E.; Ruiz, P.; Wilson, J.D.; Scinicariello, F.; Pohl, H.R.; Fay, M.; Mumtaz, M.M.; Hansen, H.; De Rosa, C.T. Computational toxicology methods in public health practice. Toxicol. Mech. Methods, 2008, 18(2-3), 119-135.[http://dx.doi.org/10.1080/15376510701857148] [PMID: 20020909]
      


      
        	
[63]

        	Grigorov, M.G. Computational molecular science for the nutritional industry. Chimia, 2005, 59(7-8), 550.[http://dx.doi.org/10.2533/000942905777676100]
      


      
        	
[64]

        	Norton, T. CFD in the Agri-Food Industry: A maturing engineering design tool. Comput. Electron. Agric., 2013, 93, 149-150.[http://dx.doi.org/10.1016/j.compag.2013.03.007]
      


      
        	
[65]

        	Benz, R.D. Toxicological and clinical computational analysis and the US FDA/CDER. Expert Opin. Drug Metab. Toxicol., 2007, 3(1), 109-124.[http://dx.doi.org/10.1517/17425255.3.1.109] [PMID: 17269898]
      


      
        	
[66]

        	Yang, C.; Valerio, L.G., Jr; Arvidson, K.B. Computational toxicology approaches at the US food and drug administration. Altern. Lab. Anim., 2009, 37(5), 523-531.[http://dx.doi.org/10.1177/026119290903700509] [PMID: 20017581]
      


      
        	
[67]

        	Cronin, M.T.D.; Enoch, S.J.; Madden, J.C.; Rathman, J.F.; Richarz, A.N.; Yang, C. A review of in silico toxicology approaches to support the safety assessment of cosmetics-related materials. Comput. Toxicol., 2022, 21, 100213.[http://dx.doi.org/10.1016/j.comtox.2022.100213]
      


      
        	
[68]

        	Tcheremenskaia, O.; Battistelli, C.L.; Giuliani, A.; Benigni, R.; Bossa, C. In silico approaches for prediction of genotoxic and carcinogenic potential of cosmetic ingredients. Comput. Toxicol., 2019, 11, 91-100.[http://dx.doi.org/10.1016/j.comtox.2019.03.005]
      


      
        	
[69]

        	Grégoire, S.; Sorrell, I.; Lange, D.; Najjar, A.; Schepky, A.; Ellison, C.; Troutman, J.; Fabian, E.; Duplan, H.; Genies, C.; Jacques-Jamin, C.; Klaric, M.; Hewitt, N.J. Cosmetics Europe evaluation of 6 in silico skin penetration models. Comput. Toxicol., 2021, 19, 100177.[http://dx.doi.org/10.1016/j.comtox.2021.100177]
      


      
        	
[70]

        	Oztan Akturk, S.; Tugcu, G.; Sipahi, H. Development of a QSAR model to predict comedogenic potential of some cosmetic ingredients. Comput. Toxicol., 2022, 21, 100207.[http://dx.doi.org/10.1016/j.comtox.2021.100207]
      

    

  



















