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    Supercapacitors are a new class of superior energy storage devices that provide both high energy and power densities, bridging the gap between batteries and regular capacitors. The two primary charge storage processes of supercapacitors are the redox process and the electrochemical double layer. Considerable interest is being paid to strategies that would combine both mechanisms in a supercapacitor to improve its electrochemical characteristics. The energy storage capacity of supercapacitors can be greatly impacted by the electrode materials utilized to make these devices. For supercapacitors, a variety of materials are being used, including conducting polymers, carbon-based materials, layered structured materials, metal oxides, and sulfides. The energy and power density of supercapacitors might vary depending on the materials' shape and kind. This book discusses developments in next-generation supercapacitor materials such as Mxene, MOFs, Quantum dots, and graphene-based nanostructures. A brief history of nanostructural materials, chemistry and supercapacitors as energy storage devices is also provided. This technical book can be a very helpful reference for scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the scientific and education domains.




    This book attempts to present the most recent as well as future forming materials, and ground-breaking developments in nanostructured materials for supercapacitor applications. The numerous intriguing characteristics of nanoscale materials make them perfect for energy storage applications. Additionally, methods are used to improve their morphological, electronic, and electrical characteristics in order to improve their electrochemical performances. Numerous new nanocomposites based on Mxenes, MOFs, Quantum dots, and variants of graphene are discussed. In-depth descriptions of novel methods for synthesizing and customizing their electrochemical characteristics are provided. With thorough characterization, mechanistic techniques, and theoretical analysis, this book compiles information on the production and applications of nanomaterials for supercapacitors. Recent advances in cutting-edge technology, including flexible and wearable supercapacitors made of nanostructured materials, are discussed. The readers of this book are given both basic and specialized techniques for creating nanostructured materials for supercapacitors.
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      Abstract




      The “next-generation materials” are those materials that have high efficiency, high-performance structural stability, easy manufacturability, and multifunctional capabilities. These new materials can be classified based on dimension, shape, composition, and nanostructure like 0D, 1D, 2D, and 3D. These materials have unique enhanced properties viz. electronic, optical, mechanical, magnetic, optoelectronics, vitrification, thermal properties, etc. Due to these outstanding features, these smart materials could be a game changer for prospects. Tuning the properties of such advanced materials provides a wide variety of fascinating opportunities. This chapter aims to provide a comprehensive overview of materials used to fabricate supercapacitor point of view and several other latest applications. The nanomaterials, discussed in this chapter along with their properties are Graphene, nanotubes, nanocomposites, microwave-absorbing materials, nanoparticles, biomaterials, and self-healing polymers. It also discusses future directions for the development of advanced materials that perform well to anticipate future trends and highlight their relevance in real-world contexts. This chapter could become the torchbearer for new researchers working in the field of multifunctional advanced materials.
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      INTRODUCTION




      The “Next-generation materials” or advanced materials are those materials that have the properties of high efficiency, high-performance structural stability, easy manufacturability, and multifunctional capabilities. The basic characteristics of these materials include being very light, intelligent, more durable, and active materials that can adjust appropriately to their surroundings. In recent years, the development of new materials and technologies has been associated with innovation, creativity, originality, and forward thinking. A self-assembly process is specifically designed to produce advanced materials comprising nanoscale structures [1, 2]. These materials are of great interest in scientific research efforts and industrial development because of their innovative potential applications in various fields. Advanced materials are future materials with improved properties that are consciously designed for superior performance. The major scientific contributions of the 21st century, and a new understanding of atomic and subatomic levels, laid the foundation for the creation of advanced materials. The development of such advanced future materials can even lead to the design of completely advanced products, such as portable supercomputers, mini electronic gazettes, flexible electronics and optoelectronic devices, automatic lightweight weapons, fire registrant materials, medical implantable devices, gas sensors, lightweight industrial equipment, intelligent robotics, etc.




      Nowadays, the materials such as graphene, carbon nanotube, men, nanofluids, quantum dots, nanoparticles, metal-organic frameworks (MOFs), aerogel, nanocomposites, microwave absorbing materials, self-healing polymers, artificial spider silk, metal foam, synthetic fuel and lubricants, shrilk and many more have emerged as advanced materials for human beings. These materials have the potential to sort out human futuristic problems and are useful for the better advancement of human civilization. Advanced nanomaterials are very desirable in these domains because of their controllable production and beautiful design. Due to its vast applicability in a range of sectors, such as energy storage, electronics, optics, optoelectronics catalytic, absorption and separation, biomedical, luminescence, sensing, and environment, nanotechnology has gained a lot of attention in recent decades. The key features of advanced nanomaterials are their active surfaces, dimensions, and reaction conditions [3, 4].




      The physical and chemical properties of advanced nanomaterials are greatly influenced by their dimensions and reaction conditions [3]. Thus, it is the right time to think about not only synthesizing materials but also tuning their physicochemical properties (Fig. 1a) to develop next-generation materials. The beauty of advanced nanomaterials is their tunable properties; therefore, by changing the shape, size, and reaction conditions of the nanomaterials, one can change their functionality accordingly. So, to utilize these nanomaterials for the development of a new world, we need to develop advanced synthetic techniques so that more features of those materials can be explored in various fields for human beings.
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Fig. (1a))


      Physicochemical properties of nanomaterials.



      Scientific legend; Andre Geim and Konstantin Novoselov in 2004 at Manchester University discovered a wonder material called “Graphene” by playing with a lump of graphite and Scotch tape. At that time, both did not know how to deal with and what to do. But nowadays, Graphene has become one of the extraordinary materials for the future world because of its properties like immensely strong, flexible, transparent, and conductivity. Shrilk could be another wonder material for the future world [4]. Shrilk is a biodegradable solution to plastic and is mainly made up of silk proteins and chitin developed by Javier Fernandez and Donald Ingber at the Wyss Institute of Biologically Inspired Engineering, Harvard University [5]. A material with huge absorption capability of electromagnetic radiations (microwave) was discovered named metamaterials. It is an advanced or a new class of materials that can have electromagnetic features including the negative value of permittivity, permeability, and refractive index that do not occur naturally. In 2011, another wonder material called Mxenes was discovered by two research groups led by Y.Gogotsi and M.Barsoum at Drexel University. Generally, Mxene is a 2D transition metal-based compound of carbides, carbonitrides, and nitrides used for wastewater treatment, energy storage, detection of various gases (gas sensors), and electronic applications [6, 7].




      Nowadays, the continuous developments in high-performance energy storage devices have gained much attention from the scientific world and environmental security agencies of different countries. To fulfill the energy demand, various alternatives have come into existence but supercapacitor technologies could be the best alternative among all which can offer high power densities, large life cycles, quick charge and discharge response time as well as a clean and safe electrochemical energy storage [8-10]. This chapter aims to provide a comprehensive overview of several latest functional materials used for supercapacitors, storage mechanisms, criteria of formation and design fabrication, different electrodes and electrolyte materials, along with their properties, synthesis, applications, and future scopes.




      

        Fundamental Theory of Supercapacitor




        A supercapacitor (Fig. 1b) is a device having a higher capacitance value than conventional capacitors at lower voltage limits. It fulfils the gap between rechargeable batteries and electrolytic capacitors and has 10-100 times more energy storage capacity per unit volume or mass than electrolytic capacitors [11]. A supercapacitor consists of a bi-electrode system that is separated from each other by an electrolyte separator. The supercapacitor device is composed of many parts like a current collector, two electrodes, a separator, and an electrolyte solution. Its characteristics are based on these constituents.
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Fig. (1b))


        Basic device structure of supercapacitor.



        The basic function of the separator is similar to that of the battery. It keeps apart the two electrodes to avoid a short circuit between the electrodes and allows ions to pass through. The basic principle of energy storage in supercapacitors is based on the charging-discharging cyclic process which happens at the electrode-electrolyte interface. In comparison with conventional capacitors, supercapacitor electrodes possess a highly effective surface area which leads to enhancement in capacitance value by a huge factor of 10000 than conventional capacitors [12, 13].


      




      

        



        Classifications of Supercapacitor




        There are two major classification standards for the supercapacitors. The first classification is based on the energy storage mechanisms of the different electrode materials, and the second classification is based on the different electrolytes. A supercapacitor based on different electrode materials can have different possible designs and leads to the production of symmetric supercapacitors, asymmetric supercapacitors, and hybrid supercapacitors. In case of a symmetric supercapacitor, the anode and cathodes are made of the same material (basically carbon materials) whereas, an asymmetric supercapacitor can have various possible combinations of electrode materials. If the combination of these two electrodes is in such a way that one is the capacitive type and the other is a capacitive Faradic (pseudocapacitive) or non-capacitive Faradic type, then that combination leads to the formation of hybrid capacitors [14]. Furthermore, the electrolyte-type supercapacitors are divided based on aqueous and organic electrolyte media. The aqueous electrolytes include acidic electrolytes (H2SO4 aqueous solution, 36%), basic electrolytes (strong bases KOH and NaOH), and the neutral electrolytes (KCl, NaCl, and other salts) which are mostly used in case of manganese oxide electrode material along with water as a solvent. The organic electrolyte commonly uses lithium salts, and quaternary amine salts along with solvents such as ACN, PC, GBL, THL, etc [15]. Based on the above discussion, supercapacitors can be classified based on charge-storage mechanism into three basic types as follows: (i) Pseudocapacitors (PCs), (ii) Hybrid capacitors (HCs), and (iii) Electric double-layer capacitors (EDLCs) [16-18] as shown in Fig. (1c).




        H. Becker developed a “Low-voltage electrolytic capacitor in 1957 by using a porous carbon electrode system. At that time, he did not know the energy storage process and believed that a charge was stored in the carbon pores which provide energy. Later on, numerous scientists worked on this and finally electric-double layer mechanism came into existence. The first supercapacitor having low internal resistance was designed for military applications in 1982 by the Pinnacle Research Institute (PRI) and was commercialized under the brand name “Ultracapacitor- PRI” [19]. Supercapacitors have promising potential because of their excellent charge storage properties and high-power density for various energy storage applications. Supercapacitor devices can be widely used in photovoltaic, electric hybrid, wind power generation, etc. These are also used as power supplies in portable devices such as computers, digital cameras, mobile phones, and notebooks because of their lightweight and small size [20]. In addition, supercapacitors have many advantages compared to electrochemical batteries and fuel cells, such as short charging times, long cycle stability, and high-power density. Therefore, it is necessary to understand their energy storage mechanism.
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Fig. (1c))


        Types of supercapacitors.



        

          Charge Storage Mechanism on Supercapacitors




          

            



            Electrochemical Double-layer Capacitors




            Electrostatic ion adsorption/desorption at the interface of electrode and electrolyte is the concept of energy storage used in EDLCs. When voltage is applied, there was no charge accumulation on the surface of the electrode, hence, opposite charges attract each other due to potential difference as a result of this the diffuse of electrolyte ions takes place over the separator as well as on the opposite charged electrode. A charge’s double layer was formed to prevent ion recombination in electrodes. Thus, the charge storage takes place directly across the double layer of the electrode material without any charge transfer across the interface, and hence the capacitance value increases due to the capacitance effect [21].


          




          

            



            Pseudocapacitors




            Pseudocapacitors are completely non-electrostatic and obey the Faradaic redox mechanism for charge transfer between the electrode and the electrolyte. Commonly, transition metal oxide (MnO2, RuO2, Fe3O4, MnFeO2, etc.) and conducting polymer (PANI–PANI, PPY/MWCNT, PANI/MWCNT, etc.) electrodes show high electrochemical pseudocapacitance behavior. When a potential is applied to the pseudocapacitor, redox reaction takes place on the electrode material interface and hence charge’s passage across a double layer. In addition, due to this redox Faradic mechanism, pseudocapacitors possess high specific capacitance as well as energy densities in comparison to EDLCs [22].


          




          

            



            Hybrid Supercapacitors




            This type of supercapacitors was designed to achieve enhancement in energy density as compared to EDLC. HCs supercapacitors are based on the mechanism of double-layer ion adsorption/desorption and reversible Faradic reaction. The hybrid supercapacitor formation results from the coupling of different redox and EDLC materials like graphene or graphite, magnetic metal oxides, conducting polymers, and activated carbon [23]. Graphene and carbon nanotubes are very popular carbon-derived nanomaterials that are being used as efficient electrode materials in the design of supercapacitors. These materials have many outstanding features like high mechanical properties with great specific surface area and most importantly competent electrical properties [24]. Furthermore, carbon fiber, carbon derivatives, xerogel, activated carbon, and template carbon have been applied as efficient electrode materials in the design of supercapacitors. These materials possess durable power density, powerful lifecycles, lasting cycle durability, and desirable coulumbic reliability [25]. Nowadays, magnetic metal oxide nanoparticles have received great attention from energy storage devices like supercapacitors with high specific capacitance. Magnetic metal oxide nanoparticles are class of an attractive type of material because they are cheap and easy to prepare in large quantities [26].




            Recently, the spinel ferrite which has nominal composition MFe2O4, where M is magnesium, copper, manganese, nickel, zinc, and cobalt. This has been successfully synthesized and exhibited a notable discharge of capacitance up to 1000 mA hg−1, which is about three times higher than commercial anodes made from graphite [27]. Yao et al. [28] have successfully developed a carbon-coated Zn ferrite/graphene composite by a general multistep strategy. During the anodic process, one broad peak rises at ~ 1.50-2.10 V, exhibiting the oxidation of the base zinc ions (Zn0 to Zn2+) and iron ions (Fe0 to Fe3+). The electrochemical studies have revealed that the electrode offers a discharge capacity with a value of 1235 mA h g−1 and a loss of about 465 mA h g−1 over 150 cycles with good cycling performance. The nickel molybdate NiMoO4 has been studied as one of the most popular candidates for supercapacitor electrodes. 2D nickel molybdate like-nanoflakes synthesized via rapid microwave-assisted, have achieved 1739 F g−1 of specific capacitance at 1 mV s−1 of scan rates. Huang et al. [29] have demonstrated that the three-dimensional interconnected nickel molybdate-like-nanoplate arrays revealed a specific capacitance as high as 2138 F g−1 at a current density of 2 mA cm−2.


          


        


      




      

        Classifications and Types of Nanomaterials




        Nature is a wonderful gift from God to human beings. The observation and examination of nature, natural processes, and evaluation of verities of elemental structures inspired us to solve human futuristic problems. Researchers aim to replicate something in nature that they find to be incredibly amazing (Biomimicry). Human inventions have been influenced and created by natural structures [8]. Controlled organization and properties with nano-scale precision have led to the creation of multi-functional advanced nanomaterials with miniaturization. Thus, nanomaterials are broadly classified based on three basic criteria; (1) Classification of nanomaterials based on origin [9]; (2) dimensionality, and (3) on the material used in the synthesis process. The existing classifications are based on research articles, textbooks, internet sources, and expert’s knowledge of the various disciplines. According to the first approach called dominant bond type (in technical disciplines), the materials are divided into four categories Ceramics, Metals, Polymers, and Composites. According to the International Organization of Standardization ISO norms and the German Institute for Standardization (GIS) norms materials are classified as Materials of Glass (Ceramic, Metal, Stone, Paint and Color, Paper, Leather, Plastic, Textile, and Wood), Composite Materials and Raw Materials [30-33].




        

          Classification of Nanomaterials Based on Origin




          In everyday life, materials are important. Most of the time, people interface with these materials through products knowingly or unconsciously, voluntarily or involuntarily. Based on the origin of the materials, they are broadly classified into types; natural and synthetic. Natural materials (biotic) exist in nature and are produced by bio-geochemical or mechanical processes. They are not chemically changed as much. For example, a wooden table, its shape might be changed, but the material is still wood. Similarly, glass might be considered as a natural substance due to its origin from sand, which has been melted and then cooled. Synthetic materials are also made from natural resources and may or may not be chemically identical to a naturally occurring substance. These materials are produced by anthropogenic processes. The succession of chemical processes used to transform natural resources into synthetic goods is termed chemical synthesis. Fig. (2a) gives an idea of the classification of materials along with some examples.
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Fig. (2a))


          Classification of nanomaterial materials based on Origin.

        




        

          Classification Based on Dimensionality




          Dimensionality is another criterion for the classification of nanomaterials. The shape and size of nanomaterials, ranging from 1-100 nm, are the basis of their classification. Further, they can be divided into four classes, based on their dimensionality and shape, i.e.; 0D, 1D, 2D, and 3D (Fig. 2b).
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Fig. (2b))


          Schematic representation of the classification of nanomaterials based on dimensionality (adopted from refs. [34-37]).



          Zero-dimensional (0D) nanomaterials are materials with all of their dimensions at nanoscale, or below 100 nm in size. Spherical NMs, nanorods, Cubes and polygons, hollow spheres, metal nanoparticles, fullerenes, and quantum dots are all included in 0D. Materials having only two dimensions in the nanoscale range are included in one-dimensional (1D) nanomaterials. The common examples are carbon nanotubes, ceramic, metallic nanodiscs, nanorods, nanofibers, and nanowires. Two-dimensional (2D) nanomaterials are those which have only one dimension in nanoscale while the other two are not. Some common examples of 2D materials are single and multi-layered structures, thin films, nanoplates, MOFs, etc [38]. Further, three-dimensional (3D) nanomaterials are those having dimensions in different directions with all of their dimensions beyond 100 nm.


        




        

          Classification Based on Material Used




          Intentionally created functional nanomaterials come in a wide range of varieties, and more are predicted to be developed in the future. Fig. (2c) displays some frequently used materials and it is expected that by tuning their basic properties, these materials have the potential to generate revolutionary advanced material for future generation.




          
[image: ]


Fig. (2c))


          Classification of materials based on the route of synthesis (adapted from refs. [41-45, 63, 71, 77, 81-82, 91-93]).

        


      




      

        Multifunctional Future Materials, Their Properties, and Applications




        Various above-mentioned functional materials such as Graphene, Mxene, MOFs, perovskites, self-healing polymers, Shrilk, Metameterias, quantum dots, and advanced nanomaterials, have been developed for future generation. However, many properties of these materials still need to be explored for the development of a new world with new technologies. Here, various properties and applications (Fig. 3a) of highly demanded materials with their functionality are discussed.
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Fig. (3a))


        Application areas of multifunctional materials.



        

          Carbon Based Materials




          Carbon-based nanomaterials have outstanding properties such as high surface area, lightweight, high electrical conductivity, high thermal and chemical stability, corrosion resistive and non-oxidizing nature. Carbon materials provide a vast range of forms and textures, and they are simple to produce. Carbon is a solid-state allotrope that provides a wide variety of structures and is easy to process. The carbon material is an ancient but a new substance with ongoing and continuous discoveries. Carbon materials include activated carbons, carbon black, graphite, carbon nanofibers, glassy carbons, fullerenes, carbon nanotubes, and wonder material graphene [39, 40]. Graphene, a monolayer of sp2-bonded carbon atoms has attracted significant scientific interest due to its outstanding properties such as excellent enormous specific surface area (2620 m2 g−1), mechanical properties (Young’s modulus of 1TPa and intrinsic strength of 130GPa), high electronic conductivity (electron mobility of 2.5x105 cm2 V−1s−1at room temperature), high thermal conductivity (above 3000 WmK−1), along with many other properties [41-44]. It is easily prepared from graphite flakes. Many researchers investigate the dispersion behavior of graphene and its oxide in organic solvents such as NMP (N-methyl-2- pyrrolidone), THF (tetra hydro furan), Acetone, N-N-dimethylformamide, ethylene glycol, and many others to expand its processability. However, there is still a challenge to understand how graphene disperses in these liquids [45].




          Graphene quantum dots (GQDs) are a very smart and latest zero-dimensional (0D) member of the carbon family consisting of single to few layers of graphene sheets with lateral dimensions of 10 nm [46]. GQDs have demonstrated extraordinary physiochemical properties including non-zero band gap, edge effect, and quantum confinement effect. GQDs have a lot of potential in the electronic and optical industries due to their exceptional characteristics. Pan et al. [47] have demonstrated a facile hydrothermal route for the synthesis of GQDs having blue luminescent features and analyzed their fluorescent properties for the first time. The applicability of GQDs in fluorescence imaging, magnetic resonance imaging, bioimaging, dual-modal imaging, and two-photon imaging can be explored using this research work. Recently, scientists from the University of Manchester have fabricated a novel nano-Petri dish by adopting graphene-decorated 2D MoS2 materials to develop a new technique for observing how atoms swim in liquids [48]. Moreover, the team at the National Graphene Institute successfully captured the images of a single atom swimming in liquid for the first time. This finding could have a great impact on the future development of green technology such as hydrogen technology. Moreover, to translate the underlying information into practical applications, it is essential to integrate carbon elements, especially nanocarbons, with other components to build functional or structural materials. Carbon composites, for instance, are used in cylinders for high-pressure hydrogen storage that can operate at 50 MPa due to their high specific mechanical characteristics. Functional materials for energy storage that combine a carbon substance with a different element, such as a metal oxide or conductive polymer, are a hot topic of research. Future research in carbon-based materials will undoubtedly be vigorous due to the numerous challenging topics that exist today. The creation of novel carbons with various structures and textures, as well as the comprehension and customization of surface chemistry, are all incredibly significant and closely related to the creation of new applications.


        




        

          Self-healing Polymers




          The ability of a substance to repair physical loss is known as self-healing. To produce self-healing polymers, both physical and chemical methods have been chosen. These include covalent-bond reformation and rearranging heterogeneous self-healing systems, shape-memory effects, diffusion and flow, and supra-molecular chemistry dynamics [49]. Due to their tendency to repair scratch-damaged or maintain their original physico-chemical and mechanical characteristics, smart self-healing polymers have gained a lot of research interest in recent years [50, 51]. Self-healing polymers became a hot topic of the current scenario after the first international conference on “self-healing materials” held at Delft University of Technology, Netherland, in 2007 [52]. These self-healing polymers are a unique class of intelligent materials having automatic healing properties much similar to human skin, as these materials can repair internal flaws, cracks, or damage caused by any matrix and can rebuild the mechanical properties (such as tensile strength) of the damaged area. Carolyn Dryin 1996 reported the first autonomic healing polymer. Recently (in 2015), a group of NASA scientists named Scott R. Zavada and his co-workers developed a polymer that has bulletproof properties. Moreover, a bullet will rupture the polymer, but at the same time, the temperature impact causes the polymer to flow and rejoin, closing the gap once the bullet has passed through [53]. Such kind of polymers could be helpful for healing damage in satellites and spacecraft caused by high-speed debris. The self-healing properties of polymers allow them to repair cracked or damaged material parts, extending the durability and life of many materials, decreasing waste, and improving performance while using them in real-world applications like construction, automotive, aerospace, biomedical engineering, and defense. Recently, significant progress has been made in the design and development of new self-healing polymers using a variety of chemical techniques. These polymers can spontaneously mend cracks and damage in moderate circumstances, which is desirable in many applications [54-56]. Ginting M. et al. reported a self-healable polyacrylic acid/polypyrrole-Fe (PAA/PPy-Fe) composite utilized for antibacterial and electrical conductivity properties. The antibacterial activity was studied against E. coli. revealing a 1.26-1.56 cm zone of inhibition after 12 hours of incubation. The composite exhibited reversible restorability when applied in an electrical circuit powered by 3V batteries, consisting of an LED [57]. Self-healing polymers have excellent potential for applications to space suits. Habitats and inflatable structures as reported by Pernigoniet al. The data for hyperelastic and viscoelastic response and damage and healing time was recorded. An effective self-healing ability was shown by the polymer (ASTM 1708) with polyamide under pressurized conditions [58]. Recently, Gao H. et al. explored the mechanical and conductive properties of solid, stretchable, and self-healable poly (oxime-urethane) and graphene composite. The self-healing composite showed a tensile strength of 6 MPa, 1000% elongation, and 48 MJ m-3 toughness [59]. The self-healing polymers also demonstrate protective properties. Owing to these properties, a composite based on PDO-2,5 polymer and oxime-urethane, as a protective film on the inner wall of the tire was utilized by Liu X. et al. [60] The composite was found to be self-healing and puncture-resistant. Hence, these materials can be successfully used as protective coatings for automobiles, electronics, and diplomas. Wang S. et al. developed a dynamically cross-linked polyurethane hot melt adhesive (DPU-HMA) possessing superior solvent resistance, high bonding strength, fast curing speed, and excellent bonding effects on wood, plastic, metal, and composite substrates [61]. These polymers are of great interest in biomedicine due to their self-healing properties. Jiang C et al. designed a self-healing poly(oximeurethane) elastomer having biocompatible, biodegradable, and mechanically adjustable properties. It was used for in vivo repair of the tissues. The results were validated in three animal models for nerve coaptation, bone immobilization, and aortic aneurysm, providing a new perspective to biomedical engineering [62].


        




        

          Metal-organic Frameworks (MOFs)




          A class of porous materials with exceptional chemical and structural tunability composed of metal anodes and organic linkers belonging to metal-organic frameworks (MOFs). Because of their porosity, stability, long-range order, conductivity, particle morphology, and synthetic adaptability, MOFs could be excellent platforms for identifying design features for advanced functional materials for specific applications. For cost-effective technologies, MOFs are the worthiest candidates to replace materials such as ordered silica, zeolites, and highly porous materials in various fields like fuel cells, sensors, gas storage, catalysis, and purification [63]. Radhakrishnan S. et al studied the electrochemical applications of Cobalt phenylphosphonate (CP) - MOF, such as energy storage and electrocatalysis. The CP-MOF exhibited excellent catalytic performance toward the electro-oxidation of methanol with a good catalytic constant (7.79 x 105cm3mol−1s−1) and higher oxidation peak current (2.97 ± 0.11 mA cm−2). A high specific capacity of 218 C g−1 at 0.25 A/g current density and 82% cyclic stability up to 8000 cycles was observed when used as electrode materials revealing its excellent energy storage properties [64]. Jamil et al. utilized Co and Ca- based MOF as catalysts for the production of biodiesel from waste cooking oil. The results demonstrated good agreement with the predicted results for the yield of biodiesel (84.5%) with a percentage error of less than ± 5%. The regenerated catalyst exhibits a notable biodiesel production drop of up to 7% after three cycles [65]. MOFs have also been successfully used for sensing applications such as sensing antibiotics, pesticides [66], hydrogen peroxide [67], nitroaromatic compounds [68], etc. The application of MOFs in fuel cells has been of great utility. Wang H. et al. prepared Zn-MOF for H2O2 fuel cells [69] with a power density of 212 mW cm–2 and a current density of 630 mA cm–2. Ziang Z.et al. reported the adsorbent properties of cage-based MOF for separation and purification of natural gas and C2H2 showing adsorption selectivities for C2 hydrocarbons over CH4 above 17.7, 5.0 for CO2/CH4 and 4.4 for C2H2/CO2. The studies also revealed good hydrolytic stability of MOF under harsh chemical conditions, making it suitable for practical future applications [70].


        




        

          Mxenes




          Mxenes have been investigated as one of the potential materials for a wide range of applications. Mxenes have many outstanding features including high miscibility, availability of active sites, high surface area to volume ratio, high electrical conductivity, electron-rich density, surface charge state, enabling stable colloidal solutions in water, negative zeta-potential, mechanical properties of transition metal carbides/nitrides, effective absorption of electromagnetic waves and functionalized surfaces that make MXenes hydrophilic and easily bind to different species. Energy storage was the first MXene application that was investigated, and it still accounts for a sizable amount of MXene operations. MXenes' distinctive layered structures offer transition metal-active redox sites on the surface, while simultaneously improving electrolyte ion transport. Due to these characteristics, MXenes have become an attractive candidate for high-performance electrodes for electrochemical capacitors [71]. Yu. L et al. used a 2D screen printing technique for energy storage application of pure MXene-N ink with low viscosity having a capacitance value of 70.1 mF cm-2. The supercapacitor exhibited the energy density and power density of 0.42 mWh cm-2 and 0.83 mWh cm-3 respectively [72]. Apart from this, Chen L. et al examined the electronic properties of Ti3C2Tx MXene. A strong dispersion of more than 1 eV was shown by the electronic structure of Ti3C2Tx. Also, the work function measured for Ti3C2Tx was found in the range of 3.9 to 4.8 eV [73]. MXenes bound to PVA showed an increased electrical conductivity of 7.25 × 10−3 Sm−1 as compared to pure PVA (1 × 10−13 Sm−1) and the optical absorption coefficient was calculated to be in the range 4000-5000 cm-1 [74]. The mechanical properties of MXenes are also the focus of attention. Ti3C2/polyacrylamide nanocomposite hydrogels exhibited fracture strengths of 66.5 to 102.7 kPa, compressive strengths of 400.6 to 819.4 kPa, and elongations at break of 2158.6% to 3047.5%, revealing its impressive mechanical properties [75]. Yue Y. et al studied the magnetic properties of Zr2N MXene. The studies revealed that the ground state of Zr2N MXene is antiferromagnetic, but a magnetic state with applied strain greater than (>) 4% tends to be ferromagnetic [76]. Based on the above properties, it can be concluded that MXene is a fascinating candidate for futuristic materials and can be applied for various applications.


        




        

          Composite Materials




          Composites are an important class of multifunctional materials consisting of more than one phase bonded together. These materials can be categorized into four classes based on matrix composition: metal, carbon, polymer, and ceramic matrix composites. These materials can be modified and utilized accordingly for various applications owing to their excellent physical and mechanical properties. Characteristics such as resistance to creep, creep rupture, wear, corrosion and fatigue, high modulus, high strength, low coefficient thermal expansion, and low density make composite materials reliable for countless applications such as aerospace, energy production, infrastructure, architecture, automotive, transportation, energy storage, marine, etc. Along with these applications, the composite materials also show good biological activity as reported by Abhilash M.R. et al. The antibacterial activity of Fe2O3/Cu2O against E. coli, P. aeruginosa, Staphaureus, and B. subtilis was studied and the material was found to be less toxic against Musmusculus skin melanoma cells. The composite also exhibited a short time span for photocatalytic degradation of Rhodamine-B and Janus green dyes [77]. Similarly, a composite material based on chitosan, glutaraldehyde, reduced graphene oxide, and palladium was prepared by Ge L. et al. for catalytic degradation of organic pollutants [78]. Carbon-based composite materials are well-suited for energy storage properties with high cyclic stability as reported by Vidhya M.S. et al. [79]. A composite material of cobalt hydroxide with reduced graphene oxide was prepared as electrode material which delivered a high specific capacitance of 1100 Fg-1 at 0.5 Ag-1 current density and 98.1% cyclic stability after 2000 cycles. Nevertheless, carbon-based composites are also utilized as microwave absorbers by Feng A. et al. They prepared a hierarchical carbon fiber@cobaltferrite@manganesedioxide (CF@CoFe2O4@MnO2) composite for microwave absorption, exhibiting a superior performance with minimum reflection loss value up to -34 dB [77]. Sankar S. et al. developed polymer-based composite materials for gas sensing and electrical properties. A composite of poly(aniline-co-indole) with varying contents of copper alumina exhibited excellent performance towards ammonia gas sensing and formation of p-n junction in the material. The composite revealed high electrical conductivity, gas sensing, and thermal stability making it a promising candidate for electronic and sensing applications [80].


        




        

          Nano-Inks and Quantum Dots




          Nanoparticle conductive inks and composites of nanomaterials are no longer a technology that is just used in academic labs; firms are now developing these formulations and putting them to use in real-world goods. Owing to their outstanding features such as high optical absorption coefficients (> 104 cm-1) and tunable direct band gaps ranging from 1.1 to 1.5 eV [81-83], ternary and quaternary chalcogenides materials, Cu2SnSe3 (CTSe) and Cu2ZnSnS4 (CZTS), have received research attention to become an effective photovoltaic material [84-86]. Recently, ternary and quaternary semiconductor compounds CTSe and CZTS, have been used as efficient photoactive layers in heterojunction thin film solar cells. A combination of inorganic nanoparticles and conjugated polymers was used in the past to develop low-cost photovoltaic (PV), energy storage, and electrochemical sensors. Organic semiconductors that have undergone solution processing and inorganic/organic composite materials have the potential to lower the cost of solar energy devices and sensors significantly. The semiconductor nanocrystals and their nano-inks offer suitable energy band alignment for the fast exciton dissociation rate and charge transport as well as wide coverage of spectral region [87]. It has also been reported that the performances of solar cells are strongly dependent on electron/hole selective layers used. To create a buffer layer, various thin layers including ZnO, ZnS, CdS, and TiO2, have been successfully incorporated into thin film solar cells. In thin films, the buffer layer is mainly used for the formation of a junction with an observer layer to allow the maximum number of photons in the absorber layer. Currently, rGO–CNF/Ce–TiO2, Sr-CeTiO2/CNF, and PANI/MOR emerged as an efficient charge carrier’s selective layers [88]. Therefore, nano-inks based on these materials could be beneficial for multidisciplinary applications.




          Quantum dots (QDs) are nanocrystals of semiconducting materials having a size resumed less than 10 nm. Currently, QDs have gained great research interest in a wide variety of different applications such as photovoltaic cells, photodetectors, biological imaging, and LEDs. Due to their minute size, a physically confined electron cloud is produced, called quantum confinement effect, and various properties such as optical, electronic, and chemical, can be enhanced to a great extent. The phrase “quantum dot” was first used in 1986. Legend Alexey Ekimov created QDs in a glass matrix in 1981, while Louis Brus created them in a colloidal solution in 1983. At the beginning of the twenty-first century, Prof. Xiaogang Peng, who worked at the Department of Chemistry, University of Arkansas developed a “Green Synthesis” method by replacing CdMe2 with CdO with a non-coordinating solvent ODE. This allowed “QD synthesis” to be used in laboratories and industries all around the globe. In 2014, GaN was used to develop efficient blue light emitting diodes (LED), brilliant and energy-efficient white light sources, by employing high vacuum and temperature-controlled epitaxial growth of a multilayer semiconductor single crystal on a sapphire substrate. A Nobel Prize in Physics was awarded for the same. But the price is outrageous! It is anticipated that the benefits of both organic light-emitting diode and GaN-LED will be combined if the QDs-based devices (i.e., QLED) can attain high performance comparable with GaN-LED (OLED). Recent research by Xiaogang Peng and his team supported this theory by producing a high-performing, low-cost QLED utilizing a “solution-processed synthesis approach”. The photo luminescent QDs technology has been substantially commercialized in lighting and displays during the past ten years [89]. This was a revolutionary change in the field of ODs.


        




        

          Metamaterials




          The term “meta” means “beyond” in Greek. “Metamaterials” have unique qualities that go beyond those of natural materials. The properties of metamaterials are due to their structure rather than the construction materials. The most remarkable contribution in this field is V. G. Veselago's statement in 1968 that materials with both negative permittivity and negative permeability are theoretically feasible [90]. These materials have unique spatial alterations in their constituent components as they are man-made substances. These materials are extensively used for the modification of elastic, acoustic, or electromagnetic properties of materials. Metamaterials often used in microwave engineering, waveguides, dispersion compensation, smart antennas, and lenses also produce low/high-frequency band gaps to control wave propagations with varying wavelengths. For example, the metamaterial’s permittivity and permeability can have positive or negative values. The selected frequency of surface-based metamaterials is exploited for wave guiding since the single-cell dimensions of these materials are less than their wavelength. Metamaterials have a wide variety of applications in different fields such as public safety, sensor identification, high-frequency combat communications, enhanced ultrasonic sensors, solar energy management for high-gain antennas, and distant aerospace applications [90, 91].


        


      


    




    

      SYNTHESIS TECHNIQUES




      Nanomaterials can be synthesized using two types of approaches; top down and bottom approach (Fig. 3b). As the name suggests, the top-down approach uses bulk materials to produce nano-size particles. Various dispersion and aggregation techniques are employed to structure macroscopic particles to a nanometer scale. Physical methods are involved in this approach including mechano-chemical dispersion, plasmo-chemical method, and condensation from the gas phase. The original structure of the compact material is retained in this type of approach.
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Fig. (3b))


      Synthesis techniques for synthesis of nanostructures.



      In a bottom-up approach, basic building blocks i.e.; atoms and molecules are organized to build up nanostructures. This approach is largely about chemical methods for nanomaterial synthesis. Chemistry expertise is required in this method for assembling and structuring these nano-objects into nanomaterials. The electrical structure of nanoparticles may be affected due to variations in the position of atoms in nanoparticles created by aggregation of atoms. The objective of this approach is to prepare materials with excellent chemical, mechanical, optical, and magnetic properties, by using small-sized materials in the beginning [92-95].


    




    

      FUTURE SCOPE OF NANOMATERIALS




      Nanotechnology is considered to be the major technological advancement of the twenty-first century and has sparked interest worldwide. Today's nanotechnology is much more advanced than what is imagined in science fiction. Although the current focus of nanotechnology is primarily on new material composition, their prospective applications are extremely broad. The usage of nanotechnology has grown significantly, and it has the potential to become crucial shortly. It is anticipated to inspire a wide range of application domains across practically all industries and technological fields. It will open up new possibilities for producing life's necessities (such as electronics, medications, goods, cars, and homes) more effectively and affordably while utilizing fewer raw materials. There will be significant advancements in a variety of fields, including robotics, computing, energy, and food. Perhaps Richard Feynman's innovative lecture, which inspired others to investigate this technology and helped establish this industry, can be credited with making this possible. Due to its distinctive properties, future applications of nanotechnology are anticipated to be far more sophisticated. As nanomaterial-based engineering techniques progress, the goal of producing clean energy is becoming more and more attainable. Nanomaterials have produced promising outcomes, enabling the development of new types of solar and hydrogen fuel cell technologies, serving as effective catalysts for water splitting, and displaying outstanding hydrogen storage capabilities. Nanomedicine holds a bright future for nanomaterials. Therapeutic compounds can be delivered via nanocarriers. The future of advanced technology is linked with advancements in the field of nanotechnology. Although nanotechnology is maturing rapidly, it is still in a formative phase. Nobody can predict how quickly will these novel concepts finish the R&D stage and reach the market. However, with certainty, we can state that nanotechnology is here to stay and that it uses and applications can be produced in a way that is morally upright and beneficial to mankind.


    




    

      Conclusion




      Overall, the advanced and multifunctional materials field is growing exponentially across the scientific community owing to their fascinating flexible electronics and optoelectronic devices, lightweight weapons, fire registrant materials, gas sensors, energy storage and biomedical, etc., which facilitate them to be qualified as the key materials for the next generation. These materials show high-level performance because of their unique properties. To achieve progress and growth in fundamental research and their practical applications, the exploration of the design of these advanced and multifunctional materials and their assemblies is facing more and more challenges. In this review, we summarized the basic properties, synthesis techniques, classifications, and recent applications in various fields. Finally, the continuous developments of elaborate design and assembly and enhancement in properties of such materials offer unprecedented opportunities for new applications as well as provide next-generation solutions.
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