
[image: image]

Ultimate Enterprise
Data Analysis and
Forecasting using
Python

[image:]

Leverage Cloud platforms with Azure Time
Series Insights and AWS Forecast Components
for Time Series Analysis and Forecasting with
Deep learning Modeling using Python

[image:]

Shanthababu Pandian

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: December 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-19416-44-8

www.orangeava.com

Dedicated To

My beloved Parents:

Shri Pandian Marimuthu Subbiah

Smt Muthulekshmi Pandian

About the Author

Shanthababu Pandian holds a Bachelor’s degree in engineering in Electronics and Communication, followed by three Master's degrees - MTech, MBA, and M.S. - from a prestigious university in India. Additionally, he completed a Post Graduate Program in Artificial Intelligence and Machine Learning from the University of Texas, along with a Post Graduate Certification in Data Science from the Indian Institute of Technology, Guwahati. With over 21 years of extensive experience in information technology (IT), Shanthababu specializes in data engineering and analytics solutions, development and implementation using agile methodologies, and building complex data models for Business Intelligence (BI) and data science products for various customers located across the UK and US regions. As part of his responsibilities, Shanthababu is accustomed to liaising with key stakeholders and business teams, gathering and eliciting requirements, and architecting cost-effective data modeling solutions as per delivery frameworks. He is efficient at mitigating project delivery risks while managing stakeholders and leading project team members across different locations.

	Technical Author at:

	Analytics Vidhya:

	https://www.analyticsvidhya.com/blog/author/shanthababu/

	Data Science Central

	https://www.datasciencecentral.com/author/shanthababup/

	Technical author engagement with the following Data Industries:

	Octopus Data Inc. Shenzhen, Guangdong, China

	dezyre.com (https://www.projectpro.io/)

	neptune.ai

	StrictlyByTheNumbers.com

	Shanthababu’s AI Views: https://shanthababu.com/blog-2/

	Technical Book Reviewer for Packt Publications – BIRMINGHAM, UK. Reviewed more than 30 books from international authors on various technical aspects

	National and International Technical Speaker in the AIML domain, with more than 40 webinars presented

	Technical Mentor for various Engineering and Technical institutions across Tamil Nadu, India

About the Technical Reviewers

S.Ponmalar is an Academician with over 25 years of field and domain experience in Information and Communication Engineering including optical communication, Networks, Machine Learning, and Computer vision. She has obtained her Doctoral degree in Information and Communcation Engineering from Anna University. She is a recognized supervisor and guides many PG and PhD scholars. She has published over 30 research papers in many reputed Journals and Conferences. Her interest in upgrading with recent trends and technology has obligated her to read and review articles and books from different publishers.

Vidhya Veerabahu is a Professor and Head of IT at Sri Venkateswara College of Engineering, Sriperumbudur. With over 23 years of experience in the fields of data science and Natural Language Processing (NLP), she is an expert in these domains. She has used statistical, semantical, and contextual methods to automate various specific processes in the education sector. Additionally, she has developed several smart mobile-based applications to provide solutions to societal challenges and has helped the organization analyze trends for better decision-making. She has published and presented over 40 papers in international journals and conferences.

Preface

This book covers various aspects of Time Series Analysis and Forecasting using the Python language, emphasizing the importance of time series analysis from an industry perspective for in-depth analysis and forecasting, with real-time use cases and required examples. The primary objective of this book is to provide a detailed pack of time series analysis and forecasting methods, essential in the current digital market, and grow business opportunities using various techniques from an AIML perspective. This book aims to connect the Time Series and Forecasting problem statements across multiple industries and demonstrate how to provide solutions using currently available tools, technology, and evidence of success stories. This book promises that by the end of the reading, the readers will understand time series and forecasting techniques, and also learn how to analyze, design, and maintain the solutions. In this manner, readers can follow the correct path to take the time series components, work on them with Python packages, and understand the data for analysis and productive solutions, such as predicting or forecasting.

This book covers the expectations of Data Analysts, Data Scientists, and Machine Learning Engineers who will be involved in time series analysis and forecasting-related projects. This book helps those interested in time series analysis. The book begins with an introduction to Python and its essential packages. It then delves into various aspects of time series data analysis and models from both traditional and ML methods, followed by their implementation in the cloud environment.

This book is divided into four parts and 11 chapters. It will cover everything, starting with an introduction to Python and its essential packages for data science and machine learning. The book will explore various time series analysis and forecasting techniques, along with the implementation of time series analysis in Azure and AWS environments. The chapter-wise details are listed as follows.

Chapter 1. Introduction to Python and its key packages for DS and ML Projects: This chapter will discuss the basics of Python and its libraries. It will begin with Python’s IDEs and Jupyter Notebook installation, utilization, and benefits to build Time Series Analysis and Forecasting solutions for the readers before delving into the rest of the chapters of this book. A quick overview of packages supporting Data Science and Machine Learning implementation and their significance, along with sample code snippets will be provided including Data Structure, File Operations, Packages such as Pandas, NumPy, Matplotlib, SciKit-Learn, and Statsmodel. This chapter would give confidence in Python and its features.

Chapter 2. Python for Time Series Data Analysis: This chapter will discuss Data Analysis and its benefits. It will delve into why Python is the best choice for Data Analysis. Also, it will cover Time Series Data Management. Further discussion will focus on various aspects surrounding Data Cleansing, Preparation, and Wrangling with Time Series Analysis. This section will cover Data preparation for Time Series Analysis, converting String data into DataTime format, Resampling and Frequency conversion techniques, Generating Date ranges, Time Zone handling, and Period Arithmetic techniques. This chapter will highlight the importance of Data Visualization in Time Series Analysis. It will help discovering the scope of data mining in Time Series Analysis and understanding the Statistics Essentials for Analytics in relation to time series and forecasting. Exploratory Data Analysis (EDA) for the time series, along with sample code snippets to understand all the concepts mentioned will be covered.

Chapter 3. Time Series Analysis and its components: This chapter will help readers understand the background of time series analysis. This chapter will cover the importance of time series analysis and its significance. Also, a detailed walk-through of Time Series components – Trend, Seasonality, Cyclic patterns and Irregularity - with classic examples and distinctions between them will be provided. The nature of the data in Time Series Analysis is specific to their component’s classification. This chapter focusses on realizing the WHITE NOISE in Time Series dataset. The acid test for data stationarity – ADF, KPSS test is also covered. Handing non-stationary data in Time Series Analysis and techniques to make a time series stationary are also discussed. What are ACF and PACF in time series, and how do they assist in determining the order of AR, MA, and ARMA models are discussed along with sample code snippets to better understand all the concepts mentioned.

Chapter 4. Time Series Analysis and Forecasting Opportunities in Various Industries: This chapter will assist the reader in understanding the opportunity and scope of time series analysis and forecasting and learning how to implement it. Gaining clarity on time series analysis is helpful in business and industry. This chapter will cover the advantages of Time Series Analysis in Forecasting. Demand forecasting and Price prediction in Retail, and Forecasting in Healthcare for diagnosis and medication planning are also covered. Anomaly detection, predictive maintenance, time series analysis, and sales forecasting in the automotive industry are discussed. This chapter will also address the challenges and major drawbacks of time series forecasting-

Chapter 5. Exploring various aspects of Time Series Analysis and Forecasting: This chapter will help the readers understand the detailed study of Time Series Analysis starting from statistical inference. The statistical properties of the time series are covered. The shapes in Time Series are discussed. Power, Log, and Box-Cox Transformation for Time Series are discussed. The chapter will explore forecasting metrics, providing an overview of Naive Forecasting and various Forecasting Metrics. We will also learn about univariate and multivariate models, generic types of Forecasting Methods and Time Series Analysis for both traditional and Machine learning approaches. It will also include sample code snippets to better understand all the concepts mentioned.

Chapter 6. Exploring Time Series Models - AR, MA, ARMA, and ARIMA: This chapter will help readers in exploring various Time Series models and their implementation. It will provide detailed discussions on a variety of models Autoregressive Models - AR(p), Moving Average Models - MA(q), ARMA (AR +MA). The chapter will guide on how to calculate AR and MA step by step, including training model and forecasting and validation. It will also explain about why ARIMA came into picture and do a detailed studies. The chapter will also cover Residual Analysis, Plotting, and Scaling Techniques. Use cases for the above-mentioned methods and sample code snippets are included to understand all the concepts mentioned.

Chapter 7. Understanding Exponential Smoothing and ETS Methods in TSA: This chapter will help the readers in understanding exponential smoothing and ETS methods in time series analysis, their characteristics and various types. It will explain what exponential smoothing is and how to calculate it. It will also cover how exponential smoothing is used for forecasting purposes. The chapter will also delve into ETS (Error, Trend, Seasonal), selecting the best ETS and why ETS models are implemented. The chapter will discuss a few more models, including Simple Moving Average (SMA), Exponentially Weighted Moving Averages (EWMA), Single Exponential Smoothing (SES), Holt's Linear Trend Model, and Winters along with sample code snippets to understand all the concepts mentioned.

Chapter 8. Exploring Vector Autoregression and its Subsets (VAR, VMA, and VARMA): This chapter will help the readers in understanding various Vector Autoregression methods and the essential requirements for using the VAR model in Time Series problems. It will cover the distinctions between VAR and AR. It will also discuss sub-types such as VA-VAR, VMA, VARMA and VARMAX for multivariate time series. The chapter will cover the characteristics of Vector Autoregression and its implementation. This chapter will also discuss Extension of ARIMA - Seasonal Auto-Regressive Integrated Moving Average (SARIMA) with Exogenous Variables and Fractional Auto-Regressive Integrated Moving Average (FARIMA). Sample code snippets are provided to understand all the concepts mentioned.

Chapter 9. Deep Learning for Time Series Analysis and Forecasting: This chapter will assist readers in understanding whether deep learning is good for time series forecasting. It will discuss the interpretability and promises by Deep Learning for Time Series Forecasting. The chapter will cover basic concepts such as the Activation Function and explain how a Neural Network learns. It will delve into various types of deep learning models such as ANNs, CNNs, RNNs, and LSTMs for time series forecasting. The chapter will focus on understanding the Multilayer Perceptrons, CNNs, Long Short-Term Memory Networks (LSTMs) and their use cases and will include sample code snippets for better understanding of all the concepts mentioned.

Chapter 10. Azure Time Series Insights: This chapter will help the readers in understanding Azure Time Series insights and its significance. It explores how this is a fully managed analytics, storage and visualization service for managing IoT-scale time-series data in the cloud. The chapter will further discuss Azure Time Series Insights Gen2 for industrial IoT concerning various industries. Also, the chapter will cover topics such as data exploration and visual anomaly detection using Azure Time Series Insights. The chapter will also provide insights into the best practices for planning and preparing the Azure Time Series Insights Gen2 environment. It will include a comparison between Gen1 and Gen2 exploring their capabilities, key benefits, and critical jobs.

Chapter 11. AWS Forecast: This chapter will assist readers in understanding Amazon Forecast and its significance. It will cover the working of Amazon Forecast, delve into its features in detail, and explore the time series forecasting principles. The chapter will also guide the readers to set up permissions for Amazon Forecast. It will walk through the process of importing, building, evaluating, and cleaning for Amazon Forecast's future. It will discuss the algorithms followed by the steps for preparing and cleaning data for Amazon Forecast. The chapter will highlight the best practices of Amazon Forecast.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-Enterprise-Data-Analysis-and-Forecasting-using-Python

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/5e9b56

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Python and its key packages for DS and ML Projects

Introduction

Hello, my friends! I hope you are all aware that the focus of this book is on various Time Series Analysis and Forecasting techniques and their implementation using the Python Language. Python language is highly-demanded and powerful in recent scenarios, not only for building web applications but also for implementing AIML analytics and advanced analytics products. Before we dive into the objective of this book, let me take you through some of the basics of Python programming language skill sets that are required to build the TS&F model and analyze the same. Please note that throughout this book, we will refer to “Time Series Analysis and Forecasting” as TS&F for a quick reference to the content.

The major objective of this chapter is to discuss the basics of Python and its libraries, specifically targeting those who are new to programming.

Structure

In this chapter, we will discuss the following topics:

	Introduction to Python programming language

	Key features of Python

	Python programming IDEs and comparisons

	Installing Jupyter notebook

	Python libraries

	Pandas

	Date and time data

	NumPy

	Python statistics libraries

	Working with various files in Python

Introduction to Python programming language

There are multiple answers that you can find on Google, but my straightforward answer is “Python is a very simple, English, general-purpose programming language”.

It has been designed with the base idea of emphasizing code readability in mind by using significant indentation for programmers at any level to read. Similar to Java programming language, Python is a dynamically typed, garbage-collected language that supports multiple programming patterns, including structured, object-oriented, functional programming and many more. That’s fine for all purposes, specifically, this is an interpreter language which means that the code can be executed as soon as it is written.

You may have a lot of questions, such as “What can Python do and Why use Python?” Let’s quickly explore these points.

Python was created by Guido van Rossum and released in 1991. It has been used like other programming languages for web development, software development, mathematical modeling and frequently for system scripting.

Key features of Python

The following are the key features of Python:

	It can support and work on multiple platforms

	Windows, Linux, Mac – Web application, ML programming

	Raspberry Pi – IoT programming

	It has very simple syntax, similar to the English language so that the developers can write code that is straightforward and easy to understand.

	It requires fewer lines of code to accomplish the requirements compared to other programming languages such as C, C++, and Java.

	It provides robust and standard libraries such as Pandas, NumPy, Scikit-learn and many more.

	It comes under the Interpreted category, which makes it easy to debug and execute.

	It supports both object-oriented and programming-oriented making it portable and extensible.

From an AIML perspective, Python is simple, powerful, easy to write and read, well-structured and extendable.

While there are many programming languages in the market to support ML programming, Python provides the following modules which strengthen the ML model and easily manage the code in any environment (Development to Production).

	NumPy

	Pandas

	SciPy

	Matplotlib

	Scikit-learn

	TensorFlow and Keras

	PyTorch

To develop programming scripts, we need an IDE (Integrated Development Environment). Let’s start with a very familiar environment in the current scenario for developers and practitioners to demonstrate their Python code using Jupyter notebook. It provides a very simple and understandable way of executing the code cell by cell and getting the output. This allows developers to confirm their objectives and goals for the modules and products.

Let’s focus on the installation and utilization aspects shortly which is very simple and easy.

The following topics will help you learn how to install Anaconda which installs Python and a bunch of auxiliary packages useful for Data Science, Machine learning, and Deep Learning.

Python programming IDEs and comparisons

In the software industry, we use specific environments to build software, which are generally called IDEs(Integrated Development Environments). Here, we code, debug, compile, test, and so on. Python is no exception to this. There are multiple tools available in the market.

Let me share the steps to install Jupyter Notebook, This notebook is available in the Azure environment in the name of Azure Data Brick,

In the AWS environment, this notebook is available in the name Sage Maker IDE so this Jupyter Notebook would help you all to understand how to write and execute the code during the real-time scenario.

Although we have other options based on availability, the following are some popular Python IDEs:

	Jupyter Notebook

	PyCharm

	Spyder

	Microsoft Visual Studio

	PyDev

Jupyter Notebook

As mentioned earlier, the Jupyter Notebook is everyone’s favorite and is one of the most widely used editor in the AIML industry. It is browser-based and allows you to create, manipulate and play around with a notebook as a document with .ipynb as an extension. It is best suited for interpreted language environments. Specific to AIML and Data Science product development, Jupyter Notebook is a perfect fit and all cloud environments (Azure, AWS, and GCP) utilize it in their own environment. If we develop anything on-premises using the Jupyter Notebook, it will be easier to implement projects on the cloud.

The features are as follows:

	Supports markdowns – which is helpful for various documentation purposes.

	Easy creation and editing of code – a simple way to load the data once and play around.

	Ideal for beginners/practitioners to build Data Science/Machine Learning solutions.

PyCharm

PyCharm is another renowned IDE used for Python programming. It is easy to code, analyze and debug, provides excellent graphical visualization, and is an integrated unit tester and debugger. It provides integration with version control systems, which is a plus, and supports web development along with Django.

The features are as follows:

	Smart code navigation and auto code completion

	Excellent error detection and correction as part of “Errors Highlighting”

	Powerful debugger

	Distributed development support

Spyder

Spyder stands for Scientific Python Development Environment. This is another open source and is an excellent IDE in laboratory development and is most suitable for a Python environment to build Scientific programs, Data Science and ML solutions. It supports multiple platforms including Windows, Linux, and MacOS X.

The features are as follows:

	Customizable syntax highlighting capabilities

	Excellent interactive and execution environment

	Highly integrated and strong with the IPython console

	The auto code completion feature helps developers significantly

	Performs well in a multi-language editor and auto code completion mode

Installing Jupyter notebook

For Windows

	Link: https://www.anaconda.com/products/distribution.

[image:]

Figure 1.1: URL for Anaconda download

	Click on the Download button.

	Anaconda will start downloading and will be available for installation.

[image:]

Figure 1.2: Installable Anaconda

	Double-click the installable Anaconda. After a few simple clicks, Anaconda will be successfully installed on your desktop.

[image:]

Figure 1.3: Anaconda on the desktop

	Click on the Anaconda icon.

[image:]

Figure 1.4: Anaconda loading on the desktop

[image:]

Figure 1.5: Anaconda Navigator launching

	Click Ok. This will take you to ANACONDA NAVIGATOR.

[image:]

Figure 1.6: Anaconda Navigator

	Here you can find multiple IDE options such as:

	Jupyter Lab

	Jupyter Notebook

	Spyder

Jupyter Notebook IDE is a popular choice.

	
Click on the Launch button below Jupyter Notebook and wait until the browser opens.

	You will see three tabs - Files, Running, and Cluster. Let’s focus on the File tab. Click on New.

[image:]

Figure 1.7: Jupyter environment (folders/structure) – Notebook options

	You can see the options : Text File, Folder, and Terminal. Click on Folder.

[image:]

Figure 1.8: Jupyter notebook environment

	Click on Rename and give the desired name.

[image:]

Figure 1.9: Jupyter notebook environment (Naming the folder)

	
Your folder is ready to use.

[image:]

Figure 1.10: Jupyter notebook environment (the folder is ready to use)

	Click on New. From the following menu, click on Python 3.

[image:]

Figure 1.11: Jupyter notebook environment (creating a new file)

	A new window for your programming is ready.

[image:]

Figure 1.12: Jupyter notebook environment (new file is ready to use)

Python libraries

Now it’s time to explore various libraries in Python. Every Data Scientist/ML engineer should know the Pandas and NumPy features and their capabilities, which support the building of ML solutions.

Before we start any AIML projects, it’s important to master these libraries to handle data as it comes from multiple sources in different formats.

You are expected to bring all the necessary data into one place and arrange them for data analysis and visualization purposes.

Pandas

We can define Pandas as follows:

Panel + Data = Pandas

[image:]

Figure 1.13: Pandas Logo ()

Pandas has the following features:

	It offers well-defined data structures for data analysis and their functions are robust.

	It transforms very complex operations by using plain commands that are similar to SQL.

	Concatenating, filtering, and grouping data require minimal effort.

	It provides a way to organize and perform time-series functionality.

	Indexing and re-indexing are simple commands.

	It allows reshaping, sorting, aggregation, and iteration of the data and its structure.

	It is easy to slice and dice data based on our requirements.

	The commands execute quickly and efficiently.

	It provides extensive support from a data handling perspective including data manipulation, missing data, and cleaning data with simple lines of code.

	Highly capable of handling tabular data, ordered, unordered and time series data and is ideal for unlabeled data.

The following figure displays the outstanding features of Pandas.

[image:]

Figure 1.14: Pandas - outstanding features (Source: DataScienceCentral.com - Big Data News and Analysis)

Series and DataFrame

First, let’s understand Series and DataFrame in Pandas. These are the primary components in the data structures of Pandas. In simple terms, a Series is similar to a dictionary, while merging collections of series results in a dataframe. The resulting dataframe is a structured dataset that can be used for further analysis.

Series: It contains just one column and row, in the form of one-dimensional array with a fixed length and the same data type. We can simply say that it is homogenous in nature.

DataFrame: This is a collection of series with multiple columns and respective rows, two-dimensional arrays with fixed-length and different data types, We can say this to be heterogeneous in nature,

Both are rectangular-tabular tables of data.

Building Series

import pandas as pd

series_dict={1:”C”,2:”C++”,3:”Java”,4:”Python”}

series_obj=pd.Series(series_dict)

series_obj

Output

1 C

2 C++

3 Java

4 Python

dtype: object

Building a Dataframe

import pandas as pd

Eno=[100, 101,102, 103, 104,105]

Empname=[“John”,”Peter”,”Julia”,”Bell”,”Andrew”,”Shantha”]

Eno_Series = pd.Series(Eno)

Empname_Series = pd.Series(Empname)

df = {“Eno”: Eno_Series, “Empname”: Empname_Series }

employee = pd.DataFrame(df)

employee

Output

[image:]

Figure 1.15: Pandas – series+ series=dataframe

Let’s quickly discuss some advanced features of Pandas. As mentioned earlier, Pandas is a very powerful library that accelerates data pre-processing during the lifecycle of machine learning. We can execute the following features (refer to Figure 1.16) in the data frame and perform various data analytics by applying simple code.

[image:]

Figure 1.16: Advanced features of Pandas (Source: DataScienceCentral.com - Big Data News and Analysis)

Reshaping DataFrame

Reshaping is a necessary action when dealing with data during data analytics. There are multiple ways to reshape the data frame. We will cover them one by one with examples.

[image:]

Figure 1.17: Pandas - Reshaping DataFrame Options (Source: DataScienceCentral.com - Big Data News and Analysis)

import pandas as pd

import numpy as np

#building the Dataframe

IPL_Team = {“IPL Team”: [“CSK”, “RCB”, “KKR”, “MI”, “SRH”,

“PK”, “RR”, “DC”, “CSK”, “RCB”, “KKR”, “MIS”, “SRH”,”PK”, “RR”, “DC”],

“Year”:[2021,2021,2021,2021,2021,2021,2021,2021,2022,2022,2022,2022,2022,2022,2022,2022],

“Points”:[23,43,45,65,76,34,23,78,89,76,92,87,50,45,67,89]}

IPL_Team_df = pd.DataFrame(IPL_Team)

print(IPL_Team_df)

Output

[image:]

Figure 1.18: Pandas - Reshaping DataFrame Output

	
Groupby
The groupby feature is used to split the dataframe into multiple groups based on a column.

groups_df = IPL_Team_df.groupby(“IPL Team”)

for Team, group in groups_df:

print(“—–{}—–”.format(Team))

print(group)

print(“”)

[image:]

Figure 1.19: Pandas - Reshaping DataFrame Output (Grouping) (Source: DataScienceCentral.com - Big Data News and Analysis)

	
Transpose
This feature swaps the given dataframe rows with its columns.

IPL_Team__Tran_df=IPL_Team_df.T

IPL_Team__Tran_df.head(3)

[image:]

Figure 1.20: Transpose output (Source: DataScienceCentral.com - Big Data News and Analysis)

	
Stack
This feature transforms the dataframe by compressing the columns into multi-index rows.

IPL_Team_stack_df = IPL_Team_df.stack()

IPL_Team_stack_df.head(5)

[image:]

Figure 1.21: Pandas - Reshaping DataFrame output (Stack)

	
Unstack
This feature is similar to stack, and it transforms the dataframe by compressing the row into a column.

IPL_Team_stack_df = IPL_Team_df.unstack()

IPL_Team_stack_df.head(5)

[image:]

Figure 1.22: Pandas - Reshaping DataFrame output (Unstacking)

Both functions are the most popular transposing functions from row to column and vice versa.

	
Pivot The pivot function is used to reshape the dataframe based on specific columns in the index,

IPL_Team_pivot_df=pd.pivot_table(IPL_Team_df,index =[‘IPL Team’, ‘Points’])

IPL_Team_pivot_df.head(5)

[image:]

Figure 1.23: Pandas - Reshaping DataFrame output (Pivot)

	
iMELT
It transforms the dataframe into a long format. It provides flexibility in how transformations should occur. This allows selecting the column(s) and transforming them into rows while leaving the other columns unchanged.

IPL_Team_df_melt = IPL_Team_df.melt(id_vars =[“IPL Team”, “Points”])

print(IPL_Team_df_melt.head(5))

[image:]

Figure 1.24: Pandas - Reshaping DataFrame O/P (MELT)

Now that you are familiar with all these pivot table operations, let’s move ahead.

Combining DataFrame

Combining DataFrame is one of the significant features used to combine dataframes for different facets, which are listed in the following figure.

[image:]

Figure 1.25: Pandas - Combining DataFrame (Source: DataScienceCentral.com - Big Data News and Analysis)

	
Concatenation
This is a very simple and direct operation of Dataframes. Using this function and along with the parameter, just say ignore_index as True.

#Dataframe -1

import pandas as pd

Eno=[100, 101,102, 103, 104,105]

Empname= [“John”,”Peter”,”Julia”,”Bell”,”Andrew”,”Shantha”]

Eno_Series = pd.Series(Eno)

Empname_Series = pd.Series(Empname)

df = { “Eno”: Eno_Series, “Empname”: Empname_Series }

employee1 = pd.DataFrame(df)

employee1

#Dataframe -2

Eno1=[106, 107,108, 109, 110]

Empname1= [“James”, “John”, “Philp”,”David”,”Donald”]

Eno_Series1 = pd.Series(Eno1)

Empname_Series1 = pd.Series(Empname1)

df = { “Eno”: Eno_Series1, “Empname”: Empname_Series1 }

employee2 = pd.DataFrame(df)

employee2

[image:]

Figure 1.26: Pandas - Combining DataFrame (DF1 and DF2)

	
Concatenation Operation
df_concat = pd.concat([employee1, employee2], ignore_index=True)df_concat

[image:]

Figure 1.27: Pandas - Combining DataFrame (Concatenated dataframe) (Source: DataScienceCentral.com - Big Data News and Analysis)

	
Concatenation Operations with Key Options
frames_collection = [employee1,employee2]

df_concat_keys = pd.concat(frames_collection, keys=[“Section-A”, “Section-B”])

df_concat_keys

[image:]

Figure 1.28: Pandas - Combining DataFrame - Concatenated dataframe with keys

	
Merging
We can merge two different Dataframes by linking them with a common feature/column. To implement this, we must pass the names of the dataframes with the common column as an “on” parameter.

#Dataframe -1

Eno1=[106, 107,108, 109, 110]

Empname1= [“James”, “John”, “Philp”,”David”,”Donald”]

Eno_Series1 = pd.Series(Eno1)

Empname_Series1 = pd.Series(Empname1)

df = { “Eno”: Eno_Series1, “Empname”: Empname_Series1 }

employee2 = pd.DataFrame(df)

employee2

#Dataframe -2

Eno1=[106, 107,108, 109, 110]

Designation= [“UX Programmer”, “Data Architect”, “Project Lead”,”Data Analyst”,”Business Data Analyst”]

Eno_Series1 = pd.Series(Eno1)

Designation_Series1 = pd.Series(Designation)

df = { “Eno”: Eno_Series1, “Designation”: Designation_Series1 }

Designation_df = pd.DataFrame(df)

Designation_df

[image:]

Figure 1.29: Pandas - Combining DataFrame (Before merging the dataframe)

df_merge_columns = pd.merge(employee2, Designation_df, on=”Eno”)

df_merge_columns

[image:]

Figure 1.30: Pandas - Combining DataFrame (Merging dataframe)

This is very similar to SQL. It comes with different options such as Left Join, Right Join and Outer Join with the additional parameter how=”join type”. [join-type outer,inner,left,right]. Let’s try it now.

Defining two dataframes

df1 = pd.DataFrame({“Eno”: [100,101,102,103,104],”Ename”: [“James”, “John”, “Philp”,”David”,”Donald”]})

df2 = pd.DataFrame({“Eno”: [100,101,102,103,105],”Salary”: [1000, 1200, 1500, 1750,2000],”Designation”: [“UI Developer”, “Sr.Business Analyst”, “Program Head”, “Project Lead”,”System Manager”]})

print(df1,”\n###########################”)

print(df2)

[image:]

Figure 1.31: Pandas Sample DataFrame to join.

	
Simple Join
This is used to join two dataframes using a common column which is available in both dataframes.

df_join = pd.merge(df1, df2, left_on=”Eno”, right_on=”Eno”)

df_join

	
Full Outer Join
df_outer = pd.merge(df1, df2, on=”Eno”, how=”outer”)

df_outer

	
Left Outer Join
df_left = pd.merge(df1, df2, on=”Eno”, how=”left”)df_left

	
Right-Outer Join
df_right = pd.merge(df1, df2, on=”Eno”, how=”right”)df_right

	
Inner Join
df_inner = pd.merge(df1, df2, on=”Eno”, how=”inner”)df_inner

[image:]

Figure 1.32: Pandas Sample DataFrame using different Joins

Note: We can also merge dataframes by specifying keywords right_on or left_on columns.

JOIN

We have other simple options to join the dataframes. join() will perform left join the indices.

df1 = pd.DataFrame({“Eno”: [100,101,102,103,104],”Ename”: [“James”, “John”, “Philp”,”David”,”Donald”]},

index = [“0”, “1”, “2”, “3”,”4”])

df2 = pd.DataFrame({“Salary”: [1000, 1200, 1500, 1750,5000],”Designation”: [“UI Developer”, “Sr.Business Analyst”, “Program Head”, “Project Lead”,”Data Architect”]},

index = [“0”, “1”, “2”, “3”,”4”])

df1.join(df2)

[image:]

Figure 1.33: Pandas Sample DataFrame different joining (Using the index)

Working with categorical data

Categorical variables are a group of values which can be easily labelled and have a set of possible values. They can be either numerical or string. For example, location, designation, grade, age, sex, and many more columns.

We could further divide Categorical Data into Ordinal, Nominal and Continuous Data.

	
Ordinal Data: It has proper inherent order such as Grade and Designation.

	
Nominal Data: There is no inherent order here.

	
Continuous Data: It consists of an infinite number of values with certain boundaries and can be numeric, date, or time data type.

[image:]

Figure 1.34: Categorical data types. (Source: DataScienceCentral.com - Big Data News and Analysis)

Encoding

The process of converting categorical data into numerical data is an inevitable and essential activity while dealing with categorical data.

We have the following encoding techniques:

	One-Hot encoding

	Ordinal encoding

	Dummy encoding

	Label encoding

	Target encoding

	Mean encoding

	
One-Hot encoding: In Feature Engineering, transforming the given data into a sensible form is essential to interpret and make data more transparent. This involves creating a new variable for each level of the categorical feature. Here, the categories can be mapped with a binary variable of 0 or 1 based on the presence or absence of the expected value.

[image:]

Figure 1.35: Categorical Data Encoding
(One-Hot Encoding) (Source: DataScienceCentral.com - Big Data News and Analysis)

data=pd.DataFrame({“City”:[“Chennai”,”Bangalore”,”Delhi”,”Mumbai”,”Bangalore”,”Delhi”,”Chennai”,”Mumbai”,”Kolkata”,”Cochin”]})

data

#Create object for one-hot encoding

import category_encoders as ce

encoder=ce.OneHotEncoder(cols=”City”,handle_unknown=”return_nan”,return_df=True,use_cat_names=True)

data_encoded = encoder.fit_transform(data)

data_encoded

[image:]

Figure 1.36: Categorical Data Encoding (One-Hot Encoding) – O/P

	
Dummy encoding: This is very similar to the one-hot encoding. As discussed above, the categorical variables are converted into equivalent binary values as separate columns also known as dummy variables. It is an improved version of over one-hot-encoding technique. In simple terms, it uses N-1 features to represent N categories from the dataset.

Date and time data

This book is mainly focused on Time Series Analysis. Before diving deeper, let’s first deal with the date and time data. We can use the dedicated Date Time library that comes along with the Pandas packages as Datetime objects.

Python datetime classes

	
datetime: used to manipulate date and time in terms of year, month, day, hour, second, and microsecond

	
date: used to manipulate date (y, m, and d)

	
time: used to manipulate time – (h, m, s, and ms)

	
Timedelta: measures date and time

	
tzinfo: time zones dealing

[image:]

Figure 1.37: Pandas - Date and Time Capabilities (Source: DataScienceCentral.com - Big Data News and Analysis)

Date and time format

	
%a

	
Short version of weekday

	
Mon, Tue, Wed, Thu, Fri

	
%A

	
Full version of weekday

	
Monday and Tuesday

	
%d

	
Day of the month

	
01-31

	
%b

	
Short version of the month

	
Feb

	
%B

	
Full version of the month

	
February

	
%y

	
Short version of the year

	
23

	
%Y

	
Full version of the year

	
2023

	
%H

	
Hour

	
00-23

	
%M

	
Minutes

	
0-59

	
%S

	
Second

	
0-59

	
%Z

	
Time zone

	
CST

Table 1.1: Pandas - Date and Time Capabilities

import pandas as pd

date=pd.to_datetime(“16th December,2004”)

date

Output

Timestamp(‘2004-12-16 00:00:00’)

import datetime

x = datetime.datetime.now()

print(x)

Output

2023-03-05 21:09:34.896421

import datetime

x = datetime.datetime.now()

print(x.year)

print(x.strftime(“%a”))

print(x.strftime(“%A”))

print(x.strftime(“%d”))

print(x.strftime(“%b”))

print(x.strftime(“%B”))

print(x.strftime(“%y”))

print(x.strftime(“%Y”))

print(x.strftime(“%H”))

print(x.strftime(“%M”))

print(x.strftime(“%S”))

print(x.strftime(“%Z”))

Output

2023

Sun

Sunday

05

Mar

March

23

2023

22

08

37

Converting data types

Data conversion is a common practice in any programming language and Python is no exception. It provides various conversion functions to convert one data type to another.

Type conversion in Python

The following are the type conversions in Python:

	
Explicit type conversion: The developer must write the code to change the data type as per their requirement during development.

	
Implicit type conversion: Python can convert data types automatically without any manual intervention.

Explicit Type conversion

Type conversion in Python

strA = “2022” #Sting type

printing string value converting to int

intA = int(strA,10)

print (“Into integer : “, intA)

printing string converting to float

floatA = float(strA)

print (“into float : “, floatA)

Output

Into integer : 2022

into float : 2022.0

Type conversion in Python

initializing string

strA = “Python”

ListA = list(strA)

print (“Converting string to list :”,(ListA))

tupleA = tuple(strA)

print (“Converting string to list :”,(tupleA))

Output

Converting string to list : [‘P’, ‘y’, ‘t’, ‘h’, ‘o’, ‘n’]

Converting string to list : (‘P’, ‘y’, ‘t’, ‘h’, ‘o’, ‘n’)

A few other functions are:

dict() : Used to convert a tuple into a dictionary.

str() : Used to convert an integer into a string.

Implicit Type conversion

a = 100

print(“a is of type:”,type(a))

b = 100.6

print(“b is of type:”,type(b))

c = a + b

print(c)

print(“c is of type:”,type(c))

Output

a is of type: <class ‘int’>

b is of type: <class ‘float’>

200.6

c is of type: <class ‘float’>

NumPy

[image:]

Figure 1.38: NumPy Logo (Source: DataScienceCentral.com - Big Data News and Analysis)

Next to Pandas, NumPy is a powerful package for fast manipulation, which is required to handle data structures and various algorithms for scientific applications involving large numerical data.

The following are the features of NumPy:

	NumPy’s array is simply an object called ndarray, which supports multi-dimensional array manipulations.

	NumPy allows us to reshape, slice, and dice arrays of any size with fast processing capabilities.

	It performs various numerical functions, trigonometry functions such as sin, cos, tan, mean, median, and so on, and complex mathematical implementations.

	It provides outstanding support for Linear Algebra, Statistics, Probability, Fourier Transform, Laplace Transform, and more.

	NumPy works closely with other packages in Python environments such as SciPy and Matplotlib.

NumPy Cando

The capabilities of NumPy are illustrated in the following figure. Let’s discuss them one by one.

[image:]

Figure 1.39: Pandas - Date and Time Capabilities (Source: DataScienceCentral.com - Big Data News and Analysis)

Dimensions in the array

One-dimension

import numpy as np

print(“1-D”)

a = np.array([200,400,600,800,1000])

OEBPS/images/Figure-1.31.jpg

OEBPS/images/Figure-1.30.jpg

OEBPS/images/Figure-1.3.jpg

OEBPS/images/Figure-1.29.jpg

OEBPS/images/Figure-1.28.jpg

OEBPS/images/Figure-1.27.jpg

OEBPS/images/Figure-1.26.jpg

OEBPS/images/Figure-1.25.jpg

OEBPS/images/Figure-1.33.jpg

OEBPS/images/Figure-1.32.jpg

OEBPS/images/Figure-1.21.jpg

OEBPS/images/Figure-1.20.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewers

		Preface

		Errata

		Table of Contents

		1. Introduction to Python and its key packages for DS and ML Projects

		Introduction

		Structure

		Introduction to Python programming language

		Key features of Python

		Python programming IDEs and comparisons

		Jupyter Notebook

		PyCharm

		Spyder

		Installing Jupyter notebook

		Python libraries

		Pandas

		Panel + Data = Pandas

		Reshaping DataFrame

		Combining DataFrame

		Working with categorical data

		Encoding

		Date and time data

		Converting data types

		NumPy

		Python statistics libraries

		Working with various files in Python

		Conclusion

		Points to remember

		2. Python for Time Series Data Analysis

		Introduction

		Structure

		Data analysis and its benefits

		Benefits

		Advanced Analytics

		Python - the best choice for data analytics

		Time series data

		Time series data management

		Data lifecycle management (DLM)

		Data acquisition or collection

		Ingesting data

		Transforming data

		Storing data

		Actionable information

		Data remediation

		Data cleansing and preparation

		Handling missing and duplicate data

		Handling uniform format

		Handling categorical columns

		Transformation of data

		Handling time series data

		Exploratory data analysis (EDA)

		EDA for time series

		Conclusion

		Points to remember

		3. Time Series Analysis and its Components

		Introduction

		Structure

		Time series data analysis

		Significance of time series data

		Trend

		Seasonality

		Components of time series data

		Stationarity versus non-stationarity

		Augmented Dickey-Fuller (ADF)

		Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test

		Converting non-stationary data into stationary

		Conclusion

		Points to remember

		4. Time Series Analysis and Forecasting Opportunities in Various Industries

		Introduction

		Structure

		Opportunity and scope of TSA&F

		Scope of price prediction

		Scope of forecasting in healthcare for diagnosis

		Scope of predictive maintenance

		Challenges with TSA&F

		Case studies

		Price prediction in retail and use case

		EDA and Stationarity Analysis

		Forecasting in healthcare for diagnosis and use case

		Predictive maintenance and anomaly detection use case

		Conclusion

		Points to remember

		5. Exploring various aspects of Time Series Analysis and Forecasting

		Introduction

		Structure

		Understanding time series analysis (TSA)

		Statistical analysis

		The measure of central tendency

		Measure of variability

		Boxplots

		Histogram

		Inferential Statistics

		Regression analysis

		Linear model

		Hypothesis testing

		Confidence intervals

		Confidence intervals assessment at the speed of the motor

		Study the shapes of Time Series

		Transforms for TSA&F

		Box-Cox transformation

		Overview of Naive forecasting

		Conclusion

		Points to remember

		6. Exploring Time Series Models - AR, MA, ARMA, and ARIMA

		Introduction

		Structure

		Overview and time series models

		Statistical models for TSA&F

		Autoregressive (AR) Model

		Autoregressive (AR) Implementation

		Analysis of the P-value

		Auto-regression model for TSA&F with Python

		Moving Average (MA) Model

		Moving Average (MA) Implementation

		ARMA Model

		Auto-Regressive Integrated Moving Average (ARIMA)

		Time Series Analysis and Forecasting Process Workflow

		Pertinency of the model

		Conclusion

		Points to remember

		7. Understanding Exponential Smoothing and ETS Methods in TSA

		Introduction

		Structure

		Understanding Exponential Smoothing

		Exponential Smoothing implementation using Excel

		Exponential Smoothing types

		Triple Exponential Smoothing Model for TSA&F using Excel

		SES and DES Model implementation using Python

		Error - Trend-Seasonality (ETS)

		Exponentially Weighted Moving Averages (EWMA)

		Benefits of EWMA

		Limitations of EWMA

		EWMA Model for TSA&F with Excel (simple method)

		EWMA Model implementation using Python

		Conclusion

		Points to remember

		8. Exploring Vector Autoregression and its Subsets (VAR, VMA, and VARMA)

		Introduction

		Structure

		Understanding Vector Autoregression

		VAR implementation using Python

		1. Analyze the time series data and its characteristics

		2. Test for data stationarity using the ADF method

		Augmented Dickey-Fuller (ADF) test

		3. Train-test split

		4. Re-run the ADF test

		5. Apply the VAR algorithm

		6. Optimal order (p) selection process

		7. Analysis of Serial Correlation of Residuals [ScoR]

		8. Building forecast VAR model

		9. Model evaluation

		Vector Autoregression Moving - Average (VARMA)

		VARMA implementation using Python

		Vector Autoregression Moving-Average with Exogenous Regressors (VARMAX)

		VARMAX implementation using Python

		Seasonal Autoregressive Integrated Moving-Average (SARIMA)

		SARIMA implementation using Python

		SARIMAX implementation using Python

		Fractional-Autoregressive-Integrated-Moving Average model (FARIMA)

		Conclusion

		Points to remember

		9. Deep Learning for Time Series Analysis and Forecasting

		Introduction

		Structure

		Deep learning in time series analysis

		Neural Networks

		Artificial neural networks (ANN)

		Long short-term memory (LSTM)

		Convolutional neural networks (CNN)

		Recurrent Neural Network (RNN)

		Backpropagation through time (BPTT)

		Conclusion

		Points to remember

		10. Azure Time Series Insights

		Introduction

		Structure

		Prerequisites

		Understanding Azure - Time Series Insights (Azure-TSI) Gen2 component

		Components of Azure TSI and its major jobs

		Azure TSI – versions (Gen 1 and Gen 2)

		Azure TSI – Capabilities

		Exploring Azure TSI Data Storage

		High-level architecture of Azure TSI

		Creating Azure IoT hub instance

		Creating Azure TSI Gen2 environment

		Exploring Azure TSI Explorer

		Conclusion

		Points to remember

		11. AWS Forecast

		Introduction

		Structure

		Prerequisites

		Understanding Amazon Forecast Service (AFS)

		Workflow for Amazon Forecast Service

		Data Preparations

		Dataset Guidelines for Forecast

		Quality of Data

		Importing data

		Training data

		Forecast creation and selection

		Retrieve the Forecast

		Orchestration of Amazon Forecast

		Conclusion

		Points to remember

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Python and its key packages for DS and ML Projects

OEBPS/images/Figure-1.2.jpg

OEBPS/images/Figure-1.19.jpg

OEBPS/images/Figure-1.18.jpg

OEBPS/images/Figure-1.17.jpg

OEBPS/images/Figure-1.16.jpg

OEBPS/images/Figure-1.24.jpg

OEBPS/images/Figure-1.23.jpg

OEBPS/images/Figure-1.22.jpg

OEBPS/images/Figure-1.11.jpg

OEBPS/images/Figure-1.10.jpg

OEBPS/images/Figure-1.1.jpg

OEBPS/images/Figure-1.9.jpg

OEBPS/images/Figure-1.8.jpg

OEBPS/images/Figure-1.7.jpg

OEBPS/images/Figure-1.6.jpg

OEBPS/images/Figure-1.5.jpg

OEBPS/images/cover.jpg

OEBPS/images/Figure-1.15.jpg

OEBPS/images/Figure-1.14.jpg

OEBPS/images/Figure-1.13.jpg

OEBPS/images/Figure-1.12.jpg

OEBPS/images/qr.jpg

OEBPS/images/logo.jpg

OEBPS/images/Figure-1.4.jpg

OEBPS/images/line.jpg

OEBPS/images/Figure-1.39.jpg

OEBPS/images/Figure-1.38.jpg

OEBPS/images/Figure-1.37.jpg

OEBPS/images/Figure-1.36.jpg

OEBPS/images/Figure-1.35.jpg

OEBPS/images/Figure-1.34.jpg

OEBPS/images/qr1.jpg

