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ELECTROSTATICS, the name given to that department of electrical science in which the phenomena of electricity at rest are considered. Besides their ordinary condition all bodies are capable of being thrown into a physical state in which they are said to be electrified or charged with electricity. When in this condition they become sources of electric force, and the space round them in which this force is manifested is called an “electric field” (see Electricity). Electrified bodies exert mechanical forces on each other, creating or tending to create motion, and also induce electric charges on neighbouring surfaces.

The reader possessed of no previous knowledge of electrical phenomena will best appreciate the meaning of the terms employed by the aid of a few simple experiments. For this purpose the following apparatus should be provided:—(1) two small metal tea-trays and some clean dry tumblers, the latter preferably varnished with shellac varnish made with alcohol free from water; (2) two sheets of ebonite rather larger than the tea-trays; (3) a rod of sealing-wax or ebonite and a glass tube, also some pieces of silk and flannel; (4) a few small gilt pith balls suspended by dry silk threads; (5) a gold-leaf electroscope, and, if possible, a simple form of quadrant electrometer (see Electroscope and Electrometer); (6) some brass balls mounted on the ends of ebonite penholders, and a few tin canisters. With the aid of this apparatus, the principal facts of electrostatics can be experimentally verified, as follows:—

Experiment I.—Place one tea-tray bottom side uppermost upon three warm tumblers as legs. Rub the sheet of ebonite vigorously with warm flannel and lay it rubbed side downwards on the top of the tray. Touch the tray with the finger for an instant, and lift up the ebonite without letting the hand touch the tray a second time. The tray is then found to be electrified. If a suspended gilt pith ball is held near it, the ball will first be attracted and then repelled. If small fragments of paper are scattered on the tray and then the other tray held in the hand over them, they will fly up and down rapidly. If the knuckle is approached to the electrified tray, a small spark will be seen, and afterwards the tray will be found to be discharged or unelectrified. If the electrified tray is touched with the sealing-wax or ebonite rod, it will not be discharged, but if touched with a metal wire, the hand, or a damp thread, it is discharged at once. This shows that some bodies are conductors and others non-conductors or insulators of electricity, and that bodies can be electrified by friction and impart their electric charge to other bodies. A charged conductor supported on a non-conductor retains its charge. It is then said to be insulated.

Experiment II.—Arrange two tea-trays, each on dry tumblers as before. Rub the sheet of ebonite with flannel, lay it face downwards on one tray, touch that tray with the finger for a moment and lift up the ebonite sheet, rub it again, and lay it face downwards on the second tray and leave it there. Then take two suspended gilt pith balls and touch them (a) both against one tray; they will be found to repel each other; (b) touch one against one tray and the other against the other tray, and they will be found to attract each other. This proves the existence of two kinds of electricity, called positive and negative.  The first tea-tray is positively electrified, and the second negatively. If an insulated brass ball is touched against the first tray and then against the knob or plate of the electroscope, the gold leaves will diverge. If the ball is discharged and touched against the other tray, and then afterwards against the previously charged electroscope, the leaves will collapse. This shows that the two electricities neutralize each other’s effect when imparted equally to the same conductor.

Experiment III.—Let one tray be insulated as before, and the electrified sheet of ebonite held over it, but not allowed to touch the tray. If the ebonite is withdrawn without touching the tray, the latter will be found to be unelectrified. If whilst holding the ebonite sheet over the tray the latter is also touched with an insulated brass ball, then this ball when removed and tested with the electroscope will be found to be negatively electrified. The sign of the electrification imparted to the electroscope when so charged—that is, whether positive or negative—can be determined by rubbing the sealing-wax rod with flannel and the glass rod with silk, and approaching them gently to the electroscope one at a time. The sealing-wax so treated is electrified negatively or resinously, and the glass with positive or vitreous electricity. Hence if the electrified sealing-wax rod makes the leaves collapse, the electroscopic charge is positive, but if the glass rod does the same, the electroscopic charge is negative. Again, if, whilst holding the electrified ebonite over the tray, we touch the latter for a moment and then withdraw the ebonite sheet, the tray will be found to be positively electrified. The electrified ebonite is said to act by “electrostatic induction” on the tray, and creates on it two induced charges, one of positive and the other of negative electricity. The last goes to earth when the tray is touched, and the first remains when the tray is insulated and the ebonite withdrawn.

Experiment IV.—Place a tin canister on a warm tumbler and connect it by a wire with the gold-leaf electroscope. Charge positively a brass ball held on an ebonite stem, and introduce it, without touching, into the canister. The leaves of the electroscope will diverge with positive electricity. Withdraw the ball and the leaves will collapse. Replace the ball again and touch the outside of the canister; the leaves will collapse. If then the ball be withdrawn, the leaves will diverge a second time with negative electrification. If, before withdrawing the ball, after touching the outside of the canister for a moment the ball is touched against the inside of the canister, then on withdrawing it the ball and canister are found to be discharged. This experiment proves that when a charged body acts by induction on an insulated conductor it causes an electrical separation to take place; electricity of opposite sign is drawn to the side nearest the inducing body, and that of like sign is repelled to the remote side, and these quantities are equal in amount.

Seat of the Electric Charge.—So far we have spoken of electric charge as if it resided on the conductors which are electrified. The work of Benjamin Franklin, Henry Cavendish, Michael Faraday and J. Clerk Maxwell demonstrated, however, that all electric charge or electrification of conductors consists simply in the establishment of a physical state in the surrounding insulator or dielectric, which state is variously called electric strain, electric displacement or electric polarization. Under the action of the same or identical electric forces the intensity of this state in various insulators is determined by a quality of them called their dielectric constant, specific inductive capacity or inductivity. In the next place we must notice that electrification is a measurable magnitude and in electrostatics is estimated in terms of a unit called the electrostatic unit of electric quantity. In the absolute C.G.S. system this unit quantity is defined as follows:—If we consider a very small electrified spherical conductor, experiment shows that it exerts a repulsive force upon another similar and similarly electrified body. Cavendish and C.A. Coulomb proved that this mechanical force varies inversely as the square of the distance between the centres of the spheres. The unit of mechanical force in the “centimetre, gramme, second” (C.G.S.) system of units is the dyne, which is approximately equal to 1/981 part of the weight of one gramme. A very small sphere is said then to possess a charge of one electrostatic unit of quantity, when it repels another similar and similarly electrified body with a force of one dyne, the centres being at a distance of one centimetre, provided that the spheres are in vacuo or immersed in some insulator, the dielectric constant of which is taken as unity. If the two small conducting spheres are placed with centres at a distance d centimetres, and immersed in an insulator of dielectric constant K, and carry charges of Q and Q′ electrostatic units respectively, measured as above described, then the mechanical force between them is equal to QQ′/Kd² dynes. For constant charges and distances the mechanical force is inversely as the dielectric constant.

Electric Force.—If a small conducting body is charged with Q electrostatic units of electricity, and placed in any electric field at a point where the electric force has a value E, it will be subject to a mechanical force equal to QE dynes, tending to move it in the direction of the resultant electric force. This provides us with a definition of a unit of electric force, for it is the strength of an electric field at that point where a small conductor carrying a unit charge is acted upon by unit mechanical force, assuming the dielectric constant of the surrounding medium to be unity. To avoid unnecessary complications we shall assume this latter condition in all the following discussion, which is equivalent simply to assuming that all our electrical measurements are made in air or in vacuo.

Owing to the confusion introduced by the employment of the term force, Maxwell and other writers sometimes use the words electromotive intensity instead of electric force. The reader should, however, notice that what is generally called electric force is the analogue in electricity of the so-called acceleration of gravity in mechanics, whilst electrification or quantity of electricity is analogous to mass. If a mass of M grammes be placed in the earth’s field at a place where the acceleration of gravity has a value g centimetres per second, then the mechanical force acting on it and pulling it downwards is Mg dynes. In the same manner, if an electrified body carries a positive charge Q electrostatic units and is placed in an electric field at a place where the electric force or electromotive intensity has a value E units, it is urged in the direction of the electric force with a mechanical force equal to QE dynes. We must, however, assume that the charge Q is so small that it does not sensibly disturb the original electric field, and that the dielectric constant of the insulator is unity.

Faraday introduced the important and useful conception of lines and tubes of electric force. If we consider a very small conductor charged with a unit of positive electricity to be placed in an electric field, it will move or tend to move under the action of the electric force in a certain direction. The path described by it when removed from the action of gravity and all other physical forces is called a line of electric force. We may otherwise define it by saying that a line of electric force is a line so drawn in a field of electric force that its direction coincides at every point with the resultant electric force at that point. Let any line drawn in an electric field be divided up into small elements of length. We can take the sum of all the products of the length of each element by the resolved part of the electric force in its direction. This sum, or integral, is called the “line integral of electric force” or the electromotive force (E.M.F.) along this line. In some cases the value of this electromotive force between two points or conductors is independent of the precise path selected, and it is then called the potential difference (P.D.) of the two points or conductors. We may define the term potential difference otherwise by saying that it is the work done in carrying a small conductor charged with one unit of electricity from one point to the other in a direction opposite to that in which it would move under the electric forces if left to itself.

Electric Potential.—Suppose then that we have a conductor charged with electricity; we may imagine its surface to be divided up into small unequal areas, each of which carries a unit charge of electricity. If we consider lines of electric force to be drawn from the boundaries of these areas, they will cut up the space round the conductor into tubular surfaces called tubes of electric  force, and each tube will spring from an area of the conductor carrying a unit electric charge. Hence the charge on the conductor can be measured by the number of unit electric tubes springing from it. In the next place we may consider the charged body to be surrounded by a number of closed surfaces, such that the potential difference between any point on one surface and the earth is the same. These surfaces are called “equipotential” or “level surfaces,” and we may so locate them that the potential difference between two adjacent surfaces is one unit of potential; that is, it requires one absolute unit of work (1 erg) to move a small body charged with one unit of electricity from one surface to the next. These enclosing surfaces, therefore, cut up the space into shells of potential, and divide up the tubes of force into electric cells. The surface of a charged conductor is an equipotential surface, because when the electric charge is in equilibrium there is no tendency for electricity to move from one part to the other.

We arbitrarily call the potential of the earth zero, since all potential difference is relative and there is no absolute potential any more than absolute level. We call the difference of potential between a charged conductor and the earth the potential of the conductor. Hence when a body is charged positively its potential is raised above that of the earth, and when negatively it is lowered beneath that of the earth. Potential in a certain sense is to electricity as difference of level is to liquids or difference of temperature to heat. It must be noted, however, that potential is a mere mathematical concept, and has no objective existence like difference of level, nor is it capable per se of producing physical changes in bodies, such as those which are brought about by rise of temperature, apart from any question of difference of temperature. There is, however, this similarity between them. Electricity tends to flow from places of high to places of low potential, water to flow down hill, and heat to move from places of high to places of low temperature. Returning to the case of the charged body with the space around it cut up into electric cells by the tubes of force and shells of potential, it is obvious that the number of these cells is represented by the product QV, where Q is the charge and V the potential of the body in electrostatic units. An electrified conductor is a store of energy, and from the definition of potential it is clear that the work done in increasing the charge q of a conductor whose potential is v by a small amount dq, is vdq, and since this added charge increases in turn the potential, it is easy to prove that the work done in charging a conductor with Q units to a potential V units is ½QV units of work. Accordingly the number of electric cells into which the space round is cut up is equal to twice the energy stored up, or each cell contains half a unit of energy. This harmonizes with the fact that the real seat of the energy of electrification is the dielectric or insulator surrounding the charged conductor.1

We have next to notice three important facts in electrostatics and some consequences flowing therefrom.

(i) Electrical Equilibrium and Potential.—If there be any number of charged conductors in a field, the electrification on them being in equilibrium or at rest, the surface of each conductor is an equipotential surface. For since electricity tends to move between points or conductors at different potentials, if the electricity is at rest on them the potential must be everywhere the same. It follows from this that the electric force at the surface of the conductor has no component along the surface, in other words, the electric force at the bounding surface of the conductor and insulator is everywhere at right angles to it.

By the surface density of electrification on a conductor is meant the charge per unit of area, or the number of tubes of electric force which spring from unit area of its surface. Coulomb proved experimentally that the electric force just outside a conductor at any point is proportional to the electric density at that point. It can be shown that the resultant electric force normal to the surface at a point just outside a conductor is equal to 4πσ, where σ is the surface density at that point. This is usually called Coulomb’s Law.2

(ii) Seat of Charge.—The charge on an electrified conductor is wholly on the surface, and there is no electric force in the interior of a closed electrified conducting surface which does not contain any other electrified bodies. Faraday proved this experimentally (see Experimental Researches, series xi. § 1173) by constructing a large chamber or box of paper covered with tinfoil or thin metal. This was insulated and highly electrified. In the interior no trace of electric charge could be found when tested by electroscopes or other means. Cavendish proved it by enclosing a metal sphere in two hemispheres of thin metal held on insulating supports. If the sphere is charged and then the jacketing hemispheres fitted on it and removed, the sphere is found to be perfectly discharged.3 Numerous other demonstrations of this fact were given by Faraday. The thinnest possible spherical shell of metal, such as a sphere of insulator coated with gold-leaf, behaves as a conductor for static charge just as if it were a sphere of solid metal. The fact that there is no electric force in the interior of such a closed electrified shell is one of the most certainly ascertained facts in the science of electrostatics, and it enables us to demonstrate at once that particles of electricity attract and repel each other with a force which is inversely as the square of their distance.

We may give in the first place an elementary proof of the converse proposition by the aid of a simple lemma:—

Lemma.—If particles of matter attract one another according to the law of the inverse square the attraction of all sections of a cone for a particle at the vertex is the same. Definition.—The solid angle subtended by any surface at a point is measured by the quotient of its apparent surface by the square of its distance from that point. Hence the total solid angle round any point is 4π. The solid angles subtended by all normal sections of a cone at the vertex are therefore equal, and since the attractions of these sections on a particle at the vertex are proportional to their distances from the vertex, they are numerically equal to one another and to the solid angle of the cone.
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Let us then suppose a spherical shell O to be electrified. Select any point P in the interior and let a line drawn through it sweep out a small double cone (see fig. 1). Each cone cuts out an area on the surface equally inclined to the cone axis. The electric density on the sphere being uniform, the quantities of electricity on these areas are proportional to the areas, and if the electric force varies inversely as the square of the distance, the forces exerted by these two surface charges at the point in question are proportional to the solid angle of the little cone. Hence the forces due to the two areas at opposite ends of the chord are equal and opposed.

Hence we see that if the whole surface of the sphere is divided into pairs of elements by cones described through any interior point, the resultant force at that point must consist of the sum of pairs of equal and opposite forces, and is therefore zero. For the proof of the converse proposition we must refer the reader to the Electrical Researches of the Hon. Henry Cavendish, p. 419, or to Maxwell’s Treatise on Electricity and Magnetism, 2nd ed., vol. i. p. 76, where Maxwell gives an elegant proof that if the force in the interior of a closed conductor is zero, the law of the force must be that of the inverse square of the distance.4 From this fact it follows that we can shield any conductor entirely from external influence by other charged conductors by enclosing it in a metal case. It is not even necessary that  this envelope should be of solid metal; a cage made of fine metal wire gauze which permits objects in its interior to be seen will yet be a perfect electrical screen for them. Electroscopes and electrometers, therefore, standing in proximity to electrified bodies can be perfectly shielded from influence by enclosing them in cylinders of metal gauze.

Even if a charged and insulated conductor, such as an open canister or deep cup, is not perfectly closed, it will be found that a proof-plane consisting of a small disk of gilt paper carried at the end of a rod of gum-lac will not bring away any charge if applied to the deep inside portions. In fact it is curious to note how large an opening may be made in a vessel which yet remains for all electrical purposes “a closed conductor.” Maxwell (Elementary Treatise, &c., p. 15) ingeniously applied this fact to the insulation of conductors. If we desire to insulate a metal ball to make it hold a charge of electricity, it is usual to do so by attaching it to a handle or stem of glass or ebonite. In this case the electric charge exists at the point where the stem is attached, and there leakage by creeping takes place. If, however, we employ a hollow sphere and let the stem pass through a hole in the side larger than itself, and attach the end to the interior of the sphere, then leakage cannot take place.

Another corollary of the fact that there is no electric force in the interior of a charged conductor is that the potential in the interior is constant and equal to that at the surface. For by the definition of potential it follows that the electric force in any direction at any point is measured by the space rate of change of potential in that direction or E = ± dV/dx. Hence if the force is zero the potential V must be constant.

(iii.) Association of Positive and Negative Electricities.—The third leading fact in electrostatics is that positive and negative electricity are always created in equal quantities, and that for every charge, say, of positive electricity on one conductor there must exist on some other bodies an equal total charge of negative electricity. Faraday expressed this fact by saying that no absolute electric charge could be given to matter. If we consider the charge of a conductor to be measured by the number of tubes of electric force which proceed from it, then, since each tube must end on some other conductor, the above statement is equivalent to saying that the charges at each end of a tube of electric force are equal.

The facts may, however, best be understood and demonstrated by considering an experiment due to Faraday, commonly called the ice pail experiment, because he employed for it a pewter ice pail (Exp. Res. vol. ii. p. 279, or Phil. Mag. 1843, 22). On the plate of a gold-leaf electroscope place a metal canister having a loose lid. Let a metal ball be suspended by a silk thread, and the canister lid so fixed to the thread that when the lid is in place the ball hangs in the centre of the canister. Let the ball and lid be removed by the silk, and let a charge, say, of positive electricity (+Q) be given to the ball. Let the canister be touched with the finger to discharge it perfectly. Then let the ball be lowered into the canister. It will be found that as it does so the gold-leaves of the electroscope diverge, but collapse again if the ball is withdrawn. If the ball is lowered until the lid is in place, the leaves take a steady deflection. Next let the canister be touched with the finger, the leaves collapse, but diverge again when the ball is withdrawn. A test will show that in this last case the canister is left negatively electrified. If before the ball is withdrawn, after touching the outside of the canister with the finger, the ball is tilted over to make it touch the inside of the canister, then on withdrawing it the canister and ball are found to be perfectly discharged. The explanation is as follows: the charge (+Q) of positive electricity on the ball creates by induction an equal charge (−Q) on the inside of the canister when placed in it, and repels to the exterior surface of the canister an equal charge (+Q). On touching the canister this last charge goes to earth. Hence when the ball is touched against the inside of the canister before withdrawing it a second time, the fact that the system is found subsequently to be completely discharged proves that the charge − Q induced on the inside of the canister must be exactly equal to the charge +Q on the ball, and also that the inducing action of the charge +Q on the ball created equal quantities of electricity of opposite sign, one drawn to the inside and the other repelled to the outside of the canister.

Electrical Capacity.—We must next consider the quality of a conductor called its electrical capacity. The potential of a conductor has already been defined as the mechanical work which must be done to bring up a very small body charged with a unit of positive electricity from the earth’s surface or other boundary taken as the place of zero potential to the surface of this conductor in question. The mathematical expression for this potential can in some cases be calculated or predetermined.



Thus, consider a sphere uniformly charged with Q units of positive electricity. It is a fundamental theorem in attractions that a thin spherical shell of matter which attracts according to the law of the inverse square acts on all external points as Potential of a sphere. if it were concentrated at its centre. Hence a sphere having a charge Q repels a unit charge placed at a distance x from its centre with a force Q/x² dynes, and therefore the work W in ergs expended in bringing the unit up to that point from an infinite distance is given by the integral

W = ∫x∞ Qx−2dx = Q/x

(1).

Hence the potential at the surface of the sphere, and therefore the potential of the sphere, is Q/R, where R is the radius of the sphere in centimetres. The quantity of electricity which must be given to the sphere to raise it to unit potential is therefore R electrostatic units. The capacity of a conductor is defined to be the charge required to raise its potential to unity, all other charged conductors being at an infinite distance. This capacity is then a function of the geometrical dimensions of the conductor, and can be mathematically determined in certain cases. Since the potential of a small charge of electricity dQ at a distance r is equal to dQ/r, and since the potential of all parts of a conductor is the same in those cases in which the distribution of surface density of electrification is uniform or symmetrical with respect to some point or axis in the conductor, we can calculate the potential by simply summing up terms like σdS/r, where dS is an element of surface, σ the surface density of electricity on it, and r the distance from the symmetrical centre. The capacity is then obtained as the quotient of the whole charge by this potential. Thus the distribution of electricity on a sphere in free space must be uniform, and all parts of the charge are at an Capacity of a sphere. equal distance R from the centre. Accordingly the potential at the centre is Q/R. But this must be the potential of the sphere, since all parts are at the same potential V. Since the capacity C is the ratio of charge to potential, the capacity of the sphere in free space is Q/V = R, or is numerically the same as its radius reckoned in centimetres.

We can thus easily calculate the capacity of a long thin wire like a telegraph wire far removed from the earth, as follows: Let 2r be the diameter of the wire, l its length, and σ the uniform Capacity of a thin rod. surface electric density. Then consider a thin annulus of the wire of width dx; the charge on it is equal to 2πrσ/dx units, and the potential V at a point on the axis at a distance x from the annulus due to this elementary charge is




	V = 2 ∫ l/2 0

	2πrσ
	dx = 4πrσ { loge(½l + √r² + ¼l²) − loger}.



	√(r² + x²)






If, then, r is small compared with l, we have V = 4πrσloge l/r. But the charge is Q = 2πrσ, and therefore the capacity of the thin wire is given by

C = ½ loge l/r

(2).

A more difficult case is presented by the ellipsoid5. We have first to determine the mode in which electricity distributes itself on a conducting ellipsoid in free space. It must be such a distribution that the potential in the interior will be Potential of an ellipsoid. constant, since the electric force must be zero. It is a well-known theorem in attractions that if a shell is made of gravitative matter whose inner and outer surfaces are similar ellipsoids, it exercises no attraction on a particle of matter in its interior6. Consider then an ellipsoidal shell the axes of whose bounding surfaces are (a, b, c) and (a + da), (b + db), (c + dc), where da/a = db/b = dc/c = μ. The potential of such a shell at any internal point is constant, and the equipotential surfaces for external space are ellipsoids confocal with the ellipsoidal shell. Hence if we distribute electricity over an ellipsoid, so that its density is everywhere proportional to the thickness of a shell formed by describing round  the ellipsoid a similar and slightly larger one, that distribution will be in equilibrium and will produce a constant potential throughout the interior. Thus if σ is the surface density, δ the thickness of the shell at any point, and ρ the assumed volume density of the matter of the shell, we have σ = Aδρ. Then the quantity of electricity on any element of surface dS is A times the mass of the corresponding element of the shell; and if Q is the whole quantity of electricity on the ellipsoid, Q = A times the whole mass of the shell. This mass is equal to 4πabcρμ; therefore Q = A4πabcρμ and δ = μp, where p is the length of the perpendicular let fall from the centre of the ellipsoid on the tangent plane. Hence

σ = Qp / 4πabc

(3).

Accordingly for a given ellipsoid the surface density of free distribution of electricity on it is everywhere proportional to the length of the perpendicular let fall from the centre on Capacity of an ellipsoid. the tangent plane at that point. From this we can determine the capacity of the ellipsoid as follows: Let p be the length of the perpendicular from the centre of the ellipsoid, whose equation is x²/a² + y²/b² + z²/c² = 1 to the tangent plane at x, y, z. Then it can be shown that 1/p² = x²/a4 + y²/b4 + z²/c4 (see Frost’s Solid Geometry, p. 172). Hence the density σ is given by




	σ =
	Q
	 
	1
	.



	4πabc
	√(x² / a4 + y² / b4 + z² / c4)





and the potential at the centre of the ellipsoid, and therefore its potential as a whole is given by the expression,




	V = ∫

	σdS
	=
	Q
	∫
	dS



	r
	4πabc
	r √(x² / a4 + y² / b4 + z² / c4)





(4).

Accordingly the capacity C of the ellipsoid is given by the equation




	1
	=
	1
	∫
	dS



	C
	4πabc
	√(x² + y² + z²) √(x² / a4 + y² / b4 + z² / c4)





(5).

It has been shown by Professor Chrystal that the above integral may also be presented in the form,7




	1
	= ½ ∫∞0

	dλ



	C
	√{(a² + λ) (b² + λ) (c² + λ)}





(6).

The above expressions for the capacity of an ellipsoid of three unequal axes are in general elliptic integrals, but they can be evaluated for the reduced cases when the ellipsoid is one of revolution, and hence in the limit either takes the form of a long rod or of a circular disk.

Thus if the ellipsoid is one of revolution, and ds is an element of arc which sweeps out the element of surface dS, we have




	dS = 2πyds = 2πydx / (

	dx
	
) = 2πydx / (

	py
	
) =
	2πb²
	dx.



	ds
	b
	p





Hence, since σ = Qp / 4πab², σdS = Qdx / 2a.

Accordingly the distribution of electricity is such that equal parallel slices of the ellipsoid of revolution taken normal to the axis of revolution carry equal charges on their curved surface.

The capacity C of the ellipsoid of revolution is therefore given by the expression




	1
	=
	1
	∫
	dx



	C
	2a
	√(x² + y²)





(7).

If the ellipsoid is one of revolution round the major axis a (prolate) and of eccentricity e, then the above formula reduces to




	1
	=
	1
	logε (

	1 + e
	)



	C1

	2ae
	1 − e





(8).

Whereas if it is an ellipsoid of revolution round the minor axis b (oblate), we have




	1
	=
	sin−1ae



	C²
	ae





(9).

In each case we have C = a when e = 0, and the ellipsoid thus becomes a sphere.

In the extreme case when e = 1, the prolate ellipsoid becomes a long thin rod, and then the capacity is given by

C1 = a / logε 2a/b

(10),

which is identical with the formula (2) already obtained. In the other extreme case the oblate spheroid becomes a circular disk when e = 1, and then the capacity C2 = 2a/π. This last result shows that the capacity of a thin disk is 2/π = 1/1.571 of that of a sphere of the same radius. Cavendish (Elec. Res. pp. 137 and 347) determined in 1773 experimentally that the capacity of a sphere was 1.541 times that of a disk of the same radius, a truly remarkable result for that date.

Three other cases of practical interest present themselves, viz. the capacity of two concentric spheres, of two coaxial cylinders and of two parallel planes.

Consider the case of two concentric spheres, a solid one enclosed in a hollow one. Let R1 be the radius of the inner sphere, R2 the inside radius of the outer sphere, and R2 the outside radius of the outer spherical shell. Let a charge +Q be Capacity of two concentric spheres. given to the inner sphere. Then this produces a charge −Q on the inside of the enclosing spherical shell, and a charge +Q on the outside of the shell. Hence the potential V at the centre of the inner sphere is given by V = Q/R1 − Q/R2 + Q/R3. If the outer shell is connected to the earth, the charge +Q on it disappears, and we have the capacity C of the inner sphere given by

C = 1/R1 − 1/R2 = (R2 − R1) / R1R2

(11).

Such a pair of concentric spheres constitute a condenser (see Leyden Jar), and it is obvious that by making R2 nearly equal to R1, we may enormously increase the capacity of the inner sphere. Hence the name condenser.

The other case of importance is that of two coaxial cylinders. Let a solid circular sectioned cylinder of radius R1 be enclosed in a coaxial tube of inner radius R2. Then when the inner Capacity of two coaxial cylinders. cylinder is at potential V1 and the outer one kept at potential V2 the lines of electric force between the cylinders are radial. Hence the electric force E in the interspace varies inversely as the distance from the axis. Accordingly the potential V at any point in the interspace is given by

E = −dV/dR = A/R or V = −A ∫ R−1 dR,

(12),

where R is the distance of the point in the interspace from the axis, and A is a constant. Hence V2 − V1 = −A log R2/R1. If we consider a length l of the cylinder, the charge Q on the inner cylinder is Q = 2πR1lσ, where σ is the surface density, and by Coulomb’s law σ = E1/4π, where E1 = A/R1 is the force at the surface of the inner cylinder.

Accordingly Q = 2πR1lA / 4πR1 = Al/2. If then the outer cylinder be at zero potential the potential V of the inner one is

V = A log (R2/R1), and its capacity C = l/2 log R2/R1.

This formula is important in connexion with the capacity of electric cables, which consist of a cylindrical conductor (a wire) enclosed in a conducting sheath. If the dielectric or separating insulator has a constant K, then the capacity becomes K times as great.

The capacity of two parallel planes can be calculated at once if we neglect the distribution of the lines of force near the edges of the plates, and assume that the only field is the uniform field Capacity of two parallel planes. between the plates. Let V1 and V2 be the potentials of the plates, and let a charge Q be given to one of them. If S is the surface of each plate, and d their distance, then the electric force E in the space between them is E = (V1 − V2)/d. But if σ is the surface density, E = 4πσ, and σ = Q/S. Hence we have

(V1 − V2) d = 4πQ / S or C = Q / (V1 − V2) = S / 4πd

(13).

In this calculation we neglect altogether the fact that electric force distributed on curved lines exists outside the interspace between the plates, and these lines in fact extend from the back of one “Edge effect.” plate to that of the other. G.R. Kirchhoff (Gesammelte Abhandl. p. 112) has given a full expression for the capacity C of two circular plates of thickness t and radius r placed at any distance d apart in air from which the edge effect can be calculated. Kirchhoff’s expression is as follows:—




	C =
	πr²
	+
	r
	
{ d logε

	16πr (d + t)
	+ t logε

	d + t
	}



	4πd
	4πd
	εd²
	t





(14).

In the above formula ε is the base of the Napierian logarithms. The first term on the right-hand side of the equation is the expression for the capacity, neglecting the curved edge distribution of electric force, and the other terms take into account, not only the uniform field between the plates, but also the non-uniform field round the edges and beyond the plates.

In practice we can avoid the difficulty due to irregular distribution of electric force at the edges of the plate by the use of a guard plate as first suggested by Lord Kelvin.8 If a large plate has a circular hole cut in it, and this is nearly filled up by a Guard plates. circular plate lying in the same plane, and if we place another large plate parallel to the first, then the electric field between this second plate and the small circular plate is nearly uniform; and if S is the area of the small plate and d its distance from the opposed plate, its capacity may be calculated by the simple formula C = S / 4πd. The outer larger plate in which the hole is cut is called the “guard plate,” and must be kept at the same potential as the smaller inner or “trap-door plate.” The same arrangement can be supplied to a pair of coaxial cylinders. By placing metal plates on either side of a larger sheet of dielectric or insulator we can construct a condenser of relatively large capacity. The instrument known as a Leyden jar (q.v.) consists of a glass bottle coated within and without for three parts of the way up with tinfoil.



If we have a number of such condensers we can combine them in “parallel” or in “series.” If all the plates on one side are connected together and also those on the other, the condensers are joined in parallel. If C1, C2, C3, &c., are the separate Systems of condensers. capacities, then Σ(C) = C1 + C2 + C3 + &c., is the total capacity in parallel. If the condensers are so joined that the inner coating of one is connected to the outer coating of the next, they are said to be in series. Since then they are all charged with the same quantity of electricity, and the total over all potential difference V is the sum of each of the individual potential differences V1, V2, V3, &c., we have

Q = C1V1 = C2V2 = C3V3 = &c., and V = V1 + V2 + V3 + &c.

The resultant capacity is C = Q/V, and

C = 1 / (1/C1 + 1/C2 + 1/C3 + &c.) = 1 / Σ(1/C)

(15).

These rules provide means for calculating the resultant capacity when any number of condensers are joined up in any way.

If one condenser is charged, and then joined in parallel with another uncharged condenser, the charge is divided between them in the ratio of their capacities. For if C1 and C2 are the capacities and Q1 and Q2 are the charges after contact, then Q1/C1 and Q2/C2 are the potential differences of the coatings and must be equal. Hence Q1/C1 = Q2/C2 or Q1/Q2 = C1/C2. It is worth noting that if we have a charged sphere we can perfectly discharge it by introducing it into the interior of another hollow insulated conductor and making contact. The small sphere then becomes part of the interior of the other and loses all charge.

Measurement of Capacity.—Numerous methods have been devised for the measurement of the electrical capacity of conductors in those cases in which it cannot be determined by calculation. Such a measurement may be an absolute determination or a relative one. The dimensions of a capacity in electrostatic measure is a length (see Units, Physical). Thus the capacity of a sphere in electrostatic units (E.S.U.) is the same as the number denoting its radius in centimetres. The unit of electrostatic capacity is therefore that of a sphere of 1 cm. radius.9 This unit is too small for practical purposes, and hence a unit of capacity 900,000 greater, called a microfarad, is generally employed. Thus for instance the capacity in free space of a sphere 2 metres in diameter would be 100/900,000 = 1/9000 of a microfarad. The electrical capacity of the whole earth considered as a sphere is about 800 microfarads. An absolute measurement of capacity means, therefore, a determination in E.S. units made directly without reference to any other condenser. On the other hand there are numerous methods by which the capacities of condensers may be compared and a relative measurement made in terms of some standard.

One well-known comparison method is that of C.V. de Sauty. The two condensers to be compared are connected in the branches of a Wheatstone’s Bridge (q.v.) and the other two arms completed with variable resistance boxes. These arms Relative determinations. are then altered until on raising or depressing the battery key there is no sudden deflection either way of the galvanometer. If R1 and R2 are the arms’ resistances and C1 and C2 the condenser capacities, then when the bridge is balanced we have R1 : R2 = C1 : C2.

Another comparison method much used in submarine cable work is the method of mixtures, originally due to Lord Kelvin and usually called Thomson and Gott’s method. It depends on the principle that if two condensers of capacity C1 and C2 are respectively charged to potentials V1 and V2, and then joined in parallel with terminals of opposite charge together, the resulting potential difference of the two condensers will be V, such that




	V =
	(C1V1 − C2V2)



	(C + C)





(16);

and hence if V is zero we have C1 : C2 = V2 : V1.

The method is carried out by charging the two condensers to be compared at the two sections of a high resistance joining the ends of a battery which is divided into two parts by a movable contact.10 This contact is shifted until such a point is found by trial that the two condensers charged at the different sections and then joined as above described and tested on a galvanometer show no charge. Various special keys have been invented for performing the electrical operations expeditiously.

A simple method for condenser comparison is to charge the two condensers to the same voltage by a battery and then discharge them successively through a ballistic galvanometer (q.v.) and observe the respective “throws” or deflections of the coil or needle. These are proportional to the capacities. For the various precautions necessary in conducting the above tests special treatises on electrical testing must be consulted.
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	Fig. 2.





In the absolute determination of capacity we have to measure the ratio of the charge of a condenser to its plate potential difference. One of the best methods for doing this is to charge the condenser by the known voltage of a battery, and then Absolute determinations. discharge it through a galvanometer and repeat this process rapidly and successively. If a condenser of capacity C is charged to potential V, and discharged n times per second through a galvanometer, this series of intermittent discharges is equivalent to a current nCV. Hence if the galvanometer is calibrated by a potentiometer (q.v.) we can determine the value of this current in amperes, and knowing the value of n and V thus determine C. Various forms of commutator have been devised for effecting this charge and discharge rapidly by J.J. Thomson, R.T. Glazebrook, J.A. Fleming and W.C. Clinton and others.11 One form consists of a tuning-fork electrically maintained in vibration of known period, which closes an electric contact at every vibration and sets another electromagnet in operation, which reverses a switch and moves over one terminal of the condenser from a battery to a galvanometer contact. In another form, a revolving contact is used driven by an electric motor, which consists of an insulating disk having on its surface slips of metal and three wire brushes a, b, c (see fig. 2) pressing against them. The metal slips are so placed that, as the disk revolves, the middle brush, connected to one terminal of the condenser C, is alternately put in conductive connexion with first one and then the other outside brush, which are joined respectively to the battery B and galvanometer G terminals. From the speed of this motor the number of commutations per second can be determined. The above method is especially useful for the determinations of very small capacities of the order of 100 electrostatic units or so and upwards.



Dielectric constant.—Since all electric charge consists in a state of strain or polarization of the dielectric, it is evident that the physical state and chemical composition of the insulator must be of great importance in determining electrical phenomena. Cavendish and subsequently Faraday discovered this fact, and the latter gave the name “specific inductive capacity,” or “dielectric constant,” to that quality of an insulator which determines the charge taken by a conductor embedded in it when charged to a given potential. The simplest method of determining it numerically is, therefore, that adopted by Faraday.12 He constructed two equal condensers, each consisting of a metal ball enclosed in a hollow metal sphere, and he provided also certain hemispherical shells of shellac, sulphur, glass, resin, &c., which he could so place in one condenser between the ball and enclosing sphere that it formed a condenser with solid dielectric. He then determined the ratio of the capacities of the two condensers, one with air and the other with the solid dielectric. This gave the dielectric constant K of the material. Taking the dielectric constant of air as unity he obtained the following values, for shellac K = 2.0, glass K = 1.76, and sulphur K = 2.24.

Table I.—Dielectric Constants (K) of Solids (K for Air = 1).




	Substance.
	K.
	Authority.



	Glass, double extra dense flint, density 4.5
	9.896
	J. Hopkinson



	Glass, light flint, density 3.2
	6.72
	   ”



	Glass, hard crown, density 2.485
	6.61
	   ”



	Sulphur
	2.24
	M. Faraday



	2.88
	Coullner



	3.84
	L. Boltzmann



	4.0
	P.J. Curie



	2.94
	P.R. Blondlot



	Ebonite
	2.05
	Rosetti



	3.15
	Boltzmann



	2.21
	Schiller



	2.86
	Elsas



	India-rubber, pure brown
	2.12
	Schiller



	India-rubber, vulcanized, grey
	2.69
	  ”



	Gutta-percha
	2.462
	J.E. H. Gordon



	Paraffin
	1.977
	Gibson and Barclay



	2.32
	Boltzmann



	2.29
	J. Hopkinson



	1.99
	Gordon



	Shellac
	2.95
	Wällner



	2.74
	Gordon



	3.04
	A.A. Winkelmann



	Mica
	6.64
	I. Klemenčič



	8.00
	P.J. Curie



	7.98
	E.M.L. Bouty



	5.97
	Elsas



	Quartz—
	 
	 



	    along optic axis
	4.55
	P.J. Curie



	    perp. to optic axis
	4.49
	P.J. Curie



	Ice at −23°
	78.0
	Bouty







Since Faraday’s time, by improved methods, but depending essentially upon the same principles, an enormous number of determinations of the dielectric constants of various insulators, solid, liquid and gaseous, have been made (see tables I., II., III. and IV.). There are very considerable differences between the values assigned by different observers, sometimes no doubt due to differences in method, but in most cases unquestionably depending on variations in the quality of the specimens examined. The value of the dielectric constant is greatly affected by the temperature and the frequency of the applied electric force.

Table II.—Dielectric Constant (K) of Liquids.




	Liquid.
	K.
	Authority.



	Water at 17° C.
	80.88
	F. Heerwagen



	  ”   ”   25° C.
	75.7
	E.B. Rosa



	  ”   ”   25.3° C.
	78.87
	Franke



	Olive oil
	 3.16
	Hopkinson



	Castor oil
	 4.78
	   ”



	Turpentine
	 2.15
	P.A. Silow



	   ”
	 2.23
	Hopkinson



	Petroleum
	 2.072
	Silow



	   ”
	 2.07
	Hopkinson



	Ethyl alcohol at 25° C.
	25.7
	Rosa



	Ethyl ether
	 4.57
	Doule



	  ”   ”
	 4.8
	Bouty



	Acetic acid
	 9.7
	Franke





Table III.—Dielectric Constant of some Bodies at a very low Temperature (−185° C.) (Fleming and Dewar).




	Substance.
	K

at 15° C.
	K

at −185°C.



	Water
	80
	2.4 to 2.9



	Formic acid
	62
	2.41



	Glycerine
	56
	3.2



	Methyl alcohol
	34
	3.13



	Nitrobenzene
	32
	2.6



	Ethyl alcohol
	25
	3.1



	Acetone
	21.85
	2.62



	Ethyl nitrate
	17.7
	2.73



	Amyl alcohol
	16
	2.14



	Aniline
	 7.5
	2.92



	Castor oil
	 4.78
	2.19



	Ethyl ether
	 4.25
	2.31





The above determinations at low temperature were made with either a steady or a slowly alternating electric force applied a hundred times a second. They show that the dielectric constant of a liquid generally undergoes great reduction in value when the liquid is frozen and reduced to a low temperature.13

The dielectric constants of gases have been determined by L. Boltzmann and I. Klemenčič as follows:—

Table IV.—Dielectric Constants (K) of Gases at 15° C. and 760 mm. Vacuum = 1.




	Gas.
	Dielectric

Constant

K.
	√K.
	Optical

Refractive

Index.

μ.



	Air
	1.000590
	1.000295
	1.000293



	Hydrogen
	1.000264
	1.000132
	1.000139



	Carbon dioxide
	1.000946
	1.000475
	1.000454



	Carbon monoxide
	1.000690
	1.000345
	1.000335



	Nitrous oxide
	1.000994
	1.000497
	1.000516



	Ethylene
	1.001312
	1.000656
	1.000720



	Marsh gas (methane)
	1.000944
	1.000478
	1.000442



	Carbon bisulphide
	1.002900
	1.001450
	1.001478



	Sulphur dioxide
	1.00954
	1.004770
	1.000703



	Ether
	1.00744
	1.003720
	1.00154



	Ethyl chloride
	1.01552
	1.007760
	1.001174



	Ethyl bromide
	1.01546
	1.007730
	1.00122





In general the dielectric constant is reduced with decrease of temperature towards a certain limiting value it would attain at the absolute zero. This variation, however, is not always linear. In some cases there is a very sudden drop at or below a certain temperature to a much lower value, and above and below the point the temperature variation is small. There is also a large difference in most cases between the value for a steadily applied electric force and a rapidly reversed or intermittent force—in the last case a decrease with increase of frequency. Maxwell (Elec. and Magn. vol. ii. § 788) showed that the square root of the dielectric constant should be the same number as the refractive index for waves of the same frequency (see Electric Waves). There are very few substances, however, for which the optical refractive index has the same value as K for steady or slowly varying electric force, on account of the great variation of the value of K with frequency.

There is a close analogy between the variation of dielectric constant of an insulator with electric force frequency and that of the rigidity or stiffness of an elastic body with the frequency of applied mechanical stress. Thus pitch is a soft and yielding body under steady stress, but a bar of pitch if struck gives a musical note, which shows that it vibrates and is therefore stiff or elastic for high frequency stress.

Residual Charges in Dielectrics.—In close connexion with this lies the phenomenon of residual charge in dielectrics.14 If a glass Leyden jar is charged and then discharged and allowed to stand awhile, a second discharge can be obtained from it, and in like manner a third, and so on. The reappearance of the residual charge is promoted by tapping the glass. It has been shown that this behaviour of dielectrics can be imitated by a mechanical model consisting of a series of perforated pistons placed in a tube of oil with spiral springs between each piston.15 If the pistons are depressed and then released, and then the upper piston fixed awhile, a second discharge can be obtained from it, and the mechanical stress-strain diagram of the model is closely similar to the discharge curve of a dielectric. R.H.A. Kohlrausch called attention to the close analogy between residual charge and the elastic recovery of strained bodies such as twisted wire or glass threads. If a charged condenser is suddenly discharged and then insulated, the reappearance of a potential difference between its coatings is analogous to the reappearance of a torque in the case of a glass fibre which has been twisted, released suddenly, and then gripped again at the ends.


For further information on the qualities of dielectrics the reader is referred to the following sources:—J. Hopkinson, “On the Residual Charge of the Leyden Jar,” Phil. Trans., 1876, 166 [ii.], p. 489, where it is shown that tapping the glass of a Leyden jar permits the reappearance of the residual charge; “On the Residual Charge of  the Leyden Jar,” ib. 167 [ii.], p. 599, containing many valuable observations on the residual charge of Leyden jars; W.E. Ayrton and J. Perry, “A Preliminary Account of the Reduction of Observations on Strained Material, Leyden Jars and Voltameters,” Proc. Roy. Soc., 1880, 30, p. 411, showing experiments on residual charge of condensers and a comparison between the behaviour of dielectrics and glass fibres under torsion. In connexion with this paper the reader may also be referred to one by L. Boltzmann, “Zur Theorie der elastischen Nachwirkung,” Wien. Acad. Sitz.-Ber., 1874, 70.

Distribution of Electricity on Conductors.—We now proceed to consider in more detail the laws which govern the distribution of electricity at rest upon conductors. It has been shown above that the potential due to a charge of q units placed on a very small sphere, commonly called a point-charge, at any distance x is q/x. The mathematical importance of this function called the potential is that it is a scalar quantity, and the potential at any point due to any number of point charges q1, q2, q3, &c., distributed in any manner, is the sum of them separately, or

q1/x1 + q2/x2 + q3/x3 + &c. = Σ (q/x) = V

(17),

where x1, x2, x3, &c., are the distances of the respective point charges from the point in question at which the total potential is required. The resultant electric force E at that point is then obtained by differentiating V, since E = −dV / dx, and E is in the direction in which V diminishes fastest. In any case, therefore, in which we can sum up the elementary potentials at any point we can calculate the resultant electric force at the same point.

We may describe, through all the points in an electric field which have the same potential, surfaces called equipotential surfaces, and these will be everywhere perpendicular or orthogonal to the lines of electric force. Let us assume the field divided up into tubes of electric force as already explained, and these cut normally by equipotential surfaces. We can then establish some important properties of these tubes and surfaces. At each point in the field the electric force can have but one resultant value. Hence the equipotential surfaces cannot cut each other. Let us suppose any other surface described in the electric field so as to cut the closely compacted tubes. At each point on this surface the resultant force has a certain value, and a certain direction inclined at an angle θ to the normal to the selected surface at that point. Let dS be an element of the surface. Then the quantity E cos θdS is the product of the normal component of the force and an element of the surface, and if this is summed up all over the surface we have the total electric flux or induction through the surface, or the surface integral of the normal force mathematically expressed by ∫E cos θdS, provided that the dielectric constant of the medium is unity.
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We have then a very important theorem as follows:—If any closed surface be described in an electric field which wholly encloses or wholly excludes electrified bodies, then the total flux through this surface is equal to 4π- times the total quantity of electricity within it.16 This is commonly called Stokes’s theorem. The proof is as follows:—Consider any point-charge E of electricity included in any surface S, S, S (see fig. 3), and describe through it as centre a cone of small solid angle dω cutting out of the enclosing surface in two small areas dS and dS′ at distances x and x′. Then the electric force due to the point charge q at distance x is q/x, and the resolved part normal to the element of surface dS is q cosθ / x². The normal section of the cone at that point is equal to dS cosθ, and the solid angle dω is equal to dS cosθ / x². Hence the flux through dS is qdω. Accordingly, since the total solid angle round a point is 4π, it follows that the total flux through the closed surface due to the single point charge q is 4πq, and what is true for one point charge is true for any collection forming a total charge Q of any form. Hence the total electric flux due to a charge Q through an enclosing surface is 4πQ, and therefore is zero through one enclosing no electricity.

Stokes’s theorem becomes an obvious truism if applied to an incompressible fluid. Let a source of fluid be a point from which an incompressible fluid is emitted in all directions. Close to the source the stream lines will be radial lines. Let a very small sphere be described round the source, and let the strength of the source be defined as the total flow per second through the surface of this small sphere. Then if we have any number of sources enclosed by any surface, the total flow per second through this surface is equal to the total strengths of all the sources. If, however, we defined the strength of the source by the statement that the strength divided by the square of the distance gives the velocity of the liquid at that point, then the total flux through any enclosing surface would be 4π times the strengths of all the sources enclosed. To every proposition in electrostatics there is thus a corresponding one in the hydrokinetic theory of incompressible liquids.

Let us apply the above theorem to the case of a small parallel-epipedon or rectangular prism having sides dx, dy, dz respectively, its centre having co-ordinates (x, y, z). Its angular points have then co-ordinates (x ± ½dx, y ± ½dy, z ± ½dz). Let this rectangular prism be supposed to be wholly filled up with electricity of density ρ; then the total quantity in it is ρ dx dy dz. Consider the two faces perpendicular to the x-axis. Let V be the potential at the centre of the prism, then the normal forces on the two faces of area dy·dx are respectively




	− (

	dV
	+ ½
	d²V
	dx) and (

	dV
	− ½
	d²V
	dx),



	dx
	dx²
	dx
	dx²





and similar expressions for the normal forces to the other pairs of faces dx·dy, dz·dx. Hence, multiplying these normal forces by the areas of the corresponding faces, we have the total flux parallel to the x-axis given by −(d²V / dx²) dx dy dz, and similar expressions for the other sides. Hence the total flux is




	− (

	d²V
	+
	d²V
	+
	d²V
	
) dx dy dz,



	dx²
	dy²
	dz²





and by the previous theorem this must be equal to 4πρdx dy dz.

Hence




	d²V
	+
	d²V
	+
	d²V
	+ 4πρ = 0



	dx²
	dy²
	dz²





(18).

This celebrated equation was first given by S.D. Poisson, although previously demonstrated by Laplace for the case when ρ = 0. It defines the condition which must be fulfilled by the potential at any and every point in an electric field, through which ρ is finite and the electric force continuous. It may be looked upon as an equation to determine ρ when V is given or vice versa. An exactly similar expression holds good in hydrokinetics, provided that for the electric potential we substitute velocity potential, and for the electric force the velocity of the liquid.

The Poisson equation cannot, however, be applied in the above form to a region which is partly within and partly without an electrified conductor, because then the electric force undergoes a sudden change in value from zero to a finite value, in passing outwards through the bounding surface of the conductor. We can, however, obtain another equation called the “surface characteristic equation” as follows:—Suppose a very small area dS described on a conductor having a surface density of electrification σ. Then let a small, very short cylinder be described of which dS is a section, and the generating lines are normal to the surface. Let V1 and V2 be the potentials at points just outside and inside the surface dS, and let n1 and n2 be the normals to the surface dS drawn outwards and inwards; then −dV1 / dn1 and −dV2 / dn2 are the normal components of the force over the ends of the imaginary small cylinder. But the force perpendicular to the curved surface of this cylinder is everywhere zero. Hence the total flux through the surface considered is −{(dV1 / dn1) + (dV2 / dn2)} dS, and this by a previous theorem must be equal to 4πσdS, or the total included electric quantity. Hence we have the surface characteristic equation,17

(dV1 / dn1) + (dV2 / dn2) + 4πσ = 0

(19).

Let us apply these theorems to a portion of a tube of electric force. Let the part selected not include any charged surface. Then since the generating lines of the tube are lines of force, the component of the electric force perpendicular to the curved surface of the tube is everywhere zero. But the electric force is normal to the ends of the tube. Hence if dS and dS′ are the areas of the ends, and +E and -E′ the oppositely directed electric forces at the ends of the tube, the surface integral of normal force on the flux over the tube is

EdS − E′dS′

(20),

and this by the theorem already given is equal to zero, since the tube includes no electricity. Hence the characteristic quality of a tube of electric force is that its section is everywhere inversely as the electric force at that point. A tube so chosen that EdS for one section has a value unity, is called a unit tube, since the product of force and section is then everywhere unity for the same tube.

In the next place apply the surface characteristic equation to any point on a charged conductor at which the surface density is σ. The electric force outward from that point is −dV/dn, where dn is a distance measured along the outwardly drawn normal, and the force within the surface is zero. Hence we have

−dV/dn = 4.0πσ or σ = −(¼π) dV/dn = E/4π.

The above is a statement of Coulomb’s law, that the electric force at the surface of a conductor is proportional to the surface density of the charge at that point and equal to 4π times the density.18



If we define the positive direction along a tube of electric force as the direction in which a small body charged with positive electricity would tend to move, we can summarize the above facts in a simple form by saying that, if we have any closed surface described in any manner in an electric field, the excess of the number of unit tubes which leave the surface over those which enter it is equal to 4π-times the algebraic sum of all the electricity included within the surface.

Every tube of electric force must therefore begin and end on electrified surfaces of opposite sign, and the quantities of positive and negative electricity on its two ends are equal, since the force E just outside an electrified surface is normal to it and equal to σ/4π, where σ is the surface density; and since we have just proved that for the ends of a tube of force EdS = E′dS′, it follows that σdS = σ′dS′, or Q = Q′, where Q and Q′ are the quantities of electricity on the ends of the tube of force. Accordingly, since every tube sent out from a charged conductor must end somewhere on another charge of opposite sign, it follows that the two electricities always exist in equal quantity, and that it is impossible to create any quantity of one kind without creating an equal quantity of the opposite sign.
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	Fig. 4.





We have next to consider the energy storage which takes place when electric charge is created, i.e. when the dielectric is strained or polarized. Since the potential of a conductor is defined to be the work required to move a unit of positive electricity from the surface of the earth or from an infinite distance from all electricity to the surface of the conductor, it follows that the work done in putting a small charge dq into a conductor at a potential v is v dq. Let us then suppose that a conductor originally at zero potential has its potential raised by administering to it small successive doses of electricity dq. The first raises its potential to v, the second to v′ and so on, and the nth to V. Take any horizontal line and divide it into small elements of length each representing dq, and draw vertical lines representing the potentials v, v′, &c., and after each dose. Since the potential rises proportionately to the quantity in the conductor, the ends of these ordinates will lie on a straight line and define a triangle whose base line is a length equal to the total quantity Q and height a length equal to the final potential V. The element of work done in introducing the quantity of electricity dq at a potential v is represented by the element of area of this triangle (see fig. 4), and hence the work done in charging the conductor with quantity Q to final potential V is ½QV, or since Q = CV, where C is its capacity, the work done is represented by ½CV² or by ½Q² / C.

If σ is the surface density and dS an element of surface, then ∫σdS is the whole charge, and hence ½ ∫ VσdS is the expression for the energy of charge of a conductor.

We can deduce a remarkable expression for the energy stored up in an electric field containing electrified bodies as follows:19 Let V denote the potential at any point in the field. Consider the integral
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(21)

where the integration extends throughout the whole space unoccupied by conductors. We have by partial integration
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and two similar equations in y and z. Hence
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(22)

where dV/dn means differentiation along the normal, and ∇ stands for the operator d²/dx² + d²/dy² + d²/dz². Let E be the resultant electric force at any point in the field. Then bearing in mind that σ = (1/4π) dV/dn, and ρ = −(1/4π) ∇V, we have finally




	1
	
∫ ∫ ∫ E²dv =
	1
	
∫ ∫ Vσ dS +
	1
	
∫ ∫ ∫ Vρ dv.



	8π
	2
	2





The first term on the right hand side expresses the energy of the surface electrification of the conductors in the field, and the second the energy of volume density (if any). Accordingly the term on the left hand side gives us the whole energy in the field.

Suppose that the dielectric has a constant K, then we must multiply both sides by K and the expression for the energy per unit of volume of the field is equivalent to ½DE where D is the displacement or polarization in the dielectric.

Furthermore it can be shown by the application of the calculus of variations that the condition for a minimum value of the function W, is that ∇V = 0. Hence that distribution of potential which is necessary to satisfy Laplace’s equation is also one which makes the potential energy a minimum and therefore the energy stable. Thus the actual distribution of electricity on the conductor in the field is not merely a stable distribution, it is the only possible stable distribution.
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	Fig. 5.





Method of Electrical Images.—A very powerful method of attacking problems in electrical distribution was first made known by Lord Kelvin in 1845 and is described as the method of electrical images.20 By older mathematical methods it had only been possible to predict in a few simple cases the distribution of electricity at rest on conductors of various forms. The notion of an electrical image may be easily grasped by the following illustration: Let there be at A (see fig. 5) a point-charge of positive electricity +q and an infinite conducting plate PO, shown in section, connected to earth and therefore at zero potential. Then the charge at A together with the induced surface charge on the plate makes a certain field of electric force on the left of the plate PO, which is a zero equipotential surface. If we remove the plate, and yet by any means can keep the identical surface occupied by it a plane of zero potential, the boundary conditions will remain the same, and therefore the field of force to the left of PO will remain unaltered. This can be done by placing at B an equal negative point-charge −q in the place which would be occupied by the optical image of A if PO were a mirror, that is, let −q be placed at B, so that the distance BO is equal to the distance AO, whilst AOB is at right angles to PO. Then the potential at any point P in this ideal plane PO is equal to q/AP − q/BP = O, whilst the resultant force at P due to the two point charges is 2qAO/AP³, and is parallel to AB or normal to PO. Hence if we remove the charge −q at B and distribute electricity over the surface PO with a surface density σ, according to the Coulomb-Poisson law, σ = qAO / 2πAP³, the field of force to the left of PD will fulfil the required boundary conditions, and hence will be the law of distribution of the induced electricity in the case of the actual plate. The point-charge −q at B is called the “electrical image” of the point-charge +q at A.

We find a precisely analogous effect in optics which justifies the term “electrical image.” Suppose a room lit by a single candle. There is everywhere a certain illumination due to it. Place across the room a plane mirror. All the space behind the mirror will become dark, and all the space in front of the mirror will acquire an exalted illumination. Whatever this increased illumination may be, it can be precisely imitated by removing the mirror and placing a second lighted candle at the place occupied by the optical image of the first candle in the mirror, that is, as far behind the plane as the first candle was in front. So the potential distribution in the space due to the electric point-charge +q as A together with −q at B is the same as that due to +q at A and the negative induced charge erected on the infinite plane (earthed) metal sheet placed half-way between A and B.
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	Fig. 6.





The same reasoning can be applied to determine the electrical image of a point-charge of positive electricity in a spherical surface, and therefore the distribution of induced electricity over a metal sphere connected to earth produced by a point-charge near it. Let +q be any positive point-charge placed at a point A outside a sphere (fig. 6) of radius r, and centre at C, and let P be any point on it. Let CA = d. Take a point B in CA such that CB·CA = r², or CB = r²/d. It is easy then to show that PA : PB = d : r. If then we put a negative point-charge −qr/d at B, it follows that the spherical surface will be a zero potential surface, for




	q
	−
	rq
	·
	1
	= 0



	PA
	d
	PB





(24).

Another equipotential surface is evidently a very small sphere described round A. The resultant force due to these two point-charges must then be in the direction CP, and its value E is the vector sum of the two forces along AP and BP due to the two point-charges. It is not difficult to show that

E = − (d² − r²) q / rAP³

(25),

in other words, the force at P is inversely as the cube of the distance from A. Suppose then we remove the negative point-charge, and let the sphere be supposed to become conductive and be connected to earth. If we make a distribution of negative electricity over it, which has a density σ varying according to the law

σ = −(d² − r²) q / 4πrAP³

(26),

that distribution, together with the point-charge +q at A, will make a distribution of electric force at all points outside the sphere  exactly similar to that which would exist if the sphere were removed and a negative point charge −qr/d were placed at B. Hence this charge is the electrical image of the charge +q at A in the spherical surface.

We may generalize these statements in the following theorem, which is an important deduction from a wider theorem due to G. Green. Suppose that we have any distribution of electricity at rest over conductors, and that we know the potential at all points and consequently the level or equipotential surfaces. Take any equipotential surface enclosing the whole of the electricity, and suppose this to become an actual sheet of metal connected to the earth. It is then a zero potential surface, and every point outside is at zero potential as far as concerns the electric charge on the conductors inside. Then if U is the potential outside the surface due to this electric charge inside alone, and V that due to the opposite charge it induces on the inside of the metal surface, we must have U + V = 0 or U = −V at all points outside the earthed metal surface. Therefore, whatever may be the distribution of electric force produced by the charges inside taken alone, it can be exactly imitated for all space outside the metal surface if we suppose the inside charge removed and a distribution of electricity of the same sign made over the metal surface such that its density follows the law

σ = −(¼π) dU / dn

(27),

where dU/dn is the electric force at that point on the closed equipotential surface considered, due to the original charge alone.

Bibliography.—For further developments of the subject we must refer the reader to the numerous excellent treatises on electrostatics now available. The student will find it to be a great advantage to read through Faraday’s three volumes entitled Experimental Researches on Electricity, as soon as he has mastered some modern elementary book giving in compact form a general account of electrical phenomena. For this purpose he may select from the following books: J. Clerk Maxwell, Elementary Treatise on Electricity (Oxford, 1881); J.J. Thomson, Elements of the Mathematical Theory of Electricity and Magnetism (Cambridge, 1895); J.D. Everett, Electricity, founded on part iii. of Deschanel’s Natural Philosophy (London, 1901); G.C. Foster and A.W. Porter, Elementary Treatise on Electricity and Magnetism (London, 1903); S.P. Thompson, Elementary Lessons on Electricity and Magnetism (London, 1903)·

When these elementary books have been digested, the advanced student may proceed to study the following: J. Clerk Maxwell, A Treatise on Electricity and Magnetism (1st ed., Oxford, 1873; 2nd ed. by W.D. Niven, 1881; 3rd ed. by J.J. Thomson, 1892); Joubert and Mascart, Electricity and Magnetism, English translation by E. Atkinson (London, 1883); Watson and Burbury, The Mathematical Theory of Electricity and Magnetism (Oxford, 1885); A. Gray, A Treatise on Magnetism and Electricity (London, 1898). In the collected Scientific Papers of Lord Kelvin (3 vols., Cambridge, 1882), of James Clerk Maxwell (2 vols., Cambridge, 1890), and of Lord Rayleigh (4 vols., Cambridge, 1903), the advanced student will find the means for studying the historical development of electrical knowledge as it has been evolved from the minds of some of the master workers of the 19th century.




(J. A. F.)
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ELECTROTHERAPEUTICS, a general term for the use of electricity in therapeutics, i.e. in the alleviation and cure of disease. Before the different forms of medical treatment are dealt with, a few points in connexion with the machines and currents, of special interest to the medical reader, must first be given.

Faradism.—For the battery required either for faradism or galvanism, cells of the Leclanché type are the most satisfactory. Being dry they can be carried in any position, are lighter, and there is no trouble from the erosion of wires and binding screws, such as so often results from wet cells. The best method of producing a smooth current in the secondary coil is for the interruptor hammer to vibrate directly against the iron core of the primary coil. For this it is best that the interruptor be made of a piece of steel spring, as a high rate of interruption can then be maintained, with a fairly smooth current in the secondary coil. This form of interruptor necessitates that the iron core be fixed, and variation in the primary induced current is arranged for by slipping a brass tube more or less over the iron core, thus cutting off the magnetic field from the primary coil. The secondary current (that obtained from the secondary coil) can be varied by keeping the secondary coil permanently fixed over the primary and varying the strength of the primary current. Where, as suggested above, the iron core is fixed, the primary and secondary induced currents will be at their strongest when the brass tube is completely withdrawn. As there is no simple means of measuring the strength of the faradic current, it is best to start with a very weak current, testing it on the muscles of one’s own hand until these begin to contract and a definite sensory effect is produced; the current can then be applied to the part, being strengthened only very gradually.

Galvanism.—For treatment by galvanism a large battery is needed, the simplest form being known as a “patient’s battery,” consisting of a variable number of dry cells arranged in series. The cells used are those of Leclanché, with E.M.F. (or voltage) of 1.5 and an internal resistance of .3 ohm. Thus the exact strength of the current is known; the number of cells usually employed is 24, and when new give an E.M.F. of about 36 volts. By using the formula C = E/R, where E is the voltage of the battery, R the total resistance of battery, electrodes and the patient’s skin and tissues, and C the current in amperes, the number of cells required for any particular current can be worked out. The resistance of the patient’s skin must be made as low as possible by thoroughly wetting both skin and electrodes with sodium bicarbonate solution, and keeping the electrodes in very close apposition to the skin. A galvanometer is always fitted to the battery, usually of the d’Arsonval type, with a shunt by means of which, on turning a screw, nine-tenths of the inducing current can be short-circuited away, and the solenoid only influenced by one-tenth of the current which is being used on the patient. In districts where electric power is available the continuous current can be used by means of a switchboard. A current of much value for electrotherapeutic purposes is the sinusoidal current, by which is meant an alternating current whose curve of electromotive force, in both positive and negative phase, varies constantly and smoothly in what is known as the sine curve. In those districts supplied by an alternating current, the sinusoidal current can be obtained from the mains by passing it through various transformers, but where the main supply is the direct or constant current, a motor transformer is needed.

Static Electricity.—For treatment by static electricity the Wimshurst type of machine is the one most generally used. A number of electrodes are required; thus for the application of sparks a brass ball and brass roller electrode, for the “breeze” a single point and a multiple point electrode, and another multiple point electrode in the form of a metal cap that can be placed over the patient’s head. The polarity of the machine must always be tested, as either knob may become positive or negative, though the polarity rarely changes when once the machine is in action. The oldest method of subjecting a patient to electric influence is that in which static electricity is employed. The patient is insulated on a suitable platform and treated by means of charges and discharges from an electrical machine. The effect is to increase the regularity and frequency of the pulse, raise the blood pressure and increase the action of the skin. The nervous system is quieted, sleep being promoted, the patient often becoming drowsy during the application. If while the patient is being treated a point electrode is brought towards him he feels the sensation of a wind blowing from that point; this is an electric breeze or brush discharge. The breeze is negative if the patient is positively charged and vice versa. The “breeze discharge” treatment is especially valuable in subduing pain of the superficial cutaneous nerves, and also in the treatment of chronic indolent ulcers. Quite recently this form of treatment has been applied with much success to various skin lesions—psoriasis, eczema and pruritus. Static electricity is also utilized for medical purposes by means of “sparks,” which are administered with a ball electrode, the result being a sudden muscular contraction at the point of application. The electrode must be rapidly withdrawn before a second spark has time to leap across, as this is a severe form of treatment and must be administered slowly. It is mainly employed for muscular stimulation, and the contractions resulting from spark stimulation can be produced in cases of nerve injury and degeneration, even when the muscles have lost their reaction to faradism. The sensory stimulation of this form of treatment is also strong, and is useful in hysterical anaesthesia and functional paralysis. Where a milder sensory stimulation is required friction can be used, the electrode being in the form of a metal roller which is moved rapidly outside the  patient’s clothing over the spine or other part to be treated. The clothing must be dry and of wool, and each additional woollen layer intensifies the effect.

Another method of employing electricity at high potential is by the employment of high frequency currents. There are two methods of application: that in which brush discharges are made use of, with undoubtedly good effects in many of the diseases affecting the surface of the body, and that in which the currents of the solenoid are made to traverse the patient directly. The physiological value of the latter method is not certain, though one point of interest in connexion with it is that whereas statical applications raise the blood pressure, high frequency applications lower it. It has been used in the case of old people with arterio-sclerosis, and the reduction of blood pressure produced is said to have shown considerable permanence.

The Faradic Current.—G.B. Duchenne was the first physician to make use of the induced current for treatment, and the term “faradization” is supposed to be due to him. But in his day the differences between the two currents available, the primary and the secondary, were not worked out, and they were used somewhat indiscriminately. Nowadays it is generally accepted that the primary current should be used for the stimulation of deep-lying organs, as stomach and intestines, &c., while the secondary current is employed for stimulation of the limb muscles and the cutaneous sensory nerves. The faradic current is also used as a means of diagnosis for neuro-muscular conditions. When the interrupted current is used to stimulate the skin over a motor nerve, all the muscles supplied by that nerve are thrown into rapid tetanic contraction, the contraction both beginning and ceasing sharply and suddenly with the current. This is the normal reaction of the nerve to faradism. If the muscle be wasted from disuse or some local cause unconnected with its nerve-supply, the contraction is smaller, and both arises and relaxes more slowly. But if the lesion lies in the nerve itself, as in Bell’s palsy, the muscles no longer show any response when the nerve is stimulated, and this is known as the reaction of degeneration in the nerve. It is usually preceded by a condition of hyperexcitability. These results are applied to distinguish between functional paralysis and that due to some organic lesion, as in the former case the reaction of faradism will be as brisk as usual. Also at the beginning of most cases of infantile paralysis many more groups of muscles appear to be affected than ultimately prove to be, and faradism enables the physician to distinguish between those groups of muscles that are permanently paralysed owing to the destruction of their trophic centre, and those muscles which are only temporarily inhibited from shock, and which with proper treatment will later regain their full power. In the testing of muscles electrically that point on the skin which on stimulation gives the maximum contraction for that muscle is known as the “motor point” for that muscle. It usually corresponds to the entry of the motor nerve. Faradic treatment may be employed in the weakness and emaciation depending on any long illness, rickets, anaemia, &c. For these cases it is best to use the electric bath, the patient being placed in warm water, and the two electrodes, one at the patient’s back and the other at his feet, being connected with the secondary coil. The patient’s general metabolism is stimulated, he eats and sleeps better and soon begins to put on weight. This is especially beneficial in severe cases of rickets. In the weakness and emaciation due to neurasthenia, especially in those cases being treated by the Weir Mitchell method (isolation, absolute confinement to bed, massage and overfeeding), a similar faradic bath is a very helpful adjunct. In tabes dorsalis faradic treatment will often diminish the anaesthesia and numbness in the legs, with resulting benefit to the ataxy. Perhaps the most beneficial use of the faradic current is in the treatment of chronic constipation—especially that so frequently met with in young women and due to deficient muscular power of the intestinal walls. In long-standing cases the large intestine becomes permanently dilated, and its muscular fibres so attenuated as to have no power over the intestinal contents. But faradism causes contraction at the point of stimulation, and the peristaltic wave thus started slowly progresses along the bowel. All that is needed is a special electrode for introduction into the bowel and an ordinary roller electrode. The rectal electrode consists of a 6-inch wire bearing at one end a small metal knob and fitted at the other into a metal cup which screws into the handle of the electrode. The only part exposed is the metallic knob; the rest is coated with some insulating material. The patient reclines on a couch on his back, the rectal electrode is connected, and having been vaselined is passed some three inches into the rectum. A current is started with the secondary coil in such a position as to give only an extremely weak current. The roller electrode is then wetted with hot water and applied to the front of the abdomen. At first the patient should feel nothing, but the current should slowly be increased until a faint response is perceptible from the abdominal muscles. This gives the required strength, and the roller electrode, pressed well into the abdominal wall, should very slowly be moved along the course of the large intestine beginning at the right iliac fossa. Thus a combination of massage and faradic current is obtained, and the results are particularly satisfactory. Treatment should be given on alternate days immediately after breakfast, and should be persevered with for six or eight weeks. The patient can be taught to administer it to himself.

The Galvanic, Continuous or Direct Current.—In using the galvanic or direct current the electrode must be covered with padded webbing or some other absorbent material, the metal of the electrode never being allowed to come in contact with the skin. The padding by retaining moisture helps to make good contact, and also helps to guard against burning the skin. But when a continuous current of 3 am. or more is passed for more than 5 min. the electrodes must be raised periodically and the skin inspected. If the current be too strong or applied for too long a time, small blisters are raised which break and are very troublesome to heal. Nor does the patient always feel much pain when this occurs. Also the electrodes must be remoistened every five or six minutes, as they soon become dry, and the skin will then be burnt. It is best to use a solution of sodium bicarbonate. Again, the danger of burning the skin depends on the density of the current per sq. in. of electrode, so that a strong current through a small electrode will burn the skin, whereas the same current through a larger electrode will produce a beneficial effect. If the patient be immersed up to his neck in an electric bath, much stronger currents can be passed without causing either pain or injury, as in this case the whole area of the skin in contact with the water acts as an electrode. In passing the current it must be remembered that the negative electrode or kathode is the more painful of the two, and its action more stimulating than the positive electrode or anode, which is sedative. If a muscle be stimulated over its motor point, it will contract with a sharp twitch and then become quiescent. With normal muscle the KCC (kathodal closure contraction) is stronger than that produced by the closure of the current at the anode ACC (anodal closure contraction). And if the muscle be normal the opening contraction KOC and AOC are not seen. When a galvanic current is passed along a nerve its excitability is increased at the kathode and diminished at the anode. The increased excitability at the kathode is katelectrotonus, and the lowered excitability at the anode anelectrotonus. But since in a patient the electrode cannot be applied directly to the nerve, the lines of force from the electrode pass into the nerve both in an upward and downward direction, and hence there are two poles produced by each electrode. If the current be suddenly reversed, so that what was the anode becomes the kathode, a stronger contraction is obtained than by simply making and breaking the current. To avoid the four poles on the nerve to be tested, it is found most satisfactory to have one electrode placed at some distance, on the back or chest, not on the same limb.

As explained above, when the nerve supplying a muscle is diseased it no longer responds to the faradic current. On further testing this with the galvanic or continuous current it responds, but the contraction is not brisk but begins slowly and relaxes  slowly, though the contraction as a whole may be larger than that of a normal muscle. This excessive contraction is known as hyperexcitability to galvanism. This form of contraction is that obtained when the muscle fibre itself is stimulated. Again, whereas in normal muscle KCC > ACC, when the nerve is degenerated KCC = ACC or ACC > KCC. Also in the more severe forms of nerve injury tetanic contractions may be set up in the paralysed muscles, by closure of the current either at the anode or kathode. These charges are known as the reaction of degeneration or RD, and are of great value in diagnosis. They occur only after sudden or acute damage to the nerve cells of the anterior horn of the spinal cord, or to the motor nerve fibres proceeding from these cells. Thus RD is present in infantile paralysis, acute neuritis, &c., but absent in progressive muscular atrophy where the wasting of nerve and muscle takes place extremely slowly. The reaction of degeneration in the nerve is shown by disappearance of reaction to either kind of current, preceded for some days by hyperexcitability to either current. Where the muscle wasting is due to a lesion in the muscle alone, as in ischaemic myositis (usually due to injury from tight bandaging or badly applied splints), no reaction of degeneration is found; the only change is a loss of power in the contraction. If the damage to the anterior horn cells be only very slight, there may only be partial RD, and the prognosis is given according to the extent of RD. From this account it is clear that the greatest value of the continuous current lies in its use in diagnosis. But it is also applied extremely successfully, in combination with massage, to cases of infantile paralysis. Wrist drop from lead poisoning and lead neuritis of all kinds, reflex muscular atrophy and the muscular wasting of hemiplegia, are all benefited by the continuous current; the severe pain of sciatica, and the inflammation of the nerve sheath in these cases, can be arrested more quickly by galvanic treatment than in any other way. Nearly all forms of neuritis, both of the cranial and other nerves, are best treated by the continuous current. The action in all cases is to stimulate the natural tendency to repair, very largely by improving the circulation through the injured parts.

Another effect of an electric current is electrolysis, and the phenomena of electrolytic conduction involve not merely the ionization of the compounds, but also the setting in motion of the ions towards their respective poles. Solutions which conduct electric currents are called electrolytes, and in the case of the human body the electrolyte is the whole mass of the saline constituents in solution throughout the body. When a current is passed through an electrolyte, dissociation into ions takes place, the ions which are freed round the anode being called anions and those which are freed round the kathode being called kations. The anions carry negative charges and are consequently attracted by the positive electricity of the anode. The kations carry positive charges, hence they are repelled by the anode and attracted by the kathode. But a certain number of molecules do not dissociate, and hence in an electrolytic solution there are neutral molecules, anions and kations. The chemical actions, and thus the antiseptic, remedial or toxic effects of electrolytes, are due to the actions of their ions. The phosphides and phosphates may be taken as examples. Some are extremely toxic, while others are quite harmless. But it is to the phosphorus ion that the toxic or therapeutic effect is due. In the phosphates the phosphorus is part of a complex ion possessing quite different properties to those of the phosphorus ion of the phosphides. The strikingly different effects of the sulphates and sulphides are due to similar conditions, as also of many other compounds. There are certain solvents, as alcohol, chloroform, glycerin and vaseline which do not dissociate electrolytes, and consequently the latter become inert when mixed with these solvents. These solutions do not conduct electricity, and hence ionic effects are extremely slow. A vaseline ointment containing 5% of phenol makes a good dressing for an ulcer of the leg, and produces no irritant effect, but a 5% aqueous solution may be both caustic and toxic. Since the toxic or therapeutic action of a solution is due to its ions, the action must be proportional to the number of ions in a given volume, that is, the action of an electrolyte depends on the degree of dissociation. Thus a strong acid is one that is much dissociated, a weak acid one that has undergone but little dissociation and so on. In 1896-1897 it was shown that the bactericidal action of salts varies with their degree of dissociation and therefore depends on the concentration of the active ions. In the medical application of these facts it must be remembered that when an ion is introduced into the body by electrolysis, it is probably forced into the actual cellular constituents of the body, whereas the drug administered by one of the usual methods though circulating in the blood may perhaps never gain access to the cell itself. Hence the different effects that have been recorded between a drug administered by the mouth or subcutaneously and the same administered by electrolysis. Thus a solution of cocaine injected subcutaneously produces quite different effects to that introduced by electrolysis. By the latter method it produces anaesthesia but does not diffuse, and the anaesthesia remains strictly limited to the surface covered by the electrode. It would appear that the ion is never introduced into the general circulation but into the cell plasma.

In the technical working of medical electrolysis the most minute precautions are required. The solution of the drug must be made with as pure water as possible, recently distilled. The spongy substance forming the electrode must be free from any trace of electrolytic substances. Hence all materials used must be washed in distilled water. Absorbent cotton answers all requirements and is easily procured. The area of introduction can be exactly circumscribed by cutting a hole in a sheet of adhesive plaster which is applied to the skin and on which the electrolytic electrodes are pressed. The great advantage of electrolytic methods is that it enables general treatment to be replaced by a strictly local treatment, and the cells can be saturated exactly to the degree and depth required. Strong antiseptics and materials that coagulate albumen cannot be introduced locally by ordinary methods, as the skin is impermeable to them, but by electrolysis they can be introduced to the exact depth required. The local effects of the ions depend on the dosage; thus a feeble dose of the ions of zinc stimulates the growth of hair, but a stronger dose produces the death of the tissue. Naturally the different ions produce different effects. Thus the ions of the alkalis and magnesium are caustic, those of the alkaline earthy metals produce actual mortification of the tissue and so on. According to the ion chosen the effect may be caustic in various degrees, antiseptic, coagulating, producing vascular or nervous changes, &c., &c. And again electrolysis can also be used for extracting from the body such ions as are injurious, as uric and oxalic acid from a patient suffering from gout.

One of the latest advances is the treatment of ankylosed joints by the electrolytic method, the electrolyte used being chloride of sodium, and the marvellous results being attributed to the introduction of the chlorine ions. This sclerolytic property of the current is applicable to all parts of the body accessible to the current. Old cases of rheumatic scleritis, entirely unaffected by the routine treatment of salicylates and iodide, have often cleared up entirely under electrolytic treatment. Cases of chronic iritis with adhesions and old pleural adhesions are also suited for this method of procedure. Certain menstrual troubles of women and also endometritis yield rapidly to electrolysis with a zinc anode. Before this method of introduction, the zinc salts, though excellent disinfectants, acted only on the surface in consequence of their coagulating action on the albuminoids, but by the electric current, under the influence of a difference of potential, the zinc iron will penetrate to any desired depth. Cases of rodent ulcer unaffected by all other methods of treatment have been cured by electric kataphoresis with zinc ions, and the method is now being applied to the treatment of inoperable malignant tumours. As very strong currents are required for this latter, the patient has first to be anaesthetized by a general anaesthetic. Another direction in which electric ions are being used is that of the induction of local anaesthesia before minor surgical operations. Cocaine is the drug used, the resulting anaesthesia is absolute, and the operation can be made almost bloodless by the admixture of suprarenal extract.





ELECTROTYPING, an application of the art of electroplating (q.v.) to typography (q.v.). In copying engraved plates for printing purposes, copper may be deposited upon the original plate, the surface of which is first rendered slightly dirty, by means of a weak solution of wax in turpentine or otherwise, to prevent adhesion. The reversed plate thus produced is then stripped from the first and used as cathode in its turn, with the result that even the finest lines of the original are faithfully reproduced. The electrolyte commonly contains about 1½ ℔ of copper sulphate and ½ ℔ of strong sulphuric acid per gallon, and is worked with a current density of about 10 amperes per sq. ft., which should give a thickness of 0.000563 in. of copper per hour. As time is an object, the conditions alluded to in the article on Copper as being favourable to the use of high current densities should be studied, bearing in mind that a tough copper deposit of high quality is essential. Moulds for reproducing plates or art-work are often taken in plaster, beeswax mixed with Venice turpentine, fusible metal, or gutta-percha, and the surface being rendered conductive by powdered black-lead, copper is deposited upon it evenly throughout. For statuary, and “undercut” work generally, an elastic mould—of glue and treacle (80 : 20 parts)—may be used; the mould, when set, is waterproofed by immersion in a solution of potassium bichromate followed by exposure to sunlight, or in some other way. The best results, however, are obtained by taking a wax cast from the elastic mould, and then from this a plaster mould, which may be waterproofed with wax, black-leaded, and used as cathode. In art-work of this nature the principal points to be looked to in depositing are the electrical connexions to the cathode, the shape of the anode (to secure uniformity of deposition), the circulation of the electrolyte, and, in some cases, the means for escape of anode oxygen. Silver electrotyping is occasionally resorted to for special purposes.



ELECTRUM, ELECTRON (Gr. ἤλεκτρον, amber), an alloy of gold and silver in use among the ancients, described by Pliny as containing one part of silver to four of gold. The term is also applied in mineralogy to native argentiferous gold containing from 20 to 50% of silver. In both cases the name is derived from the pale yellow colour of electrum, resembling that of amber.



ELEGIT (Lat. for “he has chosen”), in English law, a judicial writ of execution, given by the Statute of Westminster II. (1285), and so called from the words of the writ, that the plaintiff has chosen (elegit) this mode of satisfaction. Previously to the Statute of Westminster II., a judgment creditor could only have the profits of lands of a debtor in satisfaction of his judgment, but not the possession of the lands themselves. But this statute provided that henceforth it should be in the election of the party having recovered judgment to have a writ of fieri facias (q.v.) unto the sheriff on lands and goods or else all the chattels of the debtor and the one half of his lands until the judgment be satisfied. Since the Bankruptcy Act 1883 the writ of elegit has extended to lands and hereditaments only. (See further Execution.)



ELEGY, a short poem of lamentation or regret, called forth by the decease of a beloved or revered person, or by a general sense of the pathos of mortality. The Greek word ἐλεγεία is of doubtful signification; it is usually interpreted as meaning a mournful or funeral song. But there seems to be no proof that this idea of regret for death entered into the original meaning of ἐλεγεία. The earliest Greek elegies which have come down to us are not funereal, although it is possible that the primitive ἐλεγεία may have been a set of words liturgically used, with music, at a burial. When the elegy appears in surviving Greek literature, we find it dedicated, not to death, but to war and love. Callinus of Ephesus, who flourished in the 7th century, is the earliest elegist of whom we possess fragments. A little later Tyrtaeus was composing his famous elegies in Sparta. Both of these writers were, so far as we know, exclusively warlike and patriotic. On the other hand, the passion of love inspires Mimnermus, whose elegies are the prototypes not only of the later Greek pieces, and of the Latin poems of the school of Tibullus and Propertius, but of a great deal of the formal erotic poetry of modern Europe. In the 6th century B.C., the elegies of Solon were admired; they are mainly lost. But we possess more of the work of Theognis of Megara than of any other archaic elegist, and in it we can observe the characteristics of Greek elegy best. Here the Dorian spirit of chivalry reaches its highest expression, and war is combined with manly love.

The elegy, in its calm movement, seems to have begun to lose currency when the ecstasy of emotion was more successfully interpreted by the various rhythmic and dithyrambic inventions of the Aeolic lyrists. The elegy, however, rose again to the highest level of merit in Alexandrian times. It was reintroduced by Philetas in the 3rd cent. B.C., and was carried to extreme perfection by Callimachus. Other later Greek elegists of high reputation were Asclepiades and Euphorion. But it is curious to notice that all the elegies of these poets were of an amatory nature, and that antiquity styled the funeral dirges of Theocritus, Bion and Moschus—which are to us the types of elegy—not elegies at all, but idylls. When the poets of Rome began their imitative study of Alexandrian models, it was natural that the elegies of writers such as Callimachus should tempt them to immediate imitation. Gallus, whose works are unhappily lost, is known to have produced a great sensation in Rome by publishing his translation of the poems of Euphorion; and he passed on to the composition of erotic elegies of his own, which were the earliest in the Latin language. If we possessed his once-famous Cytheris, we should be able to decide the question of how much Propertius, who is now the leading figure among Roman elegists, owed to the example of Gallus. His brilliantly emotional Cynthia, with its rich and unexampled employment of that alternation of hexameter and pentameter which had now come to be known as the elegiac measure, seems, however, to have settled the type of Latin elegy. Tibullus is always named in conjunction with Propertius, who was his contemporary, although in their style they were violently contrasted. The sweetness of Tibullus was the object of admiration and constant imitation by the Latin poets of the Renaissance, although Propertius has more austerely pleased a later taste. Finally, Ovid wrote elegies of great variety in subject, but all in the same form, and his dexterous easy metre closed the tradition of elegiac poetry among the ancients. What remains in the decline of Latin literature is all founded on a study of those masters of the Golden Age.

When the Renaissance found its way to England, the word “elegy” was introduced by readers of Ovid and Propertius. But from the beginning of the 16th century, it was used in English, as it has been ever since, to describe a funeral song or lament. One of the earliest poems in English which bears the title of elegy is The Complaint of Philomene, which George Gascoigne began in 1562, and printed in 1576. The Daphnaida of Spenser (1591) is an elegy in the strict modern sense, namely a poem of regret pronounced at the obsequies of a particular person. In 1579 Puttenham had defined an elegy as being a song “of long lamentation.” With the opening of the 17th century the composition of elegies became universal on every occasion of public or private grief. Dr Johnson’s definition, “Elegy, a short poem without points or turns,” is singularly inept and careless. By that time (1755) English literature had produced many great elegies, of which the Lycidas of Milton is by far the most illustrious. But even Cowley’s on Crashaw, Tickell’s on Addison, Pope’s on an Unfortunate Lady, those of Quarles, and Dryden, and Donne, should have warned Johnson of his mistake. Since the 18th century the most illustrious examples of elegy in English literature have been the Adonais of Shelley (on Keats), the Thyrsis of Matthew Arnold (on Clough), and the Ave atque Vale of Mr Swinburne (on Baudelaire). It remains for us to mention what is the most celebrated elegy in English, that written by Gray in a Country Churchyard. This, however, belongs to a class apart, as it is not addressed to the memory of any particular person. A writer of small merit, James Hammond (1716-1742), enjoyed a certain success with his Love Elegies in which he endeavoured to introduce the erotic elegy as it was written by Ovid and Tibullus. This experiment took no  hold of English literature, but was welcomed in France in the amatory works of Parny (1753-1814), in those of Chênedollé (1769-1833), and of Millevoye (1782-1816). The melancholy and sentimental elegies of the last named are the typical examples of this class of poetry in French literature. Lamartine must be included among the elegists, and his famous “Le Lac” is as eminent an elegy in French as Gray’s “Country Churchyard” is in English. The elegy has flourished in Portugal, partly because it was cultivated with great success by Camoens, the most illustrious of the Portuguese poets. In Italian, Chiabrera and Filicaia are named among the leading national elegists. In German literature, the notion of elegy as a poem of lamentation does not exist. The famous Roman Elegies of Goethe imitate in form and theme those of Ovid; they are not even plaintive in character.

Elegiac Verse has commonly been adopted by German poets for their elegies, but by English poets never. Schiller defines this kind of verse, which consists of a distich of which the first line is a hexameter and the second a pentameter, in the following pretty illustration:—




	

“In the hexameter rises the fountain’s silvery column.

In the pentameter aye falling in melody back.”









The word “elegy,” in English, is one which is frequently used very incorrectly; it should be remembered that it must be mournful, meditative and short without being ejaculatory. Thus Tennyson’s In Memoriam is excluded by its length; it may at best be treated as a collection of elegies. Wordsworth’s Lucy, on the other hand, is a dirge; this is too brief a burst of emotion to be styled an elegy. Lycidas and Adonais remain the two unapproachable types of what a personal elegy ought to be in English.

(E. G.)



ELEMENT (Lat. elementum), an ultimate component of anything, hence a fundamental principle. Elementum was used in Latin to translate the Greek στοιχεῖον (that which stands in a στοῖχος, or row), and is a word of obscure origin and etymology. The root of Lat. alere, to nourish, has been suggested, thus making it a doublet of alimentum, that which supports life; another explanation is that the word represents LMN., the first three letters of the second part of the alphabet, a parallel use to that of ABC. Apart from its application in chemistry, which is treated below, the word is used of the rudiments or principia of any science or subject, as in Euclid’s Elements of Geometry, or in the “beggarly elements” (τὰπτωχὰ στοιχεῖα, of St Paul in Gal. iv. 9); in mathematics, of a fundamental concept involved in an investigation, as the “elements” of a determinant; and in electricity, of a galvanic (or voltaic) “element” in an electric cell (see Battery: Electric). In astronomy, “element” is used of any one of the numerical or geometrical data by which the course of a varying phenomenon is computed; it is applied especially to orbital motion and eclipses. The “elements of an orbit” are the six data by which the position of a moving body in its orbit at any time may be determined. The “elements of an eclipse” express and determine the motion of the centre of the shadow-axis, and are the data necessary to compute the phenomena of an eclipse during its whole course, as seen at any place. In architecture the term “element” is applied to the outline of the design of a Decorated window, on which the centres for the tracery are found. These centres will all be found to fall on points which, in some way or other, will be equimultiples of parts of the openings.

Chemical Elements.

Like all other scientific concepts, that of an element has changed its meaning many times in many ways during the development of science. Owing to their very small amount of real chemical knowledge, the generalizations Ancient ideas. of the ancients were necessarily rather superficial, and could not stand in the face of the increasing development of practical chemistry. Nevertheless we find the concept of an element as “a substance from which all bodies are made or derived” held at the very beginning of occidental philosophy. Thales regarded “water” as the element of all things; his followers accepted his idea of a primordial substance as the basis of all bodies, but they endeavoured to determine some other general element or elements, like “fire” or “spirit,” or “love” and “hatred,” or “fire,” “water,” “air” and “earth.” We find in this development an exact parallelism to the manner in which scientific ideas generally arise, develop and change. They are created to point out the common part in a variety of observed phenomena, in order to get some leading light in the chaos of events. At first almost any idea will do, if only it promises some comprehensive arrangement of the facts; afterwards, the inconsistencies of the first trial make themselves felt; the first idea is then changed to meet better the new requirements. For a shorter or longer time the facts and ideas may remain in accord, but the uninterrupted increase of empirical knowledge involves sooner or later new fundamental alterations of the general idea, and in this way there is a never-ceasing process of adaptation of the ideas to the facts. As facts are unchangeable by themselves, the adaptation can be only one-sided; the ideas are compelled to change according to the facts. We must therefore educate ourselves to regard the ideas or theories as the changing part of science, and keep ourselves ready to accept even the most fundamental revision of current theories.

The first step in the development of the idea of elements was to recognize that a single principle would not prove sufficient to cover the manifoldness of facts. Empedocles therefore conceived a double or binary elementary principle; and Aristotle developed this idea a stage further, stating two sets of binary antagonistic principles, namely “dry-wet” and “hot-cold.” The Aristotelian or peripatetic elements, which played such a great rôle in the whole medieval philosophy, are the representatives of the several binary combinations of these fundamental properties, “fire” being hot and dry, “air” hot and wet, “water” cold and wet, “earth” cold and dry. According to the amount of these properties found in any body, these elements were regarded as having taken part in forming this body. Concerning the reason why only these properties were regarded as fundamental, we know nothing. They seem to be taken at random rather than carefully selected; they relate only to the sense of touch, and not to vision or any other sense, possibly because deceptions in the sense of touch were regarded as non-existent, while the other senses were apparently not so trustworthy. At any rate, the Aristotelian elements soon proved to be rather inadequate to meet the requirements of the increasing chemical knowledge; other properties had therefore to be selected to represent the general behaviour of chemical substances, and in this case we find them already much more “chemical” in the modern sense.

Among the various substances recognized by the chemists, certain classes or groups readily distinguished themselves. First the metals, by their lustre, their heaviness, and a number of other common properties. According to Elements of the alchemists. the general principle of selecting a single substance as a representative of the group, the metallic properties were represented by “mercury.” The theoreticians of the middle ages were rather careful to point out that common mercury (the liquid metal of to-day) was not at all to be identified with “philosophical” mercury, the last being simply the principle of metallic behaviour. In the same way combustibility was represented by “sulphur,” solubility by “salt,” and occasionally the chemically indifferent or refractory character by “earth.” According to the subsistence and preponderance of these properties in different bodies, these were regarded as containing the corresponding elements; conversely, just as experience teaches the chemist every day that by proper treatment the properties of given bodies may be changed in the most various ways, the observed changes of properties were ascribed to the gain or loss of the corresponding elements. According to this theory, which accounted rather well for a large number of facts, there was no fundamental objection against trying to endow base metals with the properties of the precious ones; to make artificial gold was a task quite similar to the modern problem of, e.g. making artificial quinine. The realization that there is a certain natural law preventing such changes is of much later date. It is therefore  quite unjust to consider the work of the alchemists, who tried to make artificial gold, as consummate nonsense. A priori there was no reason why a change from lead to gold should be less possible than a change from iron to rust; indeed there is no a priori reason against it now. But experience has taught us that lead and gold are chemical elements in the modern sense, and that there is a general experimental law that elements are not transformable one into another. So experience taught the alchemists irresistibly that in spite of the manifoldness of chemical changes it is not always possible to change any given substance into another; the possibilities are much more limited, and there is only a certain range of substances to be obtained from a given one. The impossibility of transforming lead or copper into noble metals proved to be only one case out of many, and it was recognized generally that there are certain chemical families whose members are related to one another by their mutual transformability, while it is impossible to bridge the boundaries separating these families.

The man who brought all these experiences and considerations into scientific form was Robert Boyle. He stated as a general principle, that only tangible and ponderable substances should be recognized as elements, an element being Work of Robert Boyle. a substance from which other substances may be made, but which cannot be separated into different substances. He showed that neither the peripatetic nor the alchemistic elements satisfied this definition. But he was more of a critical than of a synthetical turn of mind; although he established the correct principles, he hesitated to point out what substances, among those known at his time, were to be considered as elements. He only paved the way to the goal by laying the foundations of analytical chemistry, i.e. by teaching how to characterize and to distinguish different chemical individuals. Further, by adopting and developing the corpuscular hypothesis of the constitution of the ponderable substances, he foreshadowed, in a way, the law of the conservation of the elements, viz. that no element can be changed into another element; and he considered the compound substances to be made up from small particles or corpuscles of their elements, the latter retaining their essence in all combinations. This hypothesis accounts for the fact that only a limited number of other substances can be made from a given one—namely, only those which contain the elements present in the given substance. But it is characteristic of Boyle’s critical mind that he did not shut his eyes against a serious objection to his hypothesis. If the compound substance is made up of parts of the elements, one would expect that the properties of the compound substance would prove to be the sum of the properties of the elements. But this is not the case, and chemical compounds show properties which generally differ very considerably from those of the compounds. On the one hand, the corpuscular hypothesis of Boyle was developed into the atomic hypothesis of Dalton, which was considered at the beginning of the 19th century as the very best representation of chemical facts, while, on the other hand, the difficulty as to the properties of the compounds remained the same as Boyle found it, and has not yet been removed by an appropriate development of the atomic hypothesis. Thus Boyle considered, e.g. the metals as elements. However, it is interesting to note that he considered the mutual transformation of the metals as not altogether impossible, and he even tells of a case when gold was transformed into base metal. It is a common psychological fact that a reformer does not generally succeed in being wholly consistent in his reforming ideas; there remains invariably some point where he commits exactly the same fault which he set out to abolish. We shall find the same inconsistency also among other chemical reformers. Even earlier than Boyle, Joachim Jung (1587-1657) of Hamburg developed similar ideas. But as he did not distinguish himself, as Boyle did, by experimental work in science, his views exerted only a limited influence amongst his pupils.
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