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    Density functional theory (DFT) based methods use the description of the electronic density of an atom or molecule to calculate a host of important properties, many of which are not easily obtained via experimental methods. Some attributes that may be accessed in this manner include molecular geometry, vibrational frequencies, dipole moments and higher-order moments, thermochemical properties, and so forth.




    It gives me great pleasure in writing the foreword of this book. It is an outcome of a rigorous amount of effort, which has been devoted to conceptualizing, planning, and finally writing the book. The book contains all the ingredients required to understand, practice, and perform the DFT based studies. The first chapter of the book introduces the concept of DFT and the second chapter deals with its application to explore molecular systems using the popular Gaussian program. The subsequent chapters of the book discuss the results obtained by DFT calculations of various biologically important molecules. The last chapter exclusively focuses on the quantum theory of atoms in molecules, used for the study of various inter- and intra-molecular interactions. The book is also complemented with a sample output of the Gaussian as an appendix, which can be used to extract and interpret the results of DFT based calculations.




    Despite the availability of high-performance computing and the emergence of new theoretical approaches, understanding of structure↔function correlation in molecular and macromolecular systems remains an elusive goal. I am confident that this book shall be of immense value for students, young researchers, scientists, teachers, and all those interested in exploiting DFT methods for molecular systems, particularly biologically active compounds. This book will help to learn and master the technique of applying the DFT based methods and the Gaussian program for analyzing various properties of biologically active molecules.




    With best wishes,




    

      Sugriva Nath Tiwari


      Dean, Faculty of Science, Professor and Former Head, Department of Physics


      Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India


      & Former President, Indian Science Congress Association (Physical Sciences Section)


    


  




  




  




  

    PREFACE




    


    


    


    


    


  




  

    The very idea of writing a book on density functional theory (DFT) based studies on molecular systems arose from the volume of work carried out by us over a while. We have always felt the need for a concise literature on the theory and practice of DFT followed by a proper compilation of the research work using the well-known suite of programs, such as, the Gaussian. The sole perspective of initiating this project was to make available a good pool of literature, which can presumably be of immense help to the young researchers and experimentalists among others, who are planning to work or have been already working in this rapidly growing and exciting field of research.




    The book has been organized into seven chapters and written from the beginners’ perspective in such a way that anyone interested to work on molecular systems using the DFT based methods and the Gaussian program, can get an exhaustive and a very apropos idea of “how to employ the DFT on molecules” to explore the various properties of the systems under study. The chapters of the book have been methodically presented so that before starting to work on any molecular system, it is assumed that the reader gets well acquainted with the basics of DFT. After becoming friendly with the fundamentals of DFT, the reader is exposed to the applications of DFT on molecular systems with the focus on the Gaussian and its usage in a much applied way. Thereafter, many interesting themes have been covered in the form of the subsequent chapters of the book, namely, DFT studies on synthetic compounds, unusual amino acids, and natural products followed by a chapter on a comprehensive account on the way theory is used to complement the experiment. Considering the role of interactions in biologically active molecules, an exclusive chapter on the quantum theory of atoms in molecule (QTAIM) has been included. To supplement the second chapter and make the content more digestive, an appendix has also been added.




    All in all, we tried every effort to present a concise and at the same time, complete picture of DFT and its role, action, and applications on some biologically active molecules. We believe that this book will serve its purpose and all the readers, irrespective of their field and level of experience would benefit in some way or the other.




    We wish you a happy DFT.




    

      


      Ambrish Kumar Srivastava


      Department of Physics Deen Dayal Upadhyaya Gorakhpur University


      Gorakhpur, Uttar Pradesh


      India
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      Abstract




      This chapter outlines the basic principles of the density functional theory (DFT). The introduction of electron density to develop the Kohn-Sham approach has been systematically presented. The various approximations such as LDA, GGA, and hybrid functional for the exchange-correlation energy have been discussed. A separate discussion on the basis sets has also been included. The advantages and shortcomings of DFT based techniques are also revealed. The formulation of time-dependent DFT has been presented in a concise manner. This chapter is intended to provide an overview of the theoretical background of the methods adopted in the succeeding chapters.
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      INTRODUCTION




      The central idea behind the density functional theory (DFT) is a different variant of quantum mechanics, and like the wavefunction-based methods, some DFT methods do not use any empirical parameters and are derived from the first principles. In contrast to wavefunction-based methods, however, instead of using approximate molecular orbital wavefunctions, DFT uses the knowledge of the overall electron density to solve for the desired properties. Methods based on DFT have gained in popularity due to recent theoretical advancements that often allow it to achieve greater accuracy, at a lower or similar cost in computation time, than commonly used wavefunction-based methods such as the Hartree-Fock (HF) theory.




      Since the book is intended for the application of density functional theory (DFT) and time-dependent DFT methods, it is very relevant to describe the formulation of the theory.




      

        The Schrödinger Equation




        DFT attempt to solve the non-relativistic Schrödinger wave equation:
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            	(1)

          


        




        Here Ψ is the wavefunction, Ĥ is time-independent non-relativistic Hamiltonian, and E is the energy of the system.
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            	(2)

          


        




        The kinetic energy operator [image: ] can be expanded into the following components:
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            	(3)

          


        




        where the first term is the kinetic energy for the electrons and the second is that for the nuclei. Similarly, the potential energy operator ([image: ]) is given by.
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            	(4)

          


        




        Here the first, second, and third terms represent the electron-nucleus attraction, the electron-electron repulsion, and the nucleus-nucleus repulsion, respectively.




        Needless to mention that the Schrödinger equation can’t be solved “exactly” for any system other than the simplest (single-electron) atomic system [1]. To solve this, therefore, we require certain approximations as discussed below.


      




      

        Born-Oppenheimer Approximation




        The complete non-relativistic Hamiltonian using eq. (2), (3) and (4) is given below,
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            	(5)

          


        




        One can write Ĥ into two parts considering the nuclear and electronic motions separately,
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            	(6)
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            	(7)

          


        




        According to the Born-Oppenheimer approximation, the motion of the electrons in a molecule can be considered in a field of fixed nuclei. This is based on the fact the nuclei are much heavier than the electrons. This implies that the kinetic energy of the nuclei, the first term in eq. (7) can be neglected and the nuclear repulsion energy, the second term in eq. (7), becomes constant for a specific molecular geometry [2]. Therefore, one has to deal with the electronic Hamiltonian, eq. (6). The eq. (6) can be solved for the electronic energy (Eelec.) considering a fixed set of nuclear coordinates. The total energy is then simply a sum of Eelec and the constant nuclear repulsion energy.


      




      

        Electron Density and Wavefunction




        Note that the electronic wavefunction (ψ) obtained by solving eq. (6) is not measurable or observable. The experiments can measure several parameters of molecular systems, including electron density (ρ), which is measurable by X-ray diffraction or electron diffraction. It might be a great idea to use one-electron density instead of many-electron wavefunctions for calculating the molecular geometries, energies, etc. In Table 1, we compare the properties of wavefunction and electron density.




        

          Table 1 Comparison of electron density and wavefunction.




          

            

              

                	Electron density



                	Wavefunction

              


            



            

              

                	Observable



                	Not observable

              




              

                	Real



                	Complex

              




              

                	One electron



                	Many electrons

              




              

                	3 coordinates for N-electron systems



                	3N coordinates for N-electron systems

              


            

          




        




        In the Born interpretation, the probability density at any point is nothing but the one-electron wavefunction (ψ) squared (having the same unit as that of the wavefunction at that point). For multi-electron wavefunction, the relation between ρ and ψ is more complicated. Nevertheless, the relation between ρ and ψ reads,
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            	(8)

          


        




        where ψi is the one-electron spatial wavefunctions.


      


    




    

      THE KOHN-SHAM APPROACH




      The Kohn-Sham (KS) approach is based on two theorems, known as Hohenberg-Kohn theorems [3].




      

        First Theorem




        The external potentials, which correspond to the nuclear-electron interaction potentials in the absence of an electromagnetic field, are determined by the electron density.




        This implies that the ground-state properties of a molecule are completely determined by its electron density in the ground state, ρ0(x, y, z). This suggests that the ground-state energy (E0) is a functional (function of a function) of ρ0,
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            	(9)

          


        


      




      

        Second Theorem




        The energy variational principle is always established for any electron density.




        This suggests that any trial electron density (ρt) always leads to higher energy than the true ground-state energy, E0. Note that the electronic energy obtained from a ρt is the energy of the electrons moving under the potential of the atomic nuclei, which is termed as an external potential (ν) and therefore, the electronic energy is represented as Eν = Eν[ρo]
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            	(10)

          


        




        For a system of N electrons, ρt must follow the condition,
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            	(11)

          


        


      




      

        Kohn-Sham Energy




        Considering eq. (6), the ground-state energy (E0) of any molecule is nothing but the kinetic energy plus potential energies due to the attraction between the nucleus (N) and electron (e) and the repulsion between two electrons. All of them are the functionals of ρ0 and hence, the name density functional theory (DFT).
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            	(13)
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            	(14)

          


        




        Unfortunately, the functionals T[ρ0] and Vee[ρ0] are not known. We consider a reference system of non-interacting electrons and define Δ<T[ρ0]> and Δ<Vee[ρ0]> as the difference in the kinetic energy and electron-electron repulsion energy, respectively between the reference system and the actual (real) system:
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            	(15)
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            	(16)

          


        




        Substituting <VNe[ρ0]>, <T[ρ0]> and <Vee[ρ0]> from eq. (14), (15) and (16) into eq. (12) gives:
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            	(17)

          


        




        Defining exchange-correlation energy functional, EXC[ρ0]
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            	(18)
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            	(19)

          


        




        The above eq. (19) contains four terms:




        1st term:




        

          

            	[image: ]



            	(20)

          


        




        Once we obtain ρ0, the integrals under the summation can be easily evaluated.




        2nd term: The kinetic energy of the reference system with non-interacting electrons can be obtained as [4],
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            	(21)

          


        




        Since these electrons are non-interacting, ψr can be written as a single Slater determinant of occupied molecular orbitals. For a system of two electrons,
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            	(22)

          


        




        The four components of the wavefunction in the determinant above represent the KS orbitals for the reference system. Each component appears as the product of a KS spatial orbital (ψiKS) and spin function (α or β). Thus, eq. (21) can be easily solved for < Tr[ρ0]>.




        3rd term: The electronic repulsion energy can be easily evaluated once ρ0 is obtained.




        4th term: The only term we are left with is, exchange-correlation energy. DFT functional differs only in the way this term is incorporated!!


      




      

        KS Equations and Solution




        As per the second Hohenberg–Kohn theorem, the variational principle can be exploited to obtain the KS equations. For this purpose, we treat that the electron density of the reference system as the same as that of the actual system,
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            	(23)

          


        




        Substituting eq. (20), (21) and (23) back into eq. (19) and varying E0 with respect to ψiKS such that their orthonormality is preserved, we get the Kohn-Sham (KS) equations,
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            	(24)

          


        




        Evidently, the KS equations are a set of equations for one-electron systems having terms εiKS as the KS orbital energies (eigenvalues) and vXC(1) as the “exchange-correlation potential.” The vXC is obtained by taking the functional-derivative of EXC[ρ(r)] with respect to ρ(r) as below,
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            	(25)

          


        




        We can write the KS equations, eq. (24) in a compact form using the KS operator as below,
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            	(26)

          


        




        The KS equations, eq. (24) can be solved by expanding the KS orbitals, eq. (22), in terms of some basic functions φj,
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            	(27)

          


        




        The eq. (27) can be substituted into the eq. (24) or (26) and then, the multiplication by φ1,φ2…φm leads to the “M sets of M equations”, that can be better represented as a matrix equation. This matrix is what is called the Fock matrix. The solution of the KS equations turns into the calculation of elements and diagonalization of the Fock matrix. The steps followed, subsequently, are as under:




        1. Guess the density ρ(r), usually by the summation of the electron densities of the individual atoms of the molecule, at the molecular geometry.




        2. Obtain an explicit expression for the KS operator [image: ],




        3. Calculate the Fock matrix elements [image: ]




        4. Diagonalize the KS Fock matrix to obtain the coefficients cij.




        5. Use these cij in eq. (27) to calculate better orbitals ψiKS and hence, density function, eq. (23).




        6. Use new density function to calculate better matrix elements, consequently, better cij which, in turn, provide a further improved density function.




        7. Repeat this iterative process until the electron density converges.




        8. Use final density and KS orbitals to calculate the energy.


      


    




    

      THE EXCHANGE-CORRELATION ENERGY FUNCTIONAL




      The exchange energy (EX) is related to the exchange of two electrons of “same spin” whereas electron correlation energy (EC) is related to the repulsion between two electrons of “different spins” occupying the same orbital. Both these effects lead to less overlapping of electron densities as compared to the reference system. The exchange-correlation energy functional (EXC) can be written as the sum of an exchange-energy functional and a correlation-energy functional, both negative.
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          	(28)

        


      




      As a matter of fact, EX is much bigger than EC in magnitude. For the argon atom, EX is –30.19 Hartree, while EC is only –0.72 Hartree [5].




      The calculation of the EXC and hence, vXC, eq. (25) is very crucial as well as difficult. Since its inception, most of the research has been focused on this part of the theory. This is the part where we need some approximations:




      

        The Local Density Approximation (LDA)




        The LDA is the simplest form of approximation used for EXC[ρ]. This is based on a homogeneous electron gas or the system with the electron density ρ(r) varying only “slowly” with the position so that it could be considered as uniform. For every point, only the electron density “at that point” is considered, and hence, the term “local”. In LDA, the exchange term is a simple analytical form obtained by using quantum Monte Carlo simulations [6] as below,
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            	(29)

          


        




        Correlation functional is obtained at high density limit, i.e., Wigner-Seitz radius, rs < 1 [7] as below,
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            	(30)

          


        




        where C 1 , C 2 , C 3 , and C 4 are some arbitrary constants. For the LDA, the EXC and hence, vXC can be accurately determined as follows,
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            	(31)

          


        




        where εXC is the exchange-correlation energy per particle of homogenous electron gas.


      




      

        Generalized Gradient Approximation (GGA)




        Unlike homogenous electron gas, the electron density in an atom or molecule varies “greatly” and hence, the LDA has severe limitations. For instance, LDA overestimates the binding energy of the system. It does, therefore, not suffice to consider the electron density “locally” but requires some “non-local” methods. In non-local methods, both the electron density and its first derivatives with respect to position, i.e., gradient are considered. The gradient of ρ(r) at a point provides the sampling the value of ρ an infinitesimal distance beyond the “local” point of the coordinate r [8]. Such approximation is called the generalized-gradient approximation (GGA) and these functionals are known as the “gradient corrected” functional. However, it has been advised [9] not to use the term “non-local” while referring to the gradient-corrected functionals.
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        The general form of GGA in practice is expressed based on the LDA with an additional enhancement factor F(s) that directly modifies the LDA energy:




        

          

            	[image: ]



            	(33)

          


        




        where
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            	(34)

          


        




        The typical value of s lies in the range 1-3.




        The gradient corrections in the LDA have been proved to be more effective. The GGA suits almost all systems giving most structural properties within an error limit of 1-3% and corrects most of the over binding problems of the LDA. The practical DFT calculations developed after the introduction of the Becke 88 functional [10] for the exchange energy term. Examples of gradient-corrected correlation-energy functionals are the Lee–Yang–Parr (LYP) [11] and the Perdew and Wang 1991 (PW91) functional [12]. A newer GGA functional is PBE (Perdew-Burke-Ernzerhof, 1996) [13]. The PBE features the local electron density and its gradient, and second-order gradient in the enhancement factor.


      




      

        Hybrid Functionals




        These exchange-correlation energy functionals include a term of exchange energy calculated from the Hartree Fock (HF) method. As per the HF method, the electronic energy can be expressed as,




        

          

            	[image: ]



            	(35)

          


        




        The first term, H ii involves the kinetic energy of electron and electron–nucleus attraction and corresponding one-electron operator is defined as,
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        The second term, J ij is the Coulomb integral corresponding to the Coulomb potential energy and it is defined by one-electron Coulomb operator as below,
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        Here φ i and φ j are one-electron wavefunctions of i th and j th electrons at a distance of r ij . The third term, K ij is associated with the one-electron exchange operator defined as,
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        Here φi(x1) and φi(x2) (and similarly φj’s) are one-electron wavefunctions of ithelectron as a function of positions of electron and their separation is r12. The label 1 and 2 are just for convenience. The electrons are not distinguishable at all.




        The exchange energy is related only to exchange integrals Kij in the above equation. Therefore,
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            	(36)

          


        




        Substituting the KS orbitals into eq. (36), gives an expression for the HF exchange energy as below,
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            	(37)

          


        




        Note that the KS Slater determinant describes the wavefunction of the reference system with non-interacting electrons “accurately” and hence, is the “exact” exchange energy for the reference system with the same electron density as that of the actual system. The accuracy of the molecular orbitals and consequently, exchange energy is, of course, affected by the basis set used.




        A weighted contribution of the terms in the LDA and GGA functionals gives the expression for an HF/DFT exchange-correlation functional, generally referred to as a “hybrid” DFT functional. Such expressions are often parameterized to obtain the desired level of accuracy. So far, the most popular and “evergreen” hybrid DFT functional is composed of an exchange-energy functional developed by Becke in 1993 and a correlation-energy functional devised by Lee, Yang, and Parr in 1988. This EXC is termed as the Becke3LYP or B3LYP functional [10, 11], which is expressed as:




        

          

            	[image: ]



            	(38)

          


        




        Here first two terms incorporate the HF exchange energy functional from eq. (37), the third one is the exchange functional of Becke 88 as mentioned above, the fourth term is the “local” correlation part from the LDA and the last term is the LYP correlation functional described above. The parameters α, β,and γ are 0.20, 0.72, and 0.81, respectively. These values are chosen to give the best fit of the calculated value to molecular atomization energies.




        In fact, the B3LYP is a gradient-corrected hybrid functional. It appears the most useful functional among many others which remain to be well-tested. This is the functional which will be employed in the succeeding chapters of this book. The DFT is, undoubtedly, waiting for further improved functionals, and the expectations from hybrid functional are very high as expressed by some pioneers [14]. There are, of course, several long-range corrected functionals such as CAM-B3LYP, M06, ωB97XD, etc. which improve certain results such as long-range interactions, excitation energies, hyperpolarizabilities and so forth.




        Nevertheless, the speed of DFT calculations with gradient-corrected and/or hybrid functionals can be enhanced with a marginal loss in accuracy by the so-called perturbation method [15]. In this method, the KS eq. (24) are solved using the derivative eq. (25) using the LDA functional. Since LDA is simpler than the GGA or hybrid functional, the calculation is speeded up. Subsequently, the energy is obtained from eq. (19), now using the GGA or hybrid functional. This is how the things in computational research are managed. There are numerous functional available in the Gaussian program [16], see Chapter 2, a few of them are listed in Table 2 below:




        

          Table 2 Some DFT functional available in the Gaussian program.




          

            

              

                	Functional



                	Type



                	Details

              


            



            

              

                	SVWN



                	LDA



                	S exchange and VWN correlation

              




              

                	BLYP



                	GGA



                	B exchange and LYP correlation

              




              

                	G96PW91



                	G96 exchange and PW91 correlation

              




              

                	B3PW91



                	Hybrid



                	B exchange and PW91 correlation

              




              

                	B3LYP



                	B exchange and LYP correlation

              




              

                	PBE1PBE



                	PBE exchange and PBE correlation

              




              

                	CAM-B3LYP



                	Long-range corrected



                	Coulomb-attenuating method with B3LYP

              




              

                	M06



                	Minnesota exchange-correlation

              




              

                	ωB97XD



                	Dispersion corrected functional

              


            

          




        


      


    




    

      THE BASIS SETS




      A basis set is nothing but a mathematical description of the molecular orbitals (MOs). To describe the MOs accurately, a complete set of the basis functions are required. In principle, an infinite number of basis functions are needed for this purpose, but in practice, a finite number are employed [5]. The MOs are obtained by the linear combinations of a well-defined set of one-electron functions, known as the basis functions,
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          	(39)

        


      




      where cμi are referred to as the MO expansion coefficients and χ1 ... χN are the normalized basis functions. The Gaussian [16] (see Chapter 2) and several other programs utilize Gaussian-type functions to generate the basis sets. The (primitive) Gaussian functions can be expressed in the Cartesian form as below,
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          	(40)

        


      




      where x , y , and z are components of and the constant α determines the size (radial extent) of the function. The normalization constant (c) is determined by,
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          	(41)

        


      




      These primitive Gaussians are employed as a linear combination in order to form the basis functions, which are known as the contracted Gaussians and expressed in the following form,
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          	(42)

        


      




      where dμp are constants for a given basis set. Thus, the MOs can be represented for a basis set as follows,
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          	(43)

        


      




      The accuracy of results in DFT calculation is largely determined by the size and quality of the basis set employed. So far, numerous basis sets have been optimized and tested. The quality of a basis set, e.g. 6-31G can be improved by increasing the number of basis functions per atom. The addition of polarization functions to the basis set, e.g. 6-31G* or 6-31G(d) includes the orbitals with angular momentum (p, d, f, etc.), which offers flexibility in different bonding situations. Likewise, the inclusion of diffuse functions (+), e.g. 6-31+G* or 6-31+G(d) is important for the systems with lone pairs, anions, and some excited states. The 6-31+G(d) is a valence double-zeta polarized basis set in which six primitive Gaussian functions are used for core atomic orbitals and valence orbitals are two basis functions comprising of three and one primitive Gaussians. In addition, five d-type Gaussian polarization and diffuse functions are included for each non-hydrogen atom.




      The 6-311G** basis set, commonly used for electron correlation calculations on molecules containing first-row atoms, is valence triple-zeta, containing five d-type Gaussian polarization functions on each non-hydrogen atom and three p-type polarization functions on each hydrogen atom [17]. The size of a triple-zeta basis set [2] can be further increased by adding multiple polarization functions (3d, 3df, etc.) per atom or some extra functions for the valence orbitals. Apart from this, there are several correlation-consistent basis sets available, which are built up by adding shells of functions to a core set of basis functions. For instance, the cc-pVDZ (correlation consistent-polarized valence double zeta) basis set includes 1s, 1p, and 1d function. Likewise, the cc-pVTZ basis set adds another s, p, d, as well as an f functions, and so on. The augmentations to these basis sets have been made by adding diffuse functions to better describe anions and weakly interacting molecules, such as aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, etc. The common (split-valence) basis sets available in the Gaussian (as well as other programs) are listed in Table 3. More basis sets can be obtained from the basis set exchange library [18].




      

        Table 3 The basis sets available in the Gaussian program.




        

          

            

              	Basis Set



              	Quality



              	Number of Basis Functions for Valence Orbitals

            


          



          

            

              	6-31G



              	double-zeta



              	2 comprising of 3 and 1 primitive Gaussians

            




            

              	6-31G*



              	double-zeta



              	add 5 d-type polarization functions for non H atoms

            




            

              	6-31G**



              	double-zeta



              	add 3 p-type polarization functions for H atoms

            




            

              	6-31+G**



              	double-zeta



              	add diffuse function for non H atoms

            




            

              	6-31++G**



              	double-zeta



              	add diffuse function for H atoms

            




            

              	6-311G



              	triple-zeta



              	3 comprising of 3, 1 and 1 primitive Gaussians

            




            

              	6-311++G**



              	triple-zeta



              	add 5 d-type polarization and diffuse functions for non H atoms and 3 p-type polarization and diffuse functions for H atoms

            


          

        




      


    




    

      PROS AND CONS OF DFT




      

        Pros




        DFT incorporates electron correlation effects in its theoretical basis, unlike the wavefunction-based methods such as MP2, CC, CI, etc. in which the correlation effects are to be included explicitly in the framework of the HF theory. Therefore, the DFT offers the accuracy comparable to MP2 calculations, but at approximately the same computational cost (time) as needed for the HF calculations. This makes DFT a cost-effective approach.




        Unlike wavefunction based methods, DFT becomes basis-set saturated more easily. Therefore, the DFT calculations are feasible on larger systems than the wavefunction-based methods can handle. Note that the DFT is considered to be a universal choice for transition metal compounds, as the wavefunction-based methods perform very poorly [19].




        The DFT is based on the electron density, an observable unlike wavefunction, a mathematical entity. The results obtained from the DFT can be easily and intuitively grasped [20].


      




      

        Cons




        The core of DFT, which is the exchange-correlation functional, is not exactly known and there is no systematic way to improve our approximations to it. Most of the functionals, but not all, are generally modified based on experience as well as intuition and testing the calculations against experiments (benchmarking). However, some of them can also be constructed based on physical conditions and corrections. In the wavefunction-based methods, on the contrary, bigger basis sets and higher correlation levels are likely to turn towards an exact solution of the Schrödinger equation.




        Furthermore, these functionals are not derived from a theoretical framework and therefore, the application of DFT on novel molecular systems becomes sometimes questionable. Moreover, only the approximate nature of functional destroys the variational form of DFT, i.e., the DFT calculated energy might be lower than the actual energy value.




        The accuracy of DFT is often limited when compared with the highest-level wavefunction-based methods, such as QCISD(T) and CCSD(T). Even the most popular hybrid functional such as B3LYP is not able to deal with the van der Waals interactions [21, 22]. Some GGA functionals as well as long-range corrected functionals, of course, offer reasonable structures and energies of hydrogen-bonded species [23, 24].




        Unlike wavefunction-based methods, DFT is of single-configurational character. This limits DFT to provide the bond dissociation potential energy surface. This is probably the most serious disadvantage of DFT.




        Basically, the DFT is a ground-state theory. However, several methods have been developed for extending it to excited states. One of the methods is described below. Note that the development is still continued.


      


    




    

      TIME-DEPENDENT DENSITY FUNCTIONAL THEORY (TDDFT)




      The TDDFT extends the concept of DFT to time-dependent situations. For time-dependent situations, eq. (1) reads
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      For a multi-electron system, there is a one-to-one mapping between electron density and external potential [25]. Analogous to the time-independent situations, all observables of any system, in the case of a time-dependent potential, can be uniquely determined by a time-dependent density ρ(r,t) and its state at an arbitrary (single) instant of time ψ(0). This is known as the Runge-Gross theorem.




      If the system has been in its ground state until the time-dependent potential is switched on at any time t0, all observables are functionals of the density only. To put it another way, the initial state of the system ψ(0) at time t0 is a unique functional of the density at t0. This density is similar to the ground-state density of the stationary system before t0.




      This “unique” relationship leads to the development of a computational framework in which the effect of the interaction between particles corresponds to a density-dependent single-particle potential. This enables the study of the time evolution of an interacting system by treating a time-dependent auxiliary single-particle problem. The TD KS equations can be written as:
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      such that
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      The time-dependent KS potential is defined as:
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      The first term is analogous to that defined by eq. (20). The second term classical repulsion energy as earlier. The third term is the exchange-correlation term. It is a functional of time-dependent electron density, ρ(r,t) and initial state, ψ(0). Thus, the knowledge of vXC(r,t) gives the solution to time-dependent problems. Here again, the major issue of TDDFT is to obtain appropriate and reasonable approximations for the exchange-correlation component of the time-dependent KS potential. Initially, Runge and Gross defined this KS potential based on the Dirac action [25], however, it was not in accordance with the causality of the (density) response functions [26], i.e., the functional derivative of the density with respect to the external potential. For instance, a change in the potential at a time t = t0 can not affect the density at time t < t0. Later, this problem was removed by an alternative formalism [27].




      Usually TDDFT is based on Casida’s linear response theory [28]. According to this theory, if the external potential (perturbation) is small such that it does not completely destroy the ground-state density, one can expect the linear response of the system. This implies that the variation in the system, to the first approximation, will depend only on the ground-state density so that we can simply use all the properties of DFT. The readers are referred to [28] for a detailed discussion on linear response TDDFT.




      I will finish this chapter with a quote from a famous quantum physicist P. A. M. Dirac:




      “The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved.”


    




    

      CONCLUDING REMARKS




      In this chapter, we have discussed the formulation of the DFT and TDDFT. The important aspect of (TD)DFT is the approximation used for exchange-correlation functional. There are numerous functionals available under various approximations, be it LDA or GGA, or hybrid. Therefore, the choice of an appropriate functional for the system under study becomes very crucial. Along with a suitable basis set, an appropriate DFT method is capable to reproduce the experimental data. In this regard, a hybrid B3LYP functional becomes the first choice with a double- or triple-zeta basis set. In most of the succeeding chapters in this book, or perhaps all, the B3LYP method will be employed. Nevertheless, the choice of functional largely depends on the nature of the system, property under study, desired level of accuracy, and available computational resources.
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