

[image: Cover]

How To Build Microservices

Top 10 Hacks To Modeling, Integrating
& Deploying Microservices

Scott Green

TABLE OF CONTENTS

Table of Contents 2

About Us 3

Publishers Notes 4

Introduction 5

Chapter 1: Microservices 6

Chapter 2: Advantages of Microservices 10

Chapter 3: Disadvantages of Microservices 13

Chapter 4: Technology Heterogeneity, Resilience, Sealing, and Deployment – Hacks #1 and #2 16

Chapter 5: Managing Complex Systems – Hacks #3 and #4 21

Chapter 6: Checklists – Hack #5 28

Chapter 7: Integration – Hacks #6 to #10 34

Chapter 8: Interfacing With Consumers, Shared Databases And Technology Choices 36

Publishers Notes 54

ABOUT US

The Blokehead is an extensive series of instructional/how to books which are intended to present quick and easy to use guides for readers new to the various topics covered.

[image:]

The Series is divided into the following sub-series:

1. The Blokehead Success Series

2. The Blokehead Journals

3. The Blokehead Kids Series

We enjoy and welcome any feedback to make these series even more useful and entertaining for you.

PUBLISHERS NOTES

Disclaimer

This publication is intended to provide helpful and informative material. It is not intended to diagnose, treat, cure, or prevent any health problem or condition, nor is intended to replace the advice of a physician. No action should be taken solely on the contents of this book. Always consult your physician or qualified health-care professional on any matters regarding your health and before adopting any suggestions in this book or drawing inferences from it.

The author and publisher specifically disclaim all responsibility for any liability, loss or risk, personal or otherwise, which is incurred as a consequence, directly or indirectly, from the use or application of any contents of this book.

Any and all product names referenced within this book are the trademarks of their respective owners. None of these owners have sponsored, authorized, endorsed, or approved this book.

Always read all information provided by the manufacturers’ product labels before using their products. The author and publisher are not responsible for claims made by manufacturers.

Digital Edition 2015

Manufactured in the United States of America

INTRODUCTION

I want to thank you and congratulate you for downloading the book, “How to Build Microservices: Top 10 Hacks to Modeling, Integrating, and Deploying.”

This book contains proven steps and strategies on how to successfully use microservices. More importantly, it contains the top hacks for modeling, integrating and deploying microservices. This book also features useful information regarding what microservices are, their benefits, and their drawbacks.

In this book, you will learn about the essential checklists that you have to keep in mind. Furthermore, you will learn about technology heterogeneity, scaling, resilience, organizational alignment, service-organization architecture, shared libraries, modules, deployment, and integration, among others.

Thanks again for downloading this book, I hope you enjoy it!

CHAPTER 1:
MICROSERVICES

Since the past decades, developers have been trying to find ways on how to build systems. They have been relying on previous discoveries, adopting new technologies, and learning how new waves of technology operate in various ways to create IT systems that make both developers and customers happier.

It is important to represent the world in your code and find better ways to model your systems. You can get your software into production more efficiently and effectively through continuous delivery. It will instill in you the idea that you must treat all check-ins as release candidates.

[image:]

So anyway, what are microservices? Well, these are tiny, autonomous services that work together. They concentrate on doing a certain thing. You see, codebases grow as you write code to make way for new features. As time passes, you may find it more difficult to determine whether a change is necessary since the codebase is huge.

However, despite having modular and clear monolithic codebases, such arbitrary in-process boundaries still break down. Any code that is related to a similar function begins to spread around, making implementations and fixing bugs much more difficult. In a monolithic system, you have to fight against forces by making sure that your code is more cohesive, usually by creating modules or abstractions.

Keep in mind that cohesion is the drive to have related code grouped together. In fact, it is a vital concept in microservices. Just as Robert Martin defines the Single Responsibility Principle, you have to gather together the things that change for a similar reason while, at the same time, separating the things that change for varying reasons.

The same approach is taken by microservices to independent services. You tend to focus your service boundaries on business boundaries. Because of this, it becomes obvious where the code has to live for a specific functionality. When you keep such service focused on a particular explicit boundary, you avoid temptations that lead to making it too large.

Then again, you may start to wonder how small small is. As you know, languages differ. Some are more expressive than others. Thus, they can have fewer lines of code. Do not forget to consider the fact that you can be pulling in different dependencies, which may contain multiple lines of code.

Moreover, some parts of your domain may require more code because they are highly complex. So in a way, you can conclude that a microservice is something that you can rewrite in a couple of weeks.

Another way to define microservice is that it is small enough and no smaller. It is common for people to want to break down a huge system. This only means that they have a fairly good sense of what huge is. So, if you think that a certain code no longer seems huge, then it may be small enough.

One ideal way on how to define small is by checking how well the service aligns to the structures of the team. If the codebase is too large to be controlled by a small team, then it may be sensible to break it down. As for finding out how small small enough is, you can take note of these: the smaller the service, the more you make the most of the downsides and benefits of a microservice architecture.

So, the smaller the service, the more benefits you get from interdependence. Nevertheless, you should take note that the same thing happens with regard to the complexities of having more moving parts. As you become better at dealing with such complexity, the more you strive for smaller services.

OEBPS/CoverDesign.jpg

OEBPS/image0.jpg

OEBPS/image1.jpg

