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    Engineering Dynamics and Vibration are two foundation areas in many engineering fields. They are fundamental to the analysis and design of many dynamic engineering systems. The present volume, Vibration and Nonlinear Dynamics of Plates and Shells: Applications of Flat Triangular Finite Elements is a timely and unique addition to the literature in the two foundation areas in engineering. The authors, Professors Meilan Liu and C.W. Solomon To, have a combined experience of more than fifty years in the engineering dynamics and vibration analysis of plate and shell structures. The present volume has included the two foundation areas in a single book that applies the lower order flat triangular shell finite elements originated from their early research. Its main and important feature is the combination of vibration and nonlinear dynamics of plates and shells in a relatively comprehensive treatment employing the finite element method. Another feature of the present volume is the treatment of boxed or cell structures. It is believed that anyone working in the analysis and design of dynamic engineering systems will find it informative and an excellent reference.
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    The fields of engineering dynamics and vibration have advanced and expanded at an extremely impressive rate due, perhaps, to their high demand in applications in modern technologies. The main objectives of this series are three folds. The first objective is to be complimentary to existing books and handbooks in the fields of engineering dynamics and vibration. The second objective is to provide a common and single venue for the publication of books in both engineering dynamics and vibration fields. Books in the emerging area of engineering dynamics and vibration of nano-structural systems and devices are included. The third objective of the present series is to provide books suitable for use by advanced undergraduates and post-graduate level engineering students, research engineers, and applied scientists.




    The series aims at keeping abreast of the modern developments and applications in the fields. Whenever new areas of development and application arise it is the intent of this series to invite leaders in the field to publish their work.
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    The germ of this eBook was grown from the interests of the authors in engineering vibration and dynamics. The theoretical background and computational techniques adopted throughout this eBook were based on part of the doctoral degree thesis of the first author. While the fields of computational engineering dynamics and vibration are vast, and their applications have virtually no limits, the scope of the present eBook is confined to vibration and nonlinear dynamics of plates and shells. For computational studies, the versatile finite element method alone provides a multitude of impressive publications, such as the pioneered work, Finite Element Handbook published in 1987 by McGraw-Hill (Editor-in-Chief, H. Kardestunder and Project Editor, D. H. Norrie). Subsequently, there are various handbooks in finite element methods available in the literature. Thus, the subject matter and topics included in the present eBook are focused on the vibration and nonlinear dynamics aspects of plate and shell structures. While finite element analysis of plates and shells is generally regarded as a mature technology it seems that no single book that covers both vibration and nonlinear dynamics by applying the finite element method is currently available. Consequently, the present volume is a modest attempt to provide such a book, albeit a relatively limited one. The particular shell finite elements employed in the computational studies reported in this book are the mixed formulation based lower order flat triangular shell finite elements.




    The present book has nine chapters. The brief introduction is included in Chapter 1. Chapter 2 is concerned with the theoretical background for the vibration analysis of plates and shells. In particular, the mixed formulation based three-node flat triangular shell elements are presented in this chapter. Vibration analysis of plate structures is considered in Chapter 3. In the latter the square, circular, and skew plates as well as membrane are treated. Vibration analysis of shells with single curvature is presented in Chapter 4 in which cylindrical panel with rectangular and trapezoidal projections, Scordelis-Lo roof, and cylindrical shell clamped at both ends with its effect of aspect ratio are included. Chapter 5 is concerned with the vibration analysis of shells of double curvatures. These structures include the spherical caps, spherical panel of square projection, hemispherical panel, and clamped hemispherical shell. Chapter 6 deals with the vibration analysis of box structures. Single-cell and double-cell box structures are studied.




    Chapter 7 provides the theoretical development for the nonlinear dynamic analysis of plate and shell structures. The focus is on the mixed formulation based three-node flat triangular shell elements for nonlinear dynamic analysis. Aside from presenting the steps in the derivations of the consistent element stiffness and mass matrices, constitutive relations of elastic materials and elasto-plastic materials with isotropic strain hardening, yield criterion, return mapping, configuration and stress updating strategies, and numerical algorithms are presented and discussed. Nonlinear dynamics of flat-surface structures are treated in Chapter 8. The cantilevered, circular, and square plates under uniform pressures, rectangular plate subjected to a center load, and a cubic tube under internal and external pressures are considered in this chapter. Chapter 9 is concerned with the nonlinear dynamics of curved-surface structures. The cylindrical panel under a central point load and under a uniform pressure, hemispheres with and without a central hole and under alternating point loads, clamped and hinged spherical caps subjected to apex point loads and under pressures are examined in this chapter. Finally, it should be mentioned that no attempt has been made to include the important subject of chaotic dynamics of plate and shell structures applying the lower order flat triangular shell finite elements.
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      Abstract




      This chapter consists of three sections. Objectives and scope of the book are given in Section 1.1. Section 1.2 outlines the organization. Notes on computer programming are included in the last section.
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      1.1.. OBJECTIVES AND SCOPE




      There are numerous examples of engineering structures that are composed of shell segments, such as the body of an airplane, the hull of a ship or submarine, the roof of a domed structure, a pressure vessel, and so on. A shell structure, in general, refers to a body with one dimension much smaller than the other two. That is, its thickness is much smaller than the size of the curved mid-surface. The mid-surface can be of single curvature and double curvature. Examples of former are cylinders and cones. The latter may include spherical caps, for example. Special cases of shell structures include, plates whose mid-surfaces are flat, and beams whose length is much larger than the width and thickness.




      The curvatures provide shells with significant advantages over plates and beams, making shell structures perhaps the most efficient light weight structures in terms of load-carrying capacity. However, the curvatures also pose challenges for the modeling and analysis of shell structures. As Ref. [1.1] pointed out, since the mid-1960s, “the published literature on modeling of plates and shells in the linear and non-linear regimes and their application to dynamic or vibration analysis of structures has grown extensively. There has been a tremendous interest on the part of researchers with sufficiently large amount of resources devoted to the subject, and there continues to be innovative activity in computational shell mechanics. In the last three decades, numerous theoretical models have been developed and applied to various practical circumstances. It may be fair to state that no single theory has proven to be general and comprehensive enough for the entire range of applications”.




      In this book, the development of mixed formulation based, low-order, three-node flat triangular shell elements suitable for the linear and nonlinear analysis of thin to moderately thick shells is presented, together with their applications in the vibration characteristics and dynamic responses of complicated shell structures. It is the authors’ hope that this book, in a very small way, continues the “innovative activities in computational shell mechanics”.




      Although as much details as needed regarding the development of the mixed formulation based three-node flat triangular shell elements are presented in two chapters, Chapters 2 and 7, this book is intended for those with some background in finite element analysis and numerical algorithms. Some familiarity with nonlinear mechanics is also assumed. As a result, the fundamental of finite element method is omitted. Readers may refer to [1.2, 1.3] for such topic.




      

        



        1.2.. ORGANIZATION OF BOOK




        The book is organized into 9 chapters. Chapters 2 to 6 are concerned with the linear version of the mixed formulation based three-node flat triangular shell elements and their application in investigating the vibration characteristics of linear elastic structures. Specifically,





        

          	Chapter 2 presents the mixed formulation based three-node flat triangular shell elements within the context of linear analysis. It also examines issues such as rigid body modes, patch tests and mesh topologies;




          	Chapter 3 is concerned with the vibration analysis of plate structures;




          	Vibration characteristics of shells of single curvature and double curvatures are included in Chapters 4 and 5, respectively; and




          	Chapter 6 demonstrates the application of the shell elements to single-cell and double-cell box structures.


        




        The remaining chapters, Chapters 7 to 9, deal with the general nonlinear dynamic analysis of shell structures by the mixed formulation based three-node flat triangular shell elements. The nonlinear formulation is given in Chapter 7, which is followed by Chapter 8 on the nonlinear dynamics of plate and box structures. Nonlinear dynamics of structures of single curvature and double curvatures are presented in Chapter 9. For the latter chapters, geometrical nonlinearity due to large deformation, material nonlinearity due to elastic-plastic material behaviour, and various loading situations including non-conservative pressure loads are investigated.


      




      

        



        1.3.. NOTES ON COMPUTER PROGRAMMING




        The linear and nonlinear mixed formulation based three-node flat triangular shell elements were initially programmed in the Fortran language and incorporated in NONSAP [1.4] which was modified and implemented on a SGI workstation for the computational results reported in the doctoral degree thesis of the first author [1.5]. The digital computer program has since been rewritten in the personal computer (PC) based MATLAB system [1.6]. All computations involved in this book are performed in the MATLAB environment. Plots such as mode shapes and dynamic responses are generated by appropriate MATLAB functions.




        At the present time, the shell element formulations and associated functions, such as mesh generation, applying boundary conditions, direct time integration schemes, Newton-Raphson method and its variants, Riks-Wempner arc-length method, plotting of mode shapes and time histories, and so on, are combined into a package, written by the first author for academic and research purpose only.
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      Abstract




      In order to investigate the vibration characteristics and dynamic responses of complicated shell structures with geometrical and material nonlinearities, it is essential to formulate shell finite elements that are easy to use, accurate, effective, and applicable to thin as well as moderately thick shells. This chapter presents the development of the mixed formulation or hybrid strain based three-node flat triangular shell elements, with a particular emphasis on the linear analysis of thin to moderately thick shells. Section 2.1 gives a brief introduction and an outline of the features of the shell elements. Section 2.2 deals with the derivation of consistent stiffness and mass matrices of a particular element. In Section 2.3, results and discussions pertaining to rigid-body modes, patch test, and mesh topology are presented. Concluding remarks are given in Section 2.4.
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      2.1.. MIXED FORMULATION BASED THREE-NODE FLAT TRIANGULAR SHELL ELEMENTS




      Low-order C0 three-node flat triangular shell elements have attracted considerable attention since the early 1960s. In most of these elements, every node may have five or six degrees-of-freedom (DOF). Some notable early developments of elements with five nodal DOF include those by Zienkiewicz et al. [2.1], and Clough and Johnson [2.2], in which the five nodal DOF were, the two in-plane displacements, the transversal displacement and its two first derivatives with respect to the two axes perpendicular to the transversal displacement. On the other hand, Argyris et al. [2.3, 2.4] chose the mixed second-order derivative of the lateral displacement, together with the five DOF mentioned above, as nodal DOF, resulting in an element with a total of 18 DOF. Later in the 1980s, some three-node shell elements were developed [2.5, 2.6] by combining the three-node discrete Kirchhoff theory (DKT) triangular elements [2.7, 2.8] and the constant strain triangle (CST).




      Another category of note-worthy shell elements are the so-called degenerate shell elements. They possess features such as mathematical consistency, easy extendability to nonlinear analysis and simplicity in formulation. However, two chief concerns exist. The first one is the shear-locking phenomenon. Degenerate elements perform satisfactorily with thick shells, but they become less accurate in the "thin" limit, owing to the excessive transversal shear strain involved in the formulation. Techniques have been proposed to reduce or even circumvent shear-locking. For a summary, readers are referred to Ref. [2.9]. One of the commonly adopted techniques is the reduced or selective integration [2.10]. Another scheme for dealing with the shear-locking problem is the hybrid/mixed formulation. The latter has been shown equivalent to the displacement-based formulation with reduced integration [2.9, 2.11], in terms of handling shear-locking. Furthermore, the hybrid/mixed formulation has the unique feature of providing continuity for the displacement field as well as the strain or stress field.




      Degenerate shell elements may also exhibit membrane-locking when low-order in-plane displacement functions are used in the formulation of curved elements [2.12, 2.13]. Techniques to deal with membrane-locking include, for instance, utilization of enhanced membrane strain interpolations [2.14] and sufficiently high order in-plane displacement field [2.12]. It was also found that the reduced integration for shear strain also reduced the effects of membrane-locking [2.15]. It should be pointed out that for three-node degenerate shell elements specifically, the coupling between membrane and bending actions is unfortunately missing since the three nodes can only describe a "flat" geometry. However, owing to this "flat" geometry, membrane-locking is non-existent.




      In addition, shell elements may encounter problems associated with the rotations about the normal to the shell surface, also known as the drilling degrees-of-freedom (DDOF). The DDOF are typically present among the structural or global DOF. If they are not included in shell elements that are coplanar at a certain node, the global stiffness matrix becomes singular. Omitting the rotations interferes with rigid body motion and thus destroys an important convergence criterion: correct representation of general rigid body motion. An approach in dealing with the DDOF was to include the normal rotation by employing curved membrane component element [2.16]. This shell element was later found to be identical to the Allman's triangle (AT) [2.17-2.19].




      In summary, low-order, three-node flat triangular shell elements based on displacement formulation possess several important and advantageous features. From the modelling perspective, these flat elements model shell structures by the superposition of stretching behaviour (membrane element) and bending behaviour (plate bending element). Therefore, they are simple to formulate, easy to input data to describe general shell geometry, and able to represent rigid body motions. They can be mixed with other types of elements. That a relatively large number of elements may be required in a finite element model provides the advantage of convenience in incorporating complicated loading and boundary conditions. On the other hand, these low-order three-node flat triangular shell elements have shear-locking and problem caused by the DDOF. Consequently, it is necessary to develop three-node, 18-DOF, low-order flat triangular shell elements that have improved features over other flat triangular shell elements.




      (i) Such shell elements are degenerate in nature. The degenerate nature allows for applications to thin as well as moderately thick shells, and for relatively simple extension to nonlinear analysis.




      (ii) Such shell elements are mixed formulation or hybrid strain based. The hybrid strain feature provides continuity in displacements and strains, and circumvents the shear-locking problem.




      (iii) The choice of hybrid strain rather than hybrid stress is based on mathematical as well as practical rationale. Mathematically, variational principles are employed to minimize the strain energy in any element. As a result, strains converge more rapidly. Practically, the evaluation of element stiffness matrix involves relatively straightforward strain-displacement relationships (more precisely, incremental strain-displacement relationships for nonlinear problems), leading to more efficient computation. Conversely, stresses depend on materials (linear elastic or elasto-plastic in the nonlinear cases, for example) and the state of deformation.




      (iv) A scheme similar to the Allman’s triangle (AT) [2.17-2.19] is incorporated. As a result, in-plane displacements are coupled with the DDOF, enabling the element to reflect the true normal rotations. In addition, incorporating the Allman’s scheme improves the insufficiency of bending action which is typical when adopting low order interpolation. The resulting element is capable of representing true normal rotation as well as desirable membrane and bending behaviours.




      (v) The element stiffness matrix can be and is explicitly expressed by a combination of manual and computer-assisted derivations. The explicit expressions eliminate the need for matrix inversion and numerical integration, and thereby improve the computational time.




      In terms of vibration analysis of shell structures using the finite element method (FEM), one of the main considerations seems to be if and how to incorporate the rotary inertia, in addition to the translational inertia. One may argue for the practice to disregard the effects of rotary inertia due to bending when the shell is thin. However, when the shell structure is relatively thick the rotary inertia effect due to bending is not negligible. Moreover, it has been found that the DDOF play a crucial role in the performance of shell elements [2.20, 2.21]. Therefore, it is natural and necessary to bring in the effects due to torsional deformation associated with the DDOF.




      Of special interest is Ref. [2.22], in which a set of explicit expressions for the mass and stiffness matrices of a triangular element was presented. The element mass matrix included translational inertia, and rotary inertia due to bending and torsion. To derive the element mass matrix, the triangle was divided into “beam elements” that were parallel to one of the three edges [2.22]. A relation between edge displacements and displacements within the triangle was established. This procedure was subsequently repeated on every side and the mean was applied to obtain the final element mass matrix, in order to eliminate the discrepancy due to forming “beam elements” parallel to one side or others. Consequently, the amount of computation involved was significant, not to mention that the physical interpretation of the element mass matrix was not apparent. In contrast, the present formulation is straightforward and has ample physical interpretation, as will be seen in Sub-sec. 2.2.9.




      Additional features may be included in the formulation of the three-node flat triangular elements. These include, for example, linear distribution of the membrane part of the assumed strain field, and membrane-bending coupling by the hybrid strain formulation. After examining the effects of such additional features on the performance of the hybrid strain based three-node flat triangular shell elements, Ref. [2.23], however, found that the inclusion of such features was unnecessary. Instead, topology of the mesh played a crucial role.




      

        



        2.2.. THREE-NODE FLAT TRIANGULAR SHELL ELEMENTS




        Various mixed formulation or hybrid strain based flat triangular shell finite elements have been previously developed and presented [2.20, 2.21]. However, in this book only two versions are employed for brevity and for their superior features over the other elements in [2.20-2.21].




        The consistent element stiffness matrix k and consistent element mass matrix m of a mixed or hybrid-strain based three-node flat triangular shell element is presented in the following. The focus is on the shell element identified as AT+(kt1)’ and AT+(kt3)’ for static analysis [2.20], and as NFORMU = 15 and NFORM = 16 for vibration analysis [2.21]. These particular elements have been found to have superior performance to other hybrid-strain based three-node flat triangular shell elements developed at the same time [2.20-2.21, 2.24]. As will be observed in the following, these elements are mixed formulation based in the sense that the DDOF component of the element is derived from the displacement formulation while the remaining bending, membrane and shear components of the element are obtained through the hybrid strain formulation.




        

          



          2.2.1.. Variational Principle




          Four major variational principles are acknowledged as the fundamentals of finite element formulations. They are: the principle of minimum potential energy, the principle of minimum complementary energy, the Hu-Washizu principle, and the Hellinger-Reissner principle. The last one assumes displacements and stresses, or displacements and strains, as independent variables, and is adopted in the present formulation for the reasons mentioned in Section 2.1. The functional for the Hellinger-Reissner principle can be written as, when independent variables are displacements and strains:




          [image: ]




          where σ is the stress vector, ε the strain vector, f the body force vector, [image: ] the elastic matrix of the material (such that σ =[image: ]ε), L the linear operator to calculate strain from displacement, Γ the linear operator to evaluate surface traction from stress, [image: ]the vector of prescribed displacement on boundary, [image: ] the vector of prescribed surface traction, Vb the volume of the body, St the portion of the surface of the body where [image: ] is applied, and Su the portion of the surface of the body where [image: ] is prescribed. Finally, the superscript "T" denotes transpose.




          Since in hybrid strain formulation the final unknowns are nodal displacements, the satisfaction of displacement boundary condition, u = [image: ], is easily met. The term associated with (u-[image: ]) can be disregarded. Equation (2.1) thus becomes,
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          2.2.2.. Stationarity of Functional




          Assuming that at the element level,




          [image: ]




          where q and β are vectors of nodal displacements and strain parameters, respectively, while N and [image: ] are the corresponding interpolation matrices. Substituting Eq. (2.3) into (2.2) leads to,




          [image: ]




          where Ve and Ae are the volume and area of an element, respectively, and the summation is performed over all the elements.




          Minimizing the total potential energy in Eq. (2.4) with respect to β, or setting [image: ]




          [image: ]




          in which B = LN is the linear strain-displacement matrix. Now defining




          [image: ]




          such that β can be solved from Eq. (2.5)




          [image: ]




          Substituting Eq. (2.7) into (2.4) results in




          [image: ]




          Minimizing Eq. (2.8) with respect to q gives




          [image: ]




          Finally, defining




          [image: ]




          where k is the element stiffness matrix and fe the consistent load vector due to body force and surface traction, Eq. (2.9) can then be simplified




          [image: ]




          Assembling all elements yields the equilibrium equation of the structure




          [image: ]




          with K, Q and Fe being the assembled stiffness matrix, assembled nodal displacement vector and assembled consistent load vector, respectively. The unknowns in Eq. (2.12) are vector Q which, after being solved, is applied to recover the strain or stress vector by the following relations




          [image: ]


        




        

          



          2.2.3.. Geometry and DOF of Element




          The geometry of the three-node flat triangular shell element is shown in Fig. 2.1. The three nodes are allocated at the three corners of the mid-surface of the element. A local Cartesian coordinate system r-s-t is attached to Node 1, where the r-axis coincides with side 1-2; the t-axis is parallel to the normal to the plane containing the element, while the s-axis is perpendicular to the plane. As a result, the local coordinates of the three nodes are, (0, 0), (r2, s2) and (r3, 0), respectively. The six local DOF associated with each node are the displacements u, v and w in the r, s and t directions, respectively, and the rotations θr, θs and θt about the r, s, and t-axes, respectively. The last rotation is also known as the DDOF, the drilling degree-of-freedom. The displacements are considered positive if along the positive directions of r, s, and t-axes. For the rotations, the right-hand screw rule is adopted in determining their directions.




          The triangular element can be easily described by the natural or area co-ordinate system. If ξi (i = 1, 2 and 3) are the natural coordinates, they satisfy the condition




          [image: ]




          The relation between the natural and the r-s coordinates is




          [image: ]




          
[image: ]


Figure 2.1)




          Nodes, axes and DOF of three-node flat triangular shell element.




          The first-order partial derivatives of ξi (i = 1, 2 and 3) with respect to r and s are




          [image: ]




          where the comma partial derivative notation in the subscripts has been adopted.


        




        

          



          2.2.4.. Assumed Displacement Field within Element




          The assumed displacement field within an element is




          [image: ]




          where the displacement interpolation or shape function matrix N is given by




          [image: ]




          with the sub-matrices Ni (i = 1, 2 and 3) being defined as




          [image: ]




          It should be noted that, for brevity, only the non-zero elements of the sub-matrices are given in Eq. (2.19). Although this will remain for the remainder of the book, zeros will sometimes be filled in for easy reference. The terms [image: ] and [image: ] are,




          [image: ]




          where the quantities aij and bij are, with reference to Fig. 2.2,




          [image: ]




          It should be mentioned that, (i) the [image: ]and [image: ]terms in the first two rows of the N matrix couple the in-plane displacements u and v with the DDOF, ensuring that the element will reflect the true normal rotations; (ii) the lateral displacement w is linear with regard to nodal lateral displacements wi (i = 1, 2, 3), but is quadratic in terms of nodal rotations θri and θsi (i = 1, 2, 3), because of the [image: ] and [image: ]terms in the third row of the N matrix. As pointed out by [2.25], adding the [image: ] and [image: ]terms makes the element softer, improving the insufficiency of bending action due to the use of low order interpolation.




          
[image: ]


Figure 2.2)




          Geometry of three-node flat triangular shell element.


        




        

          



          2.2.5.. Strain Field within Element




          The assumed strain field is




          [image: ]




          In Eq. (2.22), the βi (i = 1,., 9) are strain parameters. Matrix [image: ] is,




          [image: ]




          where r32 = r3 – r2, and t is the thickness coordinate whose value ranges -h/2 to h/2 with h being the thickness of the shell element. The [image: ] matrix ensures that the nine strain parameters are evenly distributed over the membrane, bending and transverse shear strain fields. Specifically, β1 through β3 describe a constant membrane strain field, β4 through β6 correspond to a constant bending curvature distribution, and β7 through β9 represent a constant (over the thickness) transverse shear strain field.
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