
[image: image]

Interactive Web
Development With
Three.js and A-Frame

[image:]

Create Captivating Visualizations and
Projects in Immersive Creative Technology
for 3D, WebAR, and WebVR Using
Three.js and A-Frame

[image:]

Alessandro Straccia

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: April 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN: 978-81-97223-96-9

www.orangeava.com

Dedicated To

My Mom and Dad, Who Taught Me How to Be the Person
I Turned Into

And to My Kids, Victor and Lucca, Who Teach Me How
to Be the Person I Am Becoming

About the Author

Alessandro Straccia holds a bachelor’s degree in Advertising and Marketing from Methodist University of São Paulo and a Technical Degree in Computer Science from ETE Lauro Gomes of São Bernardo, Brazil. He began developing an interest in Creative Development at a very young age, using his dad’s Apple II to create 2D graphics using the Logo language and adding some interactivity using BASIC language. Some years later, Alessandro took his first steps in 3D using 3D Studio and POV-Ray, and began working with more professional languages such as C and Pascal.

His professional experience started in 1998, where he gathered all his knowledge to build multimedia applications with Macromedia Director and rich content websites with Adobe Flash for Brazilian advertising agencies. At these agencies, Alessandro earned several important awards, such as the Merit at One Show Interactive, two shortlists at the Cannes Advertising Festival, and two WSA Mobile prizes. In 2011, he started his own studio to help clients and advertising agencies in building Creative Tech and digital projects.

In 2020, Alessandro moved to the UK to work for a game studio, using his creative skills to lead the Marketing Art team. However, his passion for the Creative Tech area spoke louder, and he decided to focus on AR and VR areas, building projects for studios such as Unit9, Eyekandy, Globant, Treatment Studio, Nexus, Blippar, among others. He also started to work as a consultant for companies and studios interested in utilizing Creative Tech in their projects. More recently, he has started to explore Unreal Engine Fortnite to build playable content for educational and entertainment purposes.

He is currently working as a Creative Technologist for many creative studios in the US, UK, Europe, and Brazil, building interactive applications using web 3D and web AR/VR experiences for big brands. He also gives lectures about Creative Technology and immersive technologies for universities, startups, and private companies.

When not working on Creative Tech projects, Alessandro enjoys traveling, cooking, and playing video games with his kids.

About the Technical Reviewer

Anderson Mancini is a visionary creative developer from Brazil, specializing in three.js and WebGL development. He has delivered over 100 projects that showcase his expertise. As a three.js specialist, he is renowned for creating free components and helpers for the community, accessible on his GitHub page.

In addition to his prolific project portfolio, Anderson is a dedicated teacher, offering courses on three.js that share his deep knowledge with aspiring developers. His global reach extends beyond the Brazilian market, reflecting his commitment to shaping the future of creative development on a global scale.

Currently focused on empowering organizations with his creative prowess, he is known for infusing strategic and visually compelling solutions into the digital landscape. As an advisor to emerging creative startups, he plays a pivotal role in shaping the industry’s future. His passion extends to various publications where he shares insights, emphasizing the importance of robust design principles and user-centric experiences.

He not only excels in tackling design challenges but also plays a pivotal role in shaping the forefront of cutting-edge and sustainable creative platforms. Whether through his project contributions, educational initiatives, or global collaborations, Anderson emerges as a key influencer in the dynamic realm of creative development.

Acknowledgements

Interactive Web Development With Three.js and A-Frame is the result of 10 years of study and professional work with these amazing technologies. However, it would not have been possible without the amazing initiative and work of the founders and maintainers of Three.js and A-Frame.

First and foremost, I extend my gratitude to Ricardo Cabello (aka Mr. Doob - https://mrdoob.com) for creating the amazing 3D web library called Three.js. He is revolutionizing the way we build interactive and rich content for the web, helping creative developers like me to make a living and encouraging new developers to try different development pathways, including mobile and desktop apps, CRUD, and other “normal” development areas.

I also thank the Mozilla team for creating A-Frame, and its current maintainers Diego Marcos, Kevin Ngo, and Don McCurdy.

To the Three.js and A-Frame community spread across Stack Overflow posts, Discord, and Slack channels, I extend my sincere thanks. Let’s continue to help both beginners and experienced creative developers.

I would also like to express my gratitude to my family, especially my mom, who has always supported me, and my dad, who gave me the opportunity to start exploring CGI on his Apple II computer with BASIC and Logo languages. To my kids, Victor and Lucca, who always amaze me with their creativity and enthusiasm, and who helped me test some of the code examples from this book. And to my fiancée, Aline, who encouraged me to start this project and supported me until the end, despite all the challenges I faced during this period.

I extend my appreciation to the collaborators of this book - the entire AVA team, editors, and reviewers. A special thanks to Anderson Mancini, the technical reviewer who provided precious ideas on how to improve the content flow and understanding, and to Felipe Matos, who helped me revise and write some code examples for this book.

Finally, to the readers, thank you for choosing this book as your first step - or maybe not the first - on creative development. It’s a wonderful journey, and I’ll be your guide on the next pages.

Preface

Creative Development is a relatively lesser-known area in software development. It involves various creative tools glued together with coding languages. While you don’t need to be a master in 3D, design, or even sound design to be a good creative developer, it’s important to know the basics of all these areas and, especially, understand how to put them together to build amazing Creative Dev apps.

This book focuses on web tools – specifically Three.js and A-Frame – due to their popularity and relatively low learning curve, basically relying on HTML, CSS, and JavaScript.

This book is organized into nine chapters to guide you from the basics of Three.js to more complex and specialized lessons. By the end of this book, you will be able to build Creative Development apps based on the web, both for desktop and mobile platforms. You will learn to interact with rich content such as 3D assets, videos, and more. Even if you are an experienced Three.js developer, this book contains useful examples and templates that will help you enhance your own projects.

Chapter 1. Getting Started with Three.js: This chapter covers the foundations of Three.js, providing context about the library, how to make it work on your computer, and the basic tools needed to get started with it.

Chapter 2. Our First Scene: This chapter delves into the concepts of 3D primitives, materials, lights, and shadows. Learn how to use Three.js cameras and set up the animation loop to deliver the final result: our first Three.js scene.

Chapter 3. Interacting with Our Scene: This chapter teaches you how to interact with the scene using keyboard, mouse, and mobile phone data. Uncover the basic concepts of raycasting and learn how to click and interact with scene objects. Finally, we will dive into camera controls to move the camera around and put everything together to build a simple first-person shooter game.

Chapter 4. Adding Some Realism: This chapter explores ways to add more realism to the scene, including adding third-party 3D objects, setting up realistic materials and textures, and adding a physics engine to build a more interesting 3D scene.

Chapter 5. Post Processing: This chapter guides you a step further in scene realism by adding post-processing effects to give your scene sophisticated features such as glow and bloom, depth of field, and more.

Chapter 6. Introduction to WebAR and WebVR: This chapter introduces you to the concepts of WebAR and WebVR and provides the basics of the A-Frame 3D framework.

Chapter 7. Creating Your First WebAR Experience: This chapter takes you into the world of WebAR, adding more A-Frame knowledge and explaining how to build 3DoF, Image Tracking, and Face Tracking AR scenes.

Chapter 8. Creating Your First WebVR Experience: This chapter guides you through the WebVR world, explaining the basics of VR interaction and delivering a virtual exhibition in VR.

Chapter 9. Useful Boilerplates to Start Your Projects: This chapter presents you with Creative Development best practices and gathers all the book’s lessons packed in seven useful boilerplates that you can use and adapt to build your own projects.

This book is filled with practical and real-world examples that will help you to start and improve your Creative Development skills with Three.js and A-Frame. We hope this book empowers you to build your own Creative Development projects and gives you more curiosity and excitement about this incredible development area. Happy coding!

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/OrangeAVA/Interactive-Web-Development-With-Three.js-and-A-Frame

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/b84ca5

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Getting Started with Three.js

Introduction

This chapter outlines the foundations of Three.js, giving you a bit of context of the Javascript library and explain why we cannot use 3D directly in the web browser. We will also discuss HTML <canvas> and WebGL and cover some other Three.js alternatives and spin-offs. You will learn about the tools required to build your Three.js scenes and how to make them work in your web browser. In the end, we will provide you with the Three.js useful links to download the library, examples, and documentation, and build our first Three.js boilerplate.

Structure

In this chapter, we will discuss the following topics:

	Introduction to WebGl

	Three.js History

	Three.js Alternatives

	Extending Three.js

	Tools and Requisites to Start Developing

	Downloading and Installing Three.js

	How to Use This Book

	Project Structure

Introduction to WebGL

If the subject of Three.js generated some interest in you, we suspect you know a bit about HTML, CSS, and JavaScript. These are the Holy Trinity of web development. With these pillars, you can do almost everything on your web or mobile browser—create graphics and animations, for example. Using HTML and CSS you can draw simple shapes and add simple animations to them. However, if you need to draw more complex graphics or animations, only HTML and CSS will not be enough.

This is why the tag <canvas> was introduced by Apple to JavaScript language in 2004. With this magic tag, you can draw 2D shapes and bitmaps over a defined area of your browser. You can draw circles, polygons, and more but no 3D shapes, complex textures, and sophisticated animations at all. The remedy to this was found in 2009 by the Khronos Group, along with Apple, Google, Mozilla, and Opera, who introduced the WebGL technology-Web Graphics Library, a way to render complex 3D graphics to web browsers.

TIP: If you are interested in <canvas> resources and 2D drawing, check FabricJS (http://fabricjs.com). It is a very powerful JavaScript library that helps you with drawing and animating 2D content on <canvas>. You can even use a dynamic canvas element as a texture for your 3D materials!

WebGL allows GPU-accelerated usage of physics, image processing, and effects as part of the web page canvas, without the use of plug-ins. This was a huge evolution for developers and designers who have been struggling to create more interesting designs and interactions on web pages.

Pure WebGL operates at a basic level—you need to code some GLSL stuff (C++) to define your materials and even your 3D objects need to be defined vertex by vertex—so it is not practical in any sense. This is why, around 2009, the first web 3D libraries were created. This is all about Three.js: it is a WebGL library that allows the developer to use advanced graphic features only with the knowledge of JavaScript without the more complex WebGL/GLSL languages.

Three.js History

The first decade of the 21st century was the age of Flash, the incredible graphic + animation + interactive development software that brought to us rich and (very) animated websites that would never exist if dependent only on HTML + JavaScript technologies. Flash came up with an interesting script language called ActionScript, and you could do loads of things while using it but it could not help with 3D.

In this scenario, Ricardo Cabello, AKA mrdoob developed Three.js, initially in Flash ActionScript, and then ported to JavaScript. Three.js had its first official version launched in 2010 entirely as a cross-browser with no plugin needed. Under an MIT license, Three.js was rapidly adopted by designers, creative developers, and 3D artists, gathering a huge community of enthusiasts and contributors. Nowadays, Three.js is the most used 3D library and has been used by freelancers, big digital studios, architecture offices, AR and VR companies. Even NASA now uses it on some mini sites and interactive animations. However, you have other options to do 3D stuff on your web browser.

If you are not so familiar with 3D graphics concepts, we need to explain an important thing: the render concept. By render, we mean the tasks executed by a computer to transform Maths formulas into viewable graphics, and this is what WebGL does (and Three.js through WebGL). For a computer, a 3D scene is a series of geometry points, materials, textures and lights that means nothing to us, but a render engine transforms all of this into a beautiful image that we can understand and appreciate.

The 3D rendering task is very complex, and it gets more complex depending on your scene parameters, the number of objects, lights, rendered image resolution, render quality, and other factors. So, we use 3D software (like Blender, 3D Max, Maya, Cinema4D, Houdini, and so on) to be able to draw objects and scenes in 3D space. These software render the 3D scenes into high-quality images, and sometimes rendering just one frame can take hours. We call these renders as offline renders.

In contrast to offline renders, we have real-time renders, such as proprietary game engines, Unity, Unreal Engine, and Three.js. They render 3D scenes in real time, using different techniques that allow the computer GPU to deliver complex 3D graphics in real time. Unfortunately, it is not possible to have the same level of quality of offline renders on real-time renders, but nowadays they are good enough to be used in game productions and even on movies and TV shows. If you search for virtual production on the internet, a plethora of productions that use game technology to deliver high-quality 3D content will come up.

So, Three.js is a real-time render engine, which means that it uses different techniques to be able to render complex 3D scenes on your browser screen. Unlike Unity and Unreal Engine, which are standalone softwares and can use the computer GPU directly (so they can use powerful graphic resources at a very fast speed), Three.js uses WebGL, which is limited by the browser resources and speed. This is why it is very hard to have Three.js scenes with a render quality comparable to Unity or UE scenes. But we are making every effort to resolve it. Nowadays we have dozens of techniques and shaders that can improve Three.js render quality very dramatically.

There are benefits and caveats to using different renders, and the best benefit by far of using Three.js is the possibility to have a 3D scene ready to run on (almost) any browser and device, without any need to download or install anything and without any compatibility concerns. We call this friction, and depending on what you want to deliver to your user, this factor is crucial. The users can wait a bit more to download and install a game or a mobile app that they will play for months, but they will not wait for long to open a website with 3D graphics or an AR/VR scene on their mobile phone.

We will discuss in more detail about some techniques to improve your render quality with Three.js further in this book.

Three.js Alternatives

Three.js is considered the most used 3D library available for the web, with more than 34k repositories on GitHub and more than 20k topics on StackOverflow. However, this is not the only 3D library available for the web. Following are the main Three.js alternatives:

[image:]

Babylon.js: It is probably the best alternative to Three.js, has the same basic features of Three.js, but has some interesting features embedded in the core, such as physics engine and some nice visual improvements as SSR (screen space reflections) and AO (ambient occlusion). Babylon has a good GUI editor and a powerful web 3D inspector too:

[image:]

Unity WebGL: Unity is one of the most powerful game engines in the market. Thousands of game studios and indie game developers use it to deliver not only games but interactive and rich experiences. Unity can export to WebGL and run on browsers but in a very limited (and heavy) way. Also, Unity is not an open-source tool, so you need to buy a license to use it on bigger projects.

PlayCanvas: This is a full game engine focused on the web. It has a very powerful GUI editor and allows the user to build complex interactions without any line of code. PlayCanvas offers a free subscription for smaller projects, but as Unity does, you need to buy a license to use it for more robust projects:

[image:]

There are other interesting alternatives, but they are not real 3D libraries or engines for the web. D3.js, for example, renders 3D graphics on web browsers but it is specific for data visualization. Blend4web has good 3D features (and very good integration with Blender), but it is not as popular as Three.js and Babylon.

Apart from the competitors that use completely different web 3D render engines, there are some libraries that use Three.js as a render engine but have different development approaches.

Extending Three.js

You can use Three.js on its pure version, but you have some interesting spin-offs that can increase your productivity or be more friendly to your tech stack:

[image:]

A-frame: This is a HTML framework based on Three.js. It uses HTML tags and components to allow the developer to build 3D scenes with less code and less complexity. It is largely used for web AR and VR applications, and you can use pure Three.js code along with A-frame code. We will focus on A-frame in later chapters that are dedicated to web AR and VR.

[image:]

React Three Fiber, or R3F: This is a React framework based on Three.js. It allows React developers to use Three.js with re-usable components and fully integrated into React core. R3F has a good number of native components and allows the user to use pure Three.js code if needed.

So now that you know a bit more about Three.js history and some other web 3D alternatives, it is time to stretch your fingers and start doing some code.

Tools and Requisites to Start Developing

As a developer, you probably have your own tech stack and tools to develop, but it is always good to remember some basic stuff. So, basically, you will need:

	A good code editor, such as Sublime, Notepad++, VSCode, and so on.

	
Local server software, such as Xampp or Wamp, or you can use Node.js and Webpack to automate your code compiling and web serving. In this chapter, we will keep it simple and use a local server software. All the examples and boilerplates presented in this book have been tested with Xampp.

	And, of course, a web browser. Chrome and Firefox have the best performance and WebGL compatibility.

All the examples and boilerplates from this book used Xampp (https://www.apachefriends.org/download.html) local server to run, so to be able to run these files you will need (after installing Xampp of course) to start the local server. You just need to open it and, in the same line of Apache, click the Start button. Now you need to open your file explorer and find the Xampp install folder (generally c:/xampp). Inside this folder you will find the folder htdocs. Everything you add here will be used for Xampp to run as a web page, just like on a non-local web server, the only difference is that they will be accessible by the URL http://localhost/foldername.

We recommend that you to create a folder inside htdocs to add your code and GIT push all the book boilerplates to another folder for reference and experiment:

[image:]

Figure 1.1: Xampp control panel

If you use VSCode, just create the projects on it and run the LiveServer extension in order to make the web pages work properly. We advise you that all the examples from this book and the provided boilerplates will not work if you just open the pages in your web browser.

Downloading and Installing Three.js

You are probably aware that Three.js is available at https://threejs.org. In this link you will find the core code, documentation, and good examples of Three.js features and applications.

There are some other useful links:

	
Documentation: https://threejs.org/docs:
You will find all Three.js classes and explanations about each one here. Unfortunately there are not too many code examples in the Documentation, so maybe you will need to look further on StackOverflow to find better examples on how to use the classes.

	
Examples: https://threejs.org/examples
You will find excellent examples of what you can do using Three.js, with code sources.

	
GitHub: https://github.com/mrdoob/three.js
The main GitHub source of Three.js. You can clone the repository and start tweaking the examples and see what happens.

	
StackOverflow: https://stackoverflow.com/questions/tagged/three.js
The Three.js section on StackOverflow is huge — this is a good thermometer to know how popular Three.js is.

	
Web Forum: https://discourse.threejs.org
A good place to find answers for your issues.

	
Discord server: https://discord.com/invite/56GBJwAnUS

There is no need to install anything, really. You can just call Three.js library directly from this link: https://unpkg.com/three@0.153.0/build/three.module.js. But you can download it from Three.js or GitHub websites and run it locally.

Also, you can use NPM to install Three.js into your project. NPM stands for Node Package Manager and it is a package manager based on Node.js that adds more functionalities to JavaScript projects. To use it, first you need to install Node.js (https://nodejs.org) and after that you can install Three.js and any other third-party package via Terminal, CMD or PowerShell:

npm install --save three

Our choice in this chapter is to keep it as simple as possible, so the examples you will find here will call the JavaScript libraries directly from the CDN.

The current Three.js version when this book is being written is R153, so for compatibility reasons, we will use only libraries compatible with this version. Also, we decided to use the Three.js module version, which uses modern JavaScript and simplifies loads of things in the code work. If you are unfamiliar with JavaScript modules, please take a look on this good guide on Mozilla website: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules.

Using this book

In this book, you will find hundreds of code examples with rich explanations about each part of the code. To make it easier to follow and not fill up the book with hundreds of lines of code that you will probably not write down on your computer, we are sharing with you the GitHub repository with code examples and boilerplates for each lesson of this book. It is a good idea to clone this repository before starting to follow the lessons: https://github.com/OrangeAVA/Creative-Technology-with-Three.js.

This repository is organized by chapters and sections, but not all sections have code examples. In the beginning of each chapter or section that uses a new file example, you will find this gray box:

You can find the code of this section in the folder: https://github.com/OrangeAVA/Creative-Technology-with-Three.js/tree/main/…

Just go to the folder and open it on your code editor.

In the beginning of each code example, we added the example file name we talk about, but please note that we only mention it in the first appearance of the code. If the next code example does not have the file name it is because we are still using the same file.

The code examples use a different font family, to make it clear that it is about code. And finally, we add line numbers in front of each code example line, so you just need to look for the mentioned line number on your code editor to find the mentioned code:

[image:]

Figure 1.2: How to use the code examples

If you do not find a line number in front of the code example, it is because this respective part is not present in the code example file.

Project Structure

To keep things simple and organized, we suggest this project structure for the examples you will find in this chapter:

index.html

styles.css

— js

——— main.js

— assets

——— images

——— models

Simple as that. For more complex examples, it is interesting to break your main JavaScript file into more specific parts, but for now, let us keep it this way. In the index.html file, you will have all the UI elements you need to add to interact with your scene. In the main.js you will add all JavaScript code and the Three.js code too, they basically mix together. It is a good idea to create an assets folder to store UI image elements, and the 3D assets too. You can do the same for videos, sound effects, and so on.

That said, let us see what we need for our first Three.js boilerplate.

You can find the code of this section in the folder: https://github.com/OrangeAVA/Creative-Technology-with-Three.js/tree/main/chapter01/boilerplate

(./index.html)

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Chapter 1</title>

5 <meta charset=”utf-8”>

6 <meta name=”viewport” content=”width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, viewport-fit=cover”>

10 <link rel=”stylesheet” type=”text/css” href=”styles.css” media=”all”/>

12 <script type=”importmap”>

13 {

14 “imports”: {

15 “three”: “https://unpkg.com/three@0.153.0/build/three.module.js”

16 }

17 }

18 </script>

19 <script type=”module” src=”js/main.js”></script>

20 </head>

22 <body style=”touch-action: none;”>

23 <div id=”threejsContainer”></div>

24 </body>

25 </html>

In this part, we load Three.js main JS file as module:

12 <script type=”importmap”>

13 {

14 “imports”: {

15 “three”: “https://unpkg.com/three@0.153.0/build/three.module.js”

16 }

17 }

18 </script>

Here, we added a <div> element that will be our Three.js scene container:

23 <div id=”threejsContainer”></div>

Note that it is not the Three.js <canvas> element yet. You will see in the next chapter that we are going to create it on the fly before the Three.js scene definition, but you can create the <canvas> element in HTML and simply point the <canvas> DOM element to Three.js scene.

And for our main.js file:

(./js/main.js)

1 import * as THREE from ‘three’;

3 window.addEventListener(‘load’, function() {

4 start();

5 });

7 async function start() {

8 document.write(‘Hello world!’);

9 console.log(THREE);

10 }

The famous Hello world sentence.

Please note that we are importing all Three.js classes (*) under the THREE definition, so every time we use THREE in our code, that means we are looking for something inside Three.js library.

Now we have everything in place to start adding Three.js code!

Conclusion

In this chapter, we delved deeper into the history and foundations of Three.js. We understood Three.js alternatives and other useful tools to start building your projects. You are now ready to start the development of your first Three.js scene.

In the next chapter, we are going to create a 3D scene with basic 3D elements — we call them primitives — like cylinder, sphere, torus, and so on. We will introduce the light and shadow concepts. We will discuss the differences between different kinds of lights and shadows, and how they affect the 3D scene. Also, we will talk about Three.js materials and textures and finally, put everything together to present your first Three.js scene.

Points to Remember

	Normal web/mobile browsers are not capable of rendering 3D elements natively, this is why we need to use WebGL—a graphics library created to use complex resources of 3D, lighting, and textures.

	WebGL is basic level and needs a good knowledge of GLSL C++ code to manipulate geometry, textures, and materials.

	Three.js is a library that simplifies complex WebGL development on web/mobile browsers.

	We need a local server software to be able to run the Three.js code correctly.

	After loading the Three.js library, we are ready to start coding.

Multiple Choice Questions

	Three.js is…

	A development language.

	A framework to draw 3D graphics directly to HTML.

	A library that uses WebGL to draw 3D graphics to <canvas> element.

	A 3D operating system.

	To code in Three.js you will need to know…

	Javascript classes to draw and manipulate 3D elements.

	Low-level code to manipulate WebGL classes directly.

	
GLSL and C++ code.

	Low-level WebGL classes and GLSL C++ code.

	Why should we use the modules version of Three.js?

	It uses modern JavaScript.

	It is more organized and easier to use.

	Avoids code clutter on more complex projects.

	All of the alternatives above.

	Three.js was born…

	In 2015, from new HTML5 graphic resources.

	In 2009 as a Javascript framework.

	In 2009, first in Flash ActionScript, then ported to JavaScript.

	None of the previous alternatives.

	Aframe and React Three Fiber are:

	Independent web 3D frameworks.

	Web 3D development languages.

	Tweaks of Three.js to do different things.

	3D frameworks built on top of Three.js to simplify web 3D development.

Answers

	c

	a

	d

	c

	d

Questions

	Why are pure HTML, CSS, and Javascript not capable of drawing complex 3D graphics on web browsers?

	What are the differences between a development language, a library, and a framework?

	Why does rendering complex 3D graphics on web browsers need a special library?

	Why is Flash/ActionScript not used anymore?

	Why do you need local server software to run Three.js pages correctly?

	What are the advantages and disadvantages of using a Three.js framework such as Aframe or R3F?

	Why does one use Javascript modules instead of pure Javascript functions/classes?

	What are the benefits of using the CDN version of a Javascript library such as Three.js? What are the caveats?

	Do you prefer to develop using pure HTML/CSS/JavaScript code or work under a package manager/builder tool?

	What are the advantages and disadvantages of Three.js and Babylon?

Key Terms

	
Library: It is a set of routines for a particular language or operating system. It simplifies and adds extra functionality and features to your application. Specifically for Three.js, it is a bridge between ‘normal’ JavaScript code and low-level WebGL classes and GLSL shaders.

	
Framework: A framework is a pre-built structure used for development in a certain programming language. It gathers common tasks and classes to simplify and save time when developing. In the case of Three.js, Aframe is an HTML framework, and R3F is a React framework.

	
Low-level development: A low-level language or API is generally a way to interact directly with machine code—in our case, the browser machine code. It means you will deal directly with memory allocation and other ‘machine friendly’ tasks. In your case, WebGL is a low-level API/library that talks directly to the computer GPU.

	
Local server: It is a software that mimics a web server behavior, but on your local environment/computer. Instead of publishing your files to a web server, you can publish a local folder and make it work exactly how it would be published on a web server. Software like Xampp and Wampp, or some Node.js applications are local server applications.

	
JavaScript module syntax: The first JavaScript applications were a bit small and not too complex, but as soon as the language started to get more popular, large and complex applications started to be built in JavaScript. The module syntax organizes and simplifies big and complex architectures, allowing you to import parts of the code (modules) as needed. Modern browsers allow the use of this functionality natively, without the need to use any other JavaScript library or framework.

	
GPU, or Graphics Processing Unit: In contrast to the CPU (Computer Processing Unit), the GPU is a computer processor that specializes in graphics processing. It can deal with tons of data and calculations simultaneously, allowing the computer to deliver high-quality 2D and 3D graphics. It has been popularly used to allow computers to run complex games and 3D software, but it has also been used for Artificial Intelligence.

CHAPTER 2

Our First Scene

Introduction

Now that you have a bit more knowledge about WebGL and Three.js, and you are more familiar with the tools and resources needed to start developing Three.js, it’s time to put your hands in the code. In the last chapter, we built the boilerplate structure and added the necessary libraries. In this chapter, we’ll start adding the proper Three.js code.

We’ll introduce the concept of 3D primitives such as cylinders, spheres, torus, and more. In addition, we’ll talk about lights and shadows, and put some volume to our scene. We’ll discuss the differences between point, direct, spotlight, and ambient lights, and understand how shadows work. After adding some lights to our scene, we’ll explain different kinds of materials and texture parameters. Finally, we’ll talk about cameras and the animation loop, and show the final result: our first scene.

Structure

In this chapter, we will discuss the following topics:

	Basic Scene Setup

	Creating the Renderer

	Creating the Camera

	Creating our First 3D Mesh

	Rendering our Scene

	3D Primitives

	Materials

	Texture Maps

	Special Textures

	Lights, Shadows, and Three-Point Lighting Concept

	
Cameras

	Animation Loop

	Animating a Texture

Basic Scene Setup

You can find the code of this section in the folder: https://github.com/OrangeAVA/Creative-Technology-with-Three.js/tree/main/chapter02/section01_green_cube

We ended the last chapter with a working HTML + CSS + JS structure and added the Three.js library using modules. Our main JS file looks like this, with a Hello World code:

(./js/main.js)

7 async function start() {

8 document.write(‘Hello world!’);

9 }

So, let’s delete this part:

9 document.write(‘Hello world!’);

So, let’s delete this part:

 document.write(‘Hello world!’);

And start adding the proper Three.js code.

Creating the Renderer

First of all, we need to tell Three.js where to create the 3D viewport. If you remember in the last chapter, we added this <div> element to the index.html file:

index.html:

23 <div id=”threejsContainer”></div>

This will be our viewport container. Going back to the ./js/main.js file, right after importing the Three.js library, let’s add this line right in the beginning of the code:

5 let renderer, scene, container, camera;

And inside the start() function, we need to add the Three.js renderer and scene definitions:

20 renderer = new THREE.WebGLRenderer({ antialias: true });

The parameter antialias smooths the lines and edges of the 3D objects, improving the render quality. Now, we need to tell Three.js renderer the size of our 3D viewport:

21 renderer.setSize(window.innerWidth, window.innerHeight);

In this case, we are telling Three.js that our 3D viewport will fill the browser’s window innerWidth and innerHeight sizes, filling up our entire screen. Now we need to point the previously created threejsContainer div to the Three.js container:

24 container = document.querySelector(‘#threejsContainer’);

25 container.appendChild(renderer.domElement);

renderer.domElement is the <canvas> element Three.js creates when we run the following command: new THREE.WebGLRenderer().

You can simply add renderer.domElement into your body by using document.body.appendChild(renderer.domElement), however, we prefer to add it into a <div> element so it’s easier to interact with it if needed. In this case, the #threejsContainer div.

Finally, let’s create the Three.js scene that will contain all the 3D elements:

28 scene = new THREE.Scene();

Creating the Camera

Now, it’s time to create the camera, which represents the viewpoint of the scene:

31 camera = new THREE.PerspectiveCamera(60, window.innerWidth / window.innerHeight, 0.1, 1000);

We’ll discuss cameras in depth later in this chapter.

Now that we know how to add a camera to the scene, it’s a good idea to move it somewhere, because the default position of any created object in Three.js is always 0,0,0 (the same goes for rotation, and the default value for scale is 1,1,1). For now, you won’t be able to see any difference, but we want to make sure that the scene will work from the beginning. So, let’s move the camera a bit back in order to be able to see the center of the scene:

37 camera.position.z = 5;

You can do the same for the other two axis: camera.position.x and camera.position.y, or you can move the three axis simultaneously this way: camera.position.set(0,0,5);

Rotation and scale have the same code syntax, with the exception that scale won’t work for cameras because, obviously, scaling cameras doesn’t make sense. You can rotate the camera the same way as you moved it, but if you are using camera controls, things will work a bit differently. We’ll talk about this in depth in Chapter 3, Interacting with Our Scene, in the section camera controls.

Creating Our First 3D Mesh

It’s time to add our first 3D object to our Three.js scene. 3D objects in Three.js are made from two components: geometry and material. The geometry part is the 3D shape of the object, made from 3D vertices connected by edges and faces. The material part is the color (and the other material properties such as transparency, reflection, and so on) and the texture of the object. Here’s how it works:

OEBPS/images/qr.jpg

OEBPS/images/Play-canvas.jpg

OEBPS/images/logo_unity.jpg

OEBPS/images/logo_react3fiber.jpg

OEBPS/images/logo_babylon.jpg

OEBPS/images/logo_aframe.jpg

OEBPS/images/Figure-1.1.jpg

OEBPS/images/Figure-1.2.jpg

OEBPS/images/cover.jpg

OEBPS/images/qr1.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Getting Started with Three.js

		Introduction

		Structure

		Introduction to WebGL

		Three.js History

		Three.js Alternatives

		Extending Three.js

		Tools and Requisites to Start Developing

		Downloading and Installing Three.js

		Using this book

		Project Structure

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		2. Our First Scene

		Introduction

		Structure

		Basic Scene Setup

		Creating the Renderer

		Creating the Camera

		Creating Our First 3D Mesh

		Rendering Our Scene

		3D Primitives

		Materials

		Texture Maps

		Special Textures

		Cube Maps

		RGBE

		Canvas Texture

		Video Texture

		Lights and Shadows

		Casting Shadows

		Three-Point Lighting Concept

		Cameras

		Animation Loop

		Animating a Texture

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		Additional Information

		Material Parameters

		Texture Parameters

		3. Interacting with Our Scene

		Introduction

		Structure

		Introducing Scene Interaction

		Keyboard Interaction

		Adding Some Inertia

		Mouse/Touch Interaction

		Adding Inertia to the Pointer Movement

		Raycasting

		Mobile Phone Interaction

		Camera Controls

		OrbitControls

		PointerLockControls

		FlyControls

		TransformControls

		Basic Game Concept

		A Step Further

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		4. Adding Some Realism

		Introduction

		Structure

		Reasons to Use Blender

		3D Export from Blender

		3D Asset Optimization

		PBR Materials

		Texture baking

		Loading 3D Objects Externally

		Interacting with children objects

		Playing animations

		Integrating a Physics Library

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		5. Post Processing

		Introduction

		Structure

		Post Processing Concept

		Types of Filters and Effects

		Post Processing Stack

		Post Processing Caveats

		Halftone Pass

		LUT Pass

		SAOPass

		SSAOPass

		UnrealBloomPass

		Depth of Field / BokehPass

		DotScreenPass

		FilmPass

		GlitchPass

		RenderPixelatedPass

		OutlinePass

		AfterimagePass

		ShaderPass

		TexturePass

		SMAAPass/SSAARenderPass/TAARenderPass

		SSRPass

		MaskPass/ClearMaskPass/ClearPass

		PMNDRS Post Processing library

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		6. Introduction to WebAR and WebVR

		Introduction

		Structure

		Understanding Virtual Reality

		Understanding Augmented Reality

		Importance of the Web for AR and VR

		Introduction to A-Frame

		A-Frame Installation and Setup

		A-Frame Basics

		Scene Structure

		Primitives

		Materials

		Asset Manager

		Importing 3D files

		Lights and shadows

		Cameras and Controls

		Navmesh

		Animation

		Animation Mixer

		Adding/Removing Components via JavaScript

		A-Frame + Three.js

		Building your Components

		A-Frame Inspector

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		Questions

		Key Terms

		7. Creating Your First WebAR Experience

		Introduction

		Structure

		Basic webAR Scene Setup

		Project Concept

		HTML Code Overview

		Project Components

		Main Code

		Using Image Tracking

		Converting an Image into an Image Target

		Running the AR Image Tracker

		MindAR Image Tracker Caveats

		Using Face Tracking

		Adding a 3D Occluder

		Face Tracking Listeners

		Third-Party AR Libraries

		8th Wall

		Blippar

		Zappar

		Other Options

		Conclusion

		8. Creating Your First WebVR Experience

		Introduction

		Structure

		Basic webVR Scene Setup

		Art Exhibition Project Concept

		JSON File Structure

		HTML File Structure

		Main JS file

		Scene Components

		Conclusion

		9. Useful Boilerplates to Start Your Projects

		Introduction

		Structure

		Best Practices

		General

		Development

		Three.js and A-Frame

		Useful Boilerplates for Your Projects

		T-Shirt Configurator App

		3D Platform Game

		VR Travel App

		AR Product Showcase

		Animated Portfolio

		Home Design App

		Infographic

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Getting Started with Three.js

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

