

[image: image]






Hands-On
Monitoring and
Alerting with
Prometheus


[image: ]


Build Resilient, Real-time Monitoring and
Alerting Systems using Prometheus,
PromQL, and Proven Best Practices
for Modern Infrastructure


[image: ]


Muhammad Badawy




[image: ]




www.orangeava.com









Copyright © 2025 Orange Education Pvt Ltd, AVA®


All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.


Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.


Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.


First Published: June 2025


Published by: Orange Education Pvt Ltd, AVA®


Address: 9, Daryaganj, Delhi, 110002, India


275 New North Road Islington Suite 1314 London,


N1 7AA, United Kingdom


ISBN (PBK): 978-93-49887-56-5


ISBN (E-BOOK): 978-93-49887-41-1


Scan the QR code to explore our entire catalogue




[image: ]




www.orangeava.com









Dedicated To


This book was written during a time of profound injustice, as the world witnessed the genocide in Gaza and Palestine. It is dedicated to the people of Gaza and Palestine, who endured unimaginable tragedy, loss, and suffering. May their strength, resilience, and humanity never be forgotten.


In memory of the innocent souls, whose lives were lost in the conflict:
May their spirits find peace.


May this work serve as a small tribute to their resilience.
May we all strive for a world grounded in justice, compassion, and human dignity.


And


My wife Ansam, my daughter Rafef, and my son Yunus











About the Author





Muhammad Badawy is a senior DevOps and Platform Engineer with over 12 years of experience at the intersection of development and operations, driving efficiency, scalability, and automation across global cloud environments. Certified as a Kubernetes Administrator (CKA) and AWS Solutions Architect, Muhammad specializes in cloud-native architecture, infrastructure as code, observability, and CI/CD automation.


He has architected and maintained complex systems for leading organizations including ING, Mambu, Mobiquity, and Vodafone, leveraging technologies such as Kubernetes, Helm, Terraform, Azure DevOps, and the ELK stack. Muhammad has a proven track record of accelerating delivery pipelines, optimizing monitoring systems with Prometheus and Grafana, and implementing robust DevSecOps practices.


Currently based in the Netherlands, he is also an active technical writer, contributing expert-level articles to platforms including Medium, Earthly, and StormForge. Beyond engineering, Muhammad is an Arabic Calligrapher with a passion for digital art, and enjoys playing Padel in his free time.











About the Technical Reviewer





Thinknyx® Technologies is a team of seasoned IT professionals with expertise ranging from software development to the management of IT infrastructure, cloud, automation, container management, web and app development, security, and professional services. Recognized as a trusted brand, Think Nyx® Technologies provides IT consulting, technical and soft skills training as well as talent acquisition and recruitment solutions for organizations across industries.


Mr. Kulbhushan Mayer, Co-Founder of Thinknyx® Technologies, is a certified expert in DevOps, SRE, Cloud, and Containerisation, with over 17 years of experience in the IT industry. His technical expertise spans Public/Private Cloud platforms, Containers, Automation tools, Continuous Integration/Deployment/Delivery tools, Monitoring and Logging tools, and more. Passionate about knowledge sharing, Mr. Mayer regularly engages with the global tech community through various forums, conferences, webinars, blogs, and LinkedIn. He has also served as a technical reviewer for several books on Automation, DevOps, DevTools, and related technologies.











Acknowledgements





I would like to express my sincere gratitude to everyone who supported the creation of this book.


I am profoundly grateful to the editors and technical reviewers whose insightful guidance and rigorous technical feedback were vital for ensuring clarity and accuracy in every chapter.


A special acknowledgement is extended to the Prometheus open-source community for providing such a powerful and accessible tool. My gratitude also goes to the many engineers and contributors in online forums whose shared expertise enriched this work immensely.











Preface





For cloud-native applications and dynamic infrastructure, observability has become vital for operational excellence. Monitoring systems are expected to deliver real-time insights, proactively detect issues, and scale seamlessly with modern workloads. Prometheus, the open-source monitoring solution developed by SoundCloud and now part of the CNCF, has been considered a standard for metrics collection and alerting in such environments.


This book is a comprehensive, hands-on guide that takes readers from the foundational concepts of monitoring to advanced implementation patterns using Prometheus. It is crafted for DevOps professionals, SREs, developers, and anyone interested in building a robust observability stack.


It offers practical examples, real-world insights, and step-by-step guidance. To reinforce learning, every chapter concludes with Points to Remember and a curated set of Multiple-Choice Questions (MCQs)—ideal for self-assessment, interviews, or preparation for certifications such as the Prometheus Certified Associate (PCA).


This Book Covers:


Chapter 1. Introduction and Key Concepts in Monitoring: This chapter introduces the landscape of modern monitoring, explaining the difference between static and dynamic environments, where Prometheus fits into the DevOps lifecycle, and the stages of metrics monitoring. It also highlights anti-patterns, design patterns, and the relationship between logs and metrics, concluding with a guide on setting up your Prometheus workspace.


Chapter 2. Prometheus Server Architecture and Features: This chapter explores the core architecture and key components of Prometheus, providing a solid foundation for understanding how it collects, stores, and processes metrics. We will learn about the Prometheus server, exporters, instrumentation, the Push Gateway, Service Discovery, and how PromQL enables powerful querying. We will also introduce Alertmanager for basic alert handling. A special focus is given to the Time Series Database (TSDB) - its features, scalability, and handling of high cardinality and dynamic sampling, along with the challenges they may bring.


Chapter 3. Different Types of Prometheus Metrics: In this chapter, we will understand the fundamental metric types: Counters, Gauges, Summaries, and Histograms. This chapter explains when and how to use each type, along with best practices for accurate metric representation.


Chapter 4. Metrics Exporters for Infrastructure Monitoring: In this chapter, we will learn how Prometheus collects data using exporters. This chapter focuses on key exporters such as Node Exporter, BlackBox Exporter, WMI Exporter for Windows, MySQL Exporter, and cAdvisor for container metrics.


Chapter 5. Prometheus Service Discovery Feature: In this chapter, we will explore how Prometheus uses Service Discovery to dynamically find targets in environments such as Kubernetes. The chapter includes a demo setup with prerequisites and implementation of service discovery in action.


Chapter 6. Metrics Labeling and Relabeling: Labels are central to how Prometheus stores and queries data. This chapter discusses the importance of labels, how source and target labels are used, and introduces the relabeling mechanism for refining target configurations.


Chapter 7. Prometheus Query Language PromQL: In this chapter, we will master PromQL with real examples. Topics include aggregation operators, label matchers, grouping (by/without), binary operations, and core functions such as rate, irate, avg_over_time, and count_values. We will also learn which functions work with range vectors.


Chapter 8. Alerts and Alert Receivers: This chapter covers the complete alerting lifecycle in Prometheus. We will earn to define alerts, label and annotate them, and configure Alertmanager for routing, grouping, throttling, and silencing. We will also explore how to integrate with alert receivers like email, Slack, or PagerDuty.


Chapter 9. Advanced Prometheus Techniques: Take your skills to the next level with advanced topics such as securing endpoints with TLS, optimizing storage, writing complex PromQL queries, and integrating with tools like Grafana, Jaeger, and OpenTelemetry for full observability. Additionally, we will learn careful configuration for capacity planning and performance tuning, and also Prometheus automation, which is essential for scaling.


Chapter 10. Prometheus and Real-world Applications: This chapter highlights how Prometheus is applied across real-world architectures, including cloud infrastructure, network monitoring, and DevOps environments. You'll explore how Prometheus supports different teams, the types of metrics it provides, and practical use cases in each domain. We also take a brief look at how companies like SoundCloud and Uber successfully use Prometheus in production.


Chapter 11. Conclusion: Future Steps: Wrap up the journey with a recap of key takeaways, tips for the PCA certification, and guidance on next steps for expanding your observability knowledge and Prometheus practice.











Colored Images





Please follow the links or scan the QR codes to download the Images of the book:


You can find code bundles of our books on our official Github Repository. Go to the following link to and QR code to explore the further:


https://github.com/orgs/ava-orange-education/repositories




[image: ]




Please follow the link to download the Colored Images of the book:
https://rebrand.ly/njlphj4




[image: ]




In case there's an update to the code, it will be updated on the existing GitHub repository.


Errata


We take immense pride in our work at Orange Education Pvt Ltd, and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :


errata@orangeava.com


Your support, suggestions, and feedback are highly appreciated.











DID YOU KNOW


Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.


At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA® Books and eBooks.


PIRACY


If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.


ARE YOU INTERESTED IN AUTHORING WITH US?


If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.


REVIEWS


Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!


For more information about Orange Education, please visit www.orangeava.com.












CHAPTER 1


Introduction and Key Concepts in Monitoring



Introduction

Prometheus (https://prometheus.io/docs/introduction/overview/) is an open-source monitoring and alerting tool developed for reliability and scalability in modern, dynamic infrastructures. It was originally developed by SoundCloud, which was trying to develop a dynamic, container-based infrastructure and solutions for monitoring at the time. Some of these tools such as Graphite and Nagios did not prove to be adequate for them. They needed something different, a tool that would fit their needs and meet their demands.

Prometheus was initially written by a small crew of ex-Google engineers, and published in 2016. Prometheus is actually inspired by Google’s in-house monitoring tool called Borgman. Google utilizes Borgman to oversee its process orchestration tool called Borg.

It is a well-known fact that Borg is the inspiration for Kubernetes. So when you take into consideration the impact that Kubernetes continues to have on the IT world, you can also get a better idea of why Prometheus is such a big deal. Also, Prometheus is the second official CNCF project, following Kubernetes (https://www.cncf.io/announcements/2018/08/09/prometheus-graduates/#:~:text=SAN%20FRANCISCO%2C%20Calif.%2C%20August,its%20second%20project%20to%20graduate%2C).

In this chapter, we will build a base of important key concepts in monitoring before diving into Prometheus. You will learn about the difference between static and dynamic monitoring and where Prometheus lands in the DevOps lifecycle. Also, you will explore the different stages of data monitoring, the relation between logs and metrics, the different mechanisms of collecting data (Pull/Push), and much more.


Structure


In this chapter, we will discuss the following topics:


	Monitoring and Its Importance

	Different Scopes of Monitoring

	Static versus Dynamic Environments

	Prometheus in DevOps Lifecycle

	Stages of Metrics Monitoring

	Anti-patterns in Continuous Monitoring

	Design Patterns in Continuous Monitoring

	Relation between Logs and Metrics

	Pull versus Push

	Setting up Your Workspace



Monitoring and Its Importance

Monitoring is the process of continuously observing and tracking the performance, health, and behavior of systems, applications, or networks. This includes gathering metrics, logs, traces, and any other data about how a system is performing. This data is then analyzed to track performance, detect anomalies, troubleshoot issues, and alert stakeholders of deviations, failures, or potential problems.

The following reasons can be mentioned to highlight the importance of monitoring in modern technologies:


	
Proactive Issue Detection: Potential problems are detected early before they become critical. This may save time and resources by preventing downtime, data loss, and system failures.

	
Improved Performance: Monitored performance metrics such as response time, CPU usage, and memory consumption help optimize system performance. Identification of performance bottlenecks enables teams to take corrective action to improve efficiency.

	
Reliability and Availability: System availability and reliability are maintained through continuous monitoring to reduce downtime. For businesses whose online services rely on it, uninterrupted availability is critical to customer trust and revenue.

	
Resource Optimization: Monitoring reveals resource usage in terms of CPU, memory, network, and disk usage so organizations can optimize infrastructure allocation. Identifying underused resources and inefficient processes helps businesses cut costs and improve scalability.

	
Security and Compliance: Monitoring detects suspicious activity, security breaches and anomalies in real time. It also supports industry standards by ensuring that systems work as expected and comply with regulatory requirements.

	
Data-Driven Decision Making: Monitoring data is collected and analyzed by businesses for infrastructure upgrades, system optimizations, and future growth plans.



Different Scopes of Monitoring

The scope of monitoring refers to the specific areas or levels of a system that are observed and analyzed. These scopes define what you are monitoring—whether it is the underlying infrastructure, applications, or higher-level business outcomes. Listed in this section are the different scopes of monitoring, along with examples of tools that are commonly used for each of these, as well as how Prometheus fits into the picture.


	
Infrastructure Monitoring: This scope covers the physical and virtual resources that make up a cloud or on-premise environment, including servers, virtual machines, storage, and networking. It monitors metrics such as CPU usage, memory usage, disk I/O, and network throughput to check that the hardware and virtualization layer are working properly. Tools like Amazon CloudWatch, Nagios, and Zabbix give to the administrators a bird’s eye view of system health and alert them of failures or shortages of resources. 
Prometheus fits this scope perfectly as it is designed to collect and store system-level metrics from servers and containers (especially Kubernetes environments).



	
Application Monitoring: This scope focuses on how applications perform and behave when processing requests, processing data, and engaging users. Key metrics here are response times, error rates, transaction volumes, and application-specific KPIs like API call success rates. Tool sets like New Relic, Dynatrace and AppDynamics dominate this space and provide deep insight into code-level performance and user interactions. Prometheus plays a very important role here, notably for microservices or containerized applications. Developers instrument their code with Prometheus client libraries to expose custom metrics like request latency.

	
Network Monitoring: Network-level monitoring focuses on connectivity, data flow between cloud components, and between cloud components and end users. For communication purposes, it tracks metrics like latency, packet loss, bandwidth usage, and network errors. Tools such as SolarWinds, Wireshark, and Cisco Cloud network monitoring are designed for this purpose—identifying bottlenecks or outages in the network layer. 
Prometheus could contribute to this scope by collecting network-related metrics from the infrastructure. It may be paired with specialized tools for deeper network analysis, but here it is a supplementary rather than a central tool.



	
Security Monitoring: This scope covers security monitoring for threats, vulnerabilities, and compliance issues. It analyzes logs, user activity, and network traffic to detect anomalies, unauthorized access, or data breaches. Tools such as Splunk, AWS GuardDuty, and Microsoft Sentinel provide robust security event management and threat detection. 
This is where Prometheus plays a more limited role, as it is designed for performance metrics and not security events. However, it can also monitor security-adjacent metrics like failed login rates or resource abuse via custom exporters or application instrumentation, often feeding data into a larger security monitoring pipeline.



	
End-User Monitoring: Monitoring at the end-user level records how people experience applications. It monitors page load times, click-through rates, session durations, and error occurrences from the user’s perspective. Such tools include Pingdom, New Relic Browser, and Akamai mPulse which often use real user monitoring (RUM) or synthetic testing to simulate interactions. Prometheus does not fit this scope well since it measures server-side rather than client-side data.



Static versus Dynamic Environments

In this section, you will learn the differences between static and dynamic environments and where Prometheus can fit better.

Static environments are characterized by a stable and predictable topology, where the number and configuration of resources remain relatively constant. This typically applies to traditional on-premises deployments with minimal infrastructure changes. On the other hand, dynamic environments are characterized by frequent changes and fluctuations in resource availability. Cloud-based infrastructures, microservices architectures, and DevOps practices often lead to dynamic environments.

Prometheus excels in both static and dynamic environments. For static environments, Prometheus’ static configuration method, using YAML files or text files, allows for easy definition of target endpoints and metrics. This static approach works well when the monitored infrastructure remains stable.

In dynamic environments, Prometheus leverages its built-in service discovery capabilities to automatically discover and connect to new endpoints as they come up. This eliminates the need for manual configuration and ensures that Prometheus remains aware of the constantly changing resource landscape.

Prometheus’ strengths shine when monitoring dynamic environments. Its ability to handle frequent changes in resource availability makes it ideal for cloud-based deployments, microservices architectures, and DevOps practices. Prometheus can automatically discover new endpoints, add them to monitoring, and generate alerts for any anomalies or performance issues. So, Prometheus is more appropriate for dynamic and modern infrastructure, while other tools such as Zabbix and Nagios are more appropriate for static infrastructure.

Here is a comparison table highlighting the differences between static and dynamic environments and where Prometheus fits better:








	
Aspect


	
Static Environment


	
Dynamic Environment





	
Topology


	
Stable and predictable


	
Frequent changes and fluctuations





	
Resource Configuration


	
Constant and relatively unchanging


	
Variable and constantly evolving





	
Typical Deployments


	
Traditional on-premises setups


	
Cloud-based infrastructures, microservices architectures, DevOps practices





	
Prometheus Configuration


	
Uses static configuration methods (YAML or text files)


	
Utilizes built-in service discovery for automatic endpoint discovery





	
Manual Effort


	
Manual configuration required for defining target endpoints


	
Minimal manual effort due to automatic service discovery





	
Suitability for Prometheus


	
Good, as it allows an easy definition of stable infrastructure targets


	
Excellent, as it handles frequent changes and auto-discovers new endpoints





	
Monitoring Strengths


	
Effective for stable infrastructures


	
Excels in dynamic, modern infrastructures with frequent changes





	
Comparison to Other Tools


	
Tools such as Zabbix and Nagios are more suited for static infrastructures


	
Prometheus is more suited for dynamic and modern infrastructures






Table 1.1: Static versus Dynamic Environments

Prometheus in DevOps Lifecycle

In this section, you will learn about the DevOps lifecycle stages, as well as where Prometheus can land in this cycle. Let us start with the planning and coding stages, which fall under the continuous development aspect of DevOps.



[image: ]


Figure 1.1: Prometheus in DevOps Lifecycle

In the planning stage, objectives are compiled based on customer needs and demands. Once application objectives are defined, the development process begins, constituting the coding section.

After developing code that is aligned with user objectives, the process transitions to the build and testing phase. Attempting to merge code triggers a test, forming the continuous integration aspect of the life cycle, which is essentially the heart of DevOps.

Once the code passes testing and integrates successfully, the process moves to the release stage. This involves releasing and deploying the code into the production environment, constituting continuous deployment in the DevOps life cycle. Configuration management tools like Puppet or Ansible are often employed in the deployment stage to ensure continuity across horizontally scaled environments.

The final two stages are known as continuous monitoring. In the operation stage, the operations team ensures the stability and reliability of production systems, leading to the monitoring stage. This stage is considered the most crucial within the life cycle, allowing for the determination of whether the application code aligns with end-user standards. Here, the health of the system and application performance is assessed, and trends are identified. Here is the role of Prometheus.

The monitoring stage provides valuable metrics that contribute to overall performance improvement, including the reduction of support costs, increased productivity, and enhanced system reliability. Analytics and reporting generated in this stage offer clarity for the subsequent planning stage.

To look further into the monitoring aspect, it comprises five stages: data collection, data storage, alerting, visualization, and analytics/reporting. The data collection stage involves servers pulling metrics or agents pushing metrics to the server. Time series data is stored locally or in a cluster environment during the data storage stage. Alerting and visualization, while not in a specific order, address response to events and provide insights into performance trends, respectively. The results of these stages enable the presentation of meaningful analytics and reporting.

Stages of Metrics Monitoring

Effective metrics monitoring involves a well-defined process with distinct stages, each playing a crucial role in gaining actionable insights from data. Here is a breakdown of the 5 essential stages:


	
Data Collection: This stage focuses on gathering relevant data from various sources within your system or application. This might include:

	
System metrics: CPU usage, memory consumption, network traffic, disk I/O.

	
Application metrics: Response times, error rates, transaction volume, custom application-specific metrics.

	
External data: Weather data, social media sentiment, customer feedback.



The chosen data sources and methods should align with your specific monitoring goals and desired insights.



	
Data Storage: Collected data needs a reliable and scalable storage solution. Common options include:

	
Time-series databases: Optimized for storing and querying time-based data like metrics. Examples: Prometheus, InfluxDB, TimescaleDB.

	
Relational databases: Can store both structured and unstructured data, suitable for combining metrics with other relevant information. Examples: MySQL, PostgreSQL.

	
Cloud storage: Scalable and flexible storage options such as Amazon S3 or Google Cloud Storage can be used for archiving or long-term data retention.



Selecting the right storage solution depends on factors such as data volume, frequency of access, and desired retention period.



	
Alerting:
Setting up alerts helps identify and react to critical events promptly. This involves:


	
Defining thresholds: Specify acceptable ranges for metrics, triggering alerts when values exceed or fall below those limits.

	
Choosing notification channels: Email, SMS, Slack, or dedicated alerting services can be used to notify relevant personnel.

	
Fine-tuning alerts: Minimize false positives by customizing alerts based on specific conditions or patterns.



Effective alerting minimizes downtime and ensures timely intervention during critical situations.



	
Visualization: Visualizing data makes it easier to understand trends, identify patterns, and spot anomalies. Common tools include:

	
Dashboards: Provide real-time and historical overviews of key metrics, often customizable to user needs.

	
Charts and graphs: Line charts, bar charts, heatmaps, and other visualization formats help communicate insights effectively.

	
Data exploration tools: Allow users to interactively explore and analyze data through filtering, aggregation, and custom queries.



Well-designed visualizations make data accessible and actionable for stakeholders across various levels of technical expertise.



	
Analytics and Reporting:
This stage involves using collected data to derive deeper insights and inform decision-making. It encompasses:


	
Trend analysis: Identify long-term trends and patterns in metrics to understand system behavior and predict future needs.

	
Root cause analysis: Investigate the underlying causes of incidents or performance issues based on historical data and correlations.

	
Reporting: Generate reports summarizing key findings, trends, and recommendations for stakeholders.
Analytics and reporting empower data-driven decision-making, helping optimize system performance, resource allocation, and overall business strategies.









These stages are not strictly linear. Data collection, storage, and visualization often happen simultaneously. The key is to implement a continuous monitoring loop, where insights gained from data analysis inform improvements in data collection and visualization, leading to even more valuable insights.

Anti-patterns in Continuous Monitoring

When integrating new solutions into your tech stack, it is easy to fall into certain pitfalls. Thinking of these as “anti-patterns” helps us navigate them more effectively. In this section, we will discuss some common challenges that should be avoided.


	
Reactive Approach: Only reacting to issues after they occur rather than anticipating and preventing them leads to a reactive, firefighting mode of operation. Adopting a proactive monitoring approach allows teams to identify and mitigate potential issues before they impact users, enhancing system stability and user satisfaction.

	
Ignoring Root Cause Analysis (RCA): Focusing only on symptoms and quick fixes without addressing underlying causes can lead to recurring issues, making it difficult to achieve long-term stability. Incorporating Root Cause Analysis (RCA) into the monitoring process helps identify and resolve the root causes of problems, preventing the recurrence of similar issues and improving system reliability.

	
Popularity Does Not Guarantee Success: Following trends blindly can lead you astray. While it is natural to be drawn to popular tools or solutions used by successful companies, it is crucial to understand their context and assess their fit for your specific needs. Do not be biased by popularity alone. The wide use of Prometheus does not mean that it is the automatic answer for everyone. Take the time to investigate its strengths and weaknesses before making a decision. Remember, the success of a company lies not just in the tools they use, but also in the people and practices behind them.

	
Tool Obsession: It is tempting to believe that a tool can solve all your problems. However, this mentality breeds “tool obsession,” where the focus shifts from addressing true needs to simply acquiring the latest and greatest gadgets. Remember, a well-equipped toolbox does not guarantee success. Choose tools based on your specific needs, not just popularity. Do not forget that monitoring involves more than just metrics; consider profiling, tracing, and logging as well. Most importantly, avoid the trap of blaming your tools for shortcomings. Invest in understanding them thoroughly and using them effectively. Tools are only as powerful as the people who wield them.

	
Unnecessary Shortcuts: Resist the urge for quick fixes and shortcuts. Instead, invest in building a robust and sustainable monitoring environment. This might seem like a bigger upfront investment, but it will save you time and effort in the long run. Do not waste time toiling away on repetitive tasks; learn new tool features and leverage automation whenever possible. Automate tedious tasks like adding targets manually, especially in large-scale environments with hundreds or even thousands of endpoints. Embrace service discovery to ensure scalability and efficiency. Remember, your time is valuable, and automation is your friend, not your foe.

	
Alert Overload: Generating too many alerts can overwhelm the team, causing significant issues to be overlooked due to the sheer volume of notifications. This anti-pattern can be mitigated by implementing alert prioritization, grouping related alerts, and using threshold tuning to minimize noise, thus ensuring that the team focuses on the most critical alerts and maintains high efficiency.



By understanding and avoiding these common issues, you can make informed decisions when choosing and implementing solutions for your tech stack.

Design Patterns in Continuous Monitoring

Effective monitoring goes beyond simply implementing tools. Design patterns in continuous monitoring refer to best practices and structured approaches for effectively and efficiently monitoring systems, applications, and services. To truly optimize performance and gain valuable insights, consider these powerful design patterns:


OEBPS/nav.xhtml




Table of Contents





		Cover Page



		Title Page



		Copyright Page



		Dedication Page



		About the Author



		About the Technical Reviewer



		Acknowledgements



		Preface



		Errata



		Table of Contents



		1. Introduction and Key Concepts in Monitoring



		Introduction



		Structure



		Monitoring and Its Importance



		Different Scopes of Monitoring



		Static versus Dynamic Environments



		Prometheus in DevOps Lifecycle



		Stages of Metrics Monitoring



		Anti-patterns in Continuous Monitoring



		Design Patterns in Continuous Monitoring



		Relation Between Logs and Metrics



		Pull versus Push



		Setting Up Your Workspace



		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		2. Prometheus Server Architecture and Features



		Introduction



		Structure



		Prometheus Architecture Components



		Prometheus Server



		Exporters and Instrumentation



		Push Gateway



		Use Cases for Push Gateway



		Service Discovery



		Time Series Database (TSDB)



		PromQL and Data Querying



		Alertmanager







		Prometheus Server Features



		Time Series Database in Prometheus (TSDB)



		Features of Time Series Databases



		Advanced Capabilities of Time Series Databases



		High Cardinality



		Dynamic Sampling



		Combining High Cardinality and Dynamic Sampling



		Drawbacks of High Cardinality



		Drawbacks of Dynamic Sampling







		Conclusion



		Multiple Choice Questions



		Answers











		3. Different Types of Prometheus Metrics



		Introduction



		Structure



		Counters in Prometheus Metrics



		Use Cases of Counters



		Examples of Counters



		Best Practices for Using Counters



		Advanced Usage of Counters







		Gauges in Prometheus Metrics



		Use Cases for Gauges



		Examples of Gauges



		Best Practices for Using Gauges



		Advanced Usage of Gauges







		Histograms in Prometheus Metrics



		Use Cases for Histograms



		Examples of Histograms



		Best Practices for Using Histograms



		Advanced Usage of Histograms







		Summaries in Prometheus Metrics



		Use Cases for Summaries



		Examples of Summaries



		Best Practices for Using Summaries



		Advanced Usage of Summaries







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		4. Metrics Exporters for Infrastructure Monitoring



		Introduction



		Structure



		Introduction to Metrics Exporters



		Node Exporter



		Key Features of Prometheus Node Exporter



		Use Cases of Prometheus Node Exporter



		Prometheus and Node Exporter Installation



		Prometheus Installation



		Node Exporter Installation



		Example Metrics of Node Exporter







		BlackBox Exporter



		Key Features of Prometheus Blackbox Exporter



		Use Case for Blackbox Exporter



		Example Metrics of Blackbox Exporter



		Installation and Usage of Blackbox Exporter







		WMI Windows Exporter



		Key Features of WMI Windows Exporter



		Use Cases for WMI Windows Exporter



		Example Metrics of WMI Windows Exporter



		Installation and Usage of WMI Windows Exporter







		My SQL Exporter



		Key Features of MySQL Exporter



		Example Metrics Collected by MySQL Exporter



		Installation and Usage of MySQL Exporter







		cAdvisor Exporter



		Key Features of cAdvisor



		Example Metrics Exposed by cAdvisor



		CPU Metrics



		Memory Metrics



		Network Metrics



		Disk I/O Metrics:



		Filesystem Metrics:



		Installation and Usage of cAdvisor Exporter







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		5. Prometheus Service Discovery Feature



		Introduction



		Structure



		Defining Service Discovery in Prometheus



		Discovered Labels versus Target Labels



		Service Discovery Workflow



		Example Use Cases Solved by Service Discovery







		Methods and Supported Sources for Service Discovery



		Kubernetes Service Discovery



		Consul Service Discovery



		DNS Service Discovery



		Amazon EC2 Service Discovery



		Google Cloud Platform (GCE) Service Discovery



		Azure Service Discovery



		Marathon Service Discovery



		Eureka Service Discovery



		DigitalOcean Service Discovery



		Triton Service Discovery



		File-Based Service Discovery







		Service Discovery Demo



		Steps to Set Up Prometheus Service Discovery on Kubernetes







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		6. Metrics Labeling and Relabeling



		Introduction



		Structure



		Understanding Prometheus Labels



		Understanding Prometheus Relabeling



		Relabeling Rules in Prometheus



		Key Reasons Why Relabeling Matters







		Demo: Relabeling Kubernetes Application Labels



		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		7. Prometheus Query Language PromQL



		Introduction



		Structure



		Basic Concepts of PromQL



		Time Series Data



		Metric Types







		Structure of a PromQL Query



		Basic Syntax



		Using Labels to Filter Metrics







		Range Queries and Operators



		Range Vectors



		Arithmetic Operators



		Comparison Operators







		Functions in PromQL



		Aggregation Functions



		Mathematical Functions



		Functions for Working with Time Series Data



		Time Functions



		Special Functions



		Histogram Quantile Function



		Histogram in Prometheus



		Defining Quantile



		The histogram_quantile() Function



		Understanding How histogram_quantile() Works



		Practical Use Cases for histogram_quantile()



		Considerations







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		8. Alerts and Alert Receivers



		Introduction



		Structure



		Understanding Alerts in Prometheus



		Labeling Alerts



		Annotations in Alerts







		Setting Alerts in Prometheus



		Setting Alerts



		High CPU Usage Alert



		High Memory Usage Alert



		Low Disk Space Alert







		Using Template Variables in Prometheus Alerting



		How Template Variables Work in Prometheus Alerting



		Common Template Variables



		Examples of Using Template Variables



		Benefits of Using Template Variables







		Prometheus Alertmanager



		Functionality of Alertmanager



		Key Functions of Alertmanager



		Key Sections of Alertmanager Configuration



		Key Fields in Route Configuration



		Complete Configuration Example of alertmanager.yml



		Prometheus Alert Receivers



		Applying New Configuration in Prometheus







		Testing Alerts in Prometheus



		Silencing Alerts in Prometheus



		Methods to Silence Alerts in Alertmanager







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		9. Advanced Prometheus Techniques



		Introduction



		Structure



		Secure Prometheus with TLS



		Best Practices for Prometheus TLS Communication







		Configuring Long-Term Storage with Remote Write/Read for Prometheus



		Reasons for Configuring Long-Term Storage for Prometheus



		Understanding How Remote Write/Read Works



		Best Practices for Long-Term Storage with Remote Write/Read



		Challenges and Considerations







		Integration with Other Observability Tools



		Reasons for Integrating Prometheus with Other Observability Tools



		Key Integrations for Prometheus



		Grafana for Visualization



		Jaeger for Distributed Tracing



		Loki for Log Aggregation



		Thanos or Cortex for Long-Term Storage



		OpenTelemetry for Unified Observability







		Capacity Planning and Performance Tuning



		Adjust Scrape Intervals and Retention Policies



		Scrape Intervals



		Retention Policies



		Optimize Resource Usage with Proper TSDB Tuning



		Use Profiling Tools to Debug Prometheus Performance Bottlenecks







		Prometheus Automation



		Using Prometheus Operator







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		10. Prometheus and Real-World Applications



		Introduction



		Structure



		Prometheus in Cloud Infrastructure Monitoring



		Role of Prometheus in Supporting Cloud Infrastructure Teams



		Metrics Provided by Prometheus



		Example Use Case







		Prometheus in Network Monitoring



		Role of Prometheus in Supporting Network Teams



		Metrics Provided by Prometheus



		Example Use Case







		Prometheus in DevOps Monitoring



		Role of Prometheus in Supporting DevOps Teams



		Metrics Provided by Prometheus



		Example Use Case







		SoundCloud Uses Prometheus



		Uber Uses Prometheus



		Conclusion







		11. Conclusion: Future Steps



		Introduction



		Structure



		Prometheus Certified Associate (PCA) Exam



		Exam Overview



		Tips to Pass the PCA Exam







		Stay Updated







		Index











Guide





		Title Page



		Copyright Page



		Table of Contents



		1. Introduction and Key Concepts in Monitoring











OEBPS/images/line.jpg





OEBPS/images/qr.jpg





OEBPS/images/logo.jpg





OEBPS/images/qr1.jpg





OEBPS/images/1.1.jpg
-






OEBPS/images/cqr.jpg





OEBPS/images/cover.jpg
NVA

Hands-On
Monitoring and Alerting
with

Build Resilient, Real-time Monitoring
and Alerting Systems Using Prometheus,
PromQL, and Proven Best Practices

for Modern Infrastructure

Muhammad Badawy





