

[image: image]

Ultimate Full-Stack
Web Development
with MERN

[image:]

Design, Build, Test and Deploy
Production-Grade Web Applications
with MongoDB, Express,
React and NodeJS

[image:]

Nabendu Biswas

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: December 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-19416-42-4

www.orangeava.com

Dedicated To

My wife Shikha and My Son Hriday

About the Author

Nabendu Biswas is a full-stack JavaScript developer and has been working in the IT industry for the past 19 years with some of the world's top development firms and investment banks, including J.P. Morgan, Oracle, and L&T Infotech.

He is a passionate tech blogger and YouTuber with an active following on both platforms, where he teaches everyone to be a web developer. Currently, he works as an Architect in an IT firm in Bhopal. Additionally, he is the author of seven books focusing on topics such as Gatsby, MERN, TypeScript, GraphQL, and React Firebase, all of which are available on Amazon.

About the Technical Reviewer

Samarth is a seasoned Full Stack Developer with over 5 years of experience in software development, specializing in multiple technology stacks, including the popular MERN (MongoDB, Express.js, React, Node.js) stack. His career journey has been marked by a diverse range of projects across industries such as Community-based apps, Legal, Crypto/Blockchain, Ed-Tech, HealthCare, and IOT.

Samarth is widely recognized for his expertise in creating solutions to real-world problems through innovative software development, with a specific focus on JavaScript and React. His commitment to improving the world through technology is a driving force in his work, and his comprehensive experience in diverse industries demonstrates his ability to deliver value in a variety of contexts.

Outside of software development, Samarth's interests include science and philosophy, reflecting his diverse set of passions and interests.

Acknowledgements

There are a few people I want to thank for the continued and ongoing support during the writing of this book. First and foremost, I would like to thank my wife for continuously encouraging me to write the book. I could have never completed this book without her support.

I am also grateful to the courses and the companies that supported me throughout the learning process of web development. Thank you for the all hidden support you provided.

My gratitude also goes to the team at Orange AVA for being supportive enough and providing me with quite a long time to finish and publish the book.

Preface

This book covers all the top technologies in the JavaScript ecosystem: MongoDB, ExpressJS, ReactJS and NodeJS. With these technologies, we can create a completely functional web application that includes frontend, backend and database.

We will build a fairly large production-ready app in this book. Here, we will first learn to set up the frontend with React, then create the backend APIs with NodeJS and Express. The backend will be connected to our database which is MongoDB. We will learn to use authentication in our project by implementing JWT. We will also learn to test both frontend and backend using the Unit testing framework of Jest. Finally, we will learn how to deploy both frontend and backend with ease to use free apps.

After going through the book, the readers will be able to create any MERN app with ease and can also modify the project in the book to create other apps.

Chapter 1: This book will begin with an introduction to all technologies related to MERN (MongoDB, Express, React and NodeJS) followed by a complete project overview of the app, which we are going to build in this book. We will also cover the backend setup required for the same.

Chapter 2: This chapter covers the creation of an Express app. We will create our first routes and controllers in this chapter. We will also learn about error handling.

Chapter 3: This chapter covers connecting to the MongoDB database and creating a model in our backend app. We will also start creating routes for our task app.

Chapter 4: This chapter deals with the implementation of JWT authentication and also the implementation of hashing passwords.

Chapter 5: This chapter covers the implementation of Auth middleware and protecting routes. Here, we will learn how to allow only authorized users to access certain routes.

Chapter 6: This chapter deals with the creation of frontend in ReactJS. We will also cover the setup for React Router version 6 in the project, which is used for navigation in React. We will also create the Register and Login pages on the frontend.

Chapter 7: This chapter covers the implementation of Redux, with the latest slice in the frontend. We will also set up a reducer for the registration form.

Chapter 8: This chapter deals with the login and logout functionalities with Redux.

Chapter 9: This chapter covers the creation of a dashboard in ReactJS. We will also learn how to restrict the dashboard to authorized users.

Chapter 10: This chapter covers the implementation of thunk in tasks and also fetching tasks from the server. It also completes our app, in which we display and delete tasks.

Chapter 11: This chapter covers the testing of the frontend. We will test the frontend created in React using Jest and React Testing Library.

Chapter 12: This chapter deals with the testing of the backend. We will test the backend created in NodeJS using Jest.

Chapter 13: This chapter covers the deployment of both frontend and backend using freely available services.

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/ava-orange-education/Ultimate-Full-Stack-Web-Development-with-MERN

The code bundles and images of the book are also hosted on
https://rebrand.ly/bde02d

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Getting Started with MERN and Setup

Introduction

This chapter talks about the basic principles of MERN and REST API. We will talk about the technology stack behind MERN and also the way REST API works. Here, we will also do a complete project overview. We are going to learn about the complete project, which we are going to create in this book. Beside this, we are also going to do the basic setup of the backend part of the application. Here, we are going to set up the NodeJS application.

Structure

In this chapter, we are going to discuss the following topics:

	MERN

	REST APIs

	Complete Project Overview

	Setting up a NodeJS Application

About MERN

MERN stands for MongoDB, Express, React, and NodeJS. It is one of the most popular stacks for creating full-stack apps. Now, full-stack apps are fully functional apps in which we create both the frontend and the backend.

Traditionally, creating the backend and frontend are tasks for two different teams. But with startups coming into picture, a lot of companies have the complete app created by a single team.

Before the creation of NodeJS in 2009, most of the backend programming was done in Java. But with the creation of NodeJS, a lot of companies started using NodeJS in the backend.

The reason is that they can have a JavaScript engineer build the frontend in ReactJS, and the backend in NodeJS. Both ReactJS and NodeJS are JavaScript libraries and are coded using common JavaScript.

We will learn about each tech in MERN and its usage in the MERN stack.

MongoDB

The M in MERN stands for MongoDB. Now, MongoDB is a NoSQL database that stores the data in BSON format. The full form of BSON is Binary JSON and it is quite similar to JSON (JavaScript Object Notation).

It is an object which contains key-value pairs. The strings should be in double quotes, which is similar to JSON. But BSON also contains types like datetime.

A sample BSON document from a MongoDB database is as follows:

{

“_id”: {

“$oid”: “646c4c0b3ed1bed3064c20e2”

},

“company”: “JP Morgan”,

“position”: “Architect”,

“jobType”: “full-time”,

“createdBy”: {

“$oid”: “6450b1cbfb52c1a172e790e2”

},

“createdAt”: {

“$date”: {

“$numberLong”: “1684245010932”

}

},

“updatedAt”: {

“$date”: {

“$numberLong”: “1684245010932”

}

},

“__v”: {

“$numberInt”: “0”

}

}

MongoDB is totally different from traditional Relational databases, which store data in rows and tables. There are also complex relations between tables, which is not required in MongoDB.

MongoDB is a very fast database, with data stored as BSON. Therefore, it is used in most modern web-apps, like an e-commerce site or ride-sharing app. These apps are less concerned about the success of a transaction, like banking apps.

They are more concerned about getting millions of concurrent connections and handling them. Here, MongoDB excels as a NoSQL database, which makes it so popular in the MERN stack.

Express

The E in MERN stands for Express. Now, Express or ExpressJS is not a JavaScript framework but a NodeJS framework, which in turn is a JavaScript backend framework.

Now, NodeJS is used for a variety of backend tasks, including socket programming. But the major task of a backend language, which is to create API endpoints, can also be done in NodeJS.

We will learn more about the REST API in the next section. But they are basically a bridge between the database and the frontend. Writing API endpoints is the main feature of Express.

But why do we need Express, when we also have NodeJS to write API endpoints? The answer is that it is easier to write API code in Express than in Vanilla NodeJS.

So, when Express was created in 2010, it always started to be used with NodeJS for API development.

Following is the express code for a GET API. Here, we are first importing the express in our app. Then we are using it. Next, we are creating the home route ‘/’ with the simple app.get() function.

Lastly, we are listening at port 8000.

const express = require(‘express’);

const app = express();

app.get(‘/’, (req, res) => {

res.send(‘Welcome to Express’);

});

app.listen(8000, () => console.log(`Server is up on port 8000`));

Once we run the app and goto http://localhost:8000 from our browser, we will get Welcome to Express text.

[image:]

Figure 1.1: Express app on browser

ReactJS

The R in MERN stands for ReactJS. ReactJS is the world’s most popular JavaScript Library/Framework. It is just a small JavaScript Library, but way more popular than the JavaScript Framework of Angular.

Almost all major sites on this planet have frontend as ReactJS or some part in ReactJS. It powers Facebook, Instagram, Netflix, Airbnb, BBC, Paypal, Reddit, and almost every other web-app on this planet.

ReactJS was released in 2013 by Facebook, and before that AngularJS was released in 2010, by Google. Angular powers most of Google web-apps and many corporate apps also.

But even after a late release, ReactJS became the de facto library for startups and most companies due to its ease of learning in comparison to Angular. Being a small library, a lot of major tasks like routing and global state management are done by external packages.

But due to its popularity, ReactJS has more than 200,000 open source packages available. You can find a package for everything, from creating beautiful forms to drag drop packages.1

Sites made with ReactJS are very fast, even with extreme loads. The best examples are Facebook, Instagram, and Netflix. This power of ReactJS comes from using Virtual DOM instead of the real DOM.

The DOM manipulation is generally slow, so ReactJS changes the Virtual DOM at first. Later, it changes the DOM behind the scene.

Code written in ReactJS uses a special syntax called JSX (JavaScript XML). In ReactJS, we basically combine the HTML and JavaScript file into one file, called the JSX file.

In ReactJS, we divide the project into small, manageable components. This also helps to divide a large project into different teams. Following is the code for a simple Greet component.

Here, we are receiving data from a Parent component. This is called props. And after that, we are showing it using html. Notice that in a js extension file, we are directly showing html. This kind of file gets converted using the in-built Babel and web-pack to HTML, CSS and JavaScript code because the browser only understands them and not ReactJS.

import React from ‘react’

const Greet = (props) => {

const {lang, children} = props;

return (

<>

<h1>Greet from {lang}</h1>

<p>{children}</p>

</>

)

}

export default Greet

NodeJS

The N in MERN stands for NodeJS. It’s a backend scripting language created for writing backend code. It allows you to write backend code using JavaScript.

NodeJS was created in 2009 by Ryan Dahl. It uses the famous V8 engine of Chrome, which is used to run JavaScript on the browser. But NodeJS runs JavaScript outside the browser and runs on all Windows, Linux, Unix, and MacOS machines.

It can handle a lot of concurrent connections, which is around 70,000 requests per second. When a web-app becomes popular, more users connect to it, and hence the load on the server increases.

NodeJS is the second-fastest backend language after Java, which can handle 1 million requests per second. So, NodeJS can be easily used in medium-level apps which get less than or equal to 70,000 requests per second.

NodeJS can be used in all kinds of backend programming; from creating API endpoints to creating real-time apps with socket programming. Further API programming can be done using ExpressJS.

The following is a small piece of code from socket programming. This kind of programming is used to create messaging apps like WhatsApp.

In this kind of app, we need to use a socket library. After that, the server creates the connections between different clients which emits messages from other clients through it.

const socketio = require(‘socket.io’)

io.on(‘connection’, socket => {

socket.on(‘join’, ({ username, room }, callback) => {

const { error, user } = addUser({ id: socket.id, username, room })

if(error) return callback(error)

socket.join(user.room)

socket.emit(‘message’, generateMsg(‘Admin’,’Welcome to the Chat App!’))

callback()

 })

})

server.listen(port, () => console.log(`Server is up on port ${port}`))

Other Popular stacks beyond MERN

There are two other popular stacks beyond MERN. These stacks use the same backend technologies and database. Only the frontend technology gets changed.

These are MEAN (MongoDB, Express, Angular, NodeJS) and MEVN (MongoDB, Express, VueJS, NodeJS). In these stacks, the other two popular JavaScript frontend frameworks of Angular and VueJS are used.

REST APIs

REST APIs, also known as RESTful endpoints, are the way the modern internet works in most cases. In the Internet, there is a client which nowadays is mostly a browser or a mobile app.

All web-apps like Facebook, Instagram, Netflix or mobile apps get the data from a database. But they don’t read the data directly from a database. They interact with a middleware through HTTP (HyperText Transfer Protocol) protocol, using these predefined RESTful endpoints.

There are four basic REST APIs - POST, GET, PUT, and DELETE. They are used to perform the CRUD (Create, Read, Update, Delete) operation on a database.

As shown in Figure 1.2, the client machine sends REST API requests and then gets back the response from the database. The REST APIs are created using languages like NodeJS, Spring Boot (Java), C# .NET, and many others.

[image:]

Figure 1.2: REST API

Next, we will look into each REST API endpoint in detail.

POST

The POST API is used to implement the Create operation in CRUD. It is one of the most used REST APIs, which we use from the moment we start using a web-app.

The first time you go to a social media web-app like Facebook, it asks you to register. Now, you enter your name, age, and other details in a form and hit the Register button.

The data will be sent through a POST API to the Facebook database and will be stored there. Next, once we log in, we will create a new post and hit the post button on Facebook.

Again, the POST API will come into picture and send the data to Facebook server. So, whether you purchase some products on Amazon and hit the buy button or upload some photos on Instagram, a POST API comes into picture and sends the data to the respective database.

The data is sent to the backend server in JSON format. The JSON (JavaScript Object Notation) format is similar to JavaScript objects. But here, double strings are mandatory for strings.

A sample POST API, JSON data for an e-commerce purchase is shown here:

[“userID”: 23,

“username”: “Keshav”,

{

“id”: 1,

“qty”: 2,

“price”: 109.95

},

{

“id”: 11,

“qty”: 3,

“price”: 119.95

}

]

GET

The GET API is used to implement the Read operation in CRUD. It is the most commonly used API in the world.

Continuing with the Facebook example from POST, when you go to Facebook for the first time, you see a lot of posts. These posts are read from a database through the GET API.

Whether you are scrolling through your Instagram feed, or browsing through Amazon products, or checking articles on Medium, the GET API comes into picture. It reads all the data from the database and shows it in the frontend.

The data is received from the REST APIs in JSON format. Following is a sample JSON data received from an e-commerce site. Notice that most of the time the data is an array of objects. This is the case because arrays are easy to iterate and objects can store data about the items.

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Getting Started with MERN and Setup

		Introduction

		Structure

		About MERN

		MongoDB

		Express

		ReactJS

		NodeJS

		Other Popular stacks beyond MERN

		REST APIs

		POST

		GET

		PUT

		DELETE

		Alternatives to REST API

		Complete Project Overview

		Setting up a NodeJS Application

		Project Folder Structure

		Package installation

		Running the project

		Conclusion

		2. Starting a NodeJS App

		Introduction

		Structure

		Using Express

		Creating Routes

		Initial Routes

		All Routes

		Testing through Postman

		Creating Controllers

		Using JSON

		Error Handler

		Conclusion

		3. MongoDB Connection and Models

		Introduction

		Structure

		MongoDB Database

		Basic Setup

		Connecting through Mongoose

		Model Creation

		Creating Routes

		POST Route

		PUT Route

		DELETE Route

		Conclusion

		Points to remember

		4. JWT Authentication and Hashing Password

		Introduction

		Structure

		User Model and Controller

		Register User with Hashed Password

		Login User

		Understanding JWT

		Using JWT

		Conclusion

		Points to Remember

		5. Auth Middleware and Protecting Routes

		Introduction

		Structure

		Creating Auth middleware

		Understanding Protect Routes

		Protecting Task Routes

		GET and POST Route

		PUT and DELETE Route

		Conclusion

		Points to remember

		Multiple Choice Questions

		Answers

		6. Creating Frontend and React Router

		Introduction

		Structure

		Creating Frontend with ReactJS

		Basic Project Setup

		React Router Setup

		Creating Components and Pages

		Header Component

		Register Page

		Login Page

		Conclusion

		Points to remember

		7. Redux Setup with Slice

		Introduction

		Structure

		Redux setup with a toolkit

		Auth service and slice

		Registration form hook up

		Testing user registration

		Conclusion

		Points to remember

		8. Login and Logout Functionalities

		Introduction

		Structure

		Implementing Logout

		Implementing Login

		Login form hook up

		Testing user login

		Conclusion

		Points to remember

		9. Dashboard Creation and Task Form

		Introduction

		Structure

		Changing Dashboard Logic

		Creating Task Slice

		Creating Task Form

		Conclusion

		Points to Remember

		Multiple Choice Questions

		Answers

		10. Using Thunk and Completing App

		Introduction

		Structure

		Creating task with Async Thunk

		Fetching tasks from server

		Displaying the tasks

		Deleting tasks

		Conclusion

		Points to remember

		11. Frontend Testing

		Introduction

		Structure

		Setup testing in Frontend

		Task Slice and Service Test with Jest

		Testing with React Testing Library

		Configuring and Checking Coverage

		Conclusion

		Points to remember

		12. Backend Testing

		Introduction

		Structure

		Setting up testing in the backend

		Testing registerUser controller

		Testing getTasks and setTask controller

		Testing updateTask controller

		Conclusion

		Points to remember

		13. Deployment

		Introduction

		Structure

		Frontend code repo creation

		Backend code repo creation

		Backend deployment in Back4app

		Backend integration with frontend

		Frontend deployment in Netlify

		Fixing CORS errors and final deployments

		Conclusion

		Points to remember

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Getting Started with MERN and Setup

OEBPS/images/logo.jpg

OEBPS/images/1-1.jpg
cso 9 © s

ko B

OEBPS/images/1-2.jpg
GET/POST/
PUT / DELETE

JSON/
XML

Client REST API Database

OEBPS/images/cover.jpg
NVA

Full-Stack
Web Development
with

brodciion-Grade Web spphetions

with MongoDB, Express, React
and Nodel$

Nabendu Biswas

OEBPS/images/line.jpg

