

[image: image]

Mastering OpenCV
with Python

[image:]

Use NumPy, Scikit, TensorFlow, and Matplotlib
to learn Advanced algorithms for Machine
Learning through a set of Practical Projects

[image:]

Ayush Vaishya

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: November 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-90475-79-7

www.orangeava.com

Dedicated to

My beloved Parents:

Shri Luv Vaishya
Neeti Vaishya

&

And to my adored family, and family,
without whom this journey would not have been possible

About the Author

Ayush Vaishya brings over 5 years of invaluable expertise in AI, ML, and computer vision to the table. With a passion for technology deployment and a track record of guiding projects from inception to completion, Ayush possesses a unique ability to simplify complex concepts. His career highlights include creating advanced computer vision models, refining algorithms for optimal performance, and leveraging data analytics for actionable insights. With his experience, Ayush has created this invaluable resource to equip readers for success in the world of computer vision.

About the Technical Reviewer

Kaushal Singh, an accomplished Data Scientist and AI researcher with a rich and diverse career spanning 5 years. He is currently working as an Assistant Professor and Training and Placement Officer at the Department of Computer Science and Information Technology, School of Engineering, P P Savani University, Surat, Gujarat, with a passion for harnessing the power of data and artificial intelligence, he made significant contributions to the field through research and technical expertise. Throughout his career, he delved deep into the realms of data science and artificial intelligence, honing his skills in machine learning, deep learning, and data analysis. His proficiency extends to developing state-of-the-art AI models and leveraging data-driven insights to solve complex real-world challenges. He is not only a practitioner but also a dedicated researcher. He authored 8 research papers and 4 Book Chapters published in reputable journals and conferences, making substantial contributions to the advancement of AI technologies. His work particularly shines in areas like natural language processing, computer vision, and predictive analytics. Beyond his research endeavors, he also sought after technical reviewers. His keen eye for detail and extensive domain knowledge make him a valuable asset in ensuring the quality and credibility of technical content in the fields of data science and AI. He consistently provides insightful feedback to fellow researchers and peers. With 5 years of hands-on experience and a commitment to pushing the boundaries of AI, he is trying to continue to shape the landscape of data science and artificial intelligence, driving innovation and excellence in the industry.

Acknowledgements

I want to extend my heartfelt thanks to my parents for their unwavering support and guidance throughout this journey. Their presence has been my anchor, and their belief in my dreams has been my driving force.

Additionally, my deepest gratitude goes out to my family who have been like the sturdy branches of a tree, providing shelter and strength in every season. Their boundless love, patience, and encouragement have been the cornerstone of my endeavors, grounding me when the winds of doubt blew, and lifting me higher when aspirations reached for the sky. Together, they have formed the backdrop against which the narrative of my life and this book unfolds.

I would like to express my sincere appreciation to my current organization for their unwavering support and encouragement. They have not only provided a conducive environment for growth but have also served as invaluable mentors, guiding me through the intricacies of my field. Their belief in my potential has been a driving force and I am profoundly grateful for the opportunities and inspiration they have offered.

Preface

Unlock the captivating world of computer vision with this comprehensive guide that takes you on an enriching journey from novice to expert. Packed with step-by-step tutorials, easy-to-understand explanations, and detailed code examples, this book ensures that you grasp even the most intricate concepts effortlessly. You'll find yourself immersed in the world of computer vision as we demystify complex algorithms and techniques with hands-on, real-world projects that bring your learning to life.

Whether you're a seasoned developer or just starting your coding adventure, our easy-to-follow language and engaging approach make this book your ideal companion. Explore the power of OpenCV, delve into image manipulation, unravel the secrets of feature detection, and seamlessly integrate machine learning into your projects. With this book in your hands, you'll gain the skills and confidence to conquer the dynamic field of computer vision and embark on exciting journeys of your own.

The book comprises 12 chapters that guide you from the fundamentals of computer vision to advanced applications. You'll start with an introduction to computer vision and image manipulation, progress to image processing techniques, and delve into advanced concepts like feature detection and machine learning integration. The final chapter offers practical projects to apply your newfound knowledge.

Chapter 1: This chapter introduces readers to computer vision and OpenCV, covering its latest version (4.7) and essential setup for computer vision projects. It's a crucial starting point for understanding the core concepts and tools needed in the world of computer vision.

Chapter 2: Building on the basics, this chapter explores image essentials and operations, setting the stage for more advanced manipulation techniques. Readers will gain practical skills in image handling and modification.

Chapter 3: Readers delve into image processing operations, including rotations, resizing, and color spaces, gaining crucial skills in image manipulation.

Chapter 4: This chapter explores morphological operations, image smoothing, and blurring techniques, laying the foundation for image enhancement.

Chapter 5: This chapter unlocks the power of image histograms for enhancing images, adjusting contrast, and more, with a focus on practical manipulation.

Chapter 6: Readers master image segmentation and thresholding techniques, essential for isolating objects of interest in images.

Chapter 7: This chapter covers edge detection, contour extraction, and their roles in object recognition, enhancing readers' image analysis skills.

Chapter 8: This chapter emphasizes machine learning applications in image classification and clustering using OpenCV. It introduces decision trees, K-means clustering, and support vector machines, providing a solid foundation for applying these techniques in real-world scenarios.

Chapter 9: In this chapter, readers explore feature detection and description techniques used in image processing. They'll gain hands-on experience with state-of-the-art algorithms, enabling them to tackle complex computer vision challenges effectively.

Chapter 10: This chapter provides a foundational understanding of neural networks and their applications in various fields, including image analysis with OpenCV. Readers will also delve into network architecture, activation functions, and metrics used in neural networks.

Chapter 11: This chapter delves into object detection techniques, offering readers the tools to identify objects of interest in images and videos.

Chapter 12: The final chapter puts readers' knowledge into practice with projects covering automated book inventory, document scanning, face recognition, and drowsiness detection. It's a hands-on culmination of the book's teachings allowing readers to showcase their skills in real-world applications.

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Mastering-OpenCV-with-Python

The code bundles and images of the book are also hosted on
https://rebrand.ly/31c5e5

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Introduction to Computer Vision

Introduction

Welcome to the world of computer vision. This book will take you on a journey through the exciting and rapidly evolving world of computer vision and image processing. The book begins by introducing computer vision and the OpenCV library. We will then proceed to cover the essential libraries and the required environment setup for this course.

Structure

In this chapter, we will discuss the following topics:

	Introduction to Computer Vision

	Applications of Computer Vision

	Python

	OpenCV

	A brief history of OpenCV

	OpenCV 4.7

	Supporting Libraries

	Environment Setup

	Installing Python

	Package Manager

	Installing Supporting Libraries

	Installing OpenCV

	Verifying our Installation

	IDE

	Documentation

Introduction to Computer Vision

Computer vision aims to provide machines with the ability to recognize and analyze images or videos, just like humans do. By developing algorithms that teach computers to see, computer vision has the potential to disrupt a wide range of industries such as healthcare and automotive.

With the improvements in camera quality and increased ease of access to good cameras, the amount of visual data in the world is exploding, and computer vision helps us to make sense of this data and put it to better use.

Engineers today have been able to develop cameras that produce eye-like images. As computers have learned the ability to see, our job is to leverage that information and use it to understand and analyze that data.

Did you know? A typical camera sensor can capture 16.8 million distinct colors because it has a bit depth of 8 bits per color channel. However, the human eye can only perceive around 10 million colors, so not all of these colors can be distinguished by the human eye. Cameras and computer vision systems are capable of capturing and processing more colors than the human eye can see.

Computer vision is a subset of artificial intelligence with visual information at its heart. The field focuses on enabling computers to process, analyze, and interpret image data and generate meaningful insights from it.

With the advancements in technology, computational power and cameras have gotten better with time and the field has emerged as one of the most promising careers of the day. We are able to capture high-quality images and process huge amounts of data at a speed, which was impossible some years back.

Computer vision has a wide array of applications across various sectors. Be it healthcare, defense, transportation, or even entertainment, computer vision has shown great promise in all of these areas. Innovations in the field have made significant contributions to these areas.

Applications of Computer Vision

We are surrounded by computer vision in our daily lives, from the automatic face detection in your smartphone camera to the improvement in image quality in your Instagram posts or Snapchat filters. Computer vision has made a significant impression on our everyday lives.

[image:]

Figure 1.1: Applications of Computer Vision

Computer vision has revolutionized the healthcare field. It has greatly improved the diagnosis speed and helps doctors in providing a much more precise diagnosis. By analyzing the images of the concerned area, it can analyze the skin deformities and help diagnose diseases such as dermatitis and melanoma. Using medical imaging, computer vision can help us get a glimpse of defects in internal organs, by analyzing X-rays or MRI scans, for faster diagnosis or allowing doctors to detect issues like fractures or tumors. Be it using Chest X-rays to detect diseases like tuberculosis or analyzing heart images for detecting heart diseases, computer vision has proved how the medical field can greatly benefit from it.

One of the most promising applications of computer vision has been in aiding visually impaired people. Computer vision has assisted visually impaired people in navigating their surroundings, thereby increasing their independence. Computer vision technologies can analyze the environment and provide audio or tactile feedback to the user. Applications such as navigation assistance, object detection, and face or text recognition have greatly benefitted visually impaired individuals. Furthermore, these technologies are expected to improve even further with time.

Did you know? Microsoft’s PeopleLens technology helps visually impaired children and young people interact with their peers more easily. It is a head-worn device that reads aloud the names of known individuals in spatialized audio, allowing learners to understand the relative position and distance of their peers. The technology is currently in a multistage research study for learners aged 5–11 years.

Have you ever wondered how Snapchat’s filters work so quickly and accurately in applying effects to your face? The answer lies in computer vision, a technology that has taken social media by storm. From changing backgrounds to enhancing your images, computer vision is a major part of social media these days. These algorithms detect your facial features and know exactly how and where to apply a particular effect. The Animoji on your iPhone is a wonderful example of how computer vision helps bring images to life.

Social media companies are not just using computer vision for fun use cases, but also for various other purposes. For instance, images can be compressed while preserving their quality, making it easier to send them over the internet. Social media companies use computer vision to moderate the content. Algorithms are used to automatically filter out inappropriate content, such as nudity or violence, without the need for human intervention.

Computer vision has not only been used in commercial projects but has also demonstrated its usefulness in more altruistic endeavors, contributing to advancements in various aspects of life on Earth. For example, computer vision has been used for wildlife conservation, which has helped in protecting various endangered species. Surveillance applications have helped solve the poaching problem and have helped maintain a healthy ecosystem in the forests. Similar to wildlife, computer vision has helped in plant life conversation as well. Conservationists have been able to use computer vision to help with their efforts through various use cases such as plant disease detection, species identification, and habitat monitoring.

Apart from these, the possibilities in the field of computer vision are endless. There have been use cases such as video surveillance, face recognition, autonomous vehicles, robotics, agriculture, retail, gaming, and sports. There is no end to the number of applications that computer vision has to offer, and the list will keep on growing in years to come.

With the world moving at such a fast pace. Computer vision offers endless exciting opportunities for budding engineers to help solve real-life problems like never before.

Think about It: What do you think is a computer vision application that can be used to make this world a better place?

Python

To delve into the world of computer vision, we first need to understand the packages and libraries that we are going to use.

Python is a popular language for computer vision tasks due to its ease of use and versatility, which makes it a popular language for a wide number of uses. A large number of libraries and tools designed for image processing make it a remarkable language for computer vision applications. Furthermore, the large community support and cross-platform compatibility make it a preferred choice for anyone stepping into the world of computer vision.

Python 3 is the latest version of Python that has been released. It has included Unicode support, which means developers across the world can use Python in multiple languages. Python 3 handles exceptions in an improved way, which makes it easy for developers to handle errors. Furthermore, better garbage collection and memory management make Python 3 much faster than its predecessors.

Python 3 includes a wealth of image-processing libraries and offers many features that are beneficial for computer vision applications. As a result, it is an excellent language to use in this field.

OpenCV

Open-Source Computer Vision Library (OpenCV) is the focal library we are going to be using for image processing applications. OpenCV is originally written in C++ language, although it is compatible with Python using Python bindings. OpenCV, along with Python, provides a strong combination for creating powerful computer vision applications and is frequently used for research and deployment.

Initially released in the year 2000, OpenCV is an open-source library, which has since become one of the most comprehensively used libraries for computer vision. It provides a wide range of features for image processing and is used in various applications such as security, automation, and healthcare.

Another major advantage that favors OpenCV is its compatibility with several programming languages such as Python, Java, and MATLAB. The library is cross-platform as well and can run on numerous systems including Linux, Windows, Mac, Android, and iOS. Additionally, OpenCV is compatible with various computer vision and deep learning frameworks namely TensorFlow and PyTorch (We will be discussing these frameworks in detail as we move on towards further chapters).

OpenCV contains a large collection of pre-built functions that can be used for several development tasks. Functions such as image smoothening, histograms, edge and contour detection, and so on, are inherently built into the OpenCV library, which makes it easy to implement these functions in your computer vision tasks. These functions can be used for an extensive range of operations including feature detection, image segmentation, object detection, and many more. Furthermore, OpenCV incorporates an automatic memory management ability that automates the allocation and the deallocation of memory in image and matrix operations, which simplifies the usage of these functions and enhances their optimization.

Moreover, OpenCV is not only limited to image processing but it also provides a superb interface for video analysis and video processing. It provides functions to use video streams from various sources such as webcams and cameras or remotely located IP cameras as well. Video capabilities allow the development of many use cases that can process videos in real-time.

The ability to process videos in real-time opens a wide range of possible use cases such as video surveillance and self-driving cars. Using object detection and tracking features, OpenCV has significantly improved video surveillance and provides enhanced solutions for security that can outperform the human eye in many scenarios. Computer vision has given rise to another new sector, which is self-driving cars. By using OpenCV’s ability to process videos in real-time along with features like object detection and image segmentation, self-driving cars are a reality these days.

Did you know? Tesla’s Autopilot system has driven over five billion miles (as of September 2021) on public roads. It has been noted by the National Highway Traffic Safety Administration that Tesla’s autopilot features have reduced crash rates as high as up to 40%. Tesla’s cars are continuously gathering data from human drivers’ driving patterns and behaviors, which is then utilized to enhance the performance of the Autopilot system gradually.

Brief history of OpenCV

OpenCV has gone through various developments over time and four major versions of the library have been released.

OpenCV 1.x was the initial version of the OpenCV library released in 2000. It provided basic computer vision algorithms for image processing such as edge and corner detection, feature detection, and image filtering.

OpenCV 2.x was released in 2009. It added advanced computer vision features such as object detection and object tracking. The ‘Mat’ data structure was introduced in this version and GPU acceleration for real-time analysis was also added. It added support for multiple platforms, including Windows, Linux, and Mac, which enabled developers to explore OpenCV on the platform of their choice.

OpenCV 3.x was released in 2015. The major introduction in this version was a new deep learning module that included popular deep learning frameworks like TensorFlow and Caffe, allowing the users to use neural networks for various tasks such as object classification, object detection, and so on. By adding support for multithreading and SIMD operations, this was much faster and more efficient than the earlier versions of OpenCV. This version had a modular structure with which users could install only the necessary modules, hence reducing the overall size of the library. It provided advancements to the existing algorithms such as face detection and also included multiple new algorithms for computer vision such as SIFT and SURF feature detectors.

OpenCV 4.x is the latest version of OpenCV, which was released in 2018. It included support for Vulkan graphics, which allowed for more efficient computation on supporting hardware. It has also added more frameworks such as PyTorch and ONNX for improved deep learning support. There were several additions with new computer vision algorithms and features for better image processing along with various performance updates, making the library faster and more efficient. OpenCV 4.x also provides better support for CUDA, which stands for Computer Unified Device Architecture, a parallel processing unit developed by NVidia for improved performance. OpenCV 4.x enables the use of 3D images by adding support for depth cameras.

OpenCV 4.7

The latest version of OpenCV, 4.7, was released on December 28, 2022, and included many features, such as:

	
Improvements in the dnn module: New network architectures, Huawei CANN Backend, improved OpenVINO support, and performance optimizations.

	
New image and Video codecs: Iterator-based API for multi-page image formats, libspng, SIMD-acceleration, H264/H265 support on Android, Orbbec RGB-D camera backend, and improved audio input via GStreamer backend CUDA 12 and Video Codec SDK support.

	
New algorithms: NanoStack and StackBlur.

	New universal intrinsic backend for scalable vector instructions (RISC-V RVV).

OpenCV 5 is in development as of now and there are a few pre-release versions available for testing. However, it will be a few years at least before we can expect a proper release.

Supporting Libraries

OpenCV is a powerful computer vision library, but its capabilities can be further expanded by leveraging third-party libraries that seamlessly integrate with OpenCV.

We will be exploring these libraries in this section.

NumPy

NumPy is a Python library used for numerical computations that enables the use of large multidimensional arrays. It offers a vast array of mathematical functions that can be used on these arrays. It allows us to perform operations such as creating and manipulating arrays, arithmetic operations such as addition and subtraction, and various mathematical functions such as trigonometric, statistical, or logarithmic operations on these arrays.

NumPy enables us to perform mathematical operations very efficiently. It optimizes the use of available computational power by utilizing multi-core CPUs and graphic cards in the system, resulting in faster computation for numerical operations.

Another major feature of the NumPy library is broadcasting. Broadcasting is a powerful NumPy feature as it allows arrays of various sizes and shapes to be used together for arithmetic operations. NumPy does this by automatically increasing or broadcasting the size of smaller arrays to match that of the larger ones. This helps us write code effortlessly as it eliminates the need to use loops or any other operations that might be needed for operating on different-sized arrays.

NumPy is often used in conjunction with other computing libraries, which helps users to perform various applications like data analysis and visualization ­seamlessly. SciPy is a library built on top of NumPy, which provides support for several data analytic tasks like regressions or data modeling. Matplotlib is another library that is often used together with NumPy. Matplotlib is a library that is used for creating high-quality data visualizations. We will be utilizing these libraries extensively as we progress through the course.

Matplotlib

Matplotlib is a widely used library for data visualization and data analysis. It provides a range of plotting functions that help the user create various types of visualizations.

Some of the common types of plots that can be created using Matplotlib include line plots, scatter plots, histograms, and heatmaps. Matplotlib also provides the ability to extensively customize these plots. Users can choose any color they want, the title for their plots, include annotations or tweak the axes within the plots according to their requirements.

Matplotlib also allows the creation of subplots, which are a way of creating multiple plots within a single figure. It also provides many output formats for saving plots such as JPEG, PNG, PDF, and so on.

Matplotlib is often used along with NumPy. Its easy-to-use features and interoperability with other libraries have made it a popular choice among data scientists and researchers for data visualization.

SciPy

SciPy is an open-source library that provides a wide range of functionality for data analysis and visualization. It consists of modules that help users with scientific and mathematical computations and includes modules for statistics, linear algebra, image or signal processing, and so on.

SciPy is built on top of the NumPy library. While NumPy provides functionality to work with n-dimensional arrays and apply some mathematical operations on them, SciPy takes it a bit further by providing more complex and convenient functions for data processing, optimization, and more.

SciPy is seamlessly integrated with other libraries in Python such as NumPy, Scikit-learn, and Matplotlib. This makes SciPy a powerful tool for data analysis as researchers can use it alongside other libraries to create a comprehensive environment for data science.

Scikit-Learn

Scikit-Learn or sklearn is a machine learning library that provides a wide range of machine learning algorithms such as regression, classification, and so on. It also provides users with various data preprocessing and model evaluation tools, making it a complete package for data scientists.

Scikit-learn is built on top of NumPy, SciPy, and Matplotlib, providing easy integration with these libraries, which helps the users to perform a wide range of applications. It can also be integrated with other Python libraries and can be used with frameworks like TensorFlow.

While it is not an image processing library, Scikit-Learn is a powerful tool for machine learning tasks, and we will be using it when implementing machine learning algorithms in later sections of this course.

Scikit-Image

Scikit-Image is an image processing library that provides various algorithms such as image segmentation, filtering, and feature extraction.

Scikit-Image provides similar features to OpenCV. However, it is considered easier to learn and more user-friendly, while OpenCV offers better optimizations and, consequently, better performance.

Similar to Scikit-Learn, this library was built on top of numpy,scipy, and matplotlib. As mentioned earlier, OpenCV was built on C++ and has Python bindings.

While we will be using OpenCV primarily in our computer vision journey, Scikit-Image comes in handy sometimes for implementing specific algorithms.

Mahotas

Mahotas is another popular image-processing library that contains various algorithms for computer vision tasks. Mahotas is built on the NumPy library and is proven to be efficient for many image-processing tasks.

Our primary library for image processing is going to be OpenCV. However, we are going to use Mahotas for specific use cases and will use it to complement OpenCV.

Our approach throughout the book will leverage the strengths of each image-processing library.

TensorFlow

TensorFlow is an open-source library for developing artificial intelligence applications based on deep learning. Developers can use TensorFlow to train neural networks for a wide range of use cases such as image recognition and natural language processing.

TensorFlow has a wide range of features, which makes it one of the best frameworks for training neural networks. From creating small, optimized models for mobile applications to large industry-size models, TensorFlow can be used to train models of any size. It also provides several visualization tools to help developers monitor and evaluate their models as they train. Additionally, TensorFlow offers an adaptable architecture, which means users can train models on a variety of platforms such as CPUs or GPUs.

Did You Know? The ChatGPT model was created using TensorFlow. A specific variant of TensorFlow, that is, TensorFlow mesh was used to train this model. Training data consisting of hundreds of GB or several TB is estimated to be used for training. The number of model parameters is not disclosed but is rumored to be around 175 million.

Google has developed TPUs, which stands for Tensor Processing Units. These are custom-designed integrated circuits designed specifically for machine learning tasks. TPUs are specifically designed to optimize matrix operations, can handle more data in parallel due to higher memory, and consume lower power compared to other chips. The chip is designed to work with TensorFlow, and TensorFlow now includes specific functions to take advantage of TPUs. By using TensorFlow with this hardware, users can significantly improve neural network training times and inference speed for the models.

Try it Out: You can use Google Cloud, a free notebook offered by Google, to experiment with and train neural network models on TPU.

Keras

Keras is an easy-to-use and modular library that helps users to create and experiment with neural networks quickly. Keras is a high-level neural network API, which means users do not have to write complex neural network codes from scratch and can use pre-coded building blocks such as layers and activation functions for their model development.

Keras was initially developed as a standalone library for neural networks. ­However, Google acquired Keras in 2015 and, since then, Keras has been integrated into the TensorFlow framework.

While this book focuses primarily on image processing and OpenCV-based approaches, there is a case to be made that neural networks are an important part of the domain, and there is a dedicated chapter to neural networks where we train our very own neural network using TensorFlow and Keras.

Dlib

Dlib is a C++ library containing various applications for computer vision or natural language processing tasks. Dlib provides capabilities for various tasks such as text classification and Support Vector Machines. However, for the scope of this book, we will keep it limited to the computer vision part of the library.

Dlib is widely used in computer vision applications for facial recognition tasks. Dlib’s face recognition models are considered as one of the most reliable models for face detection and recognition. Dlib models have been able to demonstrate high accuracy for these applications and were even able to successfully identify and detect faces from challenging video streams.

Dlib 68 face point detector is a popular model for plotting facial landmark points in images and videos. The pre-trained model can detect 68 key points, such as nose, ear, and so on, on the face, which the users can use for face-related computer vision projects.

Environment Setup

Having covered the fundamentals and the essential libraries needed for computer vision, we can proceed with setting up our own customized computer vision environment to execute our codes.

The major steps can be broken down as follows:

	Installing Python

	Package Managers (Pip and Conda)

	OpenCV and supporting libraries

	Downloading an IDE

	Testing our environment

Installing Python

The first step will be to download the latest version of Python.

Depending on the operating system, the following steps can be taken to install Python. We will be using the latest release of Python, which is 3.11.2, as of April 2023.

Installing Python on Windows

We will be using the official Python installer to install Python on our Windows systems.

Here are the steps:

Step 1: The Python installer can be downloaded from the official Python website. (https://www.python.org/downloads).

You can download the version that you want depending on your operating system (32-bit or 64-bit). Download the installer to your system by clicking the appropriate link.

Once the download is complete, proceed to launch the installer and begin installing Python on your system.

Step 2: The installer would look like this:

[image:]

Figure 1.2: Start menu of the Python Installer

The Install Now option will download Python with all the default features. We will use custom installation to choose the features according to our requirements.

The Use admin privileges when installing the py.exe option will be pre-selected, and we will keep it like this.

We will select Add python.exe to the PATH option. This will allow Python to run directly through the command line.

Step 3: Selecting the custom installation option will lead us to the Option Features screen as shown in Figure 1.3 (You could skip this step if you selected the default Install Now option in the earlier step.):

[image:]

Figure 1.3: Advanced Options in the Python Installer

The following options are available to choose from:

	
Documentation: This will install the Python documentation files into your system. It is recommended to keep this option selected.

	
Pip: Pip is a package manager used to install other Python packages. We will be using pip to install a lot of packages, and hence this option will be selected.

	
tcl/tk and IDLE: IDLE is Python’s Integrated Development and Learning Environment. Tkinter is the GUI used by IDLE. We will not be needing these features during the course of this book.

	
Python test suite: Test Suite to test Python’s functionality. We will keep this checked.

	
py launcher: Makes it easier to start Python. We will keep this checked.

	
For all users: We will keep it checked so all users can access Python.

Step 4: We are led to the advanced options screen by clicking Next. Select the options according to your requirements:

[image:]

Figure 1.4: Optional Features in the Python Installer

	
Install for all users: Install Python for all users if there are multiple users on the system.

	
Associate files with Python: Associate all Python files with this launcher. Recommended to select this option.

	
Create shortcuts for installed applications: Enables shortcuts for installed applications.

	
Add Python to environment variable: Recommended as this will enable us to launch Python directly.

	
Precompile standard library: Compiling the Python standard library modules into bytecode files. Not needed.

	
Download debugging symbols: Download additional files for debugging. Not needed.

	
Download debug binaries: Downloads executables files that have been debugged. Not needed.

Add the path where you want to install Python and click Next.

Step 5: Python will be installed, and a Setup was Successful message will be displayed. We can verify if Python was installed properly or not now.

Go to the start menu and open the command prompt. In the command prompt, enter the following line:

‘python –version’

The output will print the Python version installed on the system if the installation was successful. Now we can start writing the Python code. We will install additional dependencies before that.

Installing Python on Ubuntu and Mac

Both Ubuntu and macOS come with a pre-installed version of Python, but the specific version may vary depending on the operating system version.

For Ubuntu, you can use the following command to update to the latest version of Python:

sudo apt-get update

sudo apt-get install python3

For macOS, you can use Homebrew:

brew update

brew install python

Package Manager

A package manager will help you manage and install Python packages easily. All the libraries we discussed earlier can be installed easily using a package manager.

The most common package manager for Python is Pip. Pip allows users to install or upgrade packages from the PyPI (Python Package Index). It is a command-line tool that comes with Python (Remember, we already installed Pip during our Python installation.). Pip also allows us to create virtual environments for our applications as well.

Another widely used package manager is Conda. It is a cross-platform package manager and can be used to install packages from the Anaconda distribution. Conda supports packages from other sources as well.

For now, we will be using Pip to install most of our packages. Pip already comes with Python, so we don’t need to install it separately. You can verify your pip installation by the following command in the command prompt:

pip -version

Installing libraries

We will first install the necessary libraries that we discussed in the previous section to help us with our computer vision applications.

First, we will install the NumPy library:

pip install numpy

Followed by the SciPy library:

pip install Scipy

Next, we will install the Matplotlib to help with our visualization use cases:

pip install matplotlib

Then, we will install the Scikit-Learn and Scikit-Image libraries:

pip install scikit-learn

pip install scikit-image

Installing Mahotas

To install Mahotas, launch the command prompt and type the following command:

pip install mahotas

Installing OpenCV

The next step is to install the OpenCV library. We can use Pip to install all the libraries we need for our computer vision journey.

To install OpenCV, launch the command prompt or Terminal and type the following command:

pip install opencv-python

This will install the latest version of opencv along with all the dependencies required to run the library.

To install a specific version of the OpenCV library, the following command can be used:

pip install opencv-python==<version_number>

OpenCV-contrib is an extended version of the OpenCV library. It contains additional algorithms and not all the features in this library are open source. It can be installed by the following command:

pip install opencv-contrib-python

Verifying our installation

Once the installation has been completed, we can verify all the libraries by importing them in Python. To do that, open the command prompt or terminal and type Python to enter the Python mode.

Once inside the Python mode, import the libraries by using the following command and print their respective version numbers:

import cv2

import numpy as np

import scipy

import matplotlib

import mahotas

import sklearn

import skimage

print(cv2.__version__)

print(np.__version__)

print(scipy.__version__)

print(matplotlib.__version__)

print(mahotas.__version__)

print(sklearn.__version__)

print(skimage.__version__)

The output will be the version number of all the necessary libraries installed previously.

IDE

IDE stands for Integrated Development Environment. It is software that helps in the development of applications by providing necessary tools such as an editor, debugger, compiler, and more.

While the preferred IDE is subjective and varies depending on the use cases, for this course, we will be using Spyder. However, there are various other options available for you to use such as PyCharm or Jupyter Notebooks. Feel free to use any other IDE according to your personal preferences.

We can use pip to install Spyder:

pip install spyder

Spyder can be launched by typing spyder in the command prompt/terminal.

Documentation

The documentation is an essential tool to refer to when searching for algorithms or codes while using the OpenCV library. The documentation provides detailed information about the library and all the tutorials with their respective codes can be found in the OpenCV official documentation.

The documentation is available online and can be accessed by visiting the official website at https://docs.opencv.org.

This brings us to the end of Chapter 1 where we have familiarized ourselves with the fundamental concepts of computer vision and have set up a suitable environment to begin our exploration of codes. Now that we have a better understanding of the fundamentals of computer vision, we can explore its diverse applications and begin creating innovative solutions.

I would like to leave you with a final thought: What do you think are the best uses of computer vision? As readers, we all have unique perspectives and experiences that can lead to innovative solutions using this technology. By learning more about computer vision technology in the following chapters, you can equip yourself with the knowledge and skills needed to be a part of the exciting advancements in this field.

Conclusion

Computer vision aims to provide machines with the ability to recognize and analyze images and videos, just like humans do. Computer vision has a wide array of applications in various sectors such as healthcare, automotive, and manufacturing.

Python is a popular language for computer vision tasks due to its ease of use and versatility. OpenCV is an open-source library that has become one of the most comprehensively used libraries for computer vision.

Numpy is a Python library used for numerical computations that enables the use of large multidimensional arrays. Matplotlib is a widely used library for data visualization and data analysis, while TensorFlow is an open-source library for developing deep learning-based artificial intelligence applications.

The OpenCV documentation provides detailed information about the library, and all the tutorials with their respective codes can be found in the OpenCV official documentation.

In the next chapter, we will delve into the fundamentals of images. We will explore the basics of images in detail and discuss pixels in an image. Following that, we will learn how to read, write, and display images using OpenCV. The book will then progress to cover topics like drawing shapes on images using OpenCV, including rectangles, circles, and other basic shapes.

Test Your Understanding

	Which of the following is NOT a computer vision application?

	Object detection

	Image classification

	Face recognition

	Sentiment analysis

	NumPy is a Python Library for:

	Computer Vision

	Numerical Computing

	Natural Language Processing

	Data visualization

	
What can the Matplotlib library be used for?

	Data visualization

	Numerical Computing

	Machine Learning Algorithms

	Data augmentation

	What data type is commonly used to represent images in OpenCV?

	List

	Mat

	Dictionary

	String

	What is NumPy broadcasting?

	A way to perform operations on arrays with different shapes

	A way to sort elements in a NumPy array

	A way to reshape a NumPy array

	A way to randomly generate specific-sized NumPy arrays

CHAPTER 2

Getting Started with Images

In this chapter, we will cover the fundamental concepts of images and basic operations. We will start by providing a clear definition of image basics such as pixels. Next, we will delve into an explanation of how to read, display, and save images using the OpenCV library. We will then move on to the practical task of drawing shapes on images using OpenCV, with an emphasis on topics such as rectangles, circles, and other basic shapes.

Structure

In this chapter, we will discuss the following topics:

	Introduction to images and pixels

	Reading, displaying, and writing images

	Imread

	Imshow

	Imwrite

	Waitkey

	Manipulating images with pixels

	Accessing individual pixels

	Accessing a region of interest (ROI)

	Drawing in OpenCV

	Line

	Rectangle

	Circle

	Text

Introduction to images and pixels

What is an image? In non-technical terms, an image refers to a visual representation of a scene, object, or person, that enables us to better understand the world around us. In the digital context, an image is a multidimensional array of pixels.

Pixels are the building blocks of images. A pixel is the smallest unit of a digital image, containing information about its color and position. When multiple pixels come together in a two-dimensional grid, they form a complete image. Pixels in a digital image are arranged in a grid pattern to create the overall image. Each pixel contains specific color information, and together they form the complete image.

Pixels are commonly used to represent grayscale or color images. Grayscale images are typically represented as a 2D grid of pixels, while colored images are often represented as a multi-dimensional matrix. In a grayscale image, each pixel is assigned a value between 0 and 255, representing the intensity of the image at that point. A value of 0 indicates no intensity, resulting in a black pixel, while a value of 255 represents maximum intensity, resulting in a pure white pixel.

In color images, each pixel is represented by a combination of three or four values, with the most common color space being the RGB color space. In this space, three values representing the intensity of the red, green, and blue color channels are used to represent a single pixel. Each value ranges from 0 to 255 and represents the amount of each color that is present in the pixel. A typical RGB pixel can be represented in the format (red, green, blue).

For instance, a color with (0,0,0) values represents black since all the colors have 0 intensity, while (255,255,255) represents a white image because all colors have their maximum values.

Let’s look at a few more examples of how colors are represented in the RGB color space:

	(255,0,0) produces a pure red color since red is at its maximum while green and blue are at 0.

	(0,255,0) produces a pure green color.

	(0,0,255) produces a pure blue color.

	(255,255,0) produces yellow since it is a combination of red and green.

	(128,128,128) represents a grey color.

PPI, or Pixels per Inch, represents the number of pixels present in a single inch of a digital image. A higher PPI means that there are more pixels per inch, resulting in a smoother and more detailed image. Conversely, a lower PPI means that pixels are larger and there are fewer of them per inch, resulting in a less detailed and less sharp image.

Resolution is a term used to describe the total number of pixels that make up an image. The higher the resolution, the more pixels there are, resulting in a more detailed and high-quality image. Resolution is typically measured in pixels per inch (PPI) or dots per inch (DPI). When an image has a lower resolution, it means there are fewer pixels and therefore, the image has less detail.

Aspect ratio refers to the proportional relationship between the width and height of an image, which determines the image’s overall shape. It is typically expressed as two numbers separated by a colon (for example, 4:3 or 16:9) that represent the width and height of the image or screen. For instance, an image with an aspect ratio of 4:3 would have a width that is 4 units long for every 3 units of height. The aspect ratio is used to ensure that the image fits the display size correctly when displaying images on different devices.

Did you know? The number of pixels in digital images has been increasing rapidly over the years. The first commercially available digital camera, the Dycam Model 1, had a resolution of just 0.01 megapixels, while today’s high-end cameras can capture images with resolutions of 100 megapixels or more.

Loading and displaying images

It’s time to start working with images! In this book, you’ll get hands-on experience as we guide you through the process of exploring and manipulating images. Please be sure to implement the code examples yourself as we move forward, as this will help solidify your understanding of the concepts we’ll be covering.

Imread()

To get started with image processing in OpenCV, we’ll need to use the imread() function. This function enables us to load images into our programs:

cv2.imread(path, flag=cv2.IMREAD_COLOR)

Parameters:

	
path: This is a string which represents the path of the image to be read. It can be an absolute or passive path.

	
flag: This is an optional parameter. It specifies how the image can be read. has a large number of options but we will be needing only a few of those.

	
cv2.IMREAD_COLOR (1): This loads the image in BGR format. It is the default format for the function.

	
cv2.IMREAD_GRAYSCALE (0): This loads the image in grayscale.

	
cv2.IMREAD_UNCHANGED (-1): This loads the image in its original format, generally used to include the alpha channel.

The integers mentioned here indicate that instead of specifying the full flag name when using the imread function, you can simply pass an integer value corresponding to the desired flag:

cv2.imread(path, 0)

This will load the image in grayscale format.

Imshow

To display an image, we will be using the imshow command:

cv2.imshow(winname, mat)

Parameters:

	
Winname: This represents the name of the window that the image is displayed in.

	
Mat: This represents the NumPy array of the image we want to display.

Imwrite

Imwrite is to save images to our system.

cv2.imwrite(filename, img, params=None)

Parameters:

	
Filename: A string representing the path of the image to be saved. This can be an absolute or a relative path.

	
Img: This represents the NumPy array of the image we want to write.

	
Params: This is an optional parameter that specifies formatting and compression parameters for the image file. For now, the default value of None is acceptable.

Example code:

In this exercise, we will be loading an image and displaying the image using the codes we learnt earlier:

import cv2

Using imread to read out image

img = cv2.imread(“Pictures/dog.jpg”)

Print the shape of the image

print(img.shape)

Displaying the image

cv2.imshow(“Dog Image”, img)

Wait until a key is pressed

cv2.waitKey(0)

Close all Windows

cv2.destroyAllWindows()

You can use any image for this if you want. The following image can be downloaded from the GitHub repository:

[image:]

Figure 2.1: Image to execute imread and imshow codes

The image should be displayed and the shape of the image is printed.

You might have seen a few new commands in the preceding code.

WaitKey

WaitKey is a function used in OpenCV programs to allow users to display a window for a specific amount of time or until the user presses a key. Without waitKey, the image or video would close instantly before the user had time to view it.

It takes only an integer argument, which is the number of milliseconds the window stays open. If the argument given is 0 or not given at all, the function waits for a key press before closing the window.

DestroyAllWindows

DestroyAllWindows is a simple command that will close all the windows that were opened by OpenCV during the execution of our code. This does not take any parameters.

We have successfully run our first OpenCV code and can now read and display images.

Try it out: Try to write the preceding image to your disc now with a different path.

Manipulating images with pixels

In the previous section, we covered how to load and display an image. Now, we can move on to discussing image manipulation techniques and accessing specific points within the image.

Images are stored as NumPy arrays in Python, which means elements of an image can be indexed the same as NumPy arrays. Image indexing allows us to manipulate individual pixels or a certain region of pixels in an image.

Note to remember - Python is a zero-indexed language, which means that the index of the first element in a sequence is 0, not 1.

For example, let’s take a 2D image matrix such as this:

	
3

	
4

	
8

	
1

	
0

	
2

	
7

	
0

	
8

	
7

	
9

	
96

	
4

	
7

	
9

	
6

	
13

	
5

	
7

	
8

	
9

	
7

	
4

	
3

	
5

	
17

	
8

	
9

	
8

	
15

	
4

	
14

	
5

	
6

	
7

	
8

	
7

	
1

	
4

	
2

	
25

	
8

	
9

	
66

	
7

	
5

	
7

	
9

	
0

Figure 2.2: 2D Matrix representing an image

The preceding figure is a 7*7 image matrix.

To access individual elements of an array, the first index specifies the word and the second index is the column of the element.

We can use indexing [0, 0] to access the top-leftmost element of the array, and [6, 6] to access the bottom-right element.

Similarly, let’s say we need to find the index of element 13 in the array. What do you think it would be? The answer is [2, 2]. And what about the index of element 14? The answer is [4, 3].

We can move forward now and start manipulating and accessing pixels in images using OpenCV.

Accessing individual pixels

To access a particular pixel of an image, we can use the similar img[row, col] indexing. Accessing a pixel value using this will return a NumPy array with the pixel value in it:

pix = img[5,7]

This command will assign the pixel’s value in row 5 in column 10 to the pix array.

As discussed earlier, if the image is grayscale, it will return a single value. However, if it is an RGB image, we will get three values, with each value corresponding to its respective color channel.

For an RGB image, the preceding code line will return an array containing three values, such as array([32, 43, 3], dtype=uint8). Whereas for a grayscale image, it will simply return a single value, which could be, for example, 30.

We can also modify the values of pixels using indexing. We can assign a value to a particular pixel as follows:

img[5,7] = 255

If img is a grayscale image, this will assign the pixel a value of 255. If the image img is in the BGR format, then all three color channel values will be set to 255.

If we want to set a specific value in an RGB image, we can use the color code of that particular color:

img[5,7] = [0,255,0]

This will set the green channel value to 255 and the other two channels to 0, resulting in a pure green pixel.

Let’s try manipulating pixels in our images:

import cv2

Load an image in grayscale mode

img = cv2.imread(‘ss.jpg’)

Get the pixel value at x=75, y=25

pixel_value = img[25, 75]

#Print this value

print(pixel_value)

#Manipulate value of this pixel

img[25, 75] = 0

#Rechecking value

print(pixel_value)

The value has been updated to 0 indicating that our pixel manipulation has been successful.

Next, let’s try another code to manipulate whole column values:

import cv2

Load an image

img = cv2.imread(‘12.jpg’)

Access and manipulate the pixels

for i in range(img.shape[0]):

for j in range(img.shape[1]):

Checking for every tenth column

if j % 10 == 0:

Setting this value to 0

img[i,j] = [0,0,0]

Display our result

cv2.imshow(‘Person’, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

Accessing a region of interest (ROI)

We will now discuss how to manipulate whole regions of an image by defining a Region of Interest (ROI) using indexing. It is often necessary to be able to manipulate a specific region of an image instead of a single pixel or the full image.

To create a rectangular ROI, we can use x and y coordinates, along with w and h for width and height. Using this method, we can perform any operation on the defined ROI.

To define an ROI, we can use the following command:

roi = img[y:y+h, x:x+w]

This will create an ROI by slicing the necessary points of the image into that variable:

import cv2

Load image

img = cv2.imread(‘ss.jpg’)

Define index values

x=50

y=60

w=75

h=75

Extract ROI from the image

roi = img[y:y+h,x:x+w]

Print shape of the extracted ROI

print(roi.shape)

Assigning a colour to a different ROI

img[100:150,150:200] = (255,255,0)

Display the image with the ROI and rectangle

cv2.imshow(‘Extracted ROI rectangle’, roi)

cv2.imshow(‘Image with ROI colour’, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

The command carries out two operations on regions of interest. First, a rectangular portion of the image is extracted and saved in a variable. This can be used if we want to use indexing to extract a section from an image. The ROI region in our primary image is given a color in the second section.

Drawing in OpenCV

In this section, we’ll learn how to draw shapes with OpenCV. We can design a wide range of shapes using OpenCV, including lines, circles, rectangles, and polygons, and we can customize their size and color. Using OpenCV, text can be added to photos as well. Shapes can be used for several things, including annotating photographs and emphasizing particular areas of them.

We will begin by creating a blank canvas on which we can draw various shapes. Alternatively, you can also load an image and draw the shapes on it.

To create a canvas for drawing shapes, we can use NumPy to create a NumPy array. Using various methods, we can then draw on this NumPy canvas:

canvas = np.zeros((600, 600, 3), dtype=np.uint8)

We use the np.zeros function to create our canvas. It is a NumPy function that creates a NumPy array of zeros with a specific shape and data type. In this case, we create an array of shapes (600,500,3) with the ‘np.uint8’ data type. This data type corresponds to an 8-bit unsigned integer with a range of values ranging from 0 to 255.

Now that we have our canvas, we can start drawing shapes on them. The first shape that we discuss is the line.

Line

We create lines on our images using the cv2.line command. This command offers multiple parameters, allowing us to customize lines to suit our specific needs and requirements.

Parameters:

	
Img: The image where the line will be drawn.

	
Pt1: The starting coordinates of the line. This will be in tuple (x,y) format.

	
Pt2: End coordinates of the line. This will be in tuple (x,y) format.

	
Color: The color of the line. This will be in tuple (B, G, R) format.

	
Thickness: The thickness of the line in pixels. This is an optional argument with a default value of 1.

	
lineType: The type of the line. We will not be using this parameter and can leave it to the default value.

	
Shift: Number of fractional bits in the line coordinates. We will not be using this parameter and can leave it to the default value of 0.
cv2.line(img, pt1, pt2, color, thickness=1, lineType = cv2.LINE_8, shift = 0)

Let us try creating a few lines now:

import numpy as np

import cv2

Create a black canvas

canvas = np.zeros((600, 500, 3), dtype=np.uint8)

Define the vertices of the triangle

p1 = (250, 100)

p2 = (100, 400)

p3 = (400, 400)

Draw the lines using cv2.line()

cv2.line(canvas, p1, p2, (0, 255, 0), 1)

cv2.line(canvas, p3, p1, (255, 0, 0), 3)

cv2.line(canvas, p2, p3, (255, 255, 255), 10)

Display the image

cv2.imshow(“Triangle”, canvas)

cv2.waitKey(0)

cv2.destroyAllWindows()

In the preceding code snippet, we create a triangle using three connecting lines. We first define the coordinates of the lines and then specify different colors and thicknesses for each line.

The first line is from point P1 to P2 with green color and thickness of 1 px. Similarly, line 2 is from point P3 to P1 with a blue color and thickness of 3 px and line 3 goes from point P2 to P3 with white color and thickness of 10 px:

[image:]

Figure 2.3: Output: 3 lines with different parameters

Rectangle

Drawing rectangles is similar to drawing a line in OpenCV. We can use the cv2.rectangle command to create rectangles in OpenCV:

Cv2.rectangle(img, pt1, pt2, color, thickness=1, lineType=cv2.LINE_8, shift=0)

Parameters:

	
Img: The image where the line will be drawn.

	
Pt1: The top left corner point of the rectangle. This will be in tuple (x,y) format.

	
Pt2: The bottom right point of the rectangle. This will be in tuple (x,y) format.

	
Color: The color of the rectangle being drawn. This will be in tuple (B, G, R) format.

	
Thickness: The thickness of the rectangle border in pixels. This is an optional argument with a default value of 1. If the thickness of the rectangle is negative, it will fill the rectangle.

	
lineType: The type of the line. We will not be using this parameter and can leave it to the default value.

	
Shift: Number of fractional bits in the line coordinates. We will not be using this parameter and can leave it to the default value of 0.

Now, based on the preceding explanation, let’s try to create this image:

[image:]

Figure 2.4: Recreating this image using OpenCV

The code is as follows if you need any help:

import numpy as np

import cv2

Create a black image

img = np.zeros((600, 500, 3), dtype=np.uint8)

Draw the figure using rectangles and lines

Face

cv2.rectangle(img, (150, 150), (350, 400), (242, 199, 155), thickness=-1)

Cap

cv2.rectangle(img, (100, 50), (400, 150), (198, 131, 56), thickness=-1)

Mouth

cv2.rectangle(img, (200, 310), (300, 330), (128, 0, 128), thickness=2)

Draw the eyes on the face as X shapes

cv2.line(img, (195, 200), (212, 228), (0, 0, 0), thickness=2)

cv2.line(img, (212, 200), (195, 228), (0, 0, 0), thickness=2)

cv2.line(img, (288, 200), (305, 228), (0, 0, 0), thickness=2)

cv2.line(img, (305, 200), (288, 228), (0, 0, 0), thickness=2)

Display the image

cv2.imshow(“Robo”, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

We recreate the preceding image by using three rectangles and four lines. Rectangles are used to create the mouth cap and face of the robot and the lines are used to create his eyes. We define three rectangles and set the thickness parameter to -1 to fill the cap and face colors. Then we use four lines to draw the eyes of the robot.

Circle

The cv2.circle() function is used to draw a circle on an image:

Cv2.circle(img, center, radius, color, thickness=1, lineType = cv2.LINE_8, shift=0)

Parameters:

	
Img: The image where the line will be drawn.

	
Center: The cent point of the circle. This will be in tuple (x,y) format.

	
Radius: Radius of the circle

	
Color: The color of the circle. This will be in tuple (B, G, R) format.

	
Thickness: The thickness of the circle border in pixels. This is an optional argument with a default value of 1. If the thickness of the rectangle is negative, it will fill the circle.

	
lineType: The type of the line. We will not be using this parameter and can leave it to the default value.

	
Shift: Number of fractional bits in the line coordinates. We will not be using this parameter and can leave it to the default value of 0.

Let’s try creating a few circles ourselves:

Import numpy as np

import cv2

Create an empty canvas

canvas = np.zeros((500, 500, 3), dtype=np.uint8)

Define the center point

center = (250, 250)

Define the radii of the circles

radius1 = 50

radius2 = 100

radius3 = 150

Define the colors of the circles

color1 = (0, 0, 255)

color2 = (255, 0, 0)

color3 = (0, 255, 0)

Define the thickness of the circles

thickness1 = -1

thickness2 = 2

thickness3 = 10

Draw the circles on the canvas

cv2.circle(canvas, center, radius1, color1, thickness1)

cv2.circle(canvas, center, radius2, color2, thickness2)

cv2.circle(canvas, center, radius3, color3, thickness3)

Display the image

cv2.imshow(“Image”, canvas)

cv2.waitKey(0)

cv2.destroyAllWindows()

By implementing the preceding code, we create three circles with varying colors and thickness, while the center circle is filled with color.

[image:]

Figure 2.5: Output: 3 circles with different parameters

Text

We use the function cv2.putText() to add text to images:

Cv2.putText(img, text, org, fontFace=’cv2.FONT_HERSHEY_SIMPLEX’, fontScale=0, color=(0,0,0), thickness=1, lineType=’cv2.LINE_AA’, bottomLeftOrigin=False)

Parameters:

	
Img: The image where the line will be drawn.

	
Text: The text string to be drawn.

	
org: The coordinates of the bottom-left corner of the text.

	
fontFace: The font type of the text. This is an optional argument with a default value of cv2.FONT_HERSHEY_SIMPLEX.

	
fontScale: Font scale factor that is multiplied by the font-specific base size. This is an optional argument with a default value of 1.

	
Color: The color of the text. This will be in tuple (B, G, R) format. This is an optional argument with a default value of (0,0,0).

	
Thickness: The thickness of the lines in the text. This is an optional argument with a default value of 1. If the thickness is negative, it will fill the text.

	
lineType: The type of the line. We will not be using this parameter and can leave it to the default value.

	
bottomLeftOrigin: This is a flag that indicates the position of the text. This is an optional parameter, and the default value is False which will place the text at the top-left corner. True will put it at the bottom-left position.
import numpy as np

import cv2

create a blank image

img = np.zeros((600, 500, 3), dtype=np.uint8)

define the text to be displayed

text = “Hello World!”

set the text color and position

color = (255, 0, 0)

pos = (50, 200)

display the text using cv2.putText()

cv2.putText(img, text, pos, cv2.FONT_HERSHEY_SIMPLEX, 2, color, 3)

display the image

cv2.imshow(“Image with text”, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

[image:]

Figure 2.6: Text output

This brings us to the end of this chapter, where we have explored the fundamental concepts of images and basic operations using OpenCV. We have covered important topics such as pixels, reading and displaying images, and drawing shapes on images. With this foundational knowledge, we are now better equipped to dive deeper into image-processing techniques in the following chapters.

Conclusion

This chapter provided a solid introduction to the fundamental concepts of images and basic operations. We defined key concepts such as pixels and explained how to read, display, and save images using the OpenCV library. Additionally, we explored the practical task of drawing shapes on images, with a focus on basic shapes like rectangles and circles. This foundation will be invaluable for building more complex image-processing applications in the future.

In the next chapter, we will explore translation-based operations like rotation and resizing and show readers how to control the size and orientation of resulting images using OpenCV. We will then cover arithmetic operations on images, such as addition, subtraction, and division. Additionally, we will explore bitwise operations on images, including AND, OR, and XOR. The chapter will also provide an in-depth look at the channels of an image and the various color spaces that images can be represented in, such as RGB, grayscale, and HSV. Readers will learn how to work with these different color spaces to manipulate and enhance their images.

Points to remember

	An image can be represented as a collection of pixels ordered in a multidimensional array. Each element of the array corresponds to the value of a single pixel in the image.

	imread() reads an image file from the disk, while imshow() displays the image and imwrite() saves the image to the disk.

	Waitkey allows users to display a window for a specific amount of time or until the user presses a key.

	DestroyAllWindows() is used to close all the windows that were opened by OpenCV during the execution of our code.

	Python is a zero-indexed language, which means that the index of the first element in a sequence is 0, not 1.

OEBPS/images/Figure-2.3.jpg

OEBPS/images/Figure-2.1.jpg

OEBPS/images/Figure-2.5.jpg

OEBPS/images/Figure-2.4.jpg

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

OEBPS/images/Figure-2.6.jpg
Hello World!

OEBPS/images/Figure-1.1.jpg
o' o

Applications of
Computer Vision

Automative

OEBPS/images/Figure-1.2.jpg
> Python 3.11.2 (64-bit) Setup. =

Install Python 3.11.2 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

% Install Now
C:\Users\ayush\AppData\Local\Programs\Python\Python311
Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

pythor

windie B

8 Use admin privileges when installing py.exe
(0 Add python.exe to PATH Cancel

OEBPS/images/cover.jpg
ANVA

Mastering
OpenCV with

Use NumPy, Scikit, TensorFlow, and

Matplotlib to learn Advanced algorithms
for Machine Learning through a set
of Practical Projects

Ayush Vaishya
y

OEBPS/images/Figure-1.3.jpg
© Python 3.11.2 (64-bit) Setup -

Advanced Options

O Install Python 3.11 for all users

8 Assodiate files with Python (requires the ‘py’ launcher)
8 Create shortcuts for installed applications

8 Add Python to environment variables

O Precompile standard library

O Download debugging symbols

(O Download debug binaries (requires VS 2017 or later)

Customize install location
C\Users\ayush\AppData\Local\Programs\Python\Python3

OEBPS/images/Figure-1.4.jpg
& Python 3.11.2 (64-bit) Setup. -

Optional Features

8 Documentation
Installs the Python documentation files.

Boip

Installs pip, which can download and install other Python packages.
Otel/tk and IDLE

Installs tkinter and the IDLE development environment.

8 Python test suite
Installs the standard library test suite.

8 py launcher 8 for all users (requires admin privileges)
Upgrades the global ‘py’ launcher from the previous version.
Back Next incel
wmd Ca

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Introduction to Computer Vision

		Introduction

		Structure

		Introduction to Computer Vision

		Applications of Computer Vision

		Python

		OpenCV.

		Brief history of OpenCV

		OpenCV 4.7

		Supporting Libraries

		NumPy

		Matplotlib

		SciPy

		Scikit-Learn

		Scikit-Image

		Mahotas

		TensorFlow

		Keras

		Dlib

		Environment Setup

		Installing Python

		Installing Python on Windows

		Installing Python on Ubuntu and Mac

		Package Manager

		Installing libraries

		Installing Mahotas

		Installing OpenCV

		Verifying our installation

		IDE

		Documentation

		Conclusion

		Test Your Understanding

		2. Getting Started with Images

		Structure

		Introduction to images and pixels

		Loading and displaying images

		Imread()

		Imshow

		Imwrite

		WaitKey

		DestroyAllWindows

		Manipulating images with pixels

		Accessing individual pixels

		Accessing a region of interest (ROI)

		Drawing in OpenCV

		Line

		Rectangle

		Circle

		Text

		Conclusion

		Points to remember

		Test your understanding

		3. Image Processing Fundamentals

		Structure

		Geometric transformations

		Image translation

		Rotation

		Scaling

		Flipping

		Shearing

		Cropping

		Arithmetic Operations

		Addition

		Subtraction

		Multiplication and division

		Bitwise operations

		AND

		OR

		XOR

		NOT

		Channels and color spaces

		Red Green Blue (RGB) color space

		Blue Green Red (BGR) color space

		Hue Saturation Value (HSV) color space

		Hue Saturation Lightness (HSL) color space

		cvtColor() 67 Hue Saturation Lightness (HSL) color space

		LAB color space

		YCbCr color space

		Conclusion

		Points to Remember

		Test Your Understanding

		4. Image Operations

		Structure

		Morphological operations on images

		Erosion

		cv2.Erode()

		Dilation

		cv2.Dilate()

		Opening

		Cv2.morphologyex()

		Closing

		Morphological gradient

		Top hat

		Bottom hat

		Smoothing and blurring

		Average blurring

		Cv2.blur()

		Median blur

		cv2.medianBlur()

		Gaussian blur

		cv2.gaussianBlur()

		Bilateral filter

		cv2.bilateralFilter()

		Conclusion

		Points to remember

		Test your understanding

		5. Image Histograms

		Structure

		Introduction to histograms

		cv2.calcHist()

		Matplotlib helper functions

		Histogram for colored images

		Two-dimensional histograms

		Histogram with masks

		Histogram equalization

		cv2.equalizeHist()

		Histogram equalization on colored images

		Adaptive histogram equalization

		Contrast limited adaptive histogram equalization (CLAHE)

		cv2.createCLAHE()

		Histograms for feature extraction

		Conclusion

		Points to remember

		Test your understanding

		6. Image Segmentation

		Structure

		Introduction to Image Segmentation

		Basic Segmentation Techniques

		Image thresholding

		Simple Thresholding

		cv2.threshold()

		Adaptive Thresholding

		cv2.adaptiveThreshold()

		Otsu’s Thresholding

		Edge and contour-based segmentation

		Advanced Segmentation Techniques

		Watershed Algorithm

		GrabCut algorithm

		cv2.grabCut()

		Clustering-based Segmentation

		Deep Learning-based Segmentation

		Conclusion

		Points to Remember

		Test your understanding

		7. Edges and Contours

		Structure

		Introduction to edges

		Image gradients

		Filters for image gradients

		Sobel Filters

		cv2.Sobel()

		Scharr Operator

		cv2.filter2D

		Laplacian Operators

		Canny Edge Detector

		cv2.Canny()

		Introduction to Contours

		Contour Hierarchy

		Extracting and Visualizing Contours

		cv2.findContours()

		cv2.drawContours()

		Contour Moments

		cv2.Moments()

		Properties of Contours

		Area

		cv2.contourArea()

		Perimeter

		Centroid/Center Of mass

		Bounding Rectangle

		cv2.boundingRect()

		cv2.minAreaRect()

		cv2.boxPoints()

		Extent

		Convex Hull

		cv2.convexHull()

		cv2.polyLines()

		Solidity

		Contour Approximation

		cv2.approxPolyDP()

		Contour Filtering and Selection

		Conclusion

		Points to Remember

		Test your understanding

		8. Machine Learning with Images

		Structure

		Introduction to Machine Learning

		Overfitting and Underfitting

		Evaluation Metrics

		Hyperparameters and Tuning

		KMeans Clustering

		cv2.kmeans()

		k-Nearest Neighbors (k-NN)

		Feature Scaling

		Hyperparameters

		Logistic Regression

		Hyperparameters

		Decision Trees

		Hyperparameters

		Ensemble Learning

		Random Forest

		Randomness

		Hyperparameters

		Support Vector Machines

		Conclusion

		Points to Remember

		Test your understanding

		9. Advanced Computer Vision Algorithms

		Structure

		FAST (Features from Accelerated Segment Test)

		cv2.FastFeatureDetector_create

		Harris Keypoint Detection

		cv2.cornerHarris

		BRIEF (Binary Robust Independent Elementary Features)

		cv2.ORB_create

		ORB (Oriented FAST and Rotated BRIEF)

		SIFT (Scale-Invariant Feature Transform)

		cv2.SIFT_create

		RootSIFT (Root Scale-Invariant Feature Transform)

		SURF (Speeded-Up Robust Features)

		Local Binary Patterns

		Histogram of Oriented Gradients

		Conclusion

		Points to Remember

		Test Your Understanding

		10. Neural Networks

		Structure

		Introduction to Neural Networks

		Design of a Neural Network

		Activation Functions

		Training a Neural Network

		Gradient descent

		Convolutional neural networks

		Layers in a CNN

		Convolutional Layer

		Pooling Layer

		Fully Connected Layer

		Activation Layer

		First Neural Network Model

		Data Loading

		Model Instantiation

		Results

		Dropout Regularization

		Neural network architectures

		LeNet

		AlexNet

		VGGNET

		Transfer Learning

		Other Network Architectures

		GoogleNet

		Inception Module

		Architecture

		ResNet

		Conclusion

		Points to remember

		Test your understanding

		11. Object Detection Using OpenCV

		Structure

		Introduction to object detection

		Detecting objects using sliding windows

		Template matching using OpenCV

		cv2.matchTemplate

		Haar cascades

		Feature extraction for object detection

		Image pyramids

		Facial landmarks with DLIB

		Object tracking using OpenCV

		Conclusion

		Points to remember

		Test your understanding

		12.Projects Using OpenCV

		Structure

		Automated book inventory system

		Document scanning using OpenCV and OCR

		Face recognition

		Drowsiness detection

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Introduction to Computer Vision

