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Preface





The data science revolution has transformed how problems are solved and decisions are made. At its foundation lies numerical computing, driving advancements across fields ranging from scientific research to artificial intelligence. NumPy has emerged as Python’s essential toolkit for numerical operations, making it indispensable for data professionals worldwide.


This book provides a comprehensive pathway to mastering this vital library. It equips readers with theoretical and practical knowledge, enabling them to leverage NumPy effectively—whether for data analysis, research, or machine learning model development.


Beginning with core concepts, the book progresses through array operations, data processing techniques, and performance optimization. Readers will learn to handle large-scale computations efficiently and apply NumPy in real-world machine-learning scenarios. Each concept is reinforced with practical examples and clear explanations, ensuring a deep and interactive learning experience.


By the end of this journey, readers will be well-equipped to tackle complex numerical computations confidently. The skills gained will be invaluable across data science, engineering, and machine learning projects, enabling them to harness NumPy’s full potential.


This book is structured into 11 chapters, covering everything from NumPy fundamentals to advanced numerical computing techniques and real-world applications. Additionally, it introduces complementary tools and techniques, providing a comprehensive foundation for any aspiring data professional. The following is an overview of the chapters.


Chapter 1. Getting Started with NumPy: This chapter introduces NumPy, a key Python library for scientific computing and data analysis. It covers NumPy’s development, its advantages over Python lists, and its role in efficient numerical operations. A step-by-step guide is provided for setting up a workspace in Google Colab, including account creation, notebook management, and code execution.


Chapter 2. Understanding NumPy Array: This chapter explores NumPy arrays, their structure, creation methods, and key attributes. It begins with importing NumPy and understanding its architecture compared to Python lists.


Array-creation techniques include lists, tuples, fixed values, inherited properties, ranges, logarithmic sequences, and random values. Essential attributes such as shape, size, and data type are also discussed.


Chapter 3. Data Type (dtype) in NumPy Array: This chapter provides a detailed understanding of NumPy data types, their significance, and their impact on performance and memory efficiency. It explains how to define and specify data types when creating arrays, with practical examples using general type characters and specific type strings.


Data type conversions are also explored, including implicit and explicit conversions, their implications, and strategies to handle potential errors.


Chapter 4. Indexing and Slicing in NumPy Array: This chapter explores indexing and slicing, fundamental techniques for efficiently accessing and manipulating data in NumPy arrays. Different indexing methods, including negative, boolean, and fancy indexing, are covered to extract specific elements based on various conditions.


Slicing techniques are also discussed, explaining how to retrieve subsets of data using basic and multi-dimensional slicing. These concepts are essential for optimizing data selection and transformation in numerical computing.


Chapter 5. NumPy Array Operations: This chapter covers essential operations and functions for manipulating NumPy arrays, building on the concepts of indexing and slicing introduced earlier. Understanding these operations is key to efficiently processing and transforming data using NumPy.


Various array manipulation techniques are discussed, including reshaping, resizing, flattening, inserting, appending, and deleting elements. Additionally, array concatenation, splitting, transposition, arithmetic operations, broadcasting, and statistical functions are explained. Logical functions, sorting, searching, and set operations are also introduced.


Chapter 6. NumPy Array I/O: This chapter explores input and output (I/O) operations in NumPy, a crucial data processing and analysis aspect. Essential techniques for handling data efficiently, including reading from and writing to external files, are covered.


The chapter begins with accessing Google Drive files in Colab, emphasizing the importance of I/O for data-driven workflows. NumPy’s core I/O functionalities are introduced, providing practical methods for importing data from external sources and exporting processed data for storage or further analysis.


Chapter 7. Linear Algebra with NumPy: This chapter explores NumPy’s powerful tools for linear algebra, essential for data analysis, scientific computing, and machine learning. While it does not focus on theoretical aspects, it provides a practical guide to leveraging NumPy’s functions for matrix and vector operations.


Key topics include matrix and vector products, eigenvalues and eigenvectors, and various decomposition methods such as QR, Cholesky, and Singular Value Decomposition (SVD). Additionally, solving linear systems using functions such as np.linalg.solve() and np.linalg.lstsq() is demonstrated through real-world applications.


Chapter 8. Advanced Numerical Computing: This chapter explores advanced numerical computing techniques using NumPy, extending its applications beyond basic array operations and linear algebra. Topics covered include Principal Component Analysis (PCA) for dimensionality reduction, data interpolation and curve fitting, Fourier analysis for signal processing, and image processing techniques.


Each section provides hands-on examples demonstrating how NumPy’s powerful functions can be applied to real-world data science and engineering problems. Practical methods for reading and displaying images are also included, showcasing NumPy’s versatility in handling diverse data types.


Chapter 9. Exploratory Data Analysis: This chapter focuses on Exploratory Data Analysis (EDA), an important step in any data analysis workflow. EDA helps in understanding the structure of a dataset, identifying patterns, detecting outliers, and addressing potential data issues before further analysis or modeling.


The chapter begins with an introduction to EDA, covering its importance and key concepts such as data categories and measurement scales. It then outlines the essential steps of the EDA process, including defining the problem, collecting and loading data, inspecting and cleaning the dataset, performing statistical summaries, outlier detection, and variable analysis.


Chapter 10. Performance Optimization: This chapter focuses on optimizing performance in NumPy to enhance efficiency when handling large datasets. Efficient code execution is essential in data analysis, preventing slow and memory-intensive operations that can hinder large-scale computations.


Key strategies for measuring performance using benchmarking and profiling tools are covered to identify bottlenecks. The chapter also introduces parallel computing techniques, exploring implicit and explicit parallelism and third-party libraries to accelerate computations. Additionally, common performance issues in NumPy are discussed, along with solutions to improve execution speed and memory usage.


Chapter 11. Implementing a Machine Learning Algorithm: This chapter bridges the gap between NumPy fundamentals and practical machine learning applications. It introduces the essential steps of a machine learning workflow, including data preparation, feature engineering, model selection, training, evaluation, and prediction—demonstrating how NumPy plays a vital role.


An overview of different types of machine learning is provided, along with the importance of NumPy in numerical computations for data science. A hands-on example walks through predicting house prices using a machine learning algorithm, offering practical insights into data-driven modeling.
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CHAPTER 1


Getting Started with NumPy



Introduction

In this chapter, we will get an introduction to NumPy, a vital Python library to simplify complex mathematical computations and accelerate data analysis. We will uncover the necessity of adopting NumPy in the data science domain, highlighting its distinct advantages and the difference between NumPy Array and Python List.

Also, we will introduce Google Colab, a platform that enhances code management and execution.

Structure

In this chapter, we will discuss the following topics:


	Introduction to NumPy

	The Development and Rationale Behind NumPy

	Importance of NumPy

	Difference between NumPy Array and Python List





	Understanding and Setting up Workspace

	Introduction to Google Colab

	Creating a Google Colab Account

	Working with Google Colab Notebook







Introduction to NumPy

In today’s bustling digital age, an ocean of information constantly surrounds us, much of it presented in numbers. These numerical details can reveal insightful stories about our business, society, the economy, health trends, and so on. This is where data science and data analytics come in, serving as a bridge that connects us to the underlying narratives hidden within these numbers.

Numerical data analysis places a notable emphasis on using mathematical and statistical methodologies to analyze and interpret numerical data. The NumPy library is well acknowledged as a frequently utilized and preferred tool by data scientists and analysts for numerical data analysis.

In this Data science and Data analytics journey, specifically in numerical data analysis, NumPy acts as a dependable friend, helping us navigate the world of numerical data analysis with simplicity and ease. It is a tool and a trusted ally that helps us decipher complex numerical data without much effort. In a world where making informed decisions quickly is crucial, NumPy supports swift and efficient analysis, making the task manageable and engaging.

Now, let us prepare ourselves to delve into the captivating realm of NumPy, a powerful tool that offers the potential to enhance the enchantment of your data analysis endeavors.

The Development and Rationale Behind NumPy

Going through the preceding lines, it is clear that NumPy is a Python Library that is helpful in numerical analysis tasks. Let us learn more about it, like who invented it and the intention behind it.

NumPy is the fundamental package for scientific computation in Python. NumPy, an abbreviation for Numerical Python, is a library that supports working with large, multidimensional arrays and matrices and a collection of mathematical functions to operate on these arrays. With NumPy, you can perform a wide range of mathematical and logical operations, directly harnessing the power of computational capabilities within Python.

NumPy was developed by Travis Oliphant in 2006. Travis Oliphant made significant progress in augmenting the computational capabilities of the Python programming language in 2006. He observed the inherent capabilities of two pre-existing libraries, Numeric and Numarray, while simultaneously identifying areas for enhancement. With a clearly defined objective, Oliphant amalgamated both libraries’ most advantageous attributes, mitigating their drawbacks. The aforementioned endeavor resulted in the development of NumPy, a user-friendly and highly efficient software package designed for numerical calculations in the Python programming language.

Importance of NumPy

NumPy plays a pivotal role in data science for several reasons. Firstly, it facilitates efficient numerical computations with complex data, a fundamental aspect of data analysis and machine learning. Secondly, it integrates seamlessly with other Python libraries, such as Pandas and Matplotlib, allowing for a comprehensive data science toolkit. Lastly, its ability to perform operations much faster than traditional Python lists makes it a preferred choice for handling large datasets, which are common in data science. Many data science and data analysis tools and libraries are built upon the base of NumPy or integrate NumPy features with them; some of them are mentioned in the following:


	
Pandas: A fast and flexible open-source data analysis and manipulation Python library that relies on NumPy’s structure

	
SciPy: A Python library used for high-level computations in science and engineering builds directly on NumPy

	
Scikit-learn: A Python library for data analysis and data-mining tasks, leveraging NumPy’s array structures and computational capabilities; it is primarily used for machine learning and statistical modeling, however, it is built on NumPy, Scipy, and Matplotlib for machine learning modeling

	
Astropy: A library for astronomy computations and data analysis, built on the NumPy framework to handle numerical data efficiently.

	
Statsmodels: A library to estimate and test statistical models built on NumPy.

	
Scikit-image: An image processing library in Python that builds on NumPy to manage image data and perform various image processing tasks.

	
Matplotlib: While not directly built on NumPy, it integrates seamlessly, facilitating data visualization of data structured in NumPy arrays.

	
h5py: This library provides an interface to the HDF5 file format and builds upon NumPy to manage numerical data effectively.

	
Dask: A flexible parallel computing library that integrates with NumPy arrays and Pandas data frames for out-of-core and parallel computations.

	
NetworkX: Although primarily centered around creating and studying complex networks of nodes and edges, it integrates with NumPy for various numerical computations.

	
PyTables: A package optimized for working with hierarchical datasets and large amounts of data, which supports storing and manipulating NumPy objects efficiently.



The list mentioned here is not only the tools/libraries that are integrated or built upon NumPy. There are many more. So, due to facilitating advanced mathematical and other types of operations on bigger sizes of numerical data and wide acceptance of NumPy among data scientists and data analysts, NumPy has become the de facto standard for numerical analysis in Python.


Difference between NumPy Array and Python List


Although both NumPy arrays and Python lists serve the purpose of data storage, they exhibit significant distinctions. NumPy arrays exhibit homogeneity, implying their capacity to accommodate elements of identical data types exclusively, hence facilitating enhanced storage and computational efficiency. On the other hand, it should be noted that Python lists can accommodate elements of varying data types, making them more adaptable. However, this versatility comes at the cost of reduced efficiency when used for numerical operations. In addition, NumPy provided a wide range of preexisting routines for scientific computation that are not accessible via Python lists.









	
S.NO.


	
Feature/Aspect


	
NumPy Array


	
Python List





	
1


	
Type Homogeneity


	
Homogeneous (all elements of the same type)


	
Heterogeneous (can contain different types of elements)





	
2


	
Memory Usage


	
Efficient (due to homogeneity)


	
Less efficient (due to heterogeneity)





	
3


	
Size at creation


	
Fixed need to be specified at the creation


	
Dynamic





	
4


	
Computational Speed


	
Fast (optimized for numerical operations)


	
Slower (not optimized for numerical operations)





	
5


	
Vectorized Operations


	
Supports (efficient data processing)


	
Does not support naturally (requires loops)





	
6


	
Mathematical Functions


	
Complex functions readily available


	
Basic functions are available; more complex functions require additional coding





	
7


	
Primary Usage


	
Scientific computing and data analysis


	
General-purpose, not specialized for any specific task





	
8


	
Multi-dimensional Arrays


	
Supports (can create matrices easily)


	
Supports only one-dimension natively (nested lists for multi-dimensions)





	
9


	
Broadcasting Functionality


	
Allows (flexible operations on different-sized arrays)


	
Does not support (operations on different sized lists can be more cumbersome)





	
10


	
Handling Large Data Volumes


	
Efficient (especially for numerical operations)


	
Less efficient with large data volumes





	
11


	
Code Conciseness


	
Allows concise and readable code (due to vectorization and broadcasting)


	
This can result in more verbose code (due to loop-based operations)






Table 1.1: NumPy Array vs. Python List Comparison

As shown in Table 1.1, we compared NumPy arrays and Python lists and clearly understood how NumPy arrays differ and are much more efficient than Python lists for numerical data processing and analysis. Before we explore NumPy’s coding aspects, let us understand its effectiveness over Python lists with a simple hands-on coding experiment and try to grasp the underlying intentions.

In the following code snippet (see Figure 1.1), we created two lists of numbers in Python using the 'range' function. Subsequently, we performed an element-wise addition operation on these lists using a loop. After that, we calculated the time taken to execute this entire process:


[image: ]


Figure 1.1: Using Python List

Similar to the code snippet shown in Figure 1.1, the subsequent snippet in Figure 1.2 performs the same operation. However, instead of using Python lists, we employed NumPy arrays. We created two NumPy arrays using the range (1000000) function and applied an element-wise addition operation. After this, we measured the time taken to complete the process.



[image: ]


Figure 1.2: Using NumPy

After calculating the total processing time required to apply the element-wise addition operation on the same range of numbers using Python lists with a traditional loop approach and using NumPy arrays, we can observe that NumPy significantly reduces the time taken compared to the traditional loop approach with Python lists.

The following code snippet, as shown in Figure 1.3, illustrates how much faster NumPy processes the simple element-wise addition operation compared to Python lists:


[image: ]


Figure 1.3: Processing Time Difference

By understanding this coding experiment, it is clearly understood how NumPy is faster than Python lists in processing numerical operations.

Understanding and Setting up Workspace

We will use Google Colab, a versatile platform facilitating seamless coding and collaboration for hands-on learning and practice. In the subsequent sections of this chapter, we will learn more about Google Colab and its features.

Introduction to Google Colab

Google Colab, also known as Google Colaboratory, is a cloud-based Jupyter notebook environment offered and managed by Google. It has all the functionalities of Jupyter Lab as well as additional features. Data scientists and machine learning programmers widely utilize this platform because it reduces the tedious process of setting up personal computing environments. Colab offers a wide range of preinstalled data science libraries, facilitating the storage of files on Google Drive.

The account has free and pro versions; we will use the free version for our hands-on learning and practice. The free version of Colab can handle many computing tasks and includes many capabilities. However, if your project necessitates more intensive resources or you want to benefit from priority access to computing resources, you can select the Colab Pro edition. Following are some excellent features/benefits of using Google Colab:


	You do not need to install any software on your computer, as it is a cloud-based platform

	Google Colab gives you access to powerful resources such as GPUs and TPUs; this lets you run programs that would be too slow or expensive to run on your system

	You can easily share your notebooks with others by making them public or asking them to work on them with you

	It gives you an easy-to-use, interactive space to play with code and immediately see the effects



Now, we have a good understanding of what Google Colab is precisely. Let us explore more about how to work with it.

Creating a Google Colab Account

To create a Google Colab account, you must have a Google account. You can use an existing one; otherwise, you must create a new one. Following are the steps to setting up a Colab account:


	Open the web address https://colab.research.google.com/ in a web browser and open the following web page:


[image: ]


Figure 1.4: Google Colab Sign In



	Now, click the 'Sign In' blue button at the top right corner; once you have the following page, enter your Google account credentials (for example, email ID and password) on the subsequent page:

[image: ]


Figure 1.5: Entering Google Account Details



	
The following page will appear once you enter your Google account details:

[image: ]


Figure 1.6: After Sign In





We have finally set up a Colab account successfully. For now, click cancel to close it; from here, we will see how to create a new notebook and other features, such as writing and executing code.

Working with Google Colab Notebook

After successfully setting up a Google Colab account, let us demonstrate the following essential features of the Colab tool:

Creating a New Notebook

Following are the steps to create a new Colab notebook and save it:


	To create a new notebook, go to 'File' > 'New notebook' and click the 'New notebook' option from the 'File' menu, as depicted in the following snippet:


[image: ]


Figure 1.7: Creating a New Notebook



	Once you complete step #1, you will get a newly created notebook titled Untitled0.ipnyb, as depicted in the following snippet:

[image: ]


Figure 1.8: New Notebook



	You may rename the notebook to anything related to the subject by clicking the name field and typing the new name, as shown in the following snippet:


[image: ]


Figure 1.9: Rename the Notebook Title and Cell

In Figure 1.9, we observe a cell indicated by the bold arrow. There are two types of cells in a Colab notebook: a ‘code’ cell and a ‘text’ cell. We use the code cell to write programming syntax, while the text cell is utilized for writing text, instructions, explanations, or details about the code.

We can create and rename a Colab notebook in this manner. To save the notebook, navigate to 'Files' > 'Save.' Refer to the following snippet for guidance on saving the notebook:


[image: ]


Figure 1.10: Save the Notebook





Following the explained steps, we can create, rename, and save the Colab notebook. Let us see further how to write and execute code in the Colab notebook.

Writing and Executing the Code


	To write the code, write the coding syntax in the code cell, as shown in Figure 1.11. We have written print("Hello Colab !!!) in the code cell:

[image: ]


Figure 1.11: Processing Time Difference (The figure name should be something relevant)



	After typing your code, press Shift + Enter or Ctrl+ Enter to execute the code in the cell. Once you press any of those key combinations, it will start running the code first, allocate the resources, and then execute the code:

[image: ]


Figure 1.12: Code in Execution



	Once the code has been executed successfully, you will see the respective output. In our case, it should display 'Hello Colab!!!' as the output:


[image: ]


Figure 1.13: Code Cell Executed and Displayed the Output





As depicted in Figure 1.13, the execution of the code cell has been completed, and the output has been displayed.

We now understand how to write Python code in a notebook and execute it. Let us learn how to add and delete code and text cells in the notebook.

Adding/Deleting ‘code’ cell and ‘text’ cell in notebook:


	To add a code cell, click the 'Code' button or use the shortcut key combination Ctrl+M B. The following snippet has an arrow indicating the 'Code Cell' button:

[image: ]


Figure 1.14: Processing Time Difference (This figure name should be something relevant)

Figure 1.15 shows a newly added code cell, which was added after clicking the '+Code' button:
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Figure 1.15: Processing Time Difference (This figure name should be new code block after it is added to the notebook)



	To delete a cell in a Colab notebook, use the shortcut Ctrl+M D or click the bin icon on the right side of the respective cell, as depicted in Figure 1.16:

[image: ]


Figure 1.16: Deleting the cell



	
Similar to the code cell, we can add a text cell in a Colab notebook. Just click the '+Text' button and a new text cell will be added, as depicted in Figure 1.17:

[image: ]


Figure 1.17: Adding Text Cell



	After creating the Text Cell, we can write any comment explanation in the text. Figure 1.18 depicts an example where we add 'Welcome to Colab!! ‘as a text comment in the Text Cell:
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Figure 1.18: Writing Text in Text Cell



	After creating a text cell, press ‘Shift+Enter’ to execute the cell, displaying the entered text as output, as shown in Figure 1.19:
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Figure 1.19: Executed Text Cell





Saving a Copy of the Notebook on Google Drive

You can also save a copy of your notebook on Google Drive. To do this, navigate to 'File' > 'Save a copy in Drive', and then click the 'Save a copy in Drive' option. This action will save a copy of the notebook in your drive:
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Figure 1.20: Save a Copy in Google Drive

The following snippet depicts that a notebook copy is now saved in Google Drive:
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Figure 1.21: Processing Time Difference (The name of the figure should be on “after the notebooks are saved in google drive” or something relevant)

We can save a notebook copy in our drive for backup purposes.

Downloading Notebook

In Colab Notebook, you can download notebooks directly onto your personal computer in two popular formats: an IPython notebook (.ipynb) or a Python script (.py).


	To do this, head to the 'File' menu and click 'Download'. Then, you can select any option: download your file as an .ipynb or a.py format. In Figure 1.22, we downloaded the notebook as a .ipynb file by clicking the 'Download .ipynb' option:
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Figure 1.22: Download .ipynb



	
Now, as shown in Figure 1.23, we can see that it has been downloaded to our local PC in the Downloads folder:

[image: ]


Figure 1.23: Downloaded File on Local PC





Uploading Notebook


	If a notebook file is stored locally, we can easily upload it to Google Colab to work on it seamlessly. To upload any IPYTHON notebook to Colab, navigate to "File" in the menu, select "Upload notebook", and click it, as shown in the following snippet:

[image: ]


Figure 1.24: Upload Notebook Option



	After selecting the 'Upload notebook' option, a new pop-up page with a 'Browse' button will appear, as illustrated in the subsequent snippet:
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Figure 1.25: Upload Notebook



	Upon selecting the 'Browse' option, the file explorer interface opens, allowing users to conveniently choose the desired notebook for uploading. Subsequently, choose the designated IPython notebook for uploading and proceed by clicking the 'Open' button. In the following example, we upload a notebook titled 'demo_notebook_2.ipynb':

[image: ]


Figure 1.26: Processing Time Difference (This figure name should be “browsing for the notebook from the local drive for uploading to google drive” or something relevant)



	
Once you have completed the last step, the notebook will be uploaded to Colab and opened in a new tab on the web browser, as shown in Figure 1.27. The notebook with the title 'demo_notebook_2.ipynb' opens in a new tab:
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Figure 1.27: Uploaded and Opened in New Tab





By following the explained process, we can upload any notebook to the Colab platform and work on it. We now have a working understanding of how to begin our work with the Google Colab platform.

Conclusion

We have learned various topics in this chapter. Let us take a quick recap! We got to know NumPy, a helpful tool in Python that is valuable for numerical data analysis and scientific computation. We discovered why it is so unique and spotted the differences between NumPy arrays and the usual Python lists.

Then, we received an introduction to Google Colab; think of it as our virtual workspace. We learned how to set up an account, create new notebooks, write and run our code inside them, and save these notebooks safely on Google Drive. So, now, not only can we write code, but also have a nifty place to keep it all organized.

With all these new tools and knowledge, we are ready to explore NumPy deeper. In the upcoming chapter, we will learn about NumPy arrays, how to create them, and their uses with hands-on examples.







CHAPTER 2


Understanding NumPy Array



Introduction

In the last chapter, we learned the basics of NumPy and saw how its arrays are different and often better than regular Python lists.

In this chapter, we are taking a closer look at NumPy. We will begin by understanding how to install or import the NumPy library. From there, we will delve into the architecture of NumPy arrays, explore various methods to craft them and uncover their primary characteristics. Hands-on examples will provide practical insights throughout our journey, enhancing our understanding and skills.

By the end of this chapter, you will have a clear grasp of NumPy arrays, the underlying structure that makes them more efficient for numerical data, and how to create various types of NumPy arrays. You will also understand their applications. This knowledge will set the foundation for more advanced topics in the upcoming chapters.

Structure

In this chapter, we will discuss the following topics:


	Importing NumPy Module and Version Check

	Understanding the NumPy Array

	Array Structure (Logical Representation with Visual Illustration)





	Creating a NumPy array

	Creating Arrays from Python Lists, Tuple, and Other Array-Like Objects

	Creating Uninitialized Arrays for Specified Shape

	Creating Arrays Populated with Fixed/Constant Values

	Creating Arrays with Properties Inherited from Other Arrays

	Creating Arrays Populated with a Range

	
Creating Arrays Filled with Logarithmic Sequences

	Creating Random Arrays





	Attributes of a NumPy Array



Importing NumPy Module and Version Check

In Python, to access the functions and features of the NumPy library, it must first be installed and then imported into your code. You can reference the __version__ attribute to verify its version. Notably, in Google Colab, NumPy is already preinstalled, so there is no need for a separate installation. Let us see the following code snippet on how to check the version:


[image: ]


Figure 2.1: Importing NumPy and Checking its Version

If you are not using Google Colab and encounter a module not found error, it likely means you need to install NumPy. To do so, you can execute the following command:

pip install numpy

For a specific version, use pip install numpy==x.x.x

If you are using Conda, the command would be: conda install numpy

Understanding the NumPy Array

Now, we have a basic idea of NumPy and its importance in numerical data analysis.

The NumPy array, or n-dimensional array, or ndarray, is the fundamental data structure of NumPy or, say, the core of NumPy. It is a flexible and efficient multi-dimensional array capable of storing homogenous data (items of the same data type) contiguously, unlike Python lists, which may contain heterogeneous (items of different data type) data in a non-contiguous manner. Please note that whenever the flexibility of NumPy arrays is mentioned, it is essential to clarify the context. Python lists are also flexible, but this flexibility refers to specific aspects. NumPy arrays excel in reshaping, mathematical operations, advanced indexing, and efficient data manipulation. Even though they are constrained to have homogeneous data types, this structure, combined with their operational flexibility, makes them especially suitable for numerical and scientific computing tasks. In contrast, while Python lists are much more flexible in adding, removing, and accommodating mixed data types, they are not optimized for mathematical operations or large-scale data manipulation. They are more general-purpose, whereas NumPy is tailored for numerical and scientific computing.

The structure of a NumPy array comprises the following components:


	
Data Buffer: The primary storage of data, a contiguous block of memory holding all the array’s values. Please note that in the context of arrays and data storage, the terms memory layout, data buffer, and memory block are often used interchangeably to refer to the continuous block of memory where the actual data of the array is stored.

	
dtype: Specifies the data type of the array’s elements. For example, int32, float64, and so on, we will delve deeper into NumPy data types in the subsequent part of this chapter.

	
Shape and Dimensions: The shape and dimensions of a NumPy array define its size and structure, enabling efficient data manipulation, indexing, and mathematical operations. They are essential for organizing and working with multidimensional data effectively.

	
Shape: The shape of a NumPy array refers to the number of elements along each axis (dimension) of the array. It’s represented as a tuple of non-negative integers, where each integer corresponds to the number of elements along a specific axis. For example, a 1D array might have a shape of (4,), indicating it has four elements in one dimension and a shape of (4,3) means an array with four rows and three columns.

	
ndim: It indicates the number of dimensions or axes of the array. It provides information about the array’s dimensionality, helping you understand how data is organized within the array. For example, a 1D array has ndim equal to 1, a 2D array has ndim equal to 2, and so on for higher dimensional arrays.



The following figure visually represents arrays’ one, two, and three dimensions:



[image: ]


Figure 2.2: Multi-Dimensional Array

In Figure 2.2, we have 1D, 2D, and 3D arrays. Let us understand them one by one:



	
1D Array (One-Dimensional Array): A 1D array is a linear array of elements organized along a single axis. The example shows an array [1, 2, 3, 4] with axis=0. We can think of it as a vector.

	
2D Array (Two-Dimensional Array): A 2D array is organized as a grid with rows and columns. Rows correspond to axis=0, and columns correspond to axis=1. We have illustrated a 2D array [[1, 2], [3, 4]] with a shape of (2, 2). We can think of it as a matrix. Generally, it is used for tabular data, images, and other structured data.

	
3D Array (Three-Dimensional Array): A 3D array adds depth to a 2D array, forming a cube-like structure. In the given illustration, we have an additional axis=2 in addition to axis=0 and axis=1, and the array shape is (2,2,2). We can think of it as a 3D tensor. Usually, it is used to represent volumetric data or data with three dimensions.

	
ND Array (N-Dimensional): Similarly, we can create arrays with higher dimensions for specific applications. These arrays allow us to represent and manipulate data with complex and arbitrary structures.

	
Strides: A tuple indicating how many bytes should be skipped in memory to move to the next element in each dimension. It is an internal mechanism to facilitate efficient data access and manipulation.

	
Memory Layout: Refers to the order in which array elements are stored in memory. The two primary layouts are row-major (C-style) and column-major (Fortran-style). We can set it as per need using order =’ C’ or order =’ F’. By default, it is C-style or row-major.



Let us understand the structure of the array and its memory layout with the help of examples.





Array Structure (Logical Representation with Visual Illustration):

Consider a 2D array arr with a shape of (3, 4) and elements of int32 data type:

arr = [[1, 2, 3, 4], [6, 7, 8, 9], [10, 11, 12, 15]]

Memory Layout for C-Style Ordering (Row-Major):

In this layout, all the elements of arr are stored row by row in memory. You can visualize it as follows:


	The first row (in green) is placed in memory first.

	Then, the second row (in yellow) is placed.

	Finally, the third row (in blue) is placed.



The flat memory layout would look like this: [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15], with each element occupying 4 bytes (due to the int32 data type).

Stride Calculation:


	Since the data type is int32, each element uses 4 bytes.

	To move horizontally (within the same row), you jump by the size of one element, 4 bytes. So, the stride for moving within a row is 4.

	To move vertically (to the next row), you skip all the elements of the current row. With four columns, you skip 4 * 4 = 16 bytes.

	Therefore, for this array with C-style storage, the strides are (16, 4).



Practical Use of Stride:

Imagine you want to access the value 7, which is in the second row and the second column of arr:


	You would skip one entire row, which is 1 * 16 bytes = 16 bytes.

	Then, you would move to the second element in the second row, which is 1*4 bytes = 4 bytes.

	Combining these movements, you would offset 16 + 4 = 20 bytes from the start of the memory block to access the value 7.



This stride understanding is crucial when working with memory layouts and direct memory access for optimization and efficient data manipulation.

Memory Layout for C-Style Ordering (Row-Major):


[image: ]


Figure 2.3: Array Structure with Row-Major Memory Layout

So, for arrays stored in row-major (C-style) order, elements of the same row are stored adjacently in memory. Strides help us determine the necessary memory jumps to traverse this flat representation efficiently, both row-wise and column-wise.

Memory Layout for Fortran-Style Ordering (Column-Major):

In this layout, all the elements of arr are stored column by column in memory. You can visualize it as follows:


	The first column (in yellow) is placed in memory first.

	Then, the second column (in green) is placed.

	Next, the third column (in blue) is placed.

	Finally, the fourth column (in light brown) is placed.



The flat memory layout would look like this: [1, 6, 10, 2, 7, 11, 3, 8, 12, 4, 9, 15], with each element occupying 4 bytes (due to the int32 data type).

Stride Calculation for Column-Major:


	Since the data type is `int32`, each element uses 4 bytes.

	To move vertically (within the same column), you jump by the size of one element, 4 bytes. So, the stride for moving within a column is `4`.

	To move horizontally (to the next column), you skip all the elements of the current column. With three rows, you skip `3 * 4 = 12` bytes.

	Therefore, for this array with Fortran-style storage (column-major), the strides are `(4, 12)`.



Practical Use of Stride in Column-Major:

Imagine you want to access the value 7, which is in the second row and the second column of arr:


	You would skip one entire column, which is `1 * 12 bytes = 12 bytes`.

	Then, you would move to the second element in the second column, which is `1 * 4 bytes = 4 bytes`.

	Combining these movements, you would offset ‘12 + 4 = 16 bytes` from the start of the memory block to access the value 7.



Column-major memory layouts are important for specific numerical computing libraries and algorithms that optimize for column-wise data access, and understanding stride is crucial for efficiently accessing and manipulating data in such layouts.
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