

[image: image]

Hands-on NumPy for
Numerical Analysis

[image:]

Unlock NumPy with Google Colab for
High-Performance Numerical Computing and
Optimizing Numerical Data Analysis

[image:]

Rituraj Dixit

[image:]

www.orangeava.com

Copyright © 2025 Orange Education Pvt Ltd, AVA®

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First Published: March 2025

Published by: Orange Education Pvt Ltd, AVA®

Address: 9, Daryaganj, Delhi, 110002, India

275 New North Road Islington Suite 1314 London,

N1 7AA, United Kingdom

ISBN (PBK): 978-93-48107-28-2

ISBN (E-BOOK): 978-93-48107-05-3

Scan the QR code to explore our entire catalogue

[image:]

www.orangeava.com

Dedicated To

Infinite Supreme Consciousness, My Guru

My Beloved Parents,

My Wife, Sachi,

And

My Sisters

About the Author

Rituraj Dixit brings over a decade of extensive experience in data engineering and analytics, specializing in enterprise-scale data solutions. As a Technical Manager at Cognizant Technology Solutions, Singapore, he leads complex data transformation initiatives, leveraging his expertise in ETL processes, data warehousing, big data architectures, and cloud platforms.

Throughout his career, he has successfully delivered innovative solutions for global organizations, driving business value through machine learning implementations, advanced analytics frameworks, and enterprise data platforms. His ability to seamlessly blend technical expertise with business acumen has enabled companies to maximize the value of data-driven insights.

A passionate advocate for technology education, Rituraj dedicates significant time to mentoring emerging data professionals, helping them navigate the complexities of the modern data ecosystem. He is also a member of several technology and professional organizations, including the Singapore Computer Society (SCS) and the Association for Computing Machinery (ACM).

With a unique combination of technical mastery and strategic vision, Rituraj consistently delivers solutions that align with business objectives while pushing the boundaries of data technology innovation.

About the Technical Reviewer

Abhinaba Banerjee has a background in electronics and communication engineering, holding both bachelor’s and master’s degrees. He also has an MSc in Big Data Analytics for Business from IESEG School of Management, Lille, France. Currently, he works as a Data Analyst, focusing on data analysis, dashboard preparation, and cleaning and preparing data from messy datasets. He has worked with Fintech and social-media startups in France and is currently involved with the Government of Andhra Pradesh. Additionally, he has published several research papers in Communication Engineering and Signal Processing.

He frequently shares blogs on Medium, creates projects, and posts on social media platforms such as Twitter and LinkedIn. Moreover, he has recently developed the habit of solving GitHub issues to learn and contribute to the community.

Abhinaba Banerjee’s expertise ranges from Data Analytics using tools such as Python, SQL, Excel, and PowerBI to Data Science, where he uses libraries such as scikit-learn for Machine Learning and Hugging face for Natural Language Processing. He utilizes GitHub for showcasing his projects, and is currently focused on building end-to-end MLOps projects.

During his leisure time, he enjoys listening to podcasts on history, technology, and horror.

Acknowledgements

The journey of writing this book has been transformative, made possible by the incredible individuals and institutions that have supported me along the way.

Words cannot fully express my gratitude to my wife, Sachi, whose unwavering patience, encouragement, and belief in me sustained me through every challenge. Even in the most demanding phases of this project, her support never wavered, and for that, I am profoundly grateful.

I also greatly appreciate the courses and the pivotal organizations that have been part of my learning journey. Their direct and indirect contributions have been invaluable in shaping this work.

A special thanks goes to the exceptional team at Orange Education Pvt Ltd. Their dedication to excellence, flexibility, and editorial expertise made the publication process seamless and rewarding. Their guidance has greatly enhanced the quality of this book, and I am grateful for their belief in this project from its inception.

Finally, I thank everyone—friends, mentors, and supporters—who have contributed to this journey in big and small ways. Your encouragement and kindness have made all the difference.

Preface

The data science revolution has transformed how problems are solved and decisions are made. At its foundation lies numerical computing, driving advancements across fields ranging from scientific research to artificial intelligence. NumPy has emerged as Python’s essential toolkit for numerical operations, making it indispensable for data professionals worldwide.

This book provides a comprehensive pathway to mastering this vital library. It equips readers with theoretical and practical knowledge, enabling them to leverage NumPy effectively—whether for data analysis, research, or machine learning model development.

Beginning with core concepts, the book progresses through array operations, data processing techniques, and performance optimization. Readers will learn to handle large-scale computations efficiently and apply NumPy in real-world machine-learning scenarios. Each concept is reinforced with practical examples and clear explanations, ensuring a deep and interactive learning experience.

By the end of this journey, readers will be well-equipped to tackle complex numerical computations confidently. The skills gained will be invaluable across data science, engineering, and machine learning projects, enabling them to harness NumPy’s full potential.

This book is structured into 11 chapters, covering everything from NumPy fundamentals to advanced numerical computing techniques and real-world applications. Additionally, it introduces complementary tools and techniques, providing a comprehensive foundation for any aspiring data professional. The following is an overview of the chapters.

Chapter 1. Getting Started with NumPy: This chapter introduces NumPy, a key Python library for scientific computing and data analysis. It covers NumPy’s development, its advantages over Python lists, and its role in efficient numerical operations. A step-by-step guide is provided for setting up a workspace in Google Colab, including account creation, notebook management, and code execution.

Chapter 2. Understanding NumPy Array: This chapter explores NumPy arrays, their structure, creation methods, and key attributes. It begins with importing NumPy and understanding its architecture compared to Python lists.

Array-creation techniques include lists, tuples, fixed values, inherited properties, ranges, logarithmic sequences, and random values. Essential attributes such as shape, size, and data type are also discussed.

Chapter 3. Data Type (dtype) in NumPy Array: This chapter provides a detailed understanding of NumPy data types, their significance, and their impact on performance and memory efficiency. It explains how to define and specify data types when creating arrays, with practical examples using general type characters and specific type strings.

Data type conversions are also explored, including implicit and explicit conversions, their implications, and strategies to handle potential errors.

Chapter 4. Indexing and Slicing in NumPy Array: This chapter explores indexing and slicing, fundamental techniques for efficiently accessing and manipulating data in NumPy arrays. Different indexing methods, including negative, boolean, and fancy indexing, are covered to extract specific elements based on various conditions.

Slicing techniques are also discussed, explaining how to retrieve subsets of data using basic and multi-dimensional slicing. These concepts are essential for optimizing data selection and transformation in numerical computing.

Chapter 5. NumPy Array Operations: This chapter covers essential operations and functions for manipulating NumPy arrays, building on the concepts of indexing and slicing introduced earlier. Understanding these operations is key to efficiently processing and transforming data using NumPy.

Various array manipulation techniques are discussed, including reshaping, resizing, flattening, inserting, appending, and deleting elements. Additionally, array concatenation, splitting, transposition, arithmetic operations, broadcasting, and statistical functions are explained. Logical functions, sorting, searching, and set operations are also introduced.

Chapter 6. NumPy Array I/O: This chapter explores input and output (I/O) operations in NumPy, a crucial data processing and analysis aspect. Essential techniques for handling data efficiently, including reading from and writing to external files, are covered.

The chapter begins with accessing Google Drive files in Colab, emphasizing the importance of I/O for data-driven workflows. NumPy’s core I/O functionalities are introduced, providing practical methods for importing data from external sources and exporting processed data for storage or further analysis.

Chapter 7. Linear Algebra with NumPy: This chapter explores NumPy’s powerful tools for linear algebra, essential for data analysis, scientific computing, and machine learning. While it does not focus on theoretical aspects, it provides a practical guide to leveraging NumPy’s functions for matrix and vector operations.

Key topics include matrix and vector products, eigenvalues and eigenvectors, and various decomposition methods such as QR, Cholesky, and Singular Value Decomposition (SVD). Additionally, solving linear systems using functions such as np.linalg.solve() and np.linalg.lstsq() is demonstrated through real-world applications.

Chapter 8. Advanced Numerical Computing: This chapter explores advanced numerical computing techniques using NumPy, extending its applications beyond basic array operations and linear algebra. Topics covered include Principal Component Analysis (PCA) for dimensionality reduction, data interpolation and curve fitting, Fourier analysis for signal processing, and image processing techniques.

Each section provides hands-on examples demonstrating how NumPy’s powerful functions can be applied to real-world data science and engineering problems. Practical methods for reading and displaying images are also included, showcasing NumPy’s versatility in handling diverse data types.

Chapter 9. Exploratory Data Analysis: This chapter focuses on Exploratory Data Analysis (EDA), an important step in any data analysis workflow. EDA helps in understanding the structure of a dataset, identifying patterns, detecting outliers, and addressing potential data issues before further analysis or modeling.

The chapter begins with an introduction to EDA, covering its importance and key concepts such as data categories and measurement scales. It then outlines the essential steps of the EDA process, including defining the problem, collecting and loading data, inspecting and cleaning the dataset, performing statistical summaries, outlier detection, and variable analysis.

Chapter 10. Performance Optimization: This chapter focuses on optimizing performance in NumPy to enhance efficiency when handling large datasets. Efficient code execution is essential in data analysis, preventing slow and memory-intensive operations that can hinder large-scale computations.

Key strategies for measuring performance using benchmarking and profiling tools are covered to identify bottlenecks. The chapter also introduces parallel computing techniques, exploring implicit and explicit parallelism and third-party libraries to accelerate computations. Additionally, common performance issues in NumPy are discussed, along with solutions to improve execution speed and memory usage.

Chapter 11. Implementing a Machine Learning Algorithm: This chapter bridges the gap between NumPy fundamentals and practical machine learning applications. It introduces the essential steps of a machine learning workflow, including data preparation, feature engineering, model selection, training, evaluation, and prediction—demonstrating how NumPy plays a vital role.

An overview of different types of machine learning is provided, along with the importance of NumPy in numerical computations for data science. A hands-on example walks through predicting house prices using a machine learning algorithm, offering practical insights into data-driven modeling.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Hands-on-NumPy-for-Numerical-Analysis

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/e2hfp3n

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA® Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Getting Started with NumPy

Introduction

In this chapter, we will get an introduction to NumPy, a vital Python library to simplify complex mathematical computations and accelerate data analysis. We will uncover the necessity of adopting NumPy in the data science domain, highlighting its distinct advantages and the difference between NumPy Array and Python List.

Also, we will introduce Google Colab, a platform that enhances code management and execution.

Structure

In this chapter, we will discuss the following topics:

	Introduction to NumPy

	The Development and Rationale Behind NumPy

	Importance of NumPy

	Difference between NumPy Array and Python List

	Understanding and Setting up Workspace

	Introduction to Google Colab

	Creating a Google Colab Account

	Working with Google Colab Notebook

Introduction to NumPy

In today’s bustling digital age, an ocean of information constantly surrounds us, much of it presented in numbers. These numerical details can reveal insightful stories about our business, society, the economy, health trends, and so on. This is where data science and data analytics come in, serving as a bridge that connects us to the underlying narratives hidden within these numbers.

Numerical data analysis places a notable emphasis on using mathematical and statistical methodologies to analyze and interpret numerical data. The NumPy library is well acknowledged as a frequently utilized and preferred tool by data scientists and analysts for numerical data analysis.

In this Data science and Data analytics journey, specifically in numerical data analysis, NumPy acts as a dependable friend, helping us navigate the world of numerical data analysis with simplicity and ease. It is a tool and a trusted ally that helps us decipher complex numerical data without much effort. In a world where making informed decisions quickly is crucial, NumPy supports swift and efficient analysis, making the task manageable and engaging.

Now, let us prepare ourselves to delve into the captivating realm of NumPy, a powerful tool that offers the potential to enhance the enchantment of your data analysis endeavors.

The Development and Rationale Behind NumPy

Going through the preceding lines, it is clear that NumPy is a Python Library that is helpful in numerical analysis tasks. Let us learn more about it, like who invented it and the intention behind it.

NumPy is the fundamental package for scientific computation in Python. NumPy, an abbreviation for Numerical Python, is a library that supports working with large, multidimensional arrays and matrices and a collection of mathematical functions to operate on these arrays. With NumPy, you can perform a wide range of mathematical and logical operations, directly harnessing the power of computational capabilities within Python.

NumPy was developed by Travis Oliphant in 2006. Travis Oliphant made significant progress in augmenting the computational capabilities of the Python programming language in 2006. He observed the inherent capabilities of two pre-existing libraries, Numeric and Numarray, while simultaneously identifying areas for enhancement. With a clearly defined objective, Oliphant amalgamated both libraries’ most advantageous attributes, mitigating their drawbacks. The aforementioned endeavor resulted in the development of NumPy, a user-friendly and highly efficient software package designed for numerical calculations in the Python programming language.

Importance of NumPy

NumPy plays a pivotal role in data science for several reasons. Firstly, it facilitates efficient numerical computations with complex data, a fundamental aspect of data analysis and machine learning. Secondly, it integrates seamlessly with other Python libraries, such as Pandas and Matplotlib, allowing for a comprehensive data science toolkit. Lastly, its ability to perform operations much faster than traditional Python lists makes it a preferred choice for handling large datasets, which are common in data science. Many data science and data analysis tools and libraries are built upon the base of NumPy or integrate NumPy features with them; some of them are mentioned in the following:

	
Pandas: A fast and flexible open-source data analysis and manipulation Python library that relies on NumPy’s structure

	
SciPy: A Python library used for high-level computations in science and engineering builds directly on NumPy

	
Scikit-learn: A Python library for data analysis and data-mining tasks, leveraging NumPy’s array structures and computational capabilities; it is primarily used for machine learning and statistical modeling, however, it is built on NumPy, Scipy, and Matplotlib for machine learning modeling

	
Astropy: A library for astronomy computations and data analysis, built on the NumPy framework to handle numerical data efficiently.

	
Statsmodels: A library to estimate and test statistical models built on NumPy.

	
Scikit-image: An image processing library in Python that builds on NumPy to manage image data and perform various image processing tasks.

	
Matplotlib: While not directly built on NumPy, it integrates seamlessly, facilitating data visualization of data structured in NumPy arrays.

	
h5py: This library provides an interface to the HDF5 file format and builds upon NumPy to manage numerical data effectively.

	
Dask: A flexible parallel computing library that integrates with NumPy arrays and Pandas data frames for out-of-core and parallel computations.

	
NetworkX: Although primarily centered around creating and studying complex networks of nodes and edges, it integrates with NumPy for various numerical computations.

	
PyTables: A package optimized for working with hierarchical datasets and large amounts of data, which supports storing and manipulating NumPy objects efficiently.

The list mentioned here is not only the tools/libraries that are integrated or built upon NumPy. There are many more. So, due to facilitating advanced mathematical and other types of operations on bigger sizes of numerical data and wide acceptance of NumPy among data scientists and data analysts, NumPy has become the de facto standard for numerical analysis in Python.

Difference between NumPy Array and Python List

Although both NumPy arrays and Python lists serve the purpose of data storage, they exhibit significant distinctions. NumPy arrays exhibit homogeneity, implying their capacity to accommodate elements of identical data types exclusively, hence facilitating enhanced storage and computational efficiency. On the other hand, it should be noted that Python lists can accommodate elements of varying data types, making them more adaptable. However, this versatility comes at the cost of reduced efficiency when used for numerical operations. In addition, NumPy provided a wide range of preexisting routines for scientific computation that are not accessible via Python lists.

	
S.NO.

	
Feature/Aspect

	
NumPy Array

	
Python List

	
1

	
Type Homogeneity

	
Homogeneous (all elements of the same type)

	
Heterogeneous (can contain different types of elements)

	
2

	
Memory Usage

	
Efficient (due to homogeneity)

	
Less efficient (due to heterogeneity)

	
3

	
Size at creation

	
Fixed need to be specified at the creation

	
Dynamic

	
4

	
Computational Speed

	
Fast (optimized for numerical operations)

	
Slower (not optimized for numerical operations)

	
5

	
Vectorized Operations

	
Supports (efficient data processing)

	
Does not support naturally (requires loops)

	
6

	
Mathematical Functions

	
Complex functions readily available

	
Basic functions are available; more complex functions require additional coding

	
7

	
Primary Usage

	
Scientific computing and data analysis

	
General-purpose, not specialized for any specific task

	
8

	
Multi-dimensional Arrays

	
Supports (can create matrices easily)

	
Supports only one-dimension natively (nested lists for multi-dimensions)

	
9

	
Broadcasting Functionality

	
Allows (flexible operations on different-sized arrays)

	
Does not support (operations on different sized lists can be more cumbersome)

	
10

	
Handling Large Data Volumes

	
Efficient (especially for numerical operations)

	
Less efficient with large data volumes

	
11

	
Code Conciseness

	
Allows concise and readable code (due to vectorization and broadcasting)

	
This can result in more verbose code (due to loop-based operations)

Table 1.1: NumPy Array vs. Python List Comparison

As shown in Table 1.1, we compared NumPy arrays and Python lists and clearly understood how NumPy arrays differ and are much more efficient than Python lists for numerical data processing and analysis. Before we explore NumPy’s coding aspects, let us understand its effectiveness over Python lists with a simple hands-on coding experiment and try to grasp the underlying intentions.

In the following code snippet (see Figure 1.1), we created two lists of numbers in Python using the 'range' function. Subsequently, we performed an element-wise addition operation on these lists using a loop. After that, we calculated the time taken to execute this entire process:

[image:]

Figure 1.1: Using Python List

Similar to the code snippet shown in Figure 1.1, the subsequent snippet in Figure 1.2 performs the same operation. However, instead of using Python lists, we employed NumPy arrays. We created two NumPy arrays using the range (1000000) function and applied an element-wise addition operation. After this, we measured the time taken to complete the process.

[image:]

Figure 1.2: Using NumPy

After calculating the total processing time required to apply the element-wise addition operation on the same range of numbers using Python lists with a traditional loop approach and using NumPy arrays, we can observe that NumPy significantly reduces the time taken compared to the traditional loop approach with Python lists.

The following code snippet, as shown in Figure 1.3, illustrates how much faster NumPy processes the simple element-wise addition operation compared to Python lists:

[image:]

Figure 1.3: Processing Time Difference

By understanding this coding experiment, it is clearly understood how NumPy is faster than Python lists in processing numerical operations.

Understanding and Setting up Workspace

We will use Google Colab, a versatile platform facilitating seamless coding and collaboration for hands-on learning and practice. In the subsequent sections of this chapter, we will learn more about Google Colab and its features.

Introduction to Google Colab

Google Colab, also known as Google Colaboratory, is a cloud-based Jupyter notebook environment offered and managed by Google. It has all the functionalities of Jupyter Lab as well as additional features. Data scientists and machine learning programmers widely utilize this platform because it reduces the tedious process of setting up personal computing environments. Colab offers a wide range of preinstalled data science libraries, facilitating the storage of files on Google Drive.

The account has free and pro versions; we will use the free version for our hands-on learning and practice. The free version of Colab can handle many computing tasks and includes many capabilities. However, if your project necessitates more intensive resources or you want to benefit from priority access to computing resources, you can select the Colab Pro edition. Following are some excellent features/benefits of using Google Colab:

	You do not need to install any software on your computer, as it is a cloud-based platform

	Google Colab gives you access to powerful resources such as GPUs and TPUs; this lets you run programs that would be too slow or expensive to run on your system

	You can easily share your notebooks with others by making them public or asking them to work on them with you

	It gives you an easy-to-use, interactive space to play with code and immediately see the effects

Now, we have a good understanding of what Google Colab is precisely. Let us explore more about how to work with it.

Creating a Google Colab Account

To create a Google Colab account, you must have a Google account. You can use an existing one; otherwise, you must create a new one. Following are the steps to setting up a Colab account:

	Open the web address https://colab.research.google.com/ in a web browser and open the following web page:

[image:]

Figure 1.4: Google Colab Sign In

	Now, click the 'Sign In' blue button at the top right corner; once you have the following page, enter your Google account credentials (for example, email ID and password) on the subsequent page:

[image:]

Figure 1.5: Entering Google Account Details

	
The following page will appear once you enter your Google account details:

[image:]

Figure 1.6: After Sign In

We have finally set up a Colab account successfully. For now, click cancel to close it; from here, we will see how to create a new notebook and other features, such as writing and executing code.

Working with Google Colab Notebook

After successfully setting up a Google Colab account, let us demonstrate the following essential features of the Colab tool:

Creating a New Notebook

Following are the steps to create a new Colab notebook and save it:

	To create a new notebook, go to 'File' > 'New notebook' and click the 'New notebook' option from the 'File' menu, as depicted in the following snippet:

[image:]

Figure 1.7: Creating a New Notebook

	Once you complete step #1, you will get a newly created notebook titled Untitled0.ipnyb, as depicted in the following snippet:

[image:]

Figure 1.8: New Notebook

	You may rename the notebook to anything related to the subject by clicking the name field and typing the new name, as shown in the following snippet:

[image:]

Figure 1.9: Rename the Notebook Title and Cell

In Figure 1.9, we observe a cell indicated by the bold arrow. There are two types of cells in a Colab notebook: a ‘code’ cell and a ‘text’ cell. We use the code cell to write programming syntax, while the text cell is utilized for writing text, instructions, explanations, or details about the code.

We can create and rename a Colab notebook in this manner. To save the notebook, navigate to 'Files' > 'Save.' Refer to the following snippet for guidance on saving the notebook:

[image:]

Figure 1.10: Save the Notebook

Following the explained steps, we can create, rename, and save the Colab notebook. Let us see further how to write and execute code in the Colab notebook.

Writing and Executing the Code

	To write the code, write the coding syntax in the code cell, as shown in Figure 1.11. We have written print("Hello Colab !!!) in the code cell:

[image:]

Figure 1.11: Processing Time Difference (The figure name should be something relevant)

	After typing your code, press Shift + Enter or Ctrl+ Enter to execute the code in the cell. Once you press any of those key combinations, it will start running the code first, allocate the resources, and then execute the code:

[image:]

Figure 1.12: Code in Execution

	Once the code has been executed successfully, you will see the respective output. In our case, it should display 'Hello Colab!!!' as the output:

[image:]

Figure 1.13: Code Cell Executed and Displayed the Output

As depicted in Figure 1.13, the execution of the code cell has been completed, and the output has been displayed.

We now understand how to write Python code in a notebook and execute it. Let us learn how to add and delete code and text cells in the notebook.

Adding/Deleting ‘code’ cell and ‘text’ cell in notebook:

	To add a code cell, click the 'Code' button or use the shortcut key combination Ctrl+M B. The following snippet has an arrow indicating the 'Code Cell' button:

[image:]

Figure 1.14: Processing Time Difference (This figure name should be something relevant)

Figure 1.15 shows a newly added code cell, which was added after clicking the '+Code' button:

[image:]

Figure 1.15: Processing Time Difference (This figure name should be new code block after it is added to the notebook)

	To delete a cell in a Colab notebook, use the shortcut Ctrl+M D or click the bin icon on the right side of the respective cell, as depicted in Figure 1.16:

[image:]

Figure 1.16: Deleting the cell

	
Similar to the code cell, we can add a text cell in a Colab notebook. Just click the '+Text' button and a new text cell will be added, as depicted in Figure 1.17:

[image:]

Figure 1.17: Adding Text Cell

	After creating the Text Cell, we can write any comment explanation in the text. Figure 1.18 depicts an example where we add 'Welcome to Colab!! ‘as a text comment in the Text Cell:

[image:]

Figure 1.18: Writing Text in Text Cell

	After creating a text cell, press ‘Shift+Enter’ to execute the cell, displaying the entered text as output, as shown in Figure 1.19:

[image:]

Figure 1.19: Executed Text Cell

Saving a Copy of the Notebook on Google Drive

You can also save a copy of your notebook on Google Drive. To do this, navigate to 'File' > 'Save a copy in Drive', and then click the 'Save a copy in Drive' option. This action will save a copy of the notebook in your drive:

[image:]

Figure 1.20: Save a Copy in Google Drive

The following snippet depicts that a notebook copy is now saved in Google Drive:

[image:]

Figure 1.21: Processing Time Difference (The name of the figure should be on “after the notebooks are saved in google drive” or something relevant)

We can save a notebook copy in our drive for backup purposes.

Downloading Notebook

In Colab Notebook, you can download notebooks directly onto your personal computer in two popular formats: an IPython notebook (.ipynb) or a Python script (.py).

	To do this, head to the 'File' menu and click 'Download'. Then, you can select any option: download your file as an .ipynb or a.py format. In Figure 1.22, we downloaded the notebook as a .ipynb file by clicking the 'Download .ipynb' option:

[image:]

Figure 1.22: Download .ipynb

	
Now, as shown in Figure 1.23, we can see that it has been downloaded to our local PC in the Downloads folder:

[image:]

Figure 1.23: Downloaded File on Local PC

Uploading Notebook

	If a notebook file is stored locally, we can easily upload it to Google Colab to work on it seamlessly. To upload any IPYTHON notebook to Colab, navigate to "File" in the menu, select "Upload notebook", and click it, as shown in the following snippet:

[image:]

Figure 1.24: Upload Notebook Option

	After selecting the 'Upload notebook' option, a new pop-up page with a 'Browse' button will appear, as illustrated in the subsequent snippet:

[image:]

Figure 1.25: Upload Notebook

	Upon selecting the 'Browse' option, the file explorer interface opens, allowing users to conveniently choose the desired notebook for uploading. Subsequently, choose the designated IPython notebook for uploading and proceed by clicking the 'Open' button. In the following example, we upload a notebook titled 'demo_notebook_2.ipynb':

[image:]

Figure 1.26: Processing Time Difference (This figure name should be “browsing for the notebook from the local drive for uploading to google drive” or something relevant)

	
Once you have completed the last step, the notebook will be uploaded to Colab and opened in a new tab on the web browser, as shown in Figure 1.27. The notebook with the title 'demo_notebook_2.ipynb' opens in a new tab:

[image:]

Figure 1.27: Uploaded and Opened in New Tab

By following the explained process, we can upload any notebook to the Colab platform and work on it. We now have a working understanding of how to begin our work with the Google Colab platform.

Conclusion

We have learned various topics in this chapter. Let us take a quick recap! We got to know NumPy, a helpful tool in Python that is valuable for numerical data analysis and scientific computation. We discovered why it is so unique and spotted the differences between NumPy arrays and the usual Python lists.

Then, we received an introduction to Google Colab; think of it as our virtual workspace. We learned how to set up an account, create new notebooks, write and run our code inside them, and save these notebooks safely on Google Drive. So, now, not only can we write code, but also have a nifty place to keep it all organized.

With all these new tools and knowledge, we are ready to explore NumPy deeper. In the upcoming chapter, we will learn about NumPy arrays, how to create them, and their uses with hands-on examples.

CHAPTER 2

Understanding NumPy Array

Introduction

In the last chapter, we learned the basics of NumPy and saw how its arrays are different and often better than regular Python lists.

In this chapter, we are taking a closer look at NumPy. We will begin by understanding how to install or import the NumPy library. From there, we will delve into the architecture of NumPy arrays, explore various methods to craft them and uncover their primary characteristics. Hands-on examples will provide practical insights throughout our journey, enhancing our understanding and skills.

By the end of this chapter, you will have a clear grasp of NumPy arrays, the underlying structure that makes them more efficient for numerical data, and how to create various types of NumPy arrays. You will also understand their applications. This knowledge will set the foundation for more advanced topics in the upcoming chapters.

Structure

In this chapter, we will discuss the following topics:

	Importing NumPy Module and Version Check

	Understanding the NumPy Array

	Array Structure (Logical Representation with Visual Illustration)

	Creating a NumPy array

	Creating Arrays from Python Lists, Tuple, and Other Array-Like Objects

	Creating Uninitialized Arrays for Specified Shape

	Creating Arrays Populated with Fixed/Constant Values

	Creating Arrays with Properties Inherited from Other Arrays

	Creating Arrays Populated with a Range

	
Creating Arrays Filled with Logarithmic Sequences

	Creating Random Arrays

	Attributes of a NumPy Array

Importing NumPy Module and Version Check

In Python, to access the functions and features of the NumPy library, it must first be installed and then imported into your code. You can reference the __version__ attribute to verify its version. Notably, in Google Colab, NumPy is already preinstalled, so there is no need for a separate installation. Let us see the following code snippet on how to check the version:

[image:]

Figure 2.1: Importing NumPy and Checking its Version

If you are not using Google Colab and encounter a module not found error, it likely means you need to install NumPy. To do so, you can execute the following command:

pip install numpy

For a specific version, use pip install numpy==x.x.x

If you are using Conda, the command would be: conda install numpy

Understanding the NumPy Array

Now, we have a basic idea of NumPy and its importance in numerical data analysis.

The NumPy array, or n-dimensional array, or ndarray, is the fundamental data structure of NumPy or, say, the core of NumPy. It is a flexible and efficient multi-dimensional array capable of storing homogenous data (items of the same data type) contiguously, unlike Python lists, which may contain heterogeneous (items of different data type) data in a non-contiguous manner. Please note that whenever the flexibility of NumPy arrays is mentioned, it is essential to clarify the context. Python lists are also flexible, but this flexibility refers to specific aspects. NumPy arrays excel in reshaping, mathematical operations, advanced indexing, and efficient data manipulation. Even though they are constrained to have homogeneous data types, this structure, combined with their operational flexibility, makes them especially suitable for numerical and scientific computing tasks. In contrast, while Python lists are much more flexible in adding, removing, and accommodating mixed data types, they are not optimized for mathematical operations or large-scale data manipulation. They are more general-purpose, whereas NumPy is tailored for numerical and scientific computing.

The structure of a NumPy array comprises the following components:

	
Data Buffer: The primary storage of data, a contiguous block of memory holding all the array’s values. Please note that in the context of arrays and data storage, the terms memory layout, data buffer, and memory block are often used interchangeably to refer to the continuous block of memory where the actual data of the array is stored.

	
dtype: Specifies the data type of the array’s elements. For example, int32, float64, and so on, we will delve deeper into NumPy data types in the subsequent part of this chapter.

	
Shape and Dimensions: The shape and dimensions of a NumPy array define its size and structure, enabling efficient data manipulation, indexing, and mathematical operations. They are essential for organizing and working with multidimensional data effectively.

	
Shape: The shape of a NumPy array refers to the number of elements along each axis (dimension) of the array. It’s represented as a tuple of non-negative integers, where each integer corresponds to the number of elements along a specific axis. For example, a 1D array might have a shape of (4,), indicating it has four elements in one dimension and a shape of (4,3) means an array with four rows and three columns.

	
ndim: It indicates the number of dimensions or axes of the array. It provides information about the array’s dimensionality, helping you understand how data is organized within the array. For example, a 1D array has ndim equal to 1, a 2D array has ndim equal to 2, and so on for higher dimensional arrays.

The following figure visually represents arrays’ one, two, and three dimensions:

[image:]

Figure 2.2: Multi-Dimensional Array

In Figure 2.2, we have 1D, 2D, and 3D arrays. Let us understand them one by one:

	
1D Array (One-Dimensional Array): A 1D array is a linear array of elements organized along a single axis. The example shows an array [1, 2, 3, 4] with axis=0. We can think of it as a vector.

	
2D Array (Two-Dimensional Array): A 2D array is organized as a grid with rows and columns. Rows correspond to axis=0, and columns correspond to axis=1. We have illustrated a 2D array [[1, 2], [3, 4]] with a shape of (2, 2). We can think of it as a matrix. Generally, it is used for tabular data, images, and other structured data.

	
3D Array (Three-Dimensional Array): A 3D array adds depth to a 2D array, forming a cube-like structure. In the given illustration, we have an additional axis=2 in addition to axis=0 and axis=1, and the array shape is (2,2,2). We can think of it as a 3D tensor. Usually, it is used to represent volumetric data or data with three dimensions.

	
ND Array (N-Dimensional): Similarly, we can create arrays with higher dimensions for specific applications. These arrays allow us to represent and manipulate data with complex and arbitrary structures.

	
Strides: A tuple indicating how many bytes should be skipped in memory to move to the next element in each dimension. It is an internal mechanism to facilitate efficient data access and manipulation.

	
Memory Layout: Refers to the order in which array elements are stored in memory. The two primary layouts are row-major (C-style) and column-major (Fortran-style). We can set it as per need using order =’ C’ or order =’ F’. By default, it is C-style or row-major.

Let us understand the structure of the array and its memory layout with the help of examples.

Array Structure (Logical Representation with Visual Illustration):

Consider a 2D array arr with a shape of (3, 4) and elements of int32 data type:

arr = [[1, 2, 3, 4], [6, 7, 8, 9], [10, 11, 12, 15]]

Memory Layout for C-Style Ordering (Row-Major):

In this layout, all the elements of arr are stored row by row in memory. You can visualize it as follows:

	The first row (in green) is placed in memory first.

	Then, the second row (in yellow) is placed.

	Finally, the third row (in blue) is placed.

The flat memory layout would look like this: [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 15], with each element occupying 4 bytes (due to the int32 data type).

Stride Calculation:

	Since the data type is int32, each element uses 4 bytes.

	To move horizontally (within the same row), you jump by the size of one element, 4 bytes. So, the stride for moving within a row is 4.

	To move vertically (to the next row), you skip all the elements of the current row. With four columns, you skip 4 * 4 = 16 bytes.

	Therefore, for this array with C-style storage, the strides are (16, 4).

Practical Use of Stride:

Imagine you want to access the value 7, which is in the second row and the second column of arr:

	You would skip one entire row, which is 1 * 16 bytes = 16 bytes.

	Then, you would move to the second element in the second row, which is 1*4 bytes = 4 bytes.

	Combining these movements, you would offset 16 + 4 = 20 bytes from the start of the memory block to access the value 7.

This stride understanding is crucial when working with memory layouts and direct memory access for optimization and efficient data manipulation.

Memory Layout for C-Style Ordering (Row-Major):

[image:]

Figure 2.3: Array Structure with Row-Major Memory Layout

So, for arrays stored in row-major (C-style) order, elements of the same row are stored adjacently in memory. Strides help us determine the necessary memory jumps to traverse this flat representation efficiently, both row-wise and column-wise.

Memory Layout for Fortran-Style Ordering (Column-Major):

In this layout, all the elements of arr are stored column by column in memory. You can visualize it as follows:

	The first column (in yellow) is placed in memory first.

	Then, the second column (in green) is placed.

	Next, the third column (in blue) is placed.

	Finally, the fourth column (in light brown) is placed.

The flat memory layout would look like this: [1, 6, 10, 2, 7, 11, 3, 8, 12, 4, 9, 15], with each element occupying 4 bytes (due to the int32 data type).

Stride Calculation for Column-Major:

	Since the data type is `int32`, each element uses 4 bytes.

	To move vertically (within the same column), you jump by the size of one element, 4 bytes. So, the stride for moving within a column is `4`.

	To move horizontally (to the next column), you skip all the elements of the current column. With three rows, you skip `3 * 4 = 12` bytes.

	Therefore, for this array with Fortran-style storage (column-major), the strides are `(4, 12)`.

Practical Use of Stride in Column-Major:

Imagine you want to access the value 7, which is in the second row and the second column of arr:

	You would skip one entire column, which is `1 * 12 bytes = 12 bytes`.

	Then, you would move to the second element in the second column, which is `1 * 4 bytes = 4 bytes`.

	Combining these movements, you would offset ‘12 + 4 = 16 bytes` from the start of the memory block to access the value 7.

Column-major memory layouts are important for specific numerical computing libraries and algorithms that optimize for column-wise data access, and understanding stride is crucial for efficiently accessing and manipulating data in such layouts.

OEBPS/images/Figure-1.12.jpg
TR e P Mo zom 0 @
@© . A

ooy <

~aspe
i com)

OEBPS/images/Figure-1.14.jpg
@ €O WekcomeTo Colabnatory - Cc X €O demo_netebook Lipyn- Col X+

« [¢] O 8 = hupsyk

& demo_notebook_Lipynb
File EdR View Insert Runtime Tools Help All changes saved

research google.com/drive/ 1 rthyBM)LALNGsEYASrOVTUOBY_tUGTA

Hello Colab

® Hello Colab

OEBPS/images/Figure-1.13.jpg
@ | €O WelcomeTo Colaboratory - Co! X | €O demo_notebook_Lipyab - Col: X |+
(o S o O B #2 httpsy/colab.research.google.com/drive/1 rthyBMJLnLNGskfEyArO\

& demo_notebook_Lipynb
File Edit View Insert Runtime Tools Help Allchanges saved

+ Code + Text

Q ¥ @ print("Hello Colab !

® Hello Colab !

OEBPS/images/Figure-1.16.jpg
~ Sl = K-

Delete ¢
Ctrl+M

OEBPS/images/Figure-1.15.jpg
€O & demo_notebook Lipynb
File EAt View Insert Runtime Tools Help Allchanges saved

+Code + Text

Q¥ (1] print("Hello Colab 111"

« Hello Colab

Added Code Cell

OEBPS/images/Figure-1.18.jpg
@ O Wecome o Colbantony Cc X | G2 deme petebook gy Cel X |+

c-0c O B a2 nechnreserchg0oga e i nUNGHE A OVTLOS . UGToscron

€O & demorotebock ipmb ¢
Fle €O View isent Rouime Toos elp Al chanaessaved
coote 4Tt

Q¢ 1 prinscmtic oo

“ bello colap 111

o 7B oem
become to Colab 111

=-ves

 Welcome o Colab 1t

OEBPS/images/Figure-1.17.jpg
@ | © Waometacoteny . x| @ b seent - X |+

€>0 e

€O & demo_notebock Lipymd
Fle €% Vew et Rowme Toss Wb S

“cate < Ten

Q£ (1) prinechetto coss

setto cotap

Added Text Cell

OEBPS/images/Figure-1.2.jpg
Using NumPy
arrl = np.arange(1000000)
arr2 = np.arange(1660000)

Start the clock
start_time_nunpy = time.time()

Adding elements of two arrays using NumPy
sum_array = arrd + arr2

CoNa N s wN R

10

11 # Stop the clock

12 end_time_nunpy = time.time()

13

14 # Calculating time taken

15 time_taken_numpy = end_time_numpy - start_time_numpy

16 print(f'Tine taken using NumPy: {time_taken_numpy:.5f} seconds")

[» Time taken using NunPy: ©.08238 seconds

OEBPS/images/Figure-1.19.jpg
@ | €O WelcomeTo Colaboratory - Co' X | €O demo_notebook Lipynb - Col- X |+
« > c O B 52 hitpsy/colabresearchgooglecom/cive/thyBMILALNasKEYASrOVTUOGY,

€O & demo_notebook tipynb <
File Edit View Insert Runtime Tools Help Allchanges saved

+Code -+ Text

Q 7 [1] print(Hello Colab

® Hello Colab 1!

=] Welcome to Colab "

OEBPS/images/Figure-1.20.jpg
@ | O WelkomeTo Colsboratory Cc X | €O deme potebock Lipynb-Cel X |+
s c O 8 & hpsyicobresench googlecomcrive thy BV NGBy AIOVTUOGY.

€O & demo_notebook_tipynd> -
Fie GGt view Inent Rt Toos W Alchunocs s

1+ tocaendie

Openinpiground mode.
R QE—

w Openrctebok cwo
o

swe cus
Sweand pnredsion cums
[—

Downiosd .

P cue

OEBPS/images/cqr.jpg

OEBPS/images/Figure-1.1.jpg
import time
import numpy as np

Using Python Loop
list1 = list(range(1000000))
1ist2 = list(range(1800000))

Start the clock
start_time_python = time.time()

CmN O EwN

10

11 # Adding elements of two lists using a loop

12 sum_list = [list1[i] + list2(i] for i in range(100000)]

13

14 # stop the clock

15 end_time_python = time.time()

16

17 # Calculating time taken

18 time_taken_python = end_time_python - start_time_python

19 print(f'Time taken using Python loop: {time_taken_python:.5f} seconds")

[» Time taken using Python loop: 0.13975 seconds

OEBPS/images/Figure-1.10.jpg
@ | O Wekome To Colaboratory - C X | €O deme_notebook_Lipynb - Ce! X |+
« s c O B 52 hupsjcosbrescarch googecom/drive/ rthyBMILALNQsEYArOVTUOEY.WUGTsc

& demo_notebook_Lipynb
Fle Edt View isen Funtime Tools Help Alchanges saved

4 Locateinive
Open inplayground mode

Newnotebook.
‘Opennotebaok culvo
Upload otebok

Rensme
Move
Movetoash

Savea copyinrve
‘Save s copy a5 GitHub Gist
‘Savea copy in it

e -

‘Save and pinevision cums
Revision history
Downiosd .

prnt culvp

OEBPS/images/Figure-1.11.jpg
@ | O Wecome ToColborstoy-Ce X | €O deme_notebook Lipynb-Col X |+
<« C O B = nupsi/colabresearchgooglecom/drive/1hyBMJLALNGSKIEYAIOVTUOGV_tUGT#scrol

€O & demo_notebook tipynb ¢
File Edit View Insert Runtime Tools Help All changes saved
+Code + Text

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Getting Started with NumPy

		Introduction

		Structure

		Introduction to NumPy

		The Development and Rationale Behind NumPy

		Importance of NumPy

		Difference between NumPy Array and Python List

		Understanding and Setting up Workspace

		Introduction to Google Colab

		Creating a Google Colab Account

		Working with Google Colab Notebook

		Creating a New Notebook

		Writing and Executing the Code

		Saving a Copy of the Notebook on Google Drive

		Downloading Notebook

		Uploading Notebook

		Conclusion

		2. Understanding NumPy Array

		Introduction

		Structure

		Importing NumPy Module and Version Check

		Understanding the NumPy Array

		Creating a NumPy Array

		Creating Arrays from Python Lists, Tuple, and Other Array-Like Objects

		Creating Uninitialized Arrays for the Specified Shape

		Creating Arrays Populated with Fixed/Constant Values

		Creating Arrays with Properties Inherited from Other Arrays

		Creating Arrays Populated with a Range

		Creating Arrays Filled with Logarithmic Sequences

		Creating Random Arrays

		Attributes of a NumPy Array

		Conclusion

		3. Data Type (dtype) in NumPy Array

		Introduction

		Structure

		Defining a Data Type

		Importance of Choosing the Right Data Type

		Data Types (dtype) in NumPy

		Creating NumPy Array with Specified dtype

		General Type Characters

		Specific Type Strings

		Integer (int)

		Unsigned Integer (uint)

		Float (float)

		Complex Floating Point (complex)

		Boolean (bool)

		Timedelta (timedelta64) in NumPy

		Datetime (datetime64) in NumPy

		Object (object)

		Unicode String (U) in NumPy

		Fixed chunk of memory (void)

		Structured Data Type in NumPy

		Data Type Conversion in NumPy

		Implications of Conversion

		Handling Errors in Conversion Attributes of a NumPy Array

		Conclusion

		4. Indexing and Slicing in NumPy Array

		Introduction

		Structure

		Indexing in NumPy Arrays

		Negative Indexing

		Boolean Indexing

		Fancy Indexing

		Slicing in NumPy array

		Basic Slicing

		Multidimensional Slicing

		Slicing rows and columns: Extracting rectangular subarrays

		Slicing Rows or Columns: Selecting Specific Rows or Columns

		Skipping Elements with Step Size: Efficiently Selecting Elements

		Negative Indices: Counting from the End for Precision

		Using Ellipsis (…) for Higher Dimensions

		Conclusion

		5. NumPy Array Operations

		Introduction

		Structure

		Copies and Views of NumPy Array

		Copies

		Views

		Reshaping and Resizing the NumPy Arrays

		Reshaping Arrays

		Resizing Arrays

		Flattening the Arrays

		Inserting, Appending, and Deleting the Element(s) from the Array

		Concatenating and Splitting Arrays

		Concatenating Arrays

		Splitting Arrays

		np.split()

		np.array_split()

		np.hsplit() (Horizontal Split)

		np.vsplit() (Vertical Split)

		Transposing Arrays in NumPy

		np.transpose()

		Array.T

		Arithmetic Operators and Functions in NumPy

		Broadcasting

		Broadcasting Rules

		Understanding the Process of NumPy Broadcasting

		Aggregation and Statistical Functions

		Set Operations in NumPy

		Finiteness and Special Values

		Logical Functions in NumPy

		Sorting and Searching in NumPy

		Sorting in NumPy

		Searching in NumPy

		Conclusion

		6. NumPy Array I/O

		Introduction

		Structure

		Accessing the Google Drive Files in Colab

		Step 1: Mount Google Drive

		Step 2: Access Files

		Step 3: Unmount Google Drive (Optional)

		Understanding the Importance of Input/Output (I/O) for Data Processing

		Core features of NumPy’s I/O Functionality

		Essential NumPy I/O Functions and Methods

		Importing / Reading Data from External Files

		Exporting /Writing Data into External Files

		np.savez()

		Conclusion

		7. Linear Algebra with NumPy

		Introduction

		Structure

		The Role of Linear Algebra in Data Analysis and Machine Learning

		NumPy for Linear Algebra

		Important Functions for Matrix and Vector Products

		Dot Product (np.dot())

		Matrix Multiplication (np.matmul() or @)

		Dot Product of Vectors (np.vdot())

		Inner product (np.inner())

		Outer product (np. outer())

		Cross product (np.cross())

		Kronecker product (np.kron())

		Tensor dot product (np.tensordot())

		Einstein Summation (np.einsum())

		Efficient Matrix Chain Multiplication (np.linalg.multi_dot())

		np.linalg.matrix_power()

		Matrix Eigenvalues and Eigenvectors

		Decompositions

		QR Decomposition (np.linalg.qr())

		Cholesky Decomposition (np.linalg.cholesky())

		Singular Value Decomposition (np.linalg.svd())

		Solving Linear Systems using NumPy

		Solving Linear System using np.linalg.solve()

		Solving Linear System using np.linalg.lstsq()

		Conclusion

		8. Advanced Numerical Computing

		Introduction

		Structure

		Principal Component Analysis (PCA)

		Steps for Principal Component Analysis

		Step-by-Step PCA Analysis to Sample Housing Dataset

		Step 1: Import the Required Packages and Mount the Google Drive

		Step 2: Import the Dataset

		Step 3: Preprocessing and Standardization

		Step 4: Covariance Matrix Computation

		Step 5: Eigenvalue and Eigenvector Calculation

		Computing the Eigenvalue and Eigenvector Calculation

		Sort the eigenvalues and eigenvectors in Descending Order

		Step 6: Component Selection

		Computing K Principal Components

		Plotting the Explained Variance

		Select the Top k Eigenvectors

		Step 7: Transformation and Data Projection

		Data Interpolation and Curve Fitting in NumPy

		NumPy Functions for Interpolation and Curve Fitting

		np.interp()

		The np.interp() Function with the Left and Right Parameters

		The np.interp() Function with the Period Parameter, or Periodic Interpolation

		np.polyfit()

		np.poly1d ()

		Use Case#1: From Coefficients: To Create a Polynomial from Coefficients

		Use Case#2: From Coefficients: To Create a Polynomial from Roots

		Example for Curve Fitting Using polyfit() and poly1d()

		np.polynomial.Polynomial.fit()

		Fourier Analysis and Signal Processing in NumPy

		Key Functions Provided by NumPy for Fourier Transformation

		np.fft.fft(a, n=None, axis=-1,norm=None, out=None)

		np.fft.ifft(a, n=None, axis=-1, norm=None, out=None)

		np.fft.fft2(a, s=None, axes=(-2, -1), norm=None, out=None)

		np.fft.fftfreq(n, d=1.0, device=None)

		np.fft.rfft(a, n=None, axis=-1, norm=None, out=None)

		np.fft.hfft(a, n=None, axis=-1, norm=None, out=None)

		np.fft.ihfft(a, n=None, axis=-1, norm=None, out=None)

		np.fft.fftshift(x, axes=None)

		Step-by-Step Hands-On Example: Audio (Sound Signal) Analysis in NumPy

		Step 1: Load the Audio File

		Step 2: Apply FFT to the Audio Signal

		Step 3: Defining a Frequency Band-Pass Filter

		Step 4: Apply the Filter to the FFT Result

		Step 5: Apply the Inverse FFT to Recreate the Filtered Audio

		Step 6: Save the Filtered Output Audio

		Step 7: Playing Both the Original and Filtered Audio

		Image Processing with NumPy

		Basic Process of Image Processing

		Reading and Displaying Images

		Converting to Grayscale

		Image Slicing

		Image Flipping

		Image Rotating

		Adding Noise and Blurring Effects to Images

		Edge Detection

		Conclusion

		9. Exploratory Data Analysis

		Introduction

		Structure

		Introduction to Exploratory Data Analysis

		Importance of EDA

		Different Types of Data Categories in EDA

		Measurement Scales in EDA

		EDA Process and Its Steps

		Step-by-Step Hands-on Example for the EDA in Python

		Conclusion

		10. Performance Optimization

		Introduction

		Structure

		Introduction to Performance Optimization in NumPy

		Importance of Optimization

		Measuring the Performance

		Common Tools for Benchmarking and Profiling in Python

		Parallel Computing with NumPy

		Benefits of Parallel Computing

		Identifying and Resolving Common Performance Bottlenecks in NumPy

		Conclusion

		11. Implementing a Machine Learning Algorithm

		Introduction

		Structure

		Introduction to Machine Learning

		Types of Machine Learning

		The Importance of NumPy in Machine Learning

		Machine Learning Workflow Overview

		End-to-End Hands-on Example of Predicting House Prices Using a Machine Learning Algorithm

		Step 1: Data Preparation

		Step 2: Feature Engineering

		Step 3: Model Selection

		Step 4: Training the Model

		Step 5: Model Evaluation

		Step 6: Making Predictions

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Getting Started with NumPy

OEBPS/images/Figure-2.1.jpg
#iChecking for the version of Python and NumPy installed
import numpy as np

import sys

print("Installed Python version is
print("Installed NunPy version is

{@} ".fornat(sys.version))
{0} ".format(np._version_))

PRSIV

[3 1nstalled Python version is
Installed NumPy version is

.12 (main, Jun 11 2023, 05:26:28) [6CC 11.4.0]

3.2
1.2

OEBPS/images/Figure-1.22.jpg
@ ‘ €O demo_notebook_lipynb - Col- X & Colab Notebooks - Google Driv X €O Welcome To Colaborato:

<« c QO B 5 httpsy/colab.research.google.com/drive/1rthyBM

nLN

co & demo_notebook_1.ipynb
File Edit View Insert Runtime Tools Help_] Last saved at 3:51 AM

4 Locatein Drive

Open in playground mode

Q% Newnotebook

@ Open notebook ct+o
Upload notebook

o Rename
Move
Move to trash

Save a copy in Drive

Save a copy as a Github Gist

Save a copy n GitHub
Save Ctrl+s

Save and pin revision cuiems

Revision history

Download > Download.ipynb
Print Ctr+P

Download py

OEBPS/images/Figure-1.21.jpg
@ O CobNetchooks - GoogeDir X | €O Wekeme To Colbomtory - Co X €D demo,noteboak gy Col X €O Copyofdeme,etebock g X+

& c O 8 & nups/jsrvegooglecomc

& orive Q_ searchinOrive

+ New My Drive > Colab Notebooks ~

(1o -) oopte - | mosited -

~@ Myorive

+55 Colab Notebooks
*ED Computers

2, sharedwithme

% Starred

OEBPS/images/Figure-1.24.jpg
@ | & Colab Notebooks - Google Driv X | €O Welcome To Colaboratory - Co X +

<« [e] QO B &2 httpsy/colab.research.google.com/#scrollTo=Nm:
‘Welcome To Colaboratory
File Edit View Insert Runtime Tools Help
New notebook Sode + Text # CopytoDrive
Open notebook cti+o

Q¢ Upload notebook
Nelcome to Colab!

OEBPS/images/Figure-1.23.jpg
Onw- ¥ © 0O @@ @ W Nsor~

View v

> v~ A L > ThisPC > LocalDisk(C:) > Users > rituraj > Downloads >

Name
&8 Desitop » v Today
L Downloads » [) demo_notebook_Lipynb
[Documents o | 7 Yesterday
A Pictures » > Earlier this week

GRLaE > Last week

OEBPS/images/Figure-1.26.jpg
PR— .
entotder
Hame Oate modfied
oot | Today
00 demo.noteboac ipynb. IS LM M

D) deme.petebock 2ipymb. syasenam

c

Seach Downioads »
=- 00
Tipe Sae
P Fie
PN Fie

OEBPS/images/Figure-1.25.jpg

OEBPS/images/Figure-1.3.jpg
© ! # Calculating how much faster NumPy is than Python
2 speed_increase = tine_taken_python / time_taken_nuspy
3 print(Funpy is approximately (speed_increase:.2f) tines faster than traditional Python loops!®)

[+ Nuspy is approximately 58.70 times faster than traditional Python loops!

OEBPS/images/Figure-1.27.jpg
.

-

[—————

c 08 = rpei

& demo_notebook 2ipynb
Fle B ven won Autme Tods Helo

© srimciwatio cotw 1)
aito cola 11

Welcome o Colab

——

Lastsmssatsz1

OEBPS/images/Figure-1.5.jpg
[E) G Sia-Sepetenmt X I v - o x

) R —

Signin
Useyou Googe Account

Ematoprane

roge ot

BT Tr—

P -y T

OEBPS/images/Figure-1.4.jpg
(€O Wekome To Coiborsory

c oe sropun

Pl Gat Von e stns Tooh e

N Ox o st acmuone cot

Welcome to Colab!

Hyou seasyfamis winCoah, chck o 48 160010 e 3t racive i, b excuid code sy view 308
e commanc pctic

‘Whatis Colab?

ol or Clobrsony” alows oo i and eyt Pyhn s s Wi
« 200 comurtiontequies
« Accss 10GPUs o of e
« Eoysnoing
iether oo shden dats sl 3 A rsescher,ClS o ke yur work s WG chctn [0 Colas 0
P ———

OEBPS/images/Figure-1.6.jpg
| @ | O vekomeToCotbeney e X | + 2
c>0 O 8 hiss/soreecrgoogesommicen o

OEBPS/images/Figure-2.2.jpg
1D Array 2D Array

3D Array
5 6
o 1 2 off 1| 2 8
Iy)
= =
1|2(3|4 ® 3|4 "l 3| 4 /
— — — &
axis =0 axis=1 axis=1
shape= (4,)

shape=(2,2) shape=(2,2,2)

OEBPS/images/Figure-1.8.jpg
@ O Wekome o Coibonteny- Cc X O Unttedbipyed - Coborstery X |+

2 2
€O & Unitedoipynd
Fle 6t View nsent Runtime Tools Help Allchasoes saved

+code +Text

ARC)

OEBPS/images/Figure-1.7.jpg
@ | O vekomeToCobbontory - Cc X | +

i (¢ O 8 # hitpsy/colab.research.google.com/#scrollTo=

w Welcome To Colaboratory

Fle €t View insert Runtme Tools Hep
N N'wmlnbwk- Sode +Tet & Copytoive

‘Open notebook ctiro
¢ Upload notebook

Nelcome to Colab!
) saveacopyinDiie " you're already familiar with Colab, che
o) SoveacopyasaGithub Gist jltte.
Soveacopyin Gt

save ctiss

print cuisp

OEBPS/images/Figure-1.9.jpg
@ | O Wekome To Colaboratory - Cc X €O UntitledO.pynb - Colaboratory X+

c O 8 == hitpsy/colabresearchgoogle.com/drive/IrthyBMILNLNGSKIEYAIrOVTUOGY

&[demo_notebook_Tipynb

File Edt View Insert Runtime Tools Help Allchanges saved

+Code + Text

K-

A

Cell

OEBPS/images/cover.jpg
ANVA

Hands-on
for
Numerical Analysis

Unlock NumPy with Google Colab
for High-Performance Numerical
Computing and Optimizing

Numerical Data Analysis

Rituraj Dixit

OEBPS/images/Figure-2.3.jpg
SENR PURY NN NS —

1] 2] 3] 4] ndarray data structure with order=C (row-major layout)
ar=| 6| 7| 8| 9
10| 11/12|15) Row 2
type |msz(sbysintese)
ndim |2 Row1 Row3
amaymetadata { [“shape [(3.4) | et by |
stride_[(16,4) [
data se— 1 [2[3[4]6] 78] 9 [10[12]12]15

Memory block or Data bufer or memory layout

& per slement

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

OEBPS/images/qr1.jpg

OEBPS/images/qr.jpg

