

[image: image]






MODERN WEB
DEVELOPMENT WITH GO



Build real-world, fast, efficient, and
scalable web server apps using Go
programming language


by


DUŠAN STOJANOVIĆ





[image: ]











Copyright © 2023 Orange Education Pvt Ltd, AVA™


All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.


Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.


Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.


First published: March 2023


Published by: Orange Education Pvt Ltd, AVA™


Address: 9, Daryaganj, Delhi, 110002


ISBN: 978-93-95968-36-2


www.orangeava.com











FOREWORD





The growth of web services has revolutionized the way businesses and organizations interact with the world. With the increasing demand for faster, more efficient, and scalable systems, there has been a growing interest in the development of robust and reliable web services.


Go has emerged as one of the leading programming languages for building web services due to its simplicity, performance, and scalability. Its clear and concise syntax, combined with efficient performance, makes it an ideal choice for developing web services that can handle heavy workloads and scale to meet growing demands.


I was incredibly excited when I heard that my colleague and friend, Dušan Stojanović, was writing a book on building web services with Go. As someone who has worked with him on various projects, I can attest to his expertise in web services development and his passion for teaching others. He has a unique ability to take complex concepts and break them down into simple, easily understandable terms.


In this book, Dušan not only provides a comprehensive guide to building web services with Go but also offers valuable insights into SQL and NoSQL databases. He covers the fundamentals of the language and the core concepts of web service development, including RESTful APIs, HTTP requests, and response handling, as well as the integration of databases. With practical examples and hands-on tutorials, he helps you understand the concepts and build your own web services from scratch.


I am confident that this book will become a valuable resource for anyone looking to gain a deeper understanding of web services development and expand their skill set in this exciting and rapidly growing field. I highly recommend this book to anyone looking to learn more about building web services with Go and integrating with both SQL and NoSQL databases.


Stefan Miletić,


Backend Software Engineer,


Glassnode









Dedicated to


My beloved parents:


Slađana Stojanović
Velmir Stojanović
and
My brother Nikola Stojanović











About the Author





Dušan Stojanović was born in Smederevo (Serbia) in 1989. He received a Master’s degree in Computer Science from the University of Belgrade in 2013.


He has worked for several software companies on various projects, predominantly on backend components. A few of the projects include user administration, e-commerce, video streaming platforms, and advertising.


Since 2017, he has been developing software in Go, which is now his most preferred programming language. He was the presenter on the subject “How to write server-side applications with Go” in an internal company workshop. A few of the ideas from that workshop are also included in this book. In 2021, he published his first book “Building Server-side and Microservices with Go”.


He currently lives in Belgrade (Serbia) and works as Senior Software Engineer.











Technical Reviewers





Stefan Miletic is a Senior Software Engineer with a decade of experience. Most of that experience is in backend development as he has an inclination towards tackling architectural and design problems.


He is always in quest of interesting challenges, thus, has experience in several domains of the software industry. He has worked in the communication, marketing, insurance technology, educational technology, and analytics sectors. This has allowed him to explore different architectures and designs, from classic monoliths to cutting-edge microservice architecture. He has a Bachelor’s degree with Honors in Computer Science from Belgrade University.


Marijana Komatinovic is a DevOps engineer, co-founder of the DevOps Serbia Community, and part of G-Research’s Open Source DevOps engineering team. While working as a developer in the past, she contributed to many projects and companies, mostly in developing OTT IPTV solutions, VoIP integrations and a private Cloud management platform. Marijana was born in Belgrade, the capital of Serbia in 1992 and graduated with a Master’s degree in Information Systems and Technologies from the University of Belgrade in 2017. Since then, she has been building her knowledge and experience in developing software architectures and infrastructures with a focus on cloud services. Over the last few years, she has been working in AdTech as a DevOps engineer.











Acknowledgements





There are a few people I want to thank for the continued and ongoing support they have given me during the writing of this book. First and foremost, I would like to thank my parents and my brother for continuously encouraging me to write the book.


Special gratitude goes to two of my dearest friends, Marijana and Stefan, who were always there for advice and support. They also performed a technical review and made this book much better.


I am grateful to all of my friends and family. They were very understanding about my skipping our gatherings during work on this book.


My gratitude also goes to the team at Orange AVA for being supportive enough to provide me with quite a long time to finish the book. I thank them for their patience in all my breaking of agreed deadlines.


Finally, once again, thank you all!!!











Preface





This book covers the development of web server applications with state-of-the-art technology. Through this book, we will learn how to design, develop, deploy, and maintain web server applications, with various practical examples and code solutions. This book will introduce the importance of web server applications in the modern software industry and gives information about the usefulness of the Go programming language in the development of the same.


This book is divided into 12 chapters. They will cover the Go programming language basics and advanced concepts, the basics of web server applications and the complete development process. The first four chapters will serve as a preparation for the development process and will be more focused on an introduction to some important concepts and application design. Chapters 5 to 10 will concentrate on development, while the last two chapters will show how to deploy and maintain the application. The details are listed below.


Chapter 1 will focus on the basic concepts of Go programming language with some main advantages compared to other programming languages. Key features will be covered here, like keywords, variables, constants, packages, data types, control structures, and functions.


Chapter 2 will cover the advanced concepts of the Go programming language. Concepts introduced in this chapter will include methods, interfaces, generics, and modules. Panics as the main mechanism for handling unexpected errors will be presented here. This chapter will also cover concurrency in great detail.


Chapter 3 will cover the basics of Web servers. It will introduce the concept of servers, in general, with special reference to Web servers. REST architecture, HTTP protocol, JSON, and routing will be covered in detail here.


Chapter 4 will focus on how to set up a Go programming language project. It will explain how to install and set up all the necessary tools and write a small program. At the end of the chapter, standard and third-party libraries will be introduced.


Chapter 5 will cover the software development life cycle (and all its phases) and application design. It will introduce a couple of different design patterns, with deep dive into Layered design patterns.


Chapter 6 will focus on how to develop application layers of the web server application. It will explain how to organize code, create data models, configure the application, write the main() function, and initialize and start the HTTP server. Layers loosely based on databases will be covered in separate chapters.


Chapter 7 will cover relational databases and SQL. It will explain how to develop application layers related to the database. Two different database management systems will be used: PostgreSQL and MySQL. It will also explain how to install all tools and set up a database for each of them.


Chapter 8 will cover NoSQL databases and focus on how to develop application layers related to them. It will introduce MongoDB and DynamoDB with guidelines on installing tools, setting up a database, most important commands and development practices.


Chapter 9 will explain the fundamentals of application testing. It will explain the concepts of manual and automated testing and the differences between them. It will be shown how to execute the manual test and how to write and run automated tests with the Go programming language.


Chapter 10 will emphasize on how to make our application more secure. It will introduce concepts of authentication and authorization and explain how to implement them in an application developed through previous chapters.


Chapter 11 will focus on how to deploy the application. It will introduce concepts such as Docker and Docker Compose and describe how to use Google Cloud and Kubernetes for the deployment process.


Chapter 12 will describe the concepts of monitoring and alerting processes that follow deployment. It will explain how to use tools like Grafana and Prometheus to perform these processes.











Downloading the code
bundles and colored images





Please follow the link to download the
Code Bundles of the book:


https://github.com/OrangeAVA/Modern-Web-Development-with-Go


The code bundles and images of the book are also hosted on https://rebrand.ly/6c16c3


In case there’s an update to the code, it will be updated on the existing GitHub repository.


Errata


We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :


errata@orangeava.com


Your support, suggestions, and feedback are highly appreciated.











Did you know


Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.


At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.


Piracy


If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.


Author with us


If you are interested in becoming an author


If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.


Reviews


Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!


For more information about Orange Education, please visit www.orangeava.com.















CHAPTER 1



Basic Concepts of Go Programming Language





Introduction


This chapter will cover basic concepts of the Go programming language, which will help us to develop our web server application in the later chapters. We will talk and learn about variables, constants, data types (simple and complex ones), control structures, and functions. We will do a deep dive into these subjects and give some best practices. At the beginning of the chapter, we will give a short introduction and history of the Go programming language as well as some advantages compared to other programming languages.


Structure


In this chapter, we will discuss the following topics:




	Fundamentals of Go programming language


	Advantages of Go programming language


	Keywords


	Packages


	Basic data types


	Variables


	Constants


	Complex data types


	Control structures


	Functions






Fundamentals of Go programming language



Go is a procedural programming language based on concurrent programming. In procedural programming languages, procedures are stitched together to form a program. It is mainly used for the development of system and server software because it is designed to be performant.


Designed in 2007 by Google employees Robert Griesemer, Rob Pike, and Ken Thompson as a part of an experiment, with the idea to improve programming productivity. Designers wanted to eliminate bad practices from the programming language used inside Google, but keep the good ones, in order to create an efficient and elegant programming language that can be used for the development of complex software solutions.


Go was officially announced in November 2009, and the first version (1.0) was released in March 2012. As we can see Go is a relatively young and new programming language.


Go has the official logo and mascot. The official logo represents stylized italic GO, with trailing streamlines, which symbolize speed and efficiency. The official mascot is a Gopher (rodent from North and Central America) and was designed by Renee French, (Figure 1.1):




[image: ]




Figure 1.1: The official mascot of Go
(Designed by Renee French, licensed under Creative Commons 3.0 Attributions license)


The latest stable version of Go is 1.20 released in February 2023. Some of the companies where Go is represented are BBC, Uber, Docker, Intel, and of course Google.


Advantages of Go programming language


Go has become one of the most popular programming languages in the past couple of years, according to the site Stack Overflow. According to LinkedIn, there are more than 40,000 open positions for Go developers in the United States alone.


What makes Go so popular? Here are some main advantages of the Go programming language:




	
Easy and fast to learn: Go is designed to be as simple as possible, so the basics can be learned in a few hours.


	
Good standard library: We can execute all tasks and find solutions for usual problems without complex workarounds.


	
Fast build time: Large projects can be compiled and built in less than 30 seconds.


	
Performance: Large-scale applications with a lot of input/output can be easily handled.





In this book, we will use these advantages to create a simple and efficient web application.


Go Playground


For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the following link:


https://go.dev/play/


By default, Go Playground uses the latest stable version, but if necessary, we can lower it to one of the earlier versions.


Once we learn all the important concepts of the Go programming language and we are ready to start the development of our web application, we will learn how to install and set up the Go environment on our local machine. Until then, Go Playground is a good enough tool to get familiarized with the Go programming language.


But we must be aware of a couple of Go Playground’s limitations:




	Go supports (through standard library) functionality for measuring and displaying time. In Go Playground, the current time will always be 2009-11-10 23:00:00 UTC (the day when Go was officially announced).


	Execution time is limited.


	CPU and memory usage is limited.


	The program cannot access the external network host.


	Libraries (except the standard ones) are not available.





For the small code examples presented in this chapter, these limitations will not cause any problems.


Just for the test, we can copy this code example in Go Playground:


package main


import “fmt”





func main() {


a := 2


b := 3


c := a * b


fmt.Println(“Result is: “, c)


}


If we click on the Run button, the following output should be displayed:


Result is: 6


Program exited.


In later examples, the declaration of the package and main() function may be omitted. If that is the case, code examples should be copied inside the body of main() function.


Keywords


Keywords are special words that help the compiler to understand and properly parse code. Currently, Go has 25 keywords that can be classified into four categories:




	Keywords used for declaration: const, func, import, package, type, and var.


	Keywords used in composite type denotations: chan, interface, map, and struct.


	Keywords used for flow control: break, case, continue, default, defer, else, fallthrough, for, goto, if, range, return, select, and switch.


	Keywords specific for Go programming language: go.





In this and the next chapter, we will see how most of these keywords can be used.


Packages


Packages are basic building blocks for Go programs. All variables, constants, and functions are declared and defined in packages, and package definition is usually the first line in the file with code. This statement will define the new package with the name country:


package country


Each package can export things that can be used in other packages. In the Go programming language, there is no special keyword or complex syntax for export, everything inside the package that begins with a capital letter will be exported. Here is an example of exported and not exported integer constants:


const Exported = 27


const nonExported = 5


Everything exported from the package can be imported and used in other packages, these statements will import packages country and math (Go package with basic constants and mathematical functions):


import “country”


import “math”


Imports can be grouped in order to avoid writing the import keyword multiple times. This grouped import is equivalent to import statements from the previous example:


import(


“country”


“math”


)


All Go programs will start running from the main package (which must contain main() function).


Basic data types


Go basic data types can be separated into three categories:




	
Numerical data types: These are used to represent different kinds of numbers. We can further classify numerical data types into more specific types:



	
Integers: Representation of whole numbers. Integers can be positive, negative, or zero. Examples of integers are -27, 0, 21, 1989, 180192, and so on. Based on the number of bits used to store integer values, the Go programming language supports the following types: int8 (8 bits), int16 (16 bits), int32 (32 bits), int64 (64 bits), and int (32 bits on 32-bit systems, 64 bits on 64-bit systems). A good practice is to use int unless we have some specific reason to use a specific size.


	
Unsigned integers: Positive whole numbers and zero. Based on the number of bits used to store unsigned integer values, the Go programming language supports the following types: uint8 (8 bits), uint16 (16 bits), uint32 (32 bits), uint64 (64 bits), uintptr (32 bits on 32-bit systems, 64 bits on 64-bit systems), and uint (32 bits on 32-bit systems, 64 bits on 64-bit systems). Type uintptr is an unsigned integer that is large enough to hold any pointer address (pointers will be explained later). Generally, int should be used whenever we need to use whole numbers and unsigned integers should be used only for some specific use cases.


	
Floating point numbers: Representation of whole numbers with a decimal point. Floating point numbers can be positive, negative, or zero. Examples of floating points are -27.0589, 0.0, 21.1092, 1801.92, and so on. Based on the number of bits used to store floating point numbers, the Go programming language supports two types: float32 (32 bits) and float64 (64 bits).


	
Complex numbers: Numbers that can be presented in the form a + bi, where a and b are real numbers and i is a solution of equation x2 = -1. Real numbers a and b are referred to as real and imaginary parts respectively. Based on the number of bits used to store floating point numbers, the Go programming language supports two types: complex64 (64 bits) and complex128 (128 bits).






	
Boolean data type: A data type that has one of the two possible values, true or false. It is widely used for logical operations, we will see a lot of examples later in this chapter. Go programming language supports one Boolean data type: bool.


	
String data type: Sequence of alphanumeric text or other symbols. Examples of strings are Hello World!, DS27051989, and banicina@gmail.com. Strings are mostly used for processing all kinds of textual data or to display different kinds of information to the users of the application (we will see more of that in this and the following chapters). Go programming language supports one type: string.





String is a sequence of characters, but Go has no data type that represents a single character (char in other programming languages). Characters are supported through two special aliases of integer types:




	
Byte: Alias for uint8, represents ASCII character (by ASCII standard, each character is an 8-bit code).


	
Rune: Alias for int32, represents Unicode character encoded in UTF-8 format.





These aliases are introduced to make a clear distinction between characters and integer values. Generally, it will be hard to understand and maintain code where we use integer variables to store characters. Rune is a default type for characters, so if we do not explicitly declare the type for the variable with character value, Go will assign rune type to that variable (we will learn how to declare a variable soon).


All basic data types have a default value (this is often referred to in the documentation for Go programming language as zero value). The default value is 0 for numeric types, “” (empty string) for strings and false for Boolean.


If we do not assign a specific value to the variable, the default one will be assigned. There is no special value for that situation (like undefined) and only pointers can have nil value. We will talk more about pointers later in this chapter.


Variables


Variables can be defined as containers for storing data values. The variable value can be changed after the initial value is set. The var statement can be used to declare a variable or list of variables, with the type at the end of it. This code sample will declare four integer variables and one Boolean variable:


var a, b, c int


var d bool


The var statement can include initializers; the number of initializers must be the same as the number of variable names. If the initializer is not present, the default value will be assigned to the variable. Here is the same code block from the previous example with initializers:


var a, b, c int = 1, 2, 3


var d bool = true


To see differences between initialized and uninitialized variables, we can execute this code in Go Playground:


var a int


var b bool


var c = 1


var d = true


fmt.Println(a)


fmt.Println(b)


fmt.Println(c)


fmt.Println(d)


As we can see, default values 0 and false will be assigned to uninitialized variables a and b, while specific values 1 and true will be assigned to initialized variables c and d.


If initializers are present, we can omit type and the variable will inherit type from the initializer. So, the previous example can be shortened:


var a, b, c, d = 1, 2, 3, true


Based on where they are declared, we have the following variables:




	
Local variables: Declared and used inside functions. They cannot be accessed from outside of the functions in which they are declared.


	
Global variables: Declared in a package or outside of functions. They can be accessed globally from other packages (must be exported).





In this example, a is global, while b is a local variable:


var a int





func main() {


var b int


}


Variable can be declared and initialized with a short assignment statement. The following two statements are equal:


var i int = 1


i := 1


In the Go programming language, all statements outside the functions must begin with the keyword var, func, or const. So, short assignment statements can be only used for local variables.


Type conversion


Many programming languages support a concept called implicit conversion. If we have a numeric variable that is floating point type and try to assign value 7 (integer value), the programming language which supports implicit conversion will convert the value to 7.0 and assign it to a variable. Go does not support implicit conversion, so the value must be explicitly converted to a specific type.


If we try to execute the following statements, the compiler will report an error on the second one:


var a int32 = 7


var b float32 = a //fails


Expression T(v) will convert value v to type T. Conversion from our example (integer to floating point) can be executed with this statement:


var b float 32 = float32(a) //succeeds


Constants


Constants are values that cannot be changed once defined. Constants are declared like variables but with the const keyword instead of var and cannot be declared with a short statement. We can create constants from any basic data type, like integer constants, or floating-point constants. String constants are called string literals. Usually, constant names are written in capital letters with the underscore character used to separate words.


These statements will create string literal and floating-point constants:


const HELLO_WORLD = “Hello world!!!”


const GOLDEN_RATIO = 1.618


Very often, we want to assign successive integer values to constants, like this:


const (


ZERO = 0


ONE = 1


TWO = 2


)


This can be done more elegantly with iota keyword. It represents successive integer constants (0, 1, 2, …), so the previous code segment can be written in the following way:


const (


ZERO = iota


ONE


TWO


)


Value 0 is always the first one in sequence, but we can use arithmetic operators to start from another value, like in this example:


const (


ONE = iota + 1


TWO


THREE


)


The iota will be reset to 0 whenever the keyword const appears in the source code. In the following example, value 0 will be assigned to constants ZERO and TEST:


const (


ZERO = iota


ONE


TWO


)


const TEST = iota


Complex data types


Complex data types are composed of basic data types. Go supports the following complex data types: pointers, structs, arrays, slices, and maps. Now, we will take a look at each of them in detail.


Pointers


Pointers are complex data types that store the memory address of a value. Simply put, if we have a value stored in the memory address as 100 and a pointer to that value, the pointer value will be 100 (Figure 1.2). The default value for a pointer is nil. Nil pointer does not point to any value:




[image: ]




Figure 1.2: Pointer and integer variable in memory


To declare a pointer, we must add * (asterisk) before type. This will declare an integer pointer:


var pi *int


Go has two pointer operators:




	
Operator & (ampersand) will get the address of the variable. We use this operator to initialize or assign a value for a pointer (i is an integer variable): pi = &i.


	Operator * (asterisk) will get us access to the pointed value. We can use it for the following operations:



	Read value through pointer: i := *pi



	Set value through pointer: *pi = 27










In the following example, we will use a pointer to change the value of the integer variable (value 27 will be displayed on the standard output at the end):


func main() {


var i int = 18


var pi *int





pi = &i


*pi = 27


fmt.Println(i)


}


Some programming languages support pointer arithmetic. Pointer arithmetic allows us to perform simple arithmetic operations on pointers such as increment, decrement, addition, and subtraction. These operations will not change pointed values, but they will change the pointer value. Let’s assume that the pointer points to memory address 100. If we perform an increment arithmetic operation on a pointer, it will now point to address 101. Designers of the Go programming language wanted to keep things as simple as possible. So, they decided that pointer arithmetic is too complex and is (currently) only supported through unsafe package. As the name suggests, usage of this package is not recommended and should be avoided (if possible).


Struct


Struct (shortened of structure) is a complex data type that can be defined as a collection of fields. Fields can be of different types. We use type and struct keywords to declare struct, with the name in between them. Fields are declared between curly brackets in classical name-type declaration style. Here is an example of struct person which has two fields, name and age:


type person struct {


name string


age int


}


We can access struct fields with the . (dot) operator. We can access the field in order to set, update, or read its value. This example will update the age of the created person:


p := person{


name: “John”,


age: 27,


}


p.age = 30


We can declare a pointer to a struct and use the pointer to access fields. If we follow all pointer rules described in the previous section, the statement that will update the value of the field age should be (pp is pointer to person):


(*pp).age = 35


The previous statement is a little bit complex and unreadable. So, in Go, the design statement is simplified:


pp.age = 35


In the example where we created person, we provided values for all fields. In such situations, we can omit the field name from the definition. Also, we can provide values only for certain fields (in this case, we cannot omit field names) or omit values for all fields. Default values will be assigned to the omitted fields. Here are a couple of examples of how we can define struct variable:


p1 := person{“John”, 27}


p2 := person{name: “Jake”}


p3 := person{}


One important thing, export rules are also applied to struct fields. Even if struct itself is exported, if the field is not exported, other packages will not be able to access it.


Arrays


Arrays are complex data types that can be defined as a collection of elements of the same type. Individual elements can be referenced by an index that corresponds to the position of the element in the array. The first element of the array will have the index 0.


In order to declare an array, we must provide the array length (between square brackets) and the type of element. This is how we can declare an array of six integers:


var a [6]int


Elements of the array can be initialized. Without initialization, default values will be assigned to elements (in our case, all six elements of the array will be initialized with the value 0). The next example will create and initialize an array of six integers:


a := [6]int{27, 5, 18, 1, 21, 10}


Arrays have one critical limitation. Length is a part of the array type, so the array cannot be resized. This means that we need to know the exact size of the array during the development of our program, but that is not always possible. Fortunately, Go provides a solution in the form of slices.


Slices


Slices are complex data types, loosely tied with arrays. As we mentioned before, arrays have fixed sizes. In order to provide a workaround for this limitation, slices are introduced. They do not store any data, they just point to an array. If we need a larger slice, a new underlying array will be initialized. Any change to the array will affect all slices that reference it.


Slice is defined with two attributes, length and capacity. Length represents the number of elements that the slice contains, while capacity represents the number of elements in the underlying array (counting from the first element of the slice). Length and capacity attributes can be obtained with len(s) and cap(s) functions, where s represents a slice.


This small block of code will create a slice where the length is equal to 5 and the capacity is equal to 7:


a := [10]int{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}


s := a[3:8]


We can use the make() function for slice creation. The function receives three arguments, slice type, length, and capacity. Capacity can be omitted and in that case, the length value will also be assigned to capacity. When we use a make() function, a new array will be created, initialized with default values for the specified type, and returns a slice that refers to an array. Here is a simple example of how to create an integers slice with the make() function:


s = make([]int, 10)


It is possible to create a slice from another slice. The new slice will reference the same array as the original slice.


Slices are defined with two indexes which represent low and high bound, respectively. Element of the original array with index defined with low bound will be included in the created slice. On the other hand, the element of the original array with an index defined with a high bound will be excluded from the created slice. In the next example, a new slice will be created and will include elements with indexes from 1 to 5 of the underlying array:


var s []int = a[1:6]


Bounds can be omitted, although colon must be present. When some of the bounds are omitted, the default value will be used. The default value for the low bound is 0, while the default value for the high bound is equal to the length of the underlying slice. So, for the array of length 5, these slice expressions are equivalent:


var s1 []int = a[0:5]


var s2 []int = a[:5]


var s3 []int = a[0:]


var s4 []int = a[:]


We can initialize slices, similar to arrays. This expression will create an array of length 5 and a slice that references that array:


s := []int{1, 4, 9, 16, 25}


We can use the append() function to add elements at the end of the slice. The function receives two arguments, a slice and a list of elements to append. The append function will return a slice that contains all elements of the original slice and new values. If the underlying array is too small for all new elements, a new bigger array will be allocated. We should be very careful with the append() function in order to avoid unnecessary memory allocation. This expression will add two elements to the integer slice:


s = append(s, 18, 27)


It is also possible to append one slice to another in the following way:


s1 := []int{1, 2, 3}


s2 := []int{4, 5, 6}


s1 = append(s1, s2…)


The default value for a slice is nil. Nil slices have no underlying array and have a length and capacity equal to zero.


It’s important to point out that slices can contain any type, including other slices.


Maps


Maps are complex data types used to store key-value pairs. Each key can appear only once on the map and can be used to find the value paired with that key. The default value for the map is nil. A nil map has no keys and keys cannot be added.


Function make() will create and initialize a map of the given type. The key type is defined between square brackets and the value type is defined at the end. The returned map will be empty. This statement will create and initialize the map with a string key and string value:


var countryMap = make(map[string]string)


Without make() function, the var statement will define a nil map which will be more or less useless.


The following operations can be executed on maps:




	
Insert and update elements: 

countryMap[“fr”] = “France”




	
Get element: 

country = countryMap[“fr”]




	
Delete element: 

delete(countryMap, “fr”)




	
Test if the key is present: 

country, ok = countryMap[“fr”]


If the key is in the map, the value true will be assigned to variable ok and the element value will be assigned to country, otherwise, the value false will be assigned to variable ok and nil will be assigned to country.







The following example shows map creation and usage of described operations:


var countryMap = make(map[string]string)


countryMap[“fr”] = “France”


country := countryMap[“fr”]


fmt.Println(“Country in map is:”, country)


delete(countryMap, “fr”)


if _, ok := countryMap[“fr”]; ok {


fmt.Println(“Country is still in map”)


} else {


fmt.Println(“Country is not in map”)


}


If the code is successfully executed, the following output will be displayed:


Country in map is: France


Country is not in map


If we use integers for keys, they don’t have to be in order (0, 1, 2, 3, 4 …). For example, if we have a map that represents the basketball team (five players), we can use shirt numbers as keys, and player names as values. It is a regular situation that we use these keys: 3, 9, 10, 12, 32. If we need ordered keys, maybe map is not a good solution for our problem and we should use a slice instead.



Control structures



A program can be defined as a set of commands. It is not necessary that these commands will be executed sequentially. Sometimes, a certain block of code should be skipped or executed multiple times. For that reason, all programming languages have control structures that can be used to control execution flow. Go programming language is not an exception; so, we will discuss about Go control structures in the following part of this chapter.


If statement


If is the most common conditional statement in programming languages. If the result of the condition calculation is positive (true), the code inside if statement will be executed. In the next example, value a will be incremented if it is less than 100:


if a < 100 {


a += 1


}


We can add a short statement before the condition. This statement will be executed before the condition, and the declared variable will be visible only in the scope of if statement. Here is an example, where variable a will be incremented, only if the previously calculated value for variable b is less than 100:


if b := a * a; b < 100 {


a += 1


}


We can add the else statement to if statement. Code inside the else statement will be executed if the result of the condition execution is negative (false). In the next example, if the value of variable a is less than 100, the value for a will be incremented, otherwise value a will be multiplied by 5:


if a < 100 {


a += 1


} else {


a *= 5


}


Additionally, we can append if-else statements, but that code will not be readable. If we have a need to create such a construct, it is better to use the switch statement (we will see this statement later). Here is an example of an if-else statement that will return the country name based on the country code:


if code == “fr” {


country = “France”


} else if code == “uk” {


country = “United Kingdom”


} else {


country = “India”


}



Switch statement



The switch statement is an elegant way to avoid the usage of if-else sequences. The sequence of if-else statements from the previous example can be replaced with the switch statement:


var country string


switch code {


case “fr”:


country = “France”


case “uk”:


country = “United Kingdom”


default:


country = “India”


}


The first case statement whose value is equivalent to the condition expression will be executed. If the value of the code variable is equal to fr, the first case statement will be executed. In some programming languages, all following case statements will be executed unless we put the break keyword at the end of the case statement. In the Go programming language, only the selected case statement will be executed (break is provided automatically). If none of the case statements match the condition, the default statement will be executed.


Usually, switch cases must be constants and all involved values must be integers. Go programming language is much more flexible. We can even use a function call in case statements! It is possible to omit a condition from the switch statement and move it to the case statement. In that situation, the case statement whose condition is fulfilled will be executed. This condition-less switch statement will determine if the number is even or odd:


switch {


case number%2 == 0:


fmt.Println(“Even Number”)


case number%2 == 1:


fmt.Println(“Odd Number”)


default:


fmt.Println(“Invalid Number”)


}



For loop



Often, we need to execute a specific block of code multiple times. Loops are constructs that help us to do that. We can find multiple loops in various programming languages, but to keep things as simple as possible, the Go programming language has only one loop, for loop.


The for loop consists of three statements separated with a semicolon, which comes after for keyword, as we can see in the following code example:


for i:=0; i<10; i++ {


a[i] = i*2


}


The first statement, the init statement, will declare and initialize variables that will be visible in the scope of the loop (integer variable i). Init statement will be executed before the first iteration.


The second statement, condition, has the same role as the condition in if statement. The condition will be evaluated before every iteration and if the result of the evaluation is positive (true), the next iteration will be executed.


The third statement, the post statement, will update conditional and local variables. The post statement will be executed at the end of every iteration. In our example, operator ++ will increment the value of the variable.


The for loop from our example will initialize an integer array with ten elements.


Init and put statements are optional and they can be omitted (in that case, semicolons can be also omitted). We often omit these statements when there is no need to use local variables. This for loop will update the value of the variable result:


for result < 500 {


result *= sum*2


}


Technically, we can also omit conditional statement. But without it, the loop will never stop iterating. These kinds of loops are called infinite loops.


Range is a special form of for loop which is used to iterate over slice and map. For each iteration, two values will be returned, an index and a value (copy of the element at that index). In the next example, we will iterate through slice and sum-only elements on even indexes:


for i, v := range arr {


if i%2 == 0 {


 sum += v


}


}


The variable v is actually a copy of arr[i], so any modification of variable v will not affect the original slice. We can test this with the following code example:


a := []int{1, 2, 3}


for _, v := range a {


v = v * v


}


fmt.Println(a)


In order to modify the original slice, the element must be accessed through an index.


Variable v is allocated only once, it will not be allocated for each iteration, so we should be very careful. In the following example, all elements of the second slice will point to the same variable that holds the last assigned value (three in our case).


a := []int{1, 2, 3}


var b []*int


for _, v := range a {


b = append(b, &v)


}


for _, v := range b {


fmt.Println(*v)


}


The Go compiler does not allow the declaration of unused variables, but sometimes we do not need index or value. They can be ignored by assigning them to the _ (underscore) operator. This operator is also known as a blank identifier.


In this example, we decided to ignore the index:


for _, v := range arr {


sum += v


}


There are situations when it is not necessary to execute all iterations. With the continue statement, the remaining part of the current iteration will be skipped, and the next iteration will be executed. In the following example, all slice elements, except one on index 3 will be printed on standard output:


a := []int{1, 2, 3, 4, 5}


for i := 0; i < 5; i++ {


if i == 3 {


 continue


}


fmt.Println(a[i])


}


The break statement will terminate the execution of the current loop. This can be useful when we are looking for the index of an element with a specific value. When we find that element, we can stop the search and there is no need to execute the remaining iterations. In the next example, the loop will be terminated when the value of variable i is equal to 3:


for i := 0; i < 5; i++ {


if i == 3 {


 break


}


fmt.Println(a[i])


}


Defer


The defer statement will delay the execution of a function until the surrounding function is completed. Although execution is postponed, function arguments will be evaluated immediately.


Defer is quite useful in situations when we should execute a specific function call after the execution of the surrounding function. It is often used to close files, streams, or connections to a database because defer will be executed even if the function fails; so, we do not need to handle all situations when something goes wrong, one simple defer statement will take care of it.


In the following example, the execution of fmt.Print(2) will be postponed until main() function is concluded:


func main() {


fmt.Print(1)


defer fmt.Print(2)


fmt.Print(3)


}


Value 132 will be displayed on the standard output.


We can have more than one defer statement inside a function. The function call will be pushed onto a stack. The stack can be defined as a collection of elements, where the most recently added element will be removed first. This principle is called LIFO – Last in, first out.


The following code snippet will print 1342 on standard output. The first print will be executed, the second one (under defer) will be pushed onto the stack, the third print will be executed, and the fourth one will be pushed onto the stack. Deferred function calls on the stack are presented in Figure 1.3. Since the fourth print is pushed onto the stack last, it will be executed first:


func main() {


fmt.Print(1)


defer fmt.Print(2)


fmt.Print(3)


defer fmt.Print(4)


}




[image: ]




Figure 1.3: Deferred function calls on the stack


If defer is declared after return, the function call will not be executed, because defer statement will not be executed, and the function call will not be pushed into the stack. In the following example, first call of the testDefer() function will execute all four calls of the Print() function, and the second call will not execute the fourth one:


func testDefer(val int) {


fmt.Print(1)


defer fmt.Print(2)


fmt.Print(3)





if val == 5 {


 return


}





defer fmt.Print(4)


}





func main() {


testDefer(3)


testDefer(5)


}


Value 1342132 will be displayed on the standard output.


Functions


Functions are named sections of programs that perform specific tasks. We usually write functions to avoid code repetition (by moving a block of code that is repeated through a project or package into a function) or to make the code more readable (by moving a huge block of code that performs a specific task into a function). In the Go programming language, functions are defined with the keyword func.


Arguments are the values provided to a function in order to obtain the result. The function can have zero or more arguments. Here are examples of three functions, the first one without arguments will return the value for the mathematical constant pi, the second one with one argument will increment the value of the integer variable, and the third one will return the sum of two integers passed as arguments:


func pi() float64 {


return 3.14159


}


func inc(a int) int {


return a + 1


}


func add(a int, b int) int {


return a + b


}


The return value type is at the end of the declaration after arguments and before the function body that is between the curly brackets.


If we have multiple arguments of the same type (like, in the third example with add() function), we can shorten the argument declaration by omitting the type for all variables except the last one (we see a similar thing for the declaration of variables, where we had a list of variable names before type). Here, is add() function with shortened declaration:


func add(a, b int) int {


return a + b


}


In all previous examples, functions returned one result. But functions can return multiple results. Here, is an example of a function that returns two results:


func swap(a, b int) (int, int) {


return b, a


}


We can also create functions that do not return any results. For these functions, we just need to omit the result type at the end of the declaration. The main() function is a good example of a function without a return value.


We can also name return values. Named return values will be treated as variables declared on the top of the function. With named return values, we can use return without arguments, which will return values assigned to named return values. Argument-less return is often referred to as a naked return. Here, is the add() function from previous examples with named return values:


func add(a, b int) (c int) {


c = a + b


return


}


Functions are the values, so they can be passed around like all other values. We can use functions as arguments in other functions or as return values. Here, is an example where we pass one function as an argument of another function:


func calc(fn func(int, int) int) int {


return fn(7, 18)


}


func main() {


add := func(a, b int) int {


return a + b


}


fmt.Println(calc(add))


}


This example will display the sum of numbers 7 and 18 on standard output. As we can see, the function is assigned to a variable name, but we do not define the function name. These functions are called anonymous functions.


In the next example, function multiply() will return a function based on the value of param argument. If the passed value is an even number, a function that duplicates the integer value will be returned, otherwise, a function that triples the integer value will be returned:


func multiply(param int) func(int) int {


if param%2 == 0 {


return func(a int) int {


return a * 2


}


} else {


return func(a int) int {


return a * 3


}


}


}





func main() {


double := multiply(2)


triple := multiply(3)


fmt.Println(double(5), triple(5))


}


In the previous example, values 10 and 15 will be displayed on the standard output.


Arguments are passed by value, so each time a function is called, a new copy of the passed argument is created. The function will work with that copy, so if we forgot to return the updated copy, changes will have no effect. But if we pass a pointer as an argument, a copy of the memory address will be created so that all changes will take effect on the original variable, pointed by the original pointer. It’s good practice to use pointer arguments, especially for large structures in order to avoid unnecessary copying and memory consumption.


The following example shows the difference between value and pointer arguments. Function with value argument double() will multiply copy of the passed argument, so the first Println() will display value 5 on standard output. On the other hand, the function doublePointer() will multiply the value stored on the address referenced by the pointer, so the second call of Println() will display value 10:


func double(a int) {


a = a * 2


}





func doublePointer(a *int) {


*a = *a * 2


}





func main() {


a := 5


double(a)


fmt.Println(a)





doublePointer(&a)


fmt.Println(a)


}


If we slightly modify functions double() and doublePointer() with the addition of Println() call as the last expression in each function, the following values will be displayed on standard output: 10 5 10 10


As we can see, a copy of the value will be properly updated, but that result will be lost. Here are the modified functions:


func double(a int) {


a = a * 2


fmt.Println(a)


}





func doublePointer(a *int) {


*a = *a * 2


fmt.Println(*a)


}


Functions with slice arguments are interesting ones. Slices have pointers to underlying arrays which means that the content of the slice can be changed even if the slice is passed as value, but capacity and length cannot. In the following example, the call of Println() inside modify() function will display a slice with the modified first element and new element appended at the end, while the second Println() inside the main function will display a slice only with the modified first element:


func modify(s []int) {


s[0] = 4


s = append(s, 5)


fmt.Println(s)


}





func main() {


s := []int{1, 2, 3}


modify(s)


fmt.Println(s)


}


Functions can reference a variable from outside their body, these functions are called closures. Each function value has its own copy of referenced variable and can access it and assign values to it. We can say that closure is bound to a variable. Here is an example of the function that returns a closure. As we can see, the anonymous function is bounded with variable a:


func calc() func() int {


a := 0


return func() int {


a += 1


return a


}


}



Conclusion



Now we are familiar with the basic concepts of the Go programming language. With the knowledge collected in this chapter, we can develop some simple applications. But our final goal is to develop something a little more complex. The next chapter will level up our knowledge by introducing some advanced concepts of the Go programming language.


References




	http://reneefrench.blogspot.com/


	https://creativecommons.org/licenses/by/3.0/


	https://insights.stackoverflow.com/survey/2021#most-popular-technologies


	https://www.linkedin.com/jobs/go-developer-jobs?position=1&pageNum=0


	https://www.toptal.com/back-end/server-side-io-performance-node-php-java-go





Points to remember




	Go is a relatively young and easy-to-learn programming language with good support for most common programming problems through the standard library.


	A package is a basic unit for Go programs. Everything inside the package that starts with a capital letter will be automatically exported and can be used in other packages.


	The array has a fixed size; when this is not flexible enough, we should use a slice.


	Defer will put function calls on the stack. The function will be executed when the surrounding function returns in the Last In First Out (LIFO) order.


	We should use pointer arguments, especially for large structures in order to avoid unnecessary copying and memory consumption.






Multiple choice questions





	Which animal is the official mascot of the Go programming language?



	Lion


	Turtle


	Meerkat


	Gopher






	What is not a keyword from the Go programming language?



	for


	func


	while


	var






	What is the default value for bool type?



	nil


	true


	“false”


	false






	Which two pointer operators do we have in Go?



	& and *


	* and <-


	! and <-


	! and &






	Which values will be displayed on the standard output when the following code segment is executed?

a := [10]int{7, 13, 14, 20, 12, 32, 2, 10, 27, 9}


s := a[2:8]


fmt.Println(len(s))


fmt.Println(cap(s))




	
2 and 8



	
6 and 8



	
2 and 10



	
8 and 10







	
Which statement is not true for functions in the Go programming languages?



	A function can be passed as an argument to another function.


	A function can be returned from another function.


	A function can be assigned to a variable.


	All of the above.










Answers




	d


	c


	d


	a


	b


	d





Questions




	Which numerical types are supported by the Go programming languages?


	How can we export functions or constants from the package?


	Why aliases byte and rune are introduced?


	What are the differences between local and global variables?


	Does Go support implicit conversion?


	When will the default statement be executed in switch statement?


	How many arguments can a function have?


	How many values a fun can return?


	What is an anonymous function?


	What are closures?






Key terms





	
Keywords: Special words that help the compiler to understand and properly parse code.


	
Packages: Basic building blocks for Go programs where all variables, constants, and functions are declared and defined.


	
Variable: Container for storing data values.


	
Constants: Values that cannot be changed once defined.


	
Pointer: Complex data type that stores the memory address of a value.


	
Struct: Complex data type that represents a collection of fields.


	
Array: Complex data type that represents a collection of elements of the same type.


	
Slice: Complex data type that does not store any data, it just points to an array.


	
Map: Complex data types used to store key-value pairs.


	
If: Conditional statement. The code inside the statement will be executed only if the condition is fulfilled.


	
Switch: Control statement that executes a specific logic based on the condition.


	
Defer: Statement that will delay the execution of a function until the surrounding function is complete.


	
Functions: Named sections of programs that perform specific tasks.







OEBPS/nav.xhtml




Table of Contents





		Cover Page



		Title Page



		Copyright Page



		Foreword



		Dedication Page



		About the Author



		Technical Reviewers



		Acknowledgements



		Preface



		Errata



		Table of Contents



		1. Basic Concepts of Go Programming Language



		Introduction



		Structure



		Fundamentals of Go programming language



		Advantages of Go programming language



		Go Playground



		Keywords



		Packages



		Basic data types



		Variables



		Type conversion



		Constants







		Complex data types



		Pointers



		Struct



		Arrays



		Maps







		Control structures



		If statement



		Switch statement



		For loop



		Defer







		Functions



		Conclusion



		References



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		2. Advanced Concepts of Go Programming Language



		Introduction



		Structure



		Methods



		Interfaces



		Generics



		Panics



		Concurrency



		Goroutines



		Channels



		Mutex



		WaitGroup



		Go Scheduler



		Garbage collector







		Go modules



		Conclusion



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		3. Web Servers



		Introduction



		Structure



		Servers



		Web servers



		Proxies



		REST



		HTTP



		HTTP flow



		HTTP messages



		HTTP methods



		HTTP status codes



		Additional functionalities



		HTTP and REST







		JSON



		JSON and Go







		Routing



		Conclusion



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		4. Setting up a Project With Go Programming Language



		Introduction



		Structure



		Go installation



		Linux



		Windows



		Mac







		Setting up an IDE



		IDE installation



		Visual Studio Code extension for Go







		Project creation



		Package creation



		Standard library



		Third-party libraries



		net/http package



		Constants



		Variables



		Functions



		Types



		Simple HTTP server







		Conclusion



		References



		Points to Remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		5. Design of Web Application



		Introduction



		Structure



		Software development life cycle (SDLC)



		General approaches for application design



		Micro-kernel (plug-in) design pattern



		Command and Query Responsibility Segregation (CQRS) design pattern



		Combine (hybrid) design pattern



		Layered design pattern



		Controller (handler) layer: handling HTTP requests



		Service (core) layer: business logic



		Repository (data) layer: queries and database operations



		Database layer







		Planning phase



		Defining business requirements



		Defining use cases







		Design phase



		High-level system design



		API design



		Database design







		Conclusion



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		6. Application Layers



		Introduction



		Structure



		Code organization



		Models



		Main function



		Configuration



		HTTP server



		Initialization



		Start







		Development of controller layer



		Runners controller



		Results controller







		Development of service layer



		Runners service



		Results service







		Conclusion



		References



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		7. Relational Databases and Repository Layer



		Introduction



		Structure



		Relational databases



		SQL



		SELECT command



		Modification commands



		Aggregate functions



		JOIN



		Table definition commands







		PostgreSQL



		Setting up a database



		Repository layer



		Database layer







		MySQL



		Setting up a database



		Repository layer



		Database layer







		Improvements



		Conclusion



		References



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		8. NoSQL Databases and Repository Layer



		Introduction



		Structure



		NoSQL databases



		MongoDB



		Database design



		Read operations



		Write operations







		Aggregation pipeline



		Setting up a database



		Repository layer



		Database layer



		DynamoDB



		Database design



		Read operations



		Write operations



		Setting up a database







		Repository layer



		Database layer







		Improvements



		Conclusion



		References



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		9. Testing



		Introduction



		Structure



		Testing fundamentals



		Manual testing



		Testing with Go



		Unit tests



		Integration tests







		Testing with Visual Studio Code



		Conclusion



		References



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		10. Security



		Introduction



		Structure



		Authentication and authorization



		API design



		Database design







		Models



		HTTP server



		Controller layer



		Users controller



		Other controllers



		Service layer



		Setting up a database



		Repository layer



		Testing







		Conclusion



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		11. Deploying Web Application



		Introduction



		Structure



		Docker



		Setting up Docker



		Docker commands



		Dockerizing application







		Docker compose



		Kubernetes



		Setting up a local Kubernetes cluster



		Kubectl commands



		Deploying on Kubernetes







		Google Cloud Platform



		Setting up a database



		Deployment of a web server application







		Conclusion



		References



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		12. Monitoring and Alerting



		Introduction



		Structure



		Prometheus



		Prometheus query language



		Setting up Prometheus



		Custom Prometheus metrics







		Grafana



		Setting up Grafana



		Creating Grafana dashboard



		Alerting







		Conclusion



		References



		Points to remember



		Multiple choice questions



		Answers



		Questions



		Key terms







		Index











Guide





		Title Page



		Copyright Page



		Table of Contents



		1. Basic Concepts of Go Programming Language











OEBPS/images/logo.jpg





OEBPS/images/1.1.jpg





OEBPS/images/1.2.jpg
pi = 100

i=27

50

100





OEBPS/images/1.3.jpg
fmt.Print(4)

fmt.Print(2)






OEBPS/images/cover.jpg
ANVA

Modern

Web Development
with

Build real-world, fast, efficient

and scalable web server apps

using Go programming
language

/ Dugan Stojanovié





