

[image: image]






Ultimate Ember.js
for Web App
Development


[image: ]


Leverage Convention Over Configuration
Paradigm to Develop, Build, and Deploy
Complex Applications Using Ember.js


[image: ]


Aswin Murugesh K




[image: ]




www.orangeava.com









Copyright © 2024 Orange Education Pvt Ltd, AVA™


All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.


Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.


Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.


First published: March 2024


Published by: Orange Education Pvt Ltd, AVA™


Address: 9, Daryaganj, Delhi, 110002, India


275 New North Road Islington Suite 1314 London,


N1 7AA, United Kingdom


ISBN: 978-81-97081-92-7


www.orangeava.com









Dedicated To


My Beloved Wife:


Dr. Sowndharya Meera


and


My Family and Friends











About the Author





Aswin Murugesh K holds a Bachelor degree in Information Technology from the College of Engineering, Guindy, Chennai, India. He has worked as an intern and employee in top MNCs like Amazon, Oracle and also has experience working in startups of different stages, thus having an overall knowledge of the industry. He then started his own company back in 2019, focusing on developing quality products for their customers. He started Kuriyam.io as a service-based company and has recently transformed it into a product-based company in 2023 with their first in-house product, Pinaippu, that focuses on WhatsApp marketing and automation.


Through his company, Aswin helps nurture college students by providing internships for them to learn hands-on about working in a nimble startup environment and learning different technologies. He is an active contributor to Stack Overflow and also provides paid mentorship for Python and JavaScript based projects through online platforms like Codementor.


Right from his college days, Aswin has been a part of the Free and Open Source (FOSS) community and has been interacting with students from colleges across Tamil Nadu to teach them the importance of open-source software and tools in the software community. He also conducts sessions teaching different programming languages like Python, JavaScript, and different frameworks like Ember.js, React.js, Django and Flask. He always insists on students learning the “How” in everything instead of just the “What”. His teachings always focus on making people understand how things work, and not just what they do. This will enable the students to become thinkers instead of just doers.


Apart from his technical career, Aswin is an internationally rated Chess player. In his free time, he plays Chess and reads a lot of books. He is reachable in LinkedIn at https://linkedin.com/in/aswinmurugesh.











About the Technical Reviewer





Yamuna is a seasoned professional with 14 years of extensive experience in front-end development. Holding the position of Technical Lead at HappyFox, she boasts over 13 years of comprehensive web development expertise alongside a robust background in physics. With a passion for problem-solving and analytical thinking, Yamuna excels in crafting high-quality, secure, and user-friendly features using Ember, a cutting-edge JavaScript framework. Her enthusiasm for embracing new technologies is only rivaled by her dedication to imparting knowledge to others.


In her role as Technical Lead, Yamuna undertakes a multifaceted approach, encompassing code review, release management, and seamless coordination with backend teams. Notably, she has spearheaded the implementation of generic solutions addressing critical web application security concerns, including XSS, CSRF, and CSP. Yamuna's proficiency extends to end-to-end feature development, leveraging Python and Ember, while her skill set encompasses HTML5, CSS, Javascript, and Jquery, among others.


A pivotal member of the development process team, Yamuna has played a pivotal role in establishing best practices for REST APIs and elevating code efficiency and quality. Her commitment to fostering teamwork, collaboration, and innovation is evident in her efforts to cultivate a positive and inclusive work environment for her team members.


Having made significant contributions during her tenures at Zoho and HappyFox, Yamuna is now eagerly seeking a new and exciting role where she can continue to leverage her expertise, drive, and passion for excellence in web development. With a proven track record of success and a steadfast commitment to professional growth, Yamuna stands ready to make a meaningful impact in her next endeavor.











Acknowledgements





My experience writing Ultimate Ember.js for Web App Development has been a wonderful journey, and I am grateful to everyone in my life who have played a role in shaping my technical skills and guiding me in my constant pursuit of knowledge. This book wouldn't have been possible without the support and expertise shared by many.


Firstly, I would like to thank the Ember.js community and all collaborators involved in creating this wonderful framework. The official documentation of Ember.js, available at https://guides.emberjs.com/release/ has been a very valuable resource in helping me stay true and accurate to the excellence of the framework.


I thank my family for their ever-present support. Especially, I wish to thank my wife Meera, who has been a source of strength throughout the journey of writing this book, my parents, teachers, relatives and friends who have always encouraged me in my endeavors in life. Special thanks to my mentors Vysakh Sreenivasan and Yamuna Subramaniam (the technical reviewer for this book) for being a vital part of my journey with Ember.js.


I would like to extend my appreciation to the publication house for providing me with the opportunity to showcase my knowledge in such a way as to contribute to the community by helping fellow developers learn web development. It was their constant support and guidance that made me achieve my goal of writing my first book.


Finally, to the readers, thank you for choosing this book as your source of knowledge. May it be a valuable companion on your journey to mastering Ember.js and navigating the dynamic world of web development.











Preface





In this fast-evolving world of web development, there are so many new frameworks being released that choosing the right framework for your project is of utmost importance. Introducing Ember.js, the battle-tested frontend framework that can help you build your applications with speed, in the right way. In Ultimate Ember.js for Web App Development, we will take you through the journey from being a beginner to becoming a master of the Ember.js framework.


This book consists of 10 chapters. Each of the chapters covers a specific module or topic about the framework, from the basics of Web Development to the detailed internals of Ember.js and also the process involved after the development is complete, like the testing and deployment steps. From beginners to developers who already have knowledge of Ember.js, this book has something for any developer eager to learn something new.


Chapter 1 Introduction to Ember.js: In the first chapter, we will take you through the basics of JavaScript and Web Development, the types of Web Applications available, the different components of a web application, and so on. We will list some of the popular frontend frameworks widely used in the market and discuss the advantages of Ember.js and why it can be a right fit for your project.


Chapter 2 Ember CLI and Local Setup: This chapter talks about Ember CLI, a Command Line Interface that is a package used to interact with and manage your Ember application. We will discuss in detail about the wide variety of options presented by the tool, and we will also take you through the process of setting it up locally and creating your first Ember.js application.


Chapter 3 Ember.js Routing: In this chapter, we will discuss in detail about Ember Routes. We will show you the different types of Routes that can be setup in the application, how you can create dynamic URLS and load specific data based on the URL, and display it to the end user through Templates.


Chapter 4 Ember.js Components Templates: Components are the basic building blocks of your Ember application, and we will dig deeper into building Components, adding dynamicity to the Templates and handling interactions between the Components and Controllers and between Components themselves. We will also learn about creating helpers that facilitate calling dynamic JavaScript functions from within Templates.


Chapter 5 Ember Data and Services: Ember Data is the gateway for connecting your Ember application with a persistent data source and loading and modifying the data the user sees in the application. We will discuss the various functionalities offered by the Ember Data Store for authenticating and interacting with APIs, and we will also look at Services in Ember, a special type of singleton object that can be called from anywhere in the application.


Chapter 6 Configuring your Ember App: In this chapter, we concentrate on the post development activities of an application, the modifications or enhancements you can do to make your application ready for deployment.


Chapter 7 Testing Ember.js Apps: Testing is a vital piece in the Software Development lifecycle, as it helps you keep your application secure and up-to-date with requirements. This chapter talks in detail about the basics of testing, the kinds of testing in Software Development. Then we discuss testing in Ember.js, in particular, the different types of tests you can write for each module present in the framework.


Chapter 8 Ember Inspector: This chapter is about Ember Inspector, a tool used to monitor the performance of your application and to debug issues with your code. We will dive deep into the features available in this tool, how you can use it to gain knowledge of the different objects present in your application, the data that is loaded in the application, and so on.


Chapter 9 Build and Deployment: This chapter shows the steps involved in generating a build for your application and then deploying your application to different cloud hosting providers for everyone to access the application.


Chapter 10 Conclusion: The final chapter concludes the journey by summarizing the concepts we have learned so far in this book. We discuss some of the best practices recommended by the framework and also guide you through the process of creating an Ember addon. We will then provide information on how you can contribute as a developer to this great framework.


This book contains live examples of building a sample project to learn the concepts by doing as and when you learn about them. We have also provided exercises at the end of each chapter to encourage you to validate your understanding of the chapter and tickle your brain with questions that encourage you to research further on certain topics. The live examples and the application built through the process of this book are available at https://github.com/aswinm/sample-ember-application. Happy coding!











Downloading the code
bundles and colored images





Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:


https://github.com/ava-orange-education/Ultimate-Ember.js-for-Web-App-Development




[image: ]




The code bundles and images of the book are also hosted on
https://rebrand.ly/dc9a41




[image: ]




In case there’s an update to the code, it will be updated on the existing GitHub repository.


Errata


We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :


errata@orangeava.com


Your support, suggestions, and feedback are highly appreciated.











DID YOU KNOW


Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.


At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.


PIRACY


If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.


ARE YOU INTERESTED IN AUTHORING WITH US?


If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.


REVIEWS


Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!


For more information about Orange Education, please visit www.orangeava.com.












CHAPTER 1


Introduction to Ember.js



Introduction

In this chapter, we will go over the basics of JavaScript, why frontend frameworks are required and the popular web frameworks used in the market. This will give us a perspective of what Ember.js is and how it is different compared to other frameworks to build Single Page Applications. Understanding the basics will help you build applications efficiently using the framework. After that, we will be discussing the basics of Ember.js and the structure of an Ember application.

Whether you are a beginner in JavaScript, or an experienced frontend developer, the goal of this book is to help you become competent to individually develop, build and deploy complex Ember.js web applications following the best practices of the Ember.js community.

Structure

In this chapter, we will discuss the following topics:


	An Overview of Web Development

	JavaScript

	Frontend Applications

	Popular Frontend Frameworks

	Ember.js

	Anatomy of an Ember.js Application




An Overview of Web Development


In recent times, we can see most of our day-to-day activities being moved online. Right from purchasing groceries and clothes, to doing your banking transactions from the comfort of your home, anything and everything is now online. We also spend a lot of time scrolling through social media posts, watching movies on OTT platforms, and more. All these activities can be done online either via a browser like Google Chrome, Firefox, or Internet Explorer, or through different mobile applications.

For all these online activities, the data is not stored in your computer or mobile alone, but in some remote server under the control of the owner of the program. For the scope of this book, we will discuss only programs that you access through browsers. Those are called websites or web applications.

Websites versus Web Applications

The programs you access through browsers can be categorized into websites and web applications. There are a few differences between the two types.

A website is simply a collection of related pages, where a visitor will see text, images, videos, animations, and more. Any code execution happens only on the browser and there are no server-side actions/logic for a website. The pages will be static and read-only, and the content might differ only based on the region/language of the visitor. For example, your personal profile site, or a restaurant’s website that showcases their business timings and menu are websites.

A web application, on the other hand, is more complex and more dynamic. It usually involves authentication. Users who log in will see content based on their history or their user access level. A web application requires a server to handle requests from the client and respond accordingly. Code executions happen both on the server and the browser. For example, social media platforms where the feed is personalized for the user, or a customer support portal where every user sees data only based on their access level, are examples of web applications.

Defining Web Development

Web Development refers to the process involved in developing, building, and maintaining websites and web applications. It is the creation of an application that is accessible through the internet.

A web application involves the following components:


	Frontend/Client Side

	Backend/Server Side



The following figure depicts a typical architecture of a Web application. This is how the client-side and server-side work together to store and retrieve data that is shown to the user:


[image: ]


Figure 1.1: Architecture of a Web application

Frontend/Client Side

The client side is the part of the application that the end user sees in a browser. It handles the user interface and user interactions. This allows for a responsive and interactive user experience, as the client-side code can handle events, make requests to the server, manipulate the page content, and update the user interface in real-time. Frontend uses the following languages:


	
Hypertext Markup Language (HTML): HTML is used to define the base structure of a web page using a series of elements called HTML tags.

	
Cascading Style Sheets (CSS): CSS is used to style the web page. It enables the separation of the structure of the page and presentation of the page and defines how each component of the web page should look.

	
JavaScript: JavaScript is a scripting language that is used to make web pages interactive and dynamic. JavaScript is used to dynamically alter the elements of an HTML page, also called a Dynamic Object Model (DOM) in the runtime. We will look into detail on JavaScript later in the chapter.



Backend/Server Side

The server side is the part that the end user does not see or interact with directly. The frontend part of the web application connects with the backend through an Application Programming Interface (API). APIs can be understood as a contract of services between the frontend and backend, which allows them to communicate with each other through requests and responses. The server side receives the requests, processes them, executes business logic required by the application, and also takes care of connecting and interacting with the database for storage and retrieval of data.

It is common practice that databases are accessible only via the backend and not directly from the frontend, due to security reasons. The server side concentrates on efficiently executing the business logic and securing the data from the outside world. Some of the common languages and frameworks used for the backend are:


	JavaScript

	Node.js

	Express.js





	Python

	Django

	Flask





	Ruby

	Ruby on Rails







JavaScript

JavaScript is the language of the web. It is an interpreted language released in 1995 by the networking company Netscape. Initially, JavaScript engines were used only in browsers. However, in recent times, it has developed to be a full-fledged programming language and is now the most popular programming language, according to GitHub. From the end users’ point of view, every time a browser does something other than display static content, it uses JavaScript. Studies state that almost 97% of websites and applications use JavaScript.

Considering the scope of the book, we will be discussing the role of JavaScript in just the front end (Client side). JavaScript consists of a variety of inbuilt functions and APIs for manipulating the HTML DOM. First, let’s look at what DOM is.

Document Object Model (DOM)

The DOM is the Object Model for HTML. DOM is a data representation of the HTML page in a tree format. When a browser loads an HTML document, it generates a DOM of the page, which makes it easier for JavaScript to understand and manipulate the HTML elements on the page. Without DOM, JavaScript will not have an idea of the structure of the web page or its contents.

Key Features of DOM

Here are some of the key points that you should know about the DOM:


	
Tree Structure: The DOM represents the HTML or XML document as a tree structure, where each element is a node in the tree. The topmost node is called the “document” node, which represents the entire document. Elements, attributes, and text nodes are represented as child nodes of their parent nodes.

	
Node Objects: Each node in the DOM tree is represented by an object with properties and methods. For example, an HTML element node has properties like tagName, className, and methods like appendChild() to manipulate the node.

	
Cross-Browser Compatibility: The DOM provides a standardized way to interact with web documents, ensuring compatibility across different browsers and platforms. While some browser-specific differences exist, the core concepts and methods of the DOM are consistent.



Consider the following simple HTML code:

<html>

<head>

<title>My Web Page</title>

<link rel=”stylesheet” href=”/link-to-my-css-file.css”>

</head>

<body>

<h1 id=”page-title”>My First Web Page</h1>

<div class=”parent-div”>

<div class=”childdiv-1”>

Child Div 1

</div>

<div class=”childdiv-2”>

</div>

</div>

</body>

</html>

When the preceding HTML page is loaded on the screen, the browser generates the following DOM:


[image: ]


Figure 1.2: Example of a DOM

In the preceding example, you can see how a DOM is mapped from the HTML code provided to the browser. This parsed structure helps JavaScript to select specific elements and manipulate them. There are a few ways to select DOM elements through JavaScript. Here are a couple of examples:

Selecting element by Id

The id attribute of an HTML element should be unique across the page. So, when selecting an element by id, JavaScript expects only one element to be returned. Here is how you select an element by its id:

document.getElementById(“page-title”)

This line will return the JavaScript version of the h1 element from the page as shown in Figure 1.2.

Selecting elements by Class Name

The class attribute can be used to specifically target elements that are assigned to the same class. There can be multiple elements with the same class name. So, this function returns a list of matching elements.

document.getElementsByClassName(“parent-div”)

The preceding code will return a list of all DOM elements that are associated with the class parent-div.

Selecting elements by Tag Name

Instead of the preceding two options, there would be a need to select all elements of a particular tag. This function can be used in such cases.

document.getElementsByTagName(“div”)

This line will return all the div elements present in the HTML page (the parent div and the child divs).

Manipulating the DOM

Now that we’ve seen different ways to select elements from the DOM, here are a couple of functions that we can use to manipulate the selected elements. Once you have access to an element through the DOM, you can modify its content, attributes, and style. For example, you can change the text inside an element, add or remove CSS classes, or modify attribute values. In order to update the text of a particular element, we can use the following line:

document.getElementById(‘page-title’).textContent = ‘Changed Web Page Title’

This will update the text that we see in the title section to “Changed Web Page Title”. Similarly, basic JavaScript can update the content, styling, position, and more, for any element on the page. For example, in order to change the color of the title text using JavaScript, the following line of code can be used:

document.getElementById(“page-title”).style.color = “green”

There are many other capabilities of basic JavaScript, which can make the page very interactive and make the user’s experience pleasant.

Event Handling

Another aspect of JavaScript is to listen for certain events to occur and execute functions on the occurrence of those events. The DOM enables event handling, allowing you to respond to user interactions like clicks, key presses, or mouse movements. You can attach event listeners to elements and define functions to be executed when an event occurs.

For example, let’s say when a user clicks a button, we need to show the current date as an alert to the user. The following JavaScript function will take care of it:

document.getElementById(‘page-title’).onclick = function() {

window.alert(new Date());

}

The preceding code asks JavaScript to listen for a click event on the element with the id page-title and executes the associated function when that event occurs. Similarly, there can be multiple functions associated with the same event for the same element. JavaScript executes each of those functions in the order in which they are registered. This allows validation of form elements, tracking user activity on the screen, and more, through JavaScript.

JQuery

When JavaScript started becoming popular, it was used in a variety of websites for different purposes, like validating user forms, updating the CSS styles of the elements dynamically, and most importantly, loading dynamic data from a backend server into the browser using Ajax requests.

“John Resig”, a developer who was working on multiple JavaScript projects, felt that the syntax of plain JavaScript was too redundant and frustrating. So he released the jQuery library in 2006. jQuery offers easy-to-access APIs for DOM tree traversal and manipulation, creating animations, handling events, and making Ajax requests.

For example, selecting an element based on its div (the equivalent of the previous example):

$(‘#page-title’)

We can see that the code is a lot simpler compared to normal JavaScript. The preceding code indicates that we are selecting the element with the id page-title (# denotes that we are accessing the element by its id). To access all elements that have a particular class, the jQuery syntax is:

$(‘.parent-div’)

Here the .(dot) in front of the selector indicates that we are accessing the element based on the class. Similarly, updating the DOM elements is also easier in jQuery compared to JavaScript. The equivalent of updating the text of the page-title div is:

$(‘#page-title’).text(“Updated Title”)

Event handling syntax for the same event we added earlier, in jQuery format, is as follows:

$(‘#page-title’).click(function() {

window.alert(new Date());

 });

A huge advantage of jQuery is that it enables cross-browser support, handling the differences between JavaScript engines in different browsers. The development of jQuery was a very important step in simplifying the loading of data from different API/server sources. It caused a very important leap to the level where JavaScript is being used now, compared to when it was initially developed.

Frontend Applications

Traditional server-rendered pages require the browser to contact the server with every click. The server generated the HTML code and the browser then rendered the page. It started affecting the user experience as users had to wait for the entire page to reload before they could access the new content/link. Though JavaScript was able to pull data from APIs and update the data through Ajax requests without refreshing the page, it is very difficult to maintain the states of those variables, keep the UI updated based on the variables changing, and more. When there are multiple pages in a web application, even with the support of jQuery, the browser tab has to be refreshed every time the user clicks on a link to navigate to another page in the same application. Every single request had to reach the server, and the server had to process and render the HTML for each request. This impacts the server’s performance and increases the waiting time for the user.

Over time, when web applications became large and complex, it became very difficult to maintain and manage all the code using plain JavaScript or jQuery. So, people wanted an efficient way to manage the complexity on the client side and reduce server dependency for rendering HTML, CSS, and JS, which are all browser-oriented. This led to the development of Web Application frameworks that develop “Frontend Applications”. Frontend applications can be classified into three types: client-side rendering or single-page application, server-side rendering, and static site generation.

Client-Side Rendering /Single-Page Application

A client-side rendering (CSR) application or a Single-Page Application (SPA) is a web app implementation that loads the HTML, CSS, and JavaScript contents of the application for the first time when the user loads the page. Once the contents are loaded, any navigation within the application is automatically handled and the framework itself rerenders the contents of the browser without requiring a page reload. This means that once the app is loaded into the browser, the server has to be contacted only for fetching and updating data. This made the server-side applications to be reduced to being pure API services or data services.

In most of the applications, the same UI elements are reused across different pages. Consider any social media app or any email app that you have used. You can see that the layout of the site remains the same for all pages, be it the logo on top, the menu items, search bar, and others, remain the same, and only the content in the middle of the screen changes based on the links you navigate to. A single-page application takes advantage of this fact and loads the data from the server only based on what needs to be changed when the user navigates between links.

Advantages of SPA

Here are some of the reasons why SPAs became popular and why we need them:


	
User Experience: The main advantage of a SPA is the pleasantness the user feels when using the site. They would not face the pain of waiting for the entire page to load whenever they click a link within the site. Lesser data being loaded from the server means the changes are seen by the user way faster than in a traditional application. Since only some parts of the HTML elements are replaced for every action, the browser rendering time is reduced drastically.

	
Reduced Server Queries: Since the server-side applications need not render the HTML every time now, the overall traffic to the backend reduces even if the number of users remains the same. This means that the companies can save a lot of money while providing a better experience to their users.

	
Independent Development Streams: SPAs decouple the client-side and server-side applications to work independently. The client-side application can concentrate on the user experience and aesthetics, while the server side can concentrate on optimally fetching and storing data. It helps reuse the same backend APIs for both a web application and a mobile application, which was not possible with the traditional architecture.



Disadvantages of SPA

Even though it provides a lot of advantages, there are some cons to the SPA architecture:


	
SEO: Many search engines lack the ability to execute JavaScript when crawling across the web. This means that SPAs will not be indexed by the engines properly since all the data is not rendered from the backend. Google has optimized its crawlers to handle SPAs recently, but SEO remains a problem to be solved for SPA sites. A quick solution to this is to use server-side rendering in our SPAs.

	
JavaScript dependency: SPA is heavily dependent on JavaScript. So if someone has disabled JavaScript in their browser, they will not be able to access the contents of the site at all.

	
Browser resources: Though it is a relief that SPA reduces the load on servers, it instead transfers the execution load to the browsers, which is limited by the configuration of the client system. Loading large applications in older machines might cause a poor experience for the users.



Server-Side Rendering

With single-page applications, there were a couple of problems:


	The site did not get good SEO rankings because of the crawling issues.

	For large applications, the compiled CSS and JS files become very heavy. So initially, the user has to wait for the entire JS/CSS to load before they can see content on the screen.



The page load time is an important factor for SEO. In order to avoid such delays, “Server-Side Rendering” (SSR) came into existence. When a user visits a web page, SSR apps fetch the information required for the page, render the HTML and return the rendered HTML, instead of the basic plain HTML returned by the CSR apps. So, now the user need not wait for the JS to be loaded before seeing any content on the page. The content is rendered as HTML by the server and sent to the browser. So, when the JS files are loaded in the background, the user can still see the contents of the page, which were returned from the server. Once the page is loaded for the first time, the framework then takes control of the tab and takes care of further navigation or API calls. The only difference is the extra effort of rendering the page on the server before giving it to the browser.

This approach also solves the SEO issue, as crawlers will parse the full contents of the page returned from the server. Because of this, all the popular frontend frameworks have the option of setting up Server-Side Rendering.


Advantages of SSR



	
Fast Loading: When the user initially visits a page, they see content almost immediately, as the loaded HTML itself contains all the contents, instead of having to wait for the JS files to load and then paint the content on the screen.

	
SEO: SSR apps are great for SEO, as you can optimize it for SEO similar to optimizing a traditional application.



Disadvantages of SSR


	
Server Dependency: On the first page load, the contents are rendered twice: once on the server, and once more on the browser. This requires an optimally configured server to handle the load, which will also incur monetary costs.

	
UI Compatibility: SSR is not fully compatible with some UI libraries, which rely upon the window and document objects of the browser, since those are not available in node servers.

	
Caching: Since every page returned from the servers is different, SSR app HTML files cannot be cached in CDN services. So, the user cannot enjoy the luxury of loading cached files from the CDN.



Static Site Generation

Static Site Generation (SSG) is a third option, which is best suited for sites displaying static content that does not change based on the user who is accessing the page. For example, a personal profile website, where you list your expertise, projects, and more, or a corporate company’s website that describes the company, team members, contact details, and so forth. The content of these sites always remains the same. Hence, they are best suited for static rendering.

SSG renders the HTML pages on the server, but they are rendered and stored as individual files during the build time itself. So, when the user loads a page, they will get the pre-rendered HTML page directly on the screen. Whenever the content of the page changes, we have to rebuild the app and the rendered pages get updated.

Advantages of SSG


	
Speed: The individual HTML files are generated and stored during the build time. Hence, the pages are cached and loaded from CDNs pretty fast. It accounts for a pretty good user experience.

	
No Server needed: Unlike SSR apps, SSG apps do not need any servers and can be served from any content delivery network or static file storage service like Amazon S3, Google Cloud Storage, and so on.



Disadvantages of SSG


	
No support for dynamic content: The scope of static-generated sites is very limited and when the app becomes a bit complex, requiring dynamic content, it goes out of hand for SSG.

	
Longer build time: Since all the pages are rendered during the build, the time to generate a build increases proportionally to the number of pages and the size of the pages.



Popular Frontend Frameworks

Before looking into Ember, we will look into similar frameworks in the market and how they work, which will help you understand how Ember is different from the others. Comparing multiple frameworks will also give you an idea of different ways things can be handled in solving user problems.

React

React.js is the most widely used framework in recent times. It was initially released in 2013. It was built and, to date, maintained by Meta (Facebook) and a community of developers. React is known for its performance, which targets optimally rerendering only the specific part of the screen which needs change, using its Virtual DOM concept. It keeps a copy of the DOM in memory, known as virtual DOM. When there is something to be changed in the webpage, it creates a copy of the virtual DOM first and compares it with the existing virtual DOM. Now, only the elements that are different from the current virtual DOM are updated in the actual DOM, reducing the effort of repainting the screen. It is also endorsed for its development speed. It uses JSX, which allows writing HTML code directly into JavaScript functions. It is both an advantage and a disadvantage, considering the initial time taken for beginners to learn JSX. It uses the Flux pattern, which is a unidirectional data flow pattern that passes data/variables from parent to child components. Since JSX binds HTML and JS together, there is no Model/View pattern here, as everything is written in the same file.

However, react does not have a strict convention on the architecture of the application, so there is no uniformity in the structure of the app and hence it is difficult to maintain large apps. Popular apps like Atlassian, Airbnb, Facebook, Instagram, and more, have all been built using React. React is suitable for applications that require high user interaction. A simple state management system within React allows you to smoothly rerender pages, which involve a lot of interactive and dynamic elements.

Next.js

Next.js is a framework created by a company named Vercel. It helps to provide support for server-side rendering and static site generation for react-based applications. It is not a standalone framework, but only a framework written on top of React.js. It offers a huge boost in page load time, and SEO, along with better development speed due to its SSR and SSG capabilities. Websites like Loom, HBO Max, and Hulu have been built using Next.js. Next.js can be used when you want to enable SSR or SSG in your React application.

Angular

Angular is the second attempt at a successful framework by Google. They initially released AngularJS in 2010, which was one of the earliest SPA frameworks. They then rewrote and released Angular in 2016, which is built on top of Typescript. Typescript is a superset of JavaScript developed by Microsoft. It offers a type system that does type checks for variables and functions. JavaScript allows you to pass any data type to any variable/function. However, in Typescript, you have to specify the type of parameters passed to a function, and Typescript ensures that the code does not pass data of any other type. It reduces the risk of bugs caused by unexpected data-type behaviors of JavaScript. Angular follows the Model-View-Controller pattern similar to ember, which we will discuss later. Most of the Google websites like Google, Gmail, and other popular sites like PayPal, Forbes, and UpWork are built using Angular.

Vue.js

Vue.js is a lightweight framework developed by Evan You, who was a developer for Google. He mentioned that he wanted to take all the things he liked in Angular and create a lightweight framework from it. It has a lot of similarities to Angular and is easy to develop and deploy because of its lightweightedness. Popular websites like NBC Sports, BMW, and Adobe use Vue.js for their websites. Vue.js is your ideal choice when you want to build simple web applications that need to be built fast.


Backbone.js


Backbone.js is one of the frameworks offering a bit different approach. Unlike Angular/Ember, Backbone uses the Model-view-viewmodel pattern. It aims toward separating the development of business logic from the user interface by creating an intermediate “ViewModel”. The ViewModel is the abstracted version of the View (UI components) which handles the communication between the view and the data model, using a binder. Sites like Trello, Bitbucket, and FourSquare use the backbone or one of its extended versions built by them. You can use Backbone.js in your application to add a structure to your JavaScript code with its MVVM pattern. It is lightweight and easily built and deployed.

Ember.js

Having seen the different popular frameworks available in the market, let’s look into detail about Ember.js. Ember.js is an open-source JavaScript framework that helps build large-scale web applications. It was created by Yehuda Katz, a member of the core team in jQuery, Ruby on Rails, and SproutCore. It is available under the MIT License. Here is the logo of Ember.js:


[image: ]


Figure 1.3: Ember.js Mascot

This is called a “Tomster” and it is the alternative to using the Ember logo. It has been customized by different regions for mascots of their own, but this is the base mascot provided by Ember.js.

History

It was in 2007 that a company named Sproutit created a framework for their mailroom application and named it SproutCore. It was one of the earliest frameworks that introduced the MVC model, which was incorporated in Ember, and other frameworks like Angular too.

When they developed the second version of the same, SproutCore2.0, in May 2011, they decided that to cater to a larger audience with an easy-to-build web framework, they had to make a lot of changes to the existing SproutCore framework. So, they decided to create a new framework with SproutCore as the base and named it Amber.js. Immediately after announcing this change, they received feedback about the name conflict with an existing application - “Amber Smalltalk”. Hence, after receiving feedback on the web, they decided to go with the name “Ember.js”.

The original intention of SproutCore was to help build native-looking applications (desktop applications). But Ember is about building web applications.

Popularity

Ember.js is being used by top software development teams in the world to build large-scale web applications that serve millions of users at a time. To name a few, the following websites have been built using Ember: LinkedIn, Heroku, Cloudflare, Netlify, Intercom, and Apple apps.

At the time of writing this book, the framework has 22.5k stars and 4.3k forks on GitHub. The technology is being used by around 31.6k developers on GitHub. The repository has over 800 active contributors developing the application for a better experience. It has a weekly download rate of 175k and is the most preferred framework for building complex large-scale single-page applications.

Key Features

Here are some of the important features of Ember.js you should know before you start building applications with it.

Convention over Configuration

Ember follows the convention over the configuration pattern. It helps reduce the number of decisions the developer has to make, without reducing the flexibility. It means that Ember generates all the basic codes and connections using the simple inputs provided by the developer, and the developer has to write additional code in specific cases where the convention does not work. There are a couple of advantages to this:


	It gives a well-defined structure to the application so that even a beginner developer cannot stray too far away from the recommended architecture.

	With many AI assistants emerging in the market, it becomes easier for them to suggest/generate code based on patterns of this convention.



We will look into detailed use cases in the later chapters.


Component-Service Framework


Component-Service Framework is a strategy adopted by companies to build large-scale applications by breaking them down into smaller and reusable components. Components are one of the core features of Ember, which help:


	Reusing code in multiple parts of the application.

	Finding bugs is easier since the code blocks are small enough to zero down precisely on the issue.



Two-Way Data Binding

Data binding is a way to keep the data displayed in the UI and the data in the JavaScript in sync. This means that if there is an update in one of the variables of the component, it should reflect automatically in the UI, and similarly the other way around. Ember also offers a strong binding between variables, such that when one variable changes, the other dependent variable changes automatically.

Anatomy of an Ember.js App

In this section, we will look at the core concepts in Ember, what they stand for, and how they work in sync. It is better to know how Ember works before starting to build applications with it. An Ember application consists of the following core concepts:

Router

The router contains the direct mappings to the path entered by the user in the browser. It determines which part of the code Ember should execute, to return the relevant data for this particular URL. It contains a list of mappings that decide what Route Handler should be called based on the URL entered in the browser. A path is part of the URL entered after the domain. For example, If you enter the URL https://facebook.com/feed, https://facebook.com is the domain that decides what website/webpage should be loaded. The remaining part of the URL - /feed is the path (or) route. The router decides which route handler to call based on the path. A router is an inbuilt feature in Ember.js (It has to be included via a third-party library in React).


OEBPS/images/qr.jpg





OEBPS/images/logo.jpg





OEBPS/nav.xhtml




Table of Contents





		Cover Page



		Title Page



		Copyright Page



		Dedication Page



		About the Author



		About the Technical Reviewer



		Acknowledgements



		Preface



		Errata



		Table of Contents



		1. Introduction to Ember.js



		Introduction



		Structure



		An Overview of Web Development



		Websites versus Web Applications



		Defining Web Development



		Frontend/Client Side



		Backend/Server Side







		JavaScript



		Document Object Model (DOM)



		Key Features of DOM



		Select element by Id



		Select elements by Class Name



		Select Elements by Tag Name



		Manipulating the DOM



		Event Handling



		JQuery







		Frontend Applications



		Client-Side Rendering /Single-Page Application



		Advantages of SPA



		Disadvantages of SPA



		Server-Side Rendering



		Advantages of SSR



		Disadvantages of SSR



		Static Site Generation



		Advantages of SSG



		Disadvantages of SSG







		Popular Frontend Frameworks



		React



		Next.js



		Angular



		Vue.js



		Backbone.js







		Ember.js



		History



		Popularity



		Key Features



		Convention over Configuration



		Component-Service Framework



		Two-way data binding







		Anatomy of an Ember.js App



		Router



		Route Handler



		Models



		Templates



		Components



		Controllers



		Services



		Overall Architecture



		Tests



		Addons







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions



		Key Terms







		2. Ember CLI and Local Setup



		Introduction



		Structure



		Ember CLI



		Installation



		Functionalities



		Ember new



		Ember addon



		Ember init



		Ember install



		Ember generate



		Ember destroy



		Ember serve



		Ember test



		Ember build



		Ember asset-sizes



		Short Commands



		Ember Folder Structure



		README.md



		app



		config



		ember-cli-build.js



		Source maps



		package.json



		public



		testem.js



		tests



		yarn.lock



		node_modules



		.ember-cli



		Assets and Styling



		CSS Preprocessors



		SCSS/SASS







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions



		Key Terms







		3. Ember.js Routing



		Introduction



		Structure



		Introduction to Routing



		Setting up Ember routes



		Linking between routes







		Nested routes



		Dynamic segments







		Route model



		Route hooks



		activate



		deactivate



		beforeModel



		afterModel



		setupController



		willTransition



		didTransition



		resetController



		redirect







		Asynchronous routing



		Loading and error substates



		Loading substate



		Loading event



		Error substate



		Error event







		Controllers



		Generating a controller







		Query parameters



		Routing with query parameters



		LinkTo



		transitionTo







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Keys



		Questions



		Key Terms







		4. Ember.js Components and Templates



		Introduction



		Structure



		Introduction to Components



		Generating a Component







		Component Arguments



		HTML Attributes







		Templates



		Comments



		Insert HTML directly



		{{outlet}}



		{{yield}}







		Conditional Statements



		if



		else



		else if



		unless



		Inline if







		Loops



		index



		Empty lists



		Iterating over objects







		Helper Functions



		Built-in Helpers



		concat helper



		array helper



		hash helper



		let helper



		input and textarea helpers



		Creating a custom helper



		Local helpers



		Global helpers



		Nested Helpers



		Named Arguments



		ember-truth-helpers







		Component State and Actions



		Tracked Properties



		Actions



		Actions with Params







		Computed values



		Combining Actions with Arguments







		Ember Bootstrap



		Built-in Components



		Buttons



		Navigation



		Form



		Tooltip



		Carousel







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions



		Key Terms







		5. Ember Data and Services



		Introduction



		Structure



		Introduction to Ember Data



		Ember Models



		Default Values



		getter functions



		Transforms







		Setting up a backend API



		Installation



		Structure of Ember CLI Mirage



		Creating Routes



		Models and Database







		Ways to make API requests from Ember



		Advantages of Ember Data



		Places to make API requests in Ember







		Ember Store



		Injecting the Store







		Read and filter Records



		Fetch all objects



		Filter and fetch certain objects



		Handling Metadata



		Fetch a Specific Record



		RSVP Hash







		Create, update, and delete records



		Create records



		Persisting Data



		Updating Records



		Tracking Changes



		Deleting Records



		deleteRecord



		unloadRecord



		unloadAll







		Handle Relationships in Models



		belongsTo



		hasMany



		inverse







		Adapters



		Extending Adapters



		Host and namespace



		Model-URL mapping



		Headers



		URL Conventions







		Serializers



		serialize



		normalizeResponse



		Identifier



		Attribute Name Mapping







		Ember Services



		Generating a service



		Configuring the Service







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions



		Key Terms







		6. Configuring your Ember.js Application



		Introduction



		Structure



		Configuring your App



		Build Environments



		App Secrets







		Configuring Ember-CLI



		Prototype Extensions



		Advantages of Immutability



		Disadvantages of Immutability



		Making an Array immutable



		Disabling Prototype Extensions



		Alternatives to Prototype Extensions







		Handling Deprecations



		Filtering Deprecations



		Deprecation Workflow







		URL Types



		Embedded Applications



		Root Element



		Root URL







		Feature Flags



		Life-cycle of an Ember feature



		Enabling features in runtime







		Optional Features



		Build Targets



		Robots.txt



		Configuring robots.txt for each environment







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions



		Key Terms







		7. Testing Ember.js Applications



		Introduction



		Structure



		Introduction to Testing



		Advantages of Testing



		Different Ways of Testing



		Manual Testing



		Automated Testing







		Manual Testing



		Black Box Testing



		White Box Testing



		Gray Box Testing







		Testing Tools in Ember



		QUnit



		Running Tests in Ember



		Tests interface



		Creating Tests in Ember



		Filtering Tests



		module



		filter



		Test Selectors



		Debug your tests



		pauseTest







		Levels of Testing



		Unit Tests



		Rendering Tests



		Application Tests







		Code Coverage



		Bug Fixing with Existing Tests



		tests/unit/serializers/client-test.js



		tests/integration/helper/get-display-name-test



		tests/integration/component/clients-table/row-test.js







		Unit Tests



		Tracked Properties



		Object Methods



		Skip Tests



		Stubbing



		Stubbing Functions



		Stubbing Objects



		Stubbing Services







		Testing Components



		Testing DOM attributes



		Testing User Interactions



		Testing Actions







		Testing Controllers



		Testing Helpers



		Testing Routes



		Testing Models



		Default Values



		Model Functions



		Relationships







		Application Testing



		Setting up Mirage



		Testing Redirections







		Updated Code Coverage



		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions



		Key Terms







		8. Ember Inspector



		Introduction



		Structure



		Introduction to Ember Inspector



		Installation



		Google Chrome



		Display Ember Favicon



		Firefox



		Bookmarklet Application



		Mobile Devices







		Version Info



		App Config







		Object Inspector



		Sending Objects to Console



		Console to Inspector



		Navigating through Objects







		Component Tree



		View Component



		Search Components



		Locate the Component of an Element







		Inspecting Routes



		Search Bar



		Current Route Only



		Hide Substates







		Inspecting Data



		Filters



		Inspect Store







		Performance Monitoring



		Debug Promises



		Trace Promises







		Handling Deprecations



		Troubleshooting



		Ember Application Not Detected



		Promises not detected/Missing







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions







		9. Build and Deployment



		Introduction



		Structure



		Building the Application



		ember-cli-deploy



		Deploying to AWS



		Creating a Bucket



		Enabling Static Website Hosting



		Enabling Public Access



		Create Programmatic User



		ember-cli-deploy-s3







		Deploy to GCP



		Creating a Bucket



		Enable Public Access



		Enable Static Website Hosting



		Create Programmatic User



		ember-cli-deploy-gcloud-storage







		Deploy to Azure



		ember-cli-azure-deploy



		Setup GitHub Repository



		Create Static Web App



		Adding Environment Variables to GitHub







		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers



		Questions



		Key Terms







		10. Conclusion



		Introduction



		Structure



		Ember.js



		Convention over Configuration



		Application Architecture







		Ember-CLI



		Developing your Ember Application



		Testing your Ember Application



		Code Coverage







		Deploying your Ember Application



		Build Process



		Deployment







		Maintaining your Ember Application



		Handling Deprecations



		Upgrading packages and Ember







		Writing and Deploying an addon



		Generating an addon



		Adding Content



		Linking the addon to our existing project



		Pushing to Ember Observer







		Best Practices in Ember.js



		Contributing to Ember.js



		Conclusion







		Index











Guide





		Title Page



		Copyright Page



		Table of Contents



		1. Introduction to Ember.js











OEBPS/images/qr1.jpg





OEBPS/images/Figure-1.1.jpg
Browser 1
(Frontend)

Backend
Server

& o

Browser 2
(Frontend)






OEBPS/images/line.jpg





OEBPS/images/Figure-1.2.jpg
[5:1.%. 4
HEAD
Fitext:
| TITLE
Lytext: My Web Page
Fétext:
[FLINK rel="stylesheet" href="/link-to-my-css-file.css"
“itext:
#text:
BODY
[F#text:
(H1 id="page-title"
Lytext: My First Web Page
Fétext:
|-DIV class="test-content"
#text:
DIV class="subdiv-1"
Litext:
#text:
DIV class="subdiv-2"
#text:
#text:
“itext:






OEBPS/images/Figure-1.3.jpg





OEBPS/images/cover.jpg
ANVA

for
Web App Development

Leverage Convention Over Configuration Paradigm
to Develop, Build, and Deploy Complex Applications
Using Emberjs

Aswin Murugesh K





