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Welcome note





Welcome and greetings! We are delighted to have you here as we embark on an exhilarating exploration of the vast world of artificial intelligence. AI is an extraordinary technology that has revolutionized our understanding and interaction with the world around us. Numerous experts anticipate AI will profoundly impact humanity, rivaling the transformative effects of monumental inventions such as fire, the wheel, and agriculture.


The influence of AI permeates every aspect of our lives, often without us even realizing it. Take, for instance, Google Maps, which has long employed classical AI techniques to provide accurate and efficient directions. Additionally, the Amazon marketplace, weather forecasts, and the formidable Google Search Engine rely on intricate AI systems to enhance their functionalities.


Within the pages of this remarkable book, we will delve into the fundamental principles that underpin these intricate AI systems and explore the mathematical approaches behind them. Together, we will embark on an exhilarating journey into the depths of AI, uncovering its immense potential and unveiling the mysteries that lie within. Thank you for joining me on this thrilling expedition into the captivating world of AI.


Is this book for me?


Since you're here, the answer is a resounding yes! So, let’s dive deeper into the details. Whether you're intrigued by the fundamentals of Python, eager to construct neural networks from the ground up, curious about the mathematical optimizations that drive these unique AI systems, or keen on building an entire AI pipeline, this book has got you covered on all fronts.


Our comprehensive guide aims to demystify the core concepts of Neural Networks, providing you with a deep understanding while ensuring an engaging learning experience. We believe in learning by doing, so this book incorporates hands-on sessions to actively involve and captivate our readers.


Prepare to embark on a captivating journey that will empower you with the knowledge and skills needed to comprehend the inner workings of AI. With a focus on practicality and a firm foundation in Python, this book will equip you with the tools necessary to build, optimize, and deploy neural networks and bring your AI projects to life.


Join us on this enlightening adventure as we unravel the intricacies of Neural Networks and ignite your passion for AI. So, get ready to explore, experiment, and excel!


Software Engineers


This book perfectly fits software engineers looking to dive into AI. It provides ample opportunities to explore and practice AI concepts while leveraging the Python programming language. You'll gain valuable insights and practical skills from algorithms to real-life product implementation. Discover how to create AI-powered solutions and unleash your potential in the exciting field of AI.


Machine Learning Enthusiasts and Engineers


This book will advance your understanding if you're already well-versed in AI and have a solid foundation. It offers an opportunity to delve deeper into AI concepts, providing hands-on training that allows you to build projects from scratch. By engaging in practical exercises, you'll gain a more comprehensive understanding of AI and sharpen your skills. Prepare to expand your knowledge and expertise as you embark on a hands-on exploration and learning journey.


AI Researchers


This book caters to AI researchers by offering clear explanations of mathematical concepts used in AI algorithms. It also guides writing production-level code, addressing a common challenge researchers face. Expand your understanding of AI and enhance your ability to apply it effectively in real-life scenarios with this valuable resource.


What is the book’s goal?




	Introduce our readers to the basics of Python and how to use it for AI purposes.


	Help readers understand complex mathematical concepts by giving them an easy breakdown of mathematical equations, which can later be applied to understand the complex mathematics behind modern AI systems.


	Enable our readers to write mathematical concepts behind AI algorithms in a code format by implementing things from scratch without using high-level libraries such as TensorFlow or PyTorch.





How is this book structured?


This book aims to comprehensively understand Artificial Neural Networks (ANN) and guide readers in building ANN models using Python. In addition, it explores the practical applications of ANN in various industries and academic fields.


The book begins with an introduction to Neural Networks and then covers the fundamentals of Python and the relevant libraries used in ANN modeling. Next, it gradually introduces the theoretical concepts that serve as the foundation for the rest of the book, including one-layer and multilayer neural networks, vectors and weights, and Linear Regression Models.


The core section of the book focuses on the construction of ANN models. It starts with building neural networks from scratch, including detailed coding examples. Then, the addition of input and output layers to the ANN model and techniques for saving, restoring, and fine-tuning the model's hyperparameters are discussed. Later, we discover the excellent TensorFlow library and how to write NN models using a high-level library.


In the book’s final part, readers will delve into training and compilation of DL models. Finally, the book concludes by demonstrating real-world applications of AI, providing readers with the necessary knowledge to grasp new AI concepts and engage in AI research while enabling them to implement and comprehend cutting-edge AI technologies.


By completing this book, readers will acquire the skills to effectively apply ANN in practice and develop a solid foundation for exploring advanced AI concepts and techniques.


Do I need to know anything else before getting started?


Basic knowledge of Python and AI is excellent, but don’t worry; we will cover everything from setting up your machine to building things that can be utilized in a real-world application.


The tools and technologies we will cover in this book include Python, Neural Networks, Mathematical Operations, Image Processing, TensorFlow, Keras, Numpy, and VS Code.


Without further ado, let’s get started.











Acknowledgements





Vishal Rajput: It is with immense gratitude and heartfelt appreciation that I extend my acknowledgments to the individuals and institutions that have significantly contributed to the creation of this book on AI.


First and foremost, I express deep gratitude to my friends through this book who have consistently engaged with me in insightful AI discussions. Bhuppi, Sooraj, Venkatesh, and Venkatraman, your involvement and shared enthusiasm have been invaluable in shaping the concepts presented within these pages.


I am indebted to my alma mater, KU Leuven, for providing me with a rich educational foundation. A special debt of gratitude is owed to the research collaboration I had the privilege of undertaking with Dr. Irshad Ahmad Ansari, whose guidance and mentorship significantly influenced the depth and quality of this work.


The unwavering support of all my friends and family has been a constant source of inspiration. Their encouragement and belief in my pursuit of knowledge have been instrumental in bringing this project to fruition.


I extend my special thanks to renowned institutions such as Stanford and MIT, whose lectures have expanded my understanding of AI. Additionally, platforms like MLST and other exceptional YouTube channels, featuring luminaries such as Hinton, Bengio, and Andrew Ng, have been instrumental in imparting profound insights into the realm of AI.


Finally, with profound gratitude and appreciation, I like to thank the reviewer and Team AVA.











Preface





This book provides a comprehensive exploration of Artificial Intelligence (AI), beginning with a foundational understanding of its history, significant developments, and evolution into various sub-fields. The initial chapters lay down the theoretical groundwork, delineating between AI and Deep Learning and elucidating the basic concepts and models like neuron-inspired networks. Progressing sequentially, it offers practical insights into setting up Python workflows for AI development, focusing on installing essential packages and configuring development environments. It introduces foundational Python libraries and programming concepts crucial for AI development and data science, enhancing comprehension through web scraping, regex, and multithreading discussions.


Moving forward, the book delves deeper into advanced topics, covering effective neural network training concepts, dimensionality reduction techniques, and unsupervised learning. The readers are guided through building neural networks from scratch, emphasizing understanding various data structures and implementing multi-layer networks using NumPy. Subsequent chapters intensively explore Convolutional Neural Networks (CNN) and provide insights into TensorFlow and Keras, highlighting the contrasts between TensorFlow and other deep learning frameworks. The concluding chapters center on structuring deep learning code, constructing end-to-end image segmentation pipelines, and presenting the latest advancements and techniques in AI, ensuring the readers are well-acquainted with cutting-edge developments in the field.


Chapter 1: This chapter introduces AI, highlighting its evolutionary phases and sub-fields. The goal is to impart an understanding of AI history and how it diverged into various domains, emphasizing intelligent behavior like learning, reasoning, and language. It discusses differences between AI and Deep Learning, illustrates early neuron-inspired network models, and mentions significant developments like ChatGPT.


Chapter 2: This chapter serves as a practical guide to setting up the Python environment for AI development, including installing necessary packages and configuring environments like Anaconda and VS Code. It also introduces the concepts of Object-Oriented Programming (OOP) crucial for development.


Chapter 3: This chapter discusses various Python libraries and techniques essential for Data Scientists, focusing on web scraping, regular expressions, multi-threading, multi-processing, and introducing the basics of Pandas.


Chapter 4: This chapter dives into the fundamental concepts vital for training neural networks, such as activation functions, overfitting, bias-variance trade-off, and the principle of universal approximators. It introduces concepts like Radial Bias Function and the curse of dimensionality, providing insights into the realm of neural networks.


Chapter 5: This chapter elucidates dimensionality reduction techniques and unsupervised learning, touching upon topics like PCA, clustering, semi-supervised learning, and self-supervised learning. It also explores version space and optimization through SVM, shedding light on different SVM forms and the Kernel Trick.


Chapter 6: This chapter takes a hands-on approach to illustrate building neural networks from scratch. It discusses the coding of neurons, understanding various data structures like lists, arrays, and tensors, and provides insights into creating multi-layer networks using NumPy.


Chapter 7: This chapter delves deep into the optimization of weights through derivatives and backpropagation. It details the mathematics and implementation of backpropagation and introduces various optimizers like SGD and Adam, emphasizing training networks end-to-end.


Chapter 8: This chapter elaborates on Convolutional Neural Networks (CNN), detailing their operation, feature extraction, and types, and introduces various CNN-based networks like VGG 16, ResNet, and others. It discusses different convolution types and provides insights into scaling conv networks through the Efficient Net Architecture.


Chapter 9: This chapter provides an overview of TensorFlow and Keras, contrasting TensorFlow with other deep learning frameworks like PyTorch and Theano. It provides insights into TensorFlow’s internals and various components, discussing layers, activations, optimizers, and loss functions, and illustrates building a multi-input single-output network with custom callbacks.


Chapter 10: This chapter focuses on structuring deep learning code and building an end-to-end image segmentation pipeline. It emphasizes project structure, documentation, debugging, and logging, and introduces segmentation techniques like UNet and Attention Gates.


Chapter 11: The final chapter delves into advanced AI concepts and models, including RNN, LSTM, self-attention mechanisms, object detection with YOLO, and generative models like VAE and GANs. It provides a detailed understanding of different AI models like DALLE-2 and explains the use of self-attention for transformers in Natural Language Processing (NLP).


This book serves as a comprehensive guide, starting from the basics and history of AI, delving into practical aspects and foundational concepts, and concluding with the latest advancements in the field.
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CHAPTER 1


Understanding AI History



Knowing the historical background and context is important to fall in love with any technology or subject. Without sufficient background and context, you may always ask yourself, why am I even reading this? Throughout this chapter, we cover who this book is meant for and how it is going to help you, whether you are an AI researcher, developer, or enthusiast. From understanding the earliest inspiration to the first set of mathematical blocks to build neural networks, this chapter gives you all.

Structure

This chapter covers the following topics:


	How AI evolved over decades

	Different AI uses cases

	Differentiating AI, ML, and DL

	Multi-layer Perceptron



Evolution of AI

While many are familiar with the concept of the AI winter, the complete narrative of AI’s evolution over the decades remains to be discovered by most. To grasp the intricacies of the field, it is crucial to comprehend the foundations and the remarkable journey that has brought us here. The inception of AI can be traced back to the 1960s when pioneering researchers delved into the realm of creating intelligent machines. While the Dartmouth Conference in 1956 is widely regarded as the birth of AI, it was during the 1960s that substantial strides were made, propelling the field forward.

The early history of AI

Early AI researchers focused on creating systems that could solve problems symbolically, using logical reasoning and rule-based approaches. One of the key developments was the General Problem Solver (GPS) created by Allen Newell and Herbert A. Simon. GPS was an early attempt at building a problem-solving system that could reason and plan its actions. The idea was that they could represent the entire world through symbols and perfect logic, and if one could do that, one could train a system to navigate that world, but it was almost impossible to build such a system due to the inherent random nature of things. For example, so many things can’t be written using perfect logic; thus, creating a world model with excellent reasoning capabilities was doomed to fail in at least certain areas. Another notable achievement was the creation of the ELIZA program by Joseph Weizenbaum. ELIZA was a computer program that simulated a conversation with a human and demonstrated natural language processing capabilities.

Let us try to understand this in more detail through a concept called Combinatorial explosion. It is a phenomenon in AI where the number of possible states or combinations grows exponentially as the problem size increases. It refers to the rapid expansion of the search space or the complexity of a problem as more variables or options are introduced.

In AI, combinatorial explosion poses a significant challenge because it leads to computational intractability and makes it difficult to explore all possible solutions reasonably. As the number of variables, constraints, or choices increases, the number of potent states grows exponentially. This explosion in possibilities often exceeds the computational resources available to solve the problem effectively. Planning and search, and drug discovery are a few problems that represent the combinatorial explosion problem. Let’s understand this problem through an example and why the early AI system failed.

Example to understand the concept

Consider a photo of a chair represented by a 10x10 feature matrix. Each point in this matrix can take on a value ranging from 0 to 256. Consequently, the total number of possible combinations in this search space is calculated by multiplying 256 by itself 100 times (256¹⁰⁰). This astronomical number signifies the sheer magnitude of the search space.

To put it into perspective, the enormity of this space surpasses the number of atoms present in the entire universe. In other words, more atoms in the universe must be needed to draw sufficient samples from this vast search space to comprehend the underlying distribution.

In essence, attempting to explore and analyze the entire 256¹⁰⁰ space is an insurmountable task due to its incomprehensible size, exceeding the limitations of current resources and feasibility. But we still somehow do it through Neural Networks.
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Figure 1.1: Combinatorial explosion (Img Src)

During the 1970s, a significant development in AI was the advent of knowledge-based systems and the ascent of expert systems. Researchers’ primary objective was to encapsulate human expertise within rule-based systems, employing them for medical diagnosis and decision-making. A notable achievement during this period was the creation of MYCIN, an expert system devised by Edward Shortliffe specifically for diagnosing infectious diseases. MYCIN showcased the potential of AI in tackling complex problem domains. Nevertheless, progress in the field was impeded by limitations in computational power and the need for more available data. As a result, interest in AI research dwindled towards the end of the decade.

Towards the end of the 1970s and early 1980s, a groundbreaking discovery was on the horizon, poised to revolutionize the field of AI. During this time, scientists began exploring alternative approaches to training AI systems. But unfortunately, while significant efforts had been invested in creating AI systems that mimicked the human brain, all these endeavors had yet to achieve the desired success.

The most crucial development in the History of AI

However, a significant turning point arrived when Geoff Hinton proposed an entirely revolutionary idea: The backpropagation of errors. Departing from the notion of teaching machines to behave like the human brain, Hinton advocated for a results-oriented approach. Instead of expecting machines to make correct predictions from the outset, the concept involved allowing the machine to make incorrect predictions and then improving upon them iteratively.

This paradigm shift marked a pivotal moment in AI. The concept of Backpropagation [1], further developed by Rumelhart, Hinton, and Williams, formed the backbone of the entire AI field. Today, it is widely recognized as the backpropagation algorithm, a fundamental technique in training neural networks.

The introduction of backpropagation brought about a new perspective, emphasizing the iterative correction of machine predictions. This breakthrough approach unlocked unprecedented possibilities for AI systems, enabling them to learn and adapt from their mistakes. As a result, the field of AI embarked on a transformative trajectory that continues to shape its advancements. In later chapters of this book, we will delve much deeper into the Backpropagation algorithm and look into its inner workings by implementing it from scratch.

Throughout the book, we will keep giving you links to great lectures and video series for building intuition upon the ideas presented in this book. Here’s one such great mini-video series from the 3blue1brown YouTube channel to understand the core ideas behind NN: 3Blue1Brown NN series [2].
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Figure 1.2: Drawing inspiration from Neural Nets from Brain (Img Src)

AI started evolving into new fields

During the 1990s, AI research shifted towards practical applications and integrating AI technologies across diverse domains. Machine learning techniques, including decision trees, support vector machines, and Bayesian networks, gained significant prominence during this era. Simultaneously, advancements in natural language processing (NLP) propelled the development of systems like IBM’s Watson, which achieved fame by winning the Jeopardy game show in 2011.

The fields of robotics and computer vision also experienced remarkable progress, finding applications in industrial automation and developing autonomous vehicles. The advent of the internet and the abundance of available data led to the emergence of data-driven approaches and data mining. AI techniques found practical use in diverse areas, ranging from fraud detection and recommendation systems to improving search engines. During this period, we witnessed a notable transition from rule-based AI systems to statistical and probabilistic methods, facilitating the development of more scalable and adaptable solutions.

AI starts taking its modern form

In the early 2000s, AI experienced a convergence with fields like computational neuroscience and cognitive science, fostering interdisciplinary research. During this period, we witnessed a significant breakthrough with the emergence of deep learning, a subfield of machine learning that utilizes neural networks with multiple layers. As a result, deep learning revolutionized AI capabilities, achieving unprecedented success in tasks like image recognition, speech recognition, and natural language processing. Furthermore, the availability of extensive labeled datasets and advancements in graphics processing units (GPUs) accelerated the development and adoption of deep learning algorithms, enhancing AI’s potential for solving complex problems and driving further advancements in the field.

With a little more historical context, we are ready to delve deeper into the technical subject matter.
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Figure 1.3: How AI progressed over time (Img Src)

Understanding Intelligent Behavior

The goal of every AI system is to behave intelligently; defining what intelligence is a big task. Nonetheless, we try to associate different tasks as signs of intelligence. The true nature of intelligence is still a mystery, but there are several outcomes or behaviors that we can say are generated from some form of intelligence; chess and reasoning are two such examples. In this section, we touch upon the role of AI in Chess, reasoning, poker, and so on, which we consider an outcome of intelligent behavior.

AI beats humans at chess

Before delving into AI’s technical definition and components, it is essential to ponder some fundamental questions. First, what do we truly consider intelligent? Is playing chess a definitive proof of intelligent behavior? Does conversing like a human or the ability to reason qualify as a form of intelligence? The concept of intelligence remains elusive, and defining it proves trickier than most realize. When AI achieves significant breakthroughs, they are often attributed to clever hacks or increased computing power. However, this can also be the case for human intelligence. Present-day can undoubtedly display intelligent behavior, but whether it can be deemed truly intelligent remains uncertain. A notable example is the 1997 match where Gary Kasparov, the chess world champion, was defeated by IBM’s system named Deep Blue system. Deep Blue relied on human involvement and chess-specific rules; it demonstrated behavior that can be considered intelligent, albeit not necessarily intelligence itself. Here’s the video of Kasparov playing chess with AI: AI vs. Kasparov Chess [3].
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Figure 1.4: Gary Kasparov (Chess World Champion) vs. Deep Blue (Img Src)

AI learning reasoning and language

On a separate occasion, IBM again showcased an intelligent system to the world called Watson; it became famous by winning a trivia game show called Jeopardy! in 2011. By outperforming human champions, Watson showcased the potential of AI systems to understand and process natural language at a level that surpassed human capabilities. This groundbreaking accomplishment captured global attention and sparked widespread interest in AI. Watson’s core technology was natural language processing and data analytics. This later ushered in the era of cognitive computing. It demonstrated the ability of AI systems to analyze vast amounts of unstructured data, understand complex questions, and provide accurate answers. This breakthrough paved the way for AI systems to excel in tasks requiring cognitive abilities, such as language comprehension, reasoning, and decision-making. Here’s the video of AI playing Jeopardy released by IBM research: IBM AI Jeopardy [4].
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Figure 1.5: IBM Watson playing and winning the game of Jeopardy against humans (Img Src)

AI starts playing poker

In 2017, an AI system called Libratus beat human players in Poker. Researchers at Carnegie Mellon University developed it for playing heads-up, no-limit Texas hold ‘em poker. Poker is a game of incomplete information, unlike chess or Go, making it a significant challenge for AI. Libratus has been a landmark in this realm, as it was the first AI to beat professional poker players in a complete tournament setting in 2017. Its approach includes three modules: a reinforcement learning module for strategy, an endgame solver for specific scenarios, and a self-improver module that reviews the AI’s strategy to seal potential leaks. The success of Libratus represents a significant achievement in AI’s ability to manage uncertainty and complex decision-making scenarios. Here’s a video from Engadget explaining AI poker: Libratus AI Poker [5].
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Figure 1.6: Libratus AI beating humans at Poker (Img Src)


Conquering GO and Dota 2


AlphaGo and OpenAI Five are the other two excellent AI systems that make quite a lot of noise worldwide. We suggest giving a read to both Original Alpha GO [6] and OpenAI Five [7] papers, as both achieved something remarkable and introduced many new ideas to train intelligent systems that can beat humans in GO and Dota 2. For those who don’t know about AlphaGo, it’s an AI system to play a game called GO; it’s an enormously complex game with 10300 possible combinations, much greater than the number of atoms in the universe. On the other hand, OpenAI Five is a system to play a multiple-player Online game called DOTA2. The game of Dota 2 presents novel challenges for AI systems, such as extended time horizons, imperfect information, and complex, continuous state-action spaces, all challenges which will become increasingly central to more capable AI systems.

Note: Humans have again beaten machines at GO by leveraging information from adversarial attacks; go and read this paper [8] from MIT.
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Figure 1.7: GO Board game (Img Src)

An experience with ChatGPT

Lastly, I’m sure you’re already familiar with or have encountered ChatGPT. I had an intriguing experience with ChatGPT when I asked it to interview me about one of my papers. Surprisingly, the conversation turned out quite well. Although AI systems like ChatGPT aren’t flawless, their comprehension capabilities have significantly improved in recent years. I share this to provide you with a broader perspective of the field before delving into the fundamental aspects of AI. It’s essential to grasp the overall landscape and acknowledge the advancements made thus far.
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Figure 1.8: My Interview with ChatGPT

This covers the history, and some old and recent exciting developments over the past few decades.


Difference between Artificial Intelligence, Machine Learning, and Deep Learning


In the last sections, we looked into the historical context of AI and what are different use cases where AI is being used or has already beaten humans in displaying intelligent behavior. From this chapter, we will go more technical and build a mathematical and practical understanding of these concepts. So, let’s first start by defining the terms Artificial Intelligence, Machine Learning, and Deep Learning.
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Figure 1.9: Deep learning is a subset of Machine Learning, and Machine Learning is a subset of Artificial Intelligence

Formally defining AI terms

In reality, there are many ways to define or understand these terms. Still, I see them as a subset within a subset, with the top layer being artificial intelligence and the last layer being deep learning. For example, a concise definition of Artificial Intelligence: the effort to automate intellectual tasks usually performed by humans. AI is a general field encompassing machine learning and deep learning, but it includes many more approaches that don’t involve learning.

Machine learning emerges from whether a computer can surpass the limitations of explicitly programmed instructions and autonomously learn how to perform a given task. Can a computer exhibit unexpected behavior? Instead of programmers manually crafting rules for data processing, can a computer automatically learn these rules by analyzing data? This question introduces a new programming paradigm. In traditional symbolic AI programming, humans input rules (a program) and data to be processed according to those rules, yielding answers. However, humans input data and the expected solutions in machine learning, and the system generates the rules. These rules can then be applied to new data to create novel and original answers.


[image: ]


Figure 1.10: Difference between Classical programming and Machine learning

Machine learning operates through training rather than explicit programming. Instead of being given predefined instructions, a machine-learning system is exposed to numerous examples relevant to a specific task. By analyzing these examples, the system identifies statistical patterns and structures that enable it to formulate rules for automating the task at hand. For example, if you wanted to automate the process of tagging your vacation pictures, you could provide a machine-learning system with a large dataset of pictures already tagged by humans. The system would then learn statistical rules to associate specific images with corresponding tags, allowing for automated tagging in the future.

Machine learning and mathematical statistics share a strong connection but diverge in crucial aspects. Unlike traditional statistics, machine learning mainly focuses on handling large, intricate datasets. These datasets can be vast, containing millions of images, each composed of tens of thousands of pixels. Consequently, classical statistical techniques like Bayesian analysis become impractical in such scenarios. As a result, machine learning, particularly deep learning, tends to have a limited emphasis on mathematical theory, potentially needing more in-depth theoretical foundations. Instead, it takes an engineering-oriented approach, prioritizing hands-on experimentation and empirical validation over rigorous theoretical proofs. In essence, machine learning is a discipline that heavily relies on practical demonstrations and empirical evidence to support its idea of learning and intelligence. Examples of Machine learning algorithms include Support Vector Machines, Logistic Regression, Decision Trees, and so on.

Deep learning is a specific machine learning subfield and a relatively new concept. It takes an entirely new stance on learning; instead of learning statistical rules directly, it creates a representation of data fed through multiple layers, subsequently creating deeper and deeper representations, thus the name ‘Deep Learning’. Other appropriate names for the same are layered representations learning and hierarchical representations learning. Modern deep learning often involves tens or even hundreds of successive layers of representations—and they’re all learned automatically from exposure to training data. Meanwhile, other approaches to machine learning tend to focus on learning only one or two layers of representations of the data; hence, they’re sometimes called shallow learning. As we move forward in the book, we’ll create a deep neural network from scratch.

Learning representations from data

Deep learning is a subset of machine learning that focuses on learning useful representations of input data through exposure to known examples. To perform machine learning, three elements are required:


	Input data points (like sound files or images)

	Examples of the expected output (such as human-generated transcripts or image tags like a cat image or a dog image)

	A way to measure the algorithm’s performance to provide feedback for adjustment and learning



The central idea in machine learning and deep learning is to transform the input data so that the generated representation can be mapped to a particular output. In other words, transform the data so that the difference between the actual and predicted output is minimal. At its core, it’s a different way of representing or encoding data. For instance, we can write two in so many ways: 2 (Decimal), II (Roman), and 10 (Binary); all of these are just different ways of representing the same idea of two. The distinction between AI-generated encodings and traditional ML or DL representations lies in their structure and human interpretability. ML or DL representations may not adhere to a rigid or easily readable format, as they are influenced by the input data and the algorithm employed to generate them. For instance, consider color images that can be encoded in formats such as RGB or HSV. While these formats represent the same data, they offer distinct advantages for specific tasks. For example, RGB facilitates the selection of red pixels, while HSV simplifies adjusting brightness. Machine learning models identify appropriate representations that enhance the data’s suitability for the given task, such as classification. Refer to the following figure for the disparity between fixed and learned encodings.
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Figure 1.11: Representing Two using fixed and leaned encoding/representations

It is crucial to recognize that learned representations can exhibit substantial variation in size and value, contingent upon the algorithm employed for their generation. Even when applying the same algorithm, the representations may diverge for different data points, especially if alterations are made to the remaining dataset. Within learned representations, the value assigned to a particular data point is influenced by encoding other data points, thus emphasizing the interconnectedness and interdependence of the learned representation space.

Example to understand the concept

To illustrate this, let’s consider an example using a machine learning algorithm for image recognition. Suppose we have a dataset of images containing different animals, such as dogs, cats, and birds. The algorithm aims to learn representations that can accurately classify these images into their respective categories.

During the training process, the algorithm analyzes the features of the images and creates learned representations for each data point. These representations are numerical values that capture essential characteristics of the images relevant to the classification task. For instance, certain learned representations might emphasize the presence of fur or feathers, the shape of the ears, or the arrangement of wings.

The learned representations can change if we modify the dataset by adding or removing images. For instance, if we introduce new images of fish into the dataset, the algorithm may adjust its learned representations to accommodate this new category. Consequently, the representations assigned to previously seen animals like dogs, cats, and birds may also be influenced by  including the additional images.

Furthermore, within these learned representations, the encoding of a specific data point can depend on the encodings of other data points. For example, in a deep neural network where representations are hierarchically learned, encoding an image at a higher layer can be influenced by the encodings of multiple images at lower layers. This interdependence allows the model to capture complex relationships and dependencies within the dataset.

In summary, learned representations can vary in size and value depending on the algorithm used and can be sensitive to changes in the dataset. Moreover, encoding a particular data point can rely on the encodings of other points, enabling the model to capture intricate relationships within the data.

Sub-Fields of AI

AI is a broad term, and we tried to give a clear difference between its three main components: AI, ML, and DL. But we must still dive deeper and further categorize these systems to complete our mental map AI subdomains. Even though all three: Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are interconnected fields, we can still try to organize them into their subcategories:

Artificial Intelligence (AI)

AI can be broken down into two main types: Narrow AI, which is designed to perform a narrow task (for example, facial recognition or voice commands), and General AI, which is intended to perform any intellectual task that a human being can do. Here are some subfields:


	
Expert Systems: Mimic the decision-making ability of a human expert.

	
Natural Language Processing (NLP): Computers interacting with human language. In recent times the entire NLP has moved over to DL-based methods.

	
Speech Recognition: Translating spoken language into written form.

	
Computer Vision: Enabling computers to understand and interpret visual information from the real world.

	
Robotics: Designing machines capable of carrying out complex actions autonomously or semi-autonomously.

	
Planning and Navigation: Algorithms for planning and navigation in AI systems, often used in robotics.



Machine Learning (ML)

Machine Learning is a method of data analysis that automates the building of analytical models. It’s a branch of AI based on the idea that systems can learn from data, identify patterns, and make decisions with minimal human intervention. Here are some subfields:


	
Supervised Learning: The model learns from label ed data. Examples include regression, support vector machines, decision trees, and random forests.

	
Unsupervised Learning: The model learns from unlabeled data. Examples include clustering algorithms (like k-means) and dimensionality reduction techniques (like PCA).

	
Semi-supervised Learning: The model learns from labeled and unlabeled data.

	
Reinforcement Learning: The model learns to make decisions by receiving rewards for good choices and penalties for bad ones. It’s often used in games and robotics.

	
Ensemble Methods: These combine multiple machine learning models to improve results. Examples include bagging, boosting, and stacking.



Deep Learning (DL)

Deep Learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain, called artificial neural networks. It’s a technique for implementing machine learning that uses artificial neural networks with multiple layers (hence the deep in deep learning). Here are some subfields:


	
Convolutional Neural Networks (CNNs): Primarily used for image processing tasks like image recognition.

	
Recurrent Neural Networks (RNNs): Designed for sequence prediction problems and tasks that require memory of past information, like time series forecasting and language translation.

	
Long Short-Term Memory Networks (LSTMs): A type of RNN that can learn and remember over long sequences, widely used in language modeling and translation.

	
Generative Adversarial Networks (GANs): Composed of two networks, one generates and evaluates data. They are typically used to generate realistic images, but can also be used for various purposes.

	
Autoencoders: Used for tasks like anomaly detection and dimensionality reduction, as well as learning efficient data representations.

	
Transformers: Primarily used in natural language processing tasks, they have significantly improved text translation and generation.



Remember, these fields overlap and intersect in many ways, and advancements in one often lead to improvements in others. Going over all these sub-topics is a book in itself. But I still want to give a sense of what is happening in AI. All of today’s AI developments are happening in DL primarily. GANs and Transformers are the crazes of the industry right now. Regarding statistical analysis, like the banking sector, drug trials, and so on, ML-based methods are still the king. However, DL is relatively very poor in explaining its behavior. Thus, people in industries with strong regulations still prefer ML over DL because of their result’s explainability or interpretability.

In later chapters of the book, we will look into the basics of Transformers and GANs. Both of these are making huge waves in the industry. As a result, all you come across is highly likely to be based on either of the two, from DALL-E to ChatGPT.

Early Models of Neuron-Inspired Networks

The idea of mimicking brain neurons to make intelligent systems is not new. But formalizing this idea to actually make it work was quite difficult. Making the networks trainable and learn through the Backpropagation algorithm was nothing less than a stroke of genius from Hinton’s side. Let’s start our journey with understanding the development of the earliest Neuron-Inspired Networks.

Understanding biological neurons

If you’ll go and do a quick search on the internet, you will find some articles stating that artificial neurons are just like biological neurons. I want to clarify that artificial neurons are not similar to biological ones but are mathematical representations of biological neurons. Though I’m not a biologist, I’m certain that biological neurons don’t use backpropagation to learn things. Biological neurons inspire artificial neurons, and that’s where the similarity ends.

One estimate is that the human brain contains over 1011 neurons and 1014 synapses in the human nervous system. Biological neuron switching is much slower than a computer’s transistor switching, but the connectivity is higher than in today’s supercomputers.

A biological neuron has three main parts:


	Neuron cell body

	Branching extensions called dendrites for receiving inputs

	An axon that carries the neuron’s output to the dendrites of other neurons
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Figure 1.12: Biological neurons (Img Src)

McCulloch-Pitts model of a neuron

A simple and popular model for neurons is the McCulloch-Pitts model. However, one should know that this is a strong mathematical abstraction of reality. So, let’s understand this model in more detail.

Components of the McCulloch-Pitts Model:


	
Input: The MCP neuron receives binary input (either 0 or 1) from multiple other neurons, just like a biological neuron receives signals from multiple other neurons.

	
Weights: These inputs are each associated with a weight, which can be positive (excitatory) or negative (inhibitory). In the simplest form of the model, these weights are not adjustable, unlike in modern artificial neural networks, where the weights are adjustable and learned through training.

	
Activation Function: The neuron computes a weighted sum of its inputs and then applies a thresholding function. If the sum is greater than or equal to the threshold, the neuron fires (outputs a 1); if the sum is less than the threshold, the neuron does not fire (outputs a 0).
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Figure 1.13: McCulloch-Pitts model of neuron (w1, w2…, wn are non-trainable here)

Example to understand the concept

Let us consider a simple MCP neuron with three input signals. Let us assume the threshold is set to 2.


	
We have three inputs: I1 = 1, I2 = 0, I3 = 1.


	
These inputs are associated with weights: W1 = -1 (inhibitory), W2 = 1 (excitatory), W3 = 2 (excitatory).


	
The neuron calculates the weighted sum of the inputs: Sum = I1*W1 + I2*W2 + I3*W3 = 1*(-1) + 0*1 + 1*2 = 1.

	
The weighted sum (1) is compared to the threshold (2). Since 1 < 2, the neuron’s output is 0, that is, the neuron does not fire.




This is a very basic example of an MCP neuron. Remember that the model drastically simplifies biological neurons and modern artificial neural networks. For instance, weights in an MCP neuron are static and do not change, while in modern neural networks, weights are adjusted during training through a process called backpropagation. Furthermore, the binary nature of the MCP model’s inputs, outputs, and weights is also a simplification. In most modern artificial neural networks, these quantities are real-valued.

So, MCP started the idea of neural networks, but because of its non-trainable weight, it is a useless model in most real-world scenarios. So, they needed to transform this idea making the weights adaptable and trainable.


Multilayer Perceptron (MLP)


A Multilayer Perceptron (MLP) is an artificial neural network composed of multiple layers of neurons (also called nodes or perceptron’s), where each neuron in a layer is connected to all neurons in the previous layer. It consists of at least three layers - an input layer, one or more hidden layers, and an output layer.

MLPs are used in supervised learning problems for regression (predicting a continuous output) and classification (predicting a discrete output).

Example to understand the concept

Consider a simple MLP with two input neurons, one hidden layer with two neurons, and one output neuron. Let’s assume we’re trying to solve a binary classification problem. Here’s how it might work:


	
We have two inputs, x1 and x2.

	
These inputs are passed to the hidden layer, where each neuron applies weights w to the inputs and adds a bias b. The weights and biases are parameters that the MLP will learn during training. Each neuron j in the hidden layer computes a weighted sum: zj = w1j *x1 + w2j*x2 + bj.


	
Each neuron in the hidden layer then applies an activation function to the weighted sum to introduce non-linearity into the model. A common choice of activation function is the ReLU (Rectified Linear Unit) function, which is max(0, z). For example, let’s denote the output of neuron j in the hidden layer after applying the activation function as hj.

	
The hidden layer outputs h1 and h2 are then passed to the output neuron, which applies its weights and bias to compute a weighted sum: output = w1output*h1 + w2output*h2 + boutput.


	
For a binary classification problem, the output neuron often uses the sigmoid activation function to squash the output between 0 and 1: output = 1 / (1 + exp(-zoutput)). This output can be interpreted as the probability of the positive class.




Let’s write the preceding points concisely mathematically, with two inputs and two hidden neurons with one output neuron.

Let us denote the weights from the inputs to neuron j in the hidden layer as w1j and w2j, and the biases as bj. Also, weights from the hidden layer to the output as w1output and w2output , and the bias as boutput.


	
Z1hidden = w11*x1 + w21*x2 + b2


	
h1 = max(0, z1hidden) (ReLU activation)


	
z2hidden = w12*x1 + w22*x2 + b2


	
h2 = max(0, zhidden) (ReLU activation)


	
output = w1output *h1 + w2output *h2 + boutput


	
output = 1 / (1 + exp(-zoutput)) (Sigmoid activation)
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Figure 1.14: Simple NN with two inputs and two hidden neurons

This diagram shows the representation of neural networks described in the preceding equations. But the real-world networks have hundreds and thousands of neurons with several layers in it, the following diagram shows a much more realistic neural network that can solve simple tasks like classification or regression on some simple input arrays.
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Figure 1.15: A 4-layer deep neural network

I want the readers to understand this not only with examples but also with generalized mathematical equations. So, let’s look at how to define it in a generalized mathematical way.

We know that neural networks work with matrices, and here’s what the matrix-vector notation of the preceding definition looks like. Here the input is x ∈ Rm, the output is y ∈ R l and the interconnection matrices are W ∈ R l x n_h, V ∈ R n_ h x m for the output layer and hidden layer, respectively. Finally, the bias vector is β ∈ R n_h and consists of the threshold values of the nh hidden neurons.
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Many people struggle to grasp mathematical equations, so let’s understand what these representations mean.

x ∈ Rm : R represents the set of real numbers, and the superscript m indicates that x is a vector of length m. Each element of the vector x is a real number.

W ∈ R l x n_h : represents that the variable W belongs to the set of real-valued matrices with dimensions l rows and nh columns.

V ∈ R n_h x m : R represents the set of real numbers, and the superscript nh x m indicates that “V” is a matrix with nh rows and m columns. Each element of the matrix V is a real number.

nh : n hidden neurons.

σ(X) : Activation function for input X.

The preceding notation is more compact than the elementwise notation. For example, here’s the same equation represented in the elementwise notation.
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Given above is a simple example of an MLP with one hidden layer. In practice, MLPs can have many hidden layers and many neurons in each layer. Also, different types of activation functions can be used.

The parameters of the MLP (the weights and biases) are learned during training by minimizing a loss function that measures the difference between the MLP’s predictions and the true outputs. This is typically done using an optimization algorithm like stochastic gradient descent, which we will see in the upcoming chapters.

Note: You can visit all the links and references mentioned in this chapter by scanning the QR code given at the end. We highly recommend visiting the mentioned references as we try to keep them to a minimum and only add them in places where we feel that users should dive deeper into those topics.


Conclusion


Welcoming the readers and explaining how to utilize the book aptly, followed by AI developments during different decades and how they propelled the field in a given direction. Formally defining AI, ML, and DL are often used interchangeably, so it’s essential to know the difference between them. Next, we discuss the data representation/encodings followed by AI, ML, and DL subfields. This highlights how these models manipulate data to give us the desired results. Finally, we introduce the MCP and MLP and explain the math behind it using simple examples. These were the earliest forms of present-day neural networks.

In the next chapter, we will discuss Python and its essential components. Python is the major language for AI development, so gaining the skill and knowledge for real-life project development is super important. We will also set up the necessary environments to work with AI-related libraries. See you soon!!!

“The goal of AI is to replace human intuition with machine algorithms, but to do so in a way that respects the complexities and subtleties of human intelligence.” - Fei-Fei Li

https://github.com/OrangeAVA/Ultimate-Neural-Network-Programming-with-Python
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