

[image: image]

Ultimate Neural
Network
Programming with
Python

[image:]

Create Powerful Modern AI Systems by
Harnessing Neural Networks with Python,
Keras, and TensorFlow

[image:]

Vishal Rajput

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: November 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-91246-54-9

www.orangeava.com

Dedicated to

My ideals who kept me on the path of learning:

Swami Vivekananda
Bhagat Singh
JP

and

My Friends and Family

About the Author

Vishal Rajput, an ardent explorer and practitioner of Artificial Intelligence, is honored as a three-time top-50 AI writer on Medium. He has earned an advanced master’s in AI from KU Leuven, Belgium, a university renowned globally as one of the top 50. Since his foray into AI in 2016, Vishal has amassed over six years of experience, balancing academic rigor and industrial applicability, and has contributed to eight research papers in international journals and book chapters. His journey has included collaborations with eminent research labs such as SONY R&D and MIRZ UZ Leuven, providing opportunities to explore and contribute to the myriad facets of AI. Vishal's relentless passion and multifaceted involvement in this transformative field have culminated in a comprehensive book aimed at unraveling the intricate tapestry of AI, bridging its profound depths and vast breadth. This endeavor is a scholarly pursuit and a holistic exploration reflecting his diverse experiences and insights, particularly emphasizing adversarial robustness and fraud detection in AI. Beyond his professional and academic engagements, Vishal actively participates in various AI meetups and events as a speaker, serves as a mentor in AI, and leads innovation and AI development at a drone-based startup. With a palette of rich experiences and a reservoir of knowledge, he invites you with anticipation and excitement to embark on this enlightening journey through the boundless landscapes of Artificial Intelligence, fostering a collaborative exploration and enriched appreciation of this unprecedented field.

About the Technical Reviewers

Nehaa Bansal is a trailblazing thought leader and data scientist, driven by a relentless passion for early innovation. With a wealth of experience spanning multiple industries including banking, finance, telecom, and insurance, Nehaa has mastered the art of developing predictive models that drive impactful outcomes. Her ability to excel both as an independent contributor and a collaborative team player sets her apart in the field.

Nehaa’s academic journey showcases a string of remarkable achievements. Graduating at the top of her class, she obtained a bachelor’s degree in computer science, laying a strong foundation for her future endeavors. Building upon her academic success, she further honed her skills by earning a master’s in data science from the esteemed BITS Pilani.

At the core of Nehaa’s professional ethos lie values that shape her every action. She thrives on taking ownership, putting people first, and asking the fundamental question of “why” before embarking on any endeavor. Her agile mindset propels her to act swiftly, embrace failure as a learning opportunity, iterate continuously, and always strive to play fair.

Driven by her deep-rooted passion for solving user problems, Nehaa leverages her expertise in analytics capabilities, product strategy, and leadership to craft innovative solutions. She approaches every challenge with unwavering dedication, consistently pushing the boundaries of what is possible.

Beyond her professional pursuits, Nehaa finds fulfillment in various personal interests. She relishes the power of continuous learning and remains at the forefront of emerging trends in her field. Furthermore, she is an avid advocate for creating a more inclusive and diverse work environment, fostering collaboration and empathy among team members.

With an indomitable spirit and a commitment to excellence, Nehaa Bansal continues to inspire and pave the way for others in the realm of technology and data science. Her unwavering dedication to her craft, coupled with her deep empathy for others, has solidified her as a thought leader and a catalyst for positive change.

Pradeepta Mishra is the Co-Founder and Chief Architect of Datasafeguard.ai a California headquartered start-up, leading a group of data scientists, computational linguistics experts, and machine learning and deep learning experts in building artificial intelligence-driven products for data privacy and synthetic fraud prevention. He was awarded “India's Top - 40Under40DataScientists” by Analytics India Magazine for two years in a row in 2019 and 2020. As an inventor, he has filed 14 patents in different global locations, out of which 4 are granted. He is the author of nine books; his first book has been recommended in the HSLS center at the University of Pittsburgh, PA, USA. His 4th book #PytorchRecipes was published by Apress and added to Buswell Library, IL, USA. His fifth Book #Practical Explainable AI using Python was recently published by Apress and has been recognized as a textbook for Barcelona Technology School's (BTS) big data analytics course. He delivered a keynote session at the Global Data Science Conference 2018, CA, USA. He has delivered a TEDx talk on “Can Machines Think?”, available on the official TEDx YouTube channel. Many of his books are translated and published in Japanese, Spanish, and Chinese on popular demand from authors. He has delivered 500+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions, and community-arranged forums. He is visiting faculty and academic advisory board for AI-ML in M. Tech in AI course and Cyber Security course at Reva University, Bangalore, India, and also various other universities. Has mentored and trained over 2000 plus data scientists and AI engineers in last 18 years.”

Welcome note

Welcome and greetings! We are delighted to have you here as we embark on an exhilarating exploration of the vast world of artificial intelligence. AI is an extraordinary technology that has revolutionized our understanding and interaction with the world around us. Numerous experts anticipate AI will profoundly impact humanity, rivaling the transformative effects of monumental inventions such as fire, the wheel, and agriculture.

The influence of AI permeates every aspect of our lives, often without us even realizing it. Take, for instance, Google Maps, which has long employed classical AI techniques to provide accurate and efficient directions. Additionally, the Amazon marketplace, weather forecasts, and the formidable Google Search Engine rely on intricate AI systems to enhance their functionalities.

Within the pages of this remarkable book, we will delve into the fundamental principles that underpin these intricate AI systems and explore the mathematical approaches behind them. Together, we will embark on an exhilarating journey into the depths of AI, uncovering its immense potential and unveiling the mysteries that lie within. Thank you for joining me on this thrilling expedition into the captivating world of AI.

Is this book for me?

Since you're here, the answer is a resounding yes! So, let’s dive deeper into the details. Whether you're intrigued by the fundamentals of Python, eager to construct neural networks from the ground up, curious about the mathematical optimizations that drive these unique AI systems, or keen on building an entire AI pipeline, this book has got you covered on all fronts.

Our comprehensive guide aims to demystify the core concepts of Neural Networks, providing you with a deep understanding while ensuring an engaging learning experience. We believe in learning by doing, so this book incorporates hands-on sessions to actively involve and captivate our readers.

Prepare to embark on a captivating journey that will empower you with the knowledge and skills needed to comprehend the inner workings of AI. With a focus on practicality and a firm foundation in Python, this book will equip you with the tools necessary to build, optimize, and deploy neural networks and bring your AI projects to life.

Join us on this enlightening adventure as we unravel the intricacies of Neural Networks and ignite your passion for AI. So, get ready to explore, experiment, and excel!

Software Engineers

This book perfectly fits software engineers looking to dive into AI. It provides ample opportunities to explore and practice AI concepts while leveraging the Python programming language. You'll gain valuable insights and practical skills from algorithms to real-life product implementation. Discover how to create AI-powered solutions and unleash your potential in the exciting field of AI.

Machine Learning Enthusiasts and Engineers

This book will advance your understanding if you're already well-versed in AI and have a solid foundation. It offers an opportunity to delve deeper into AI concepts, providing hands-on training that allows you to build projects from scratch. By engaging in practical exercises, you'll gain a more comprehensive understanding of AI and sharpen your skills. Prepare to expand your knowledge and expertise as you embark on a hands-on exploration and learning journey.

AI Researchers

This book caters to AI researchers by offering clear explanations of mathematical concepts used in AI algorithms. It also guides writing production-level code, addressing a common challenge researchers face. Expand your understanding of AI and enhance your ability to apply it effectively in real-life scenarios with this valuable resource.

What is the book’s goal?

	Introduce our readers to the basics of Python and how to use it for AI purposes.

	Help readers understand complex mathematical concepts by giving them an easy breakdown of mathematical equations, which can later be applied to understand the complex mathematics behind modern AI systems.

	Enable our readers to write mathematical concepts behind AI algorithms in a code format by implementing things from scratch without using high-level libraries such as TensorFlow or PyTorch.

How is this book structured?

This book aims to comprehensively understand Artificial Neural Networks (ANN) and guide readers in building ANN models using Python. In addition, it explores the practical applications of ANN in various industries and academic fields.

The book begins with an introduction to Neural Networks and then covers the fundamentals of Python and the relevant libraries used in ANN modeling. Next, it gradually introduces the theoretical concepts that serve as the foundation for the rest of the book, including one-layer and multilayer neural networks, vectors and weights, and Linear Regression Models.

The core section of the book focuses on the construction of ANN models. It starts with building neural networks from scratch, including detailed coding examples. Then, the addition of input and output layers to the ANN model and techniques for saving, restoring, and fine-tuning the model's hyperparameters are discussed. Later, we discover the excellent TensorFlow library and how to write NN models using a high-level library.

In the book’s final part, readers will delve into training and compilation of DL models. Finally, the book concludes by demonstrating real-world applications of AI, providing readers with the necessary knowledge to grasp new AI concepts and engage in AI research while enabling them to implement and comprehend cutting-edge AI technologies.

By completing this book, readers will acquire the skills to effectively apply ANN in practice and develop a solid foundation for exploring advanced AI concepts and techniques.

Do I need to know anything else before getting started?

Basic knowledge of Python and AI is excellent, but don’t worry; we will cover everything from setting up your machine to building things that can be utilized in a real-world application.

The tools and technologies we will cover in this book include Python, Neural Networks, Mathematical Operations, Image Processing, TensorFlow, Keras, Numpy, and VS Code.

Without further ado, let’s get started.

Acknowledgements

Vishal Rajput: It is with immense gratitude and heartfelt appreciation that I extend my acknowledgments to the individuals and institutions that have significantly contributed to the creation of this book on AI.

First and foremost, I express deep gratitude to my friends through this book who have consistently engaged with me in insightful AI discussions. Bhuppi, Sooraj, Venkatesh, and Venkatraman, your involvement and shared enthusiasm have been invaluable in shaping the concepts presented within these pages.

I am indebted to my alma mater, KU Leuven, for providing me with a rich educational foundation. A special debt of gratitude is owed to the research collaboration I had the privilege of undertaking with Dr. Irshad Ahmad Ansari, whose guidance and mentorship significantly influenced the depth and quality of this work.

The unwavering support of all my friends and family has been a constant source of inspiration. Their encouragement and belief in my pursuit of knowledge have been instrumental in bringing this project to fruition.

I extend my special thanks to renowned institutions such as Stanford and MIT, whose lectures have expanded my understanding of AI. Additionally, platforms like MLST and other exceptional YouTube channels, featuring luminaries such as Hinton, Bengio, and Andrew Ng, have been instrumental in imparting profound insights into the realm of AI.

Finally, with profound gratitude and appreciation, I like to thank the reviewer and Team AVA.

Preface

This book provides a comprehensive exploration of Artificial Intelligence (AI), beginning with a foundational understanding of its history, significant developments, and evolution into various sub-fields. The initial chapters lay down the theoretical groundwork, delineating between AI and Deep Learning and elucidating the basic concepts and models like neuron-inspired networks. Progressing sequentially, it offers practical insights into setting up Python workflows for AI development, focusing on installing essential packages and configuring development environments. It introduces foundational Python libraries and programming concepts crucial for AI development and data science, enhancing comprehension through web scraping, regex, and multithreading discussions.

Moving forward, the book delves deeper into advanced topics, covering effective neural network training concepts, dimensionality reduction techniques, and unsupervised learning. The readers are guided through building neural networks from scratch, emphasizing understanding various data structures and implementing multi-layer networks using NumPy. Subsequent chapters intensively explore Convolutional Neural Networks (CNN) and provide insights into TensorFlow and Keras, highlighting the contrasts between TensorFlow and other deep learning frameworks. The concluding chapters center on structuring deep learning code, constructing end-to-end image segmentation pipelines, and presenting the latest advancements and techniques in AI, ensuring the readers are well-acquainted with cutting-edge developments in the field.

Chapter 1: This chapter introduces AI, highlighting its evolutionary phases and sub-fields. The goal is to impart an understanding of AI history and how it diverged into various domains, emphasizing intelligent behavior like learning, reasoning, and language. It discusses differences between AI and Deep Learning, illustrates early neuron-inspired network models, and mentions significant developments like ChatGPT.

Chapter 2: This chapter serves as a practical guide to setting up the Python environment for AI development, including installing necessary packages and configuring environments like Anaconda and VS Code. It also introduces the concepts of Object-Oriented Programming (OOP) crucial for development.

Chapter 3: This chapter discusses various Python libraries and techniques essential for Data Scientists, focusing on web scraping, regular expressions, multi-threading, multi-processing, and introducing the basics of Pandas.

Chapter 4: This chapter dives into the fundamental concepts vital for training neural networks, such as activation functions, overfitting, bias-variance trade-off, and the principle of universal approximators. It introduces concepts like Radial Bias Function and the curse of dimensionality, providing insights into the realm of neural networks.

Chapter 5: This chapter elucidates dimensionality reduction techniques and unsupervised learning, touching upon topics like PCA, clustering, semi-supervised learning, and self-supervised learning. It also explores version space and optimization through SVM, shedding light on different SVM forms and the Kernel Trick.

Chapter 6: This chapter takes a hands-on approach to illustrate building neural networks from scratch. It discusses the coding of neurons, understanding various data structures like lists, arrays, and tensors, and provides insights into creating multi-layer networks using NumPy.

Chapter 7: This chapter delves deep into the optimization of weights through derivatives and backpropagation. It details the mathematics and implementation of backpropagation and introduces various optimizers like SGD and Adam, emphasizing training networks end-to-end.

Chapter 8: This chapter elaborates on Convolutional Neural Networks (CNN), detailing their operation, feature extraction, and types, and introduces various CNN-based networks like VGG 16, ResNet, and others. It discusses different convolution types and provides insights into scaling conv networks through the Efficient Net Architecture.

Chapter 9: This chapter provides an overview of TensorFlow and Keras, contrasting TensorFlow with other deep learning frameworks like PyTorch and Theano. It provides insights into TensorFlow’s internals and various components, discussing layers, activations, optimizers, and loss functions, and illustrates building a multi-input single-output network with custom callbacks.

Chapter 10: This chapter focuses on structuring deep learning code and building an end-to-end image segmentation pipeline. It emphasizes project structure, documentation, debugging, and logging, and introduces segmentation techniques like UNet and Attention Gates.

Chapter 11: The final chapter delves into advanced AI concepts and models, including RNN, LSTM, self-attention mechanisms, object detection with YOLO, and generative models like VAE and GANs. It provides a detailed understanding of different AI models like DALLE-2 and explains the use of self-attention for transformers in Natural Language Processing (NLP).

This book serves as a comprehensive guide, starting from the basics and history of AI, delving into practical aspects and foundational concepts, and concluding with the latest advancements in the field.

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Ultimate-Neural-Network-Programming-with-Python

The code bundles and images of the book are also hosted on
https://rebrand.ly/553a52

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Understanding AI History

Knowing the historical background and context is important to fall in love with any technology or subject. Without sufficient background and context, you may always ask yourself, why am I even reading this? Throughout this chapter, we cover who this book is meant for and how it is going to help you, whether you are an AI researcher, developer, or enthusiast. From understanding the earliest inspiration to the first set of mathematical blocks to build neural networks, this chapter gives you all.

Structure

This chapter covers the following topics:

	How AI evolved over decades

	Different AI uses cases

	Differentiating AI, ML, and DL

	Multi-layer Perceptron

Evolution of AI

While many are familiar with the concept of the AI winter, the complete narrative of AI’s evolution over the decades remains to be discovered by most. To grasp the intricacies of the field, it is crucial to comprehend the foundations and the remarkable journey that has brought us here. The inception of AI can be traced back to the 1960s when pioneering researchers delved into the realm of creating intelligent machines. While the Dartmouth Conference in 1956 is widely regarded as the birth of AI, it was during the 1960s that substantial strides were made, propelling the field forward.

The early history of AI

Early AI researchers focused on creating systems that could solve problems symbolically, using logical reasoning and rule-based approaches. One of the key developments was the General Problem Solver (GPS) created by Allen Newell and Herbert A. Simon. GPS was an early attempt at building a problem-solving system that could reason and plan its actions. The idea was that they could represent the entire world through symbols and perfect logic, and if one could do that, one could train a system to navigate that world, but it was almost impossible to build such a system due to the inherent random nature of things. For example, so many things can’t be written using perfect logic; thus, creating a world model with excellent reasoning capabilities was doomed to fail in at least certain areas. Another notable achievement was the creation of the ELIZA program by Joseph Weizenbaum. ELIZA was a computer program that simulated a conversation with a human and demonstrated natural language processing capabilities.

Let us try to understand this in more detail through a concept called Combinatorial explosion. It is a phenomenon in AI where the number of possible states or combinations grows exponentially as the problem size increases. It refers to the rapid expansion of the search space or the complexity of a problem as more variables or options are introduced.

In AI, combinatorial explosion poses a significant challenge because it leads to computational intractability and makes it difficult to explore all possible solutions reasonably. As the number of variables, constraints, or choices increases, the number of potent states grows exponentially. This explosion in possibilities often exceeds the computational resources available to solve the problem effectively. Planning and search, and drug discovery are a few problems that represent the combinatorial explosion problem. Let’s understand this problem through an example and why the early AI system failed.

Example to understand the concept

Consider a photo of a chair represented by a 10x10 feature matrix. Each point in this matrix can take on a value ranging from 0 to 256. Consequently, the total number of possible combinations in this search space is calculated by multiplying 256 by itself 100 times (256¹⁰⁰). This astronomical number signifies the sheer magnitude of the search space.

To put it into perspective, the enormity of this space surpasses the number of atoms present in the entire universe. In other words, more atoms in the universe must be needed to draw sufficient samples from this vast search space to comprehend the underlying distribution.

In essence, attempting to explore and analyze the entire 256¹⁰⁰ space is an insurmountable task due to its incomprehensible size, exceeding the limitations of current resources and feasibility. But we still somehow do it through Neural Networks.

[image:]

Figure 1.1: Combinatorial explosion (Img Src)

During the 1970s, a significant development in AI was the advent of knowledge-based systems and the ascent of expert systems. Researchers’ primary objective was to encapsulate human expertise within rule-based systems, employing them for medical diagnosis and decision-making. A notable achievement during this period was the creation of MYCIN, an expert system devised by Edward Shortliffe specifically for diagnosing infectious diseases. MYCIN showcased the potential of AI in tackling complex problem domains. Nevertheless, progress in the field was impeded by limitations in computational power and the need for more available data. As a result, interest in AI research dwindled towards the end of the decade.

Towards the end of the 1970s and early 1980s, a groundbreaking discovery was on the horizon, poised to revolutionize the field of AI. During this time, scientists began exploring alternative approaches to training AI systems. But unfortunately, while significant efforts had been invested in creating AI systems that mimicked the human brain, all these endeavors had yet to achieve the desired success.

The most crucial development in the History of AI

However, a significant turning point arrived when Geoff Hinton proposed an entirely revolutionary idea: The backpropagation of errors. Departing from the notion of teaching machines to behave like the human brain, Hinton advocated for a results-oriented approach. Instead of expecting machines to make correct predictions from the outset, the concept involved allowing the machine to make incorrect predictions and then improving upon them iteratively.

This paradigm shift marked a pivotal moment in AI. The concept of Backpropagation [1], further developed by Rumelhart, Hinton, and Williams, formed the backbone of the entire AI field. Today, it is widely recognized as the backpropagation algorithm, a fundamental technique in training neural networks.

The introduction of backpropagation brought about a new perspective, emphasizing the iterative correction of machine predictions. This breakthrough approach unlocked unprecedented possibilities for AI systems, enabling them to learn and adapt from their mistakes. As a result, the field of AI embarked on a transformative trajectory that continues to shape its advancements. In later chapters of this book, we will delve much deeper into the Backpropagation algorithm and look into its inner workings by implementing it from scratch.

Throughout the book, we will keep giving you links to great lectures and video series for building intuition upon the ideas presented in this book. Here’s one such great mini-video series from the 3blue1brown YouTube channel to understand the core ideas behind NN: 3Blue1Brown NN series [2].

[image:]

Figure 1.2: Drawing inspiration from Neural Nets from Brain (Img Src)

AI started evolving into new fields

During the 1990s, AI research shifted towards practical applications and integrating AI technologies across diverse domains. Machine learning techniques, including decision trees, support vector machines, and Bayesian networks, gained significant prominence during this era. Simultaneously, advancements in natural language processing (NLP) propelled the development of systems like IBM’s Watson, which achieved fame by winning the Jeopardy game show in 2011.

The fields of robotics and computer vision also experienced remarkable progress, finding applications in industrial automation and developing autonomous vehicles. The advent of the internet and the abundance of available data led to the emergence of data-driven approaches and data mining. AI techniques found practical use in diverse areas, ranging from fraud detection and recommendation systems to improving search engines. During this period, we witnessed a notable transition from rule-based AI systems to statistical and probabilistic methods, facilitating the development of more scalable and adaptable solutions.

AI starts taking its modern form

In the early 2000s, AI experienced a convergence with fields like computational neuroscience and cognitive science, fostering interdisciplinary research. During this period, we witnessed a significant breakthrough with the emergence of deep learning, a subfield of machine learning that utilizes neural networks with multiple layers. As a result, deep learning revolutionized AI capabilities, achieving unprecedented success in tasks like image recognition, speech recognition, and natural language processing. Furthermore, the availability of extensive labeled datasets and advancements in graphics processing units (GPUs) accelerated the development and adoption of deep learning algorithms, enhancing AI’s potential for solving complex problems and driving further advancements in the field.

With a little more historical context, we are ready to delve deeper into the technical subject matter.

[image:]

Figure 1.3: How AI progressed over time (Img Src)

Understanding Intelligent Behavior

The goal of every AI system is to behave intelligently; defining what intelligence is a big task. Nonetheless, we try to associate different tasks as signs of intelligence. The true nature of intelligence is still a mystery, but there are several outcomes or behaviors that we can say are generated from some form of intelligence; chess and reasoning are two such examples. In this section, we touch upon the role of AI in Chess, reasoning, poker, and so on, which we consider an outcome of intelligent behavior.

AI beats humans at chess

Before delving into AI’s technical definition and components, it is essential to ponder some fundamental questions. First, what do we truly consider intelligent? Is playing chess a definitive proof of intelligent behavior? Does conversing like a human or the ability to reason qualify as a form of intelligence? The concept of intelligence remains elusive, and defining it proves trickier than most realize. When AI achieves significant breakthroughs, they are often attributed to clever hacks or increased computing power. However, this can also be the case for human intelligence. Present-day can undoubtedly display intelligent behavior, but whether it can be deemed truly intelligent remains uncertain. A notable example is the 1997 match where Gary Kasparov, the chess world champion, was defeated by IBM’s system named Deep Blue system. Deep Blue relied on human involvement and chess-specific rules; it demonstrated behavior that can be considered intelligent, albeit not necessarily intelligence itself. Here’s the video of Kasparov playing chess with AI: AI vs. Kasparov Chess [3].

[image:]

Figure 1.4: Gary Kasparov (Chess World Champion) vs. Deep Blue (Img Src)

AI learning reasoning and language

On a separate occasion, IBM again showcased an intelligent system to the world called Watson; it became famous by winning a trivia game show called Jeopardy! in 2011. By outperforming human champions, Watson showcased the potential of AI systems to understand and process natural language at a level that surpassed human capabilities. This groundbreaking accomplishment captured global attention and sparked widespread interest in AI. Watson’s core technology was natural language processing and data analytics. This later ushered in the era of cognitive computing. It demonstrated the ability of AI systems to analyze vast amounts of unstructured data, understand complex questions, and provide accurate answers. This breakthrough paved the way for AI systems to excel in tasks requiring cognitive abilities, such as language comprehension, reasoning, and decision-making. Here’s the video of AI playing Jeopardy released by IBM research: IBM AI Jeopardy [4].

[image:]

Figure 1.5: IBM Watson playing and winning the game of Jeopardy against humans (Img Src)

AI starts playing poker

In 2017, an AI system called Libratus beat human players in Poker. Researchers at Carnegie Mellon University developed it for playing heads-up, no-limit Texas hold ‘em poker. Poker is a game of incomplete information, unlike chess or Go, making it a significant challenge for AI. Libratus has been a landmark in this realm, as it was the first AI to beat professional poker players in a complete tournament setting in 2017. Its approach includes three modules: a reinforcement learning module for strategy, an endgame solver for specific scenarios, and a self-improver module that reviews the AI’s strategy to seal potential leaks. The success of Libratus represents a significant achievement in AI’s ability to manage uncertainty and complex decision-making scenarios. Here’s a video from Engadget explaining AI poker: Libratus AI Poker [5].

[image:]

Figure 1.6: Libratus AI beating humans at Poker (Img Src)

Conquering GO and Dota 2

AlphaGo and OpenAI Five are the other two excellent AI systems that make quite a lot of noise worldwide. We suggest giving a read to both Original Alpha GO [6] and OpenAI Five [7] papers, as both achieved something remarkable and introduced many new ideas to train intelligent systems that can beat humans in GO and Dota 2. For those who don’t know about AlphaGo, it’s an AI system to play a game called GO; it’s an enormously complex game with 10300 possible combinations, much greater than the number of atoms in the universe. On the other hand, OpenAI Five is a system to play a multiple-player Online game called DOTA2. The game of Dota 2 presents novel challenges for AI systems, such as extended time horizons, imperfect information, and complex, continuous state-action spaces, all challenges which will become increasingly central to more capable AI systems.

Note: Humans have again beaten machines at GO by leveraging information from adversarial attacks; go and read this paper [8] from MIT.

[image:]

Figure 1.7: GO Board game (Img Src)

An experience with ChatGPT

Lastly, I’m sure you’re already familiar with or have encountered ChatGPT. I had an intriguing experience with ChatGPT when I asked it to interview me about one of my papers. Surprisingly, the conversation turned out quite well. Although AI systems like ChatGPT aren’t flawless, their comprehension capabilities have significantly improved in recent years. I share this to provide you with a broader perspective of the field before delving into the fundamental aspects of AI. It’s essential to grasp the overall landscape and acknowledge the advancements made thus far.

[image:]

[image:]

[image:]

[image:]

Figure 1.8: My Interview with ChatGPT

This covers the history, and some old and recent exciting developments over the past few decades.

Difference between Artificial Intelligence, Machine Learning, and Deep Learning

In the last sections, we looked into the historical context of AI and what are different use cases where AI is being used or has already beaten humans in displaying intelligent behavior. From this chapter, we will go more technical and build a mathematical and practical understanding of these concepts. So, let’s first start by defining the terms Artificial Intelligence, Machine Learning, and Deep Learning.

[image:]

Figure 1.9: Deep learning is a subset of Machine Learning, and Machine Learning is a subset of Artificial Intelligence

Formally defining AI terms

In reality, there are many ways to define or understand these terms. Still, I see them as a subset within a subset, with the top layer being artificial intelligence and the last layer being deep learning. For example, a concise definition of Artificial Intelligence: the effort to automate intellectual tasks usually performed by humans. AI is a general field encompassing machine learning and deep learning, but it includes many more approaches that don’t involve learning.

Machine learning emerges from whether a computer can surpass the limitations of explicitly programmed instructions and autonomously learn how to perform a given task. Can a computer exhibit unexpected behavior? Instead of programmers manually crafting rules for data processing, can a computer automatically learn these rules by analyzing data? This question introduces a new programming paradigm. In traditional symbolic AI programming, humans input rules (a program) and data to be processed according to those rules, yielding answers. However, humans input data and the expected solutions in machine learning, and the system generates the rules. These rules can then be applied to new data to create novel and original answers.

[image:]

Figure 1.10: Difference between Classical programming and Machine learning

Machine learning operates through training rather than explicit programming. Instead of being given predefined instructions, a machine-learning system is exposed to numerous examples relevant to a specific task. By analyzing these examples, the system identifies statistical patterns and structures that enable it to formulate rules for automating the task at hand. For example, if you wanted to automate the process of tagging your vacation pictures, you could provide a machine-learning system with a large dataset of pictures already tagged by humans. The system would then learn statistical rules to associate specific images with corresponding tags, allowing for automated tagging in the future.

Machine learning and mathematical statistics share a strong connection but diverge in crucial aspects. Unlike traditional statistics, machine learning mainly focuses on handling large, intricate datasets. These datasets can be vast, containing millions of images, each composed of tens of thousands of pixels. Consequently, classical statistical techniques like Bayesian analysis become impractical in such scenarios. As a result, machine learning, particularly deep learning, tends to have a limited emphasis on mathematical theory, potentially needing more in-depth theoretical foundations. Instead, it takes an engineering-oriented approach, prioritizing hands-on experimentation and empirical validation over rigorous theoretical proofs. In essence, machine learning is a discipline that heavily relies on practical demonstrations and empirical evidence to support its idea of learning and intelligence. Examples of Machine learning algorithms include Support Vector Machines, Logistic Regression, Decision Trees, and so on.

Deep learning is a specific machine learning subfield and a relatively new concept. It takes an entirely new stance on learning; instead of learning statistical rules directly, it creates a representation of data fed through multiple layers, subsequently creating deeper and deeper representations, thus the name ‘Deep Learning’. Other appropriate names for the same are layered representations learning and hierarchical representations learning. Modern deep learning often involves tens or even hundreds of successive layers of representations—and they’re all learned automatically from exposure to training data. Meanwhile, other approaches to machine learning tend to focus on learning only one or two layers of representations of the data; hence, they’re sometimes called shallow learning. As we move forward in the book, we’ll create a deep neural network from scratch.

Learning representations from data

Deep learning is a subset of machine learning that focuses on learning useful representations of input data through exposure to known examples. To perform machine learning, three elements are required:

	Input data points (like sound files or images)

	Examples of the expected output (such as human-generated transcripts or image tags like a cat image or a dog image)

	A way to measure the algorithm’s performance to provide feedback for adjustment and learning

The central idea in machine learning and deep learning is to transform the input data so that the generated representation can be mapped to a particular output. In other words, transform the data so that the difference between the actual and predicted output is minimal. At its core, it’s a different way of representing or encoding data. For instance, we can write two in so many ways: 2 (Decimal), II (Roman), and 10 (Binary); all of these are just different ways of representing the same idea of two. The distinction between AI-generated encodings and traditional ML or DL representations lies in their structure and human interpretability. ML or DL representations may not adhere to a rigid or easily readable format, as they are influenced by the input data and the algorithm employed to generate them. For instance, consider color images that can be encoded in formats such as RGB or HSV. While these formats represent the same data, they offer distinct advantages for specific tasks. For example, RGB facilitates the selection of red pixels, while HSV simplifies adjusting brightness. Machine learning models identify appropriate representations that enhance the data’s suitability for the given task, such as classification. Refer to the following figure for the disparity between fixed and learned encodings.

[image:]

Figure 1.11: Representing Two using fixed and leaned encoding/representations

It is crucial to recognize that learned representations can exhibit substantial variation in size and value, contingent upon the algorithm employed for their generation. Even when applying the same algorithm, the representations may diverge for different data points, especially if alterations are made to the remaining dataset. Within learned representations, the value assigned to a particular data point is influenced by encoding other data points, thus emphasizing the interconnectedness and interdependence of the learned representation space.

Example to understand the concept

To illustrate this, let’s consider an example using a machine learning algorithm for image recognition. Suppose we have a dataset of images containing different animals, such as dogs, cats, and birds. The algorithm aims to learn representations that can accurately classify these images into their respective categories.

During the training process, the algorithm analyzes the features of the images and creates learned representations for each data point. These representations are numerical values that capture essential characteristics of the images relevant to the classification task. For instance, certain learned representations might emphasize the presence of fur or feathers, the shape of the ears, or the arrangement of wings.

The learned representations can change if we modify the dataset by adding or removing images. For instance, if we introduce new images of fish into the dataset, the algorithm may adjust its learned representations to accommodate this new category. Consequently, the representations assigned to previously seen animals like dogs, cats, and birds may also be influenced by including the additional images.

Furthermore, within these learned representations, the encoding of a specific data point can depend on the encodings of other data points. For example, in a deep neural network where representations are hierarchically learned, encoding an image at a higher layer can be influenced by the encodings of multiple images at lower layers. This interdependence allows the model to capture complex relationships and dependencies within the dataset.

In summary, learned representations can vary in size and value depending on the algorithm used and can be sensitive to changes in the dataset. Moreover, encoding a particular data point can rely on the encodings of other points, enabling the model to capture intricate relationships within the data.

Sub-Fields of AI

AI is a broad term, and we tried to give a clear difference between its three main components: AI, ML, and DL. But we must still dive deeper and further categorize these systems to complete our mental map AI subdomains. Even though all three: Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are interconnected fields, we can still try to organize them into their subcategories:

Artificial Intelligence (AI)

AI can be broken down into two main types: Narrow AI, which is designed to perform a narrow task (for example, facial recognition or voice commands), and General AI, which is intended to perform any intellectual task that a human being can do. Here are some subfields:

	
Expert Systems: Mimic the decision-making ability of a human expert.

	
Natural Language Processing (NLP): Computers interacting with human language. In recent times the entire NLP has moved over to DL-based methods.

	
Speech Recognition: Translating spoken language into written form.

	
Computer Vision: Enabling computers to understand and interpret visual information from the real world.

	
Robotics: Designing machines capable of carrying out complex actions autonomously or semi-autonomously.

	
Planning and Navigation: Algorithms for planning and navigation in AI systems, often used in robotics.

Machine Learning (ML)

Machine Learning is a method of data analysis that automates the building of analytical models. It’s a branch of AI based on the idea that systems can learn from data, identify patterns, and make decisions with minimal human intervention. Here are some subfields:

	
Supervised Learning: The model learns from label ed data. Examples include regression, support vector machines, decision trees, and random forests.

	
Unsupervised Learning: The model learns from unlabeled data. Examples include clustering algorithms (like k-means) and dimensionality reduction techniques (like PCA).

	
Semi-supervised Learning: The model learns from labeled and unlabeled data.

	
Reinforcement Learning: The model learns to make decisions by receiving rewards for good choices and penalties for bad ones. It’s often used in games and robotics.

	
Ensemble Methods: These combine multiple machine learning models to improve results. Examples include bagging, boosting, and stacking.

Deep Learning (DL)

Deep Learning is a subfield of machine learning concerned with algorithms inspired by the structure and function of the brain, called artificial neural networks. It’s a technique for implementing machine learning that uses artificial neural networks with multiple layers (hence the deep in deep learning). Here are some subfields:

	
Convolutional Neural Networks (CNNs): Primarily used for image processing tasks like image recognition.

	
Recurrent Neural Networks (RNNs): Designed for sequence prediction problems and tasks that require memory of past information, like time series forecasting and language translation.

	
Long Short-Term Memory Networks (LSTMs): A type of RNN that can learn and remember over long sequences, widely used in language modeling and translation.

	
Generative Adversarial Networks (GANs): Composed of two networks, one generates and evaluates data. They are typically used to generate realistic images, but can also be used for various purposes.

	
Autoencoders: Used for tasks like anomaly detection and dimensionality reduction, as well as learning efficient data representations.

	
Transformers: Primarily used in natural language processing tasks, they have significantly improved text translation and generation.

Remember, these fields overlap and intersect in many ways, and advancements in one often lead to improvements in others. Going over all these sub-topics is a book in itself. But I still want to give a sense of what is happening in AI. All of today’s AI developments are happening in DL primarily. GANs and Transformers are the crazes of the industry right now. Regarding statistical analysis, like the banking sector, drug trials, and so on, ML-based methods are still the king. However, DL is relatively very poor in explaining its behavior. Thus, people in industries with strong regulations still prefer ML over DL because of their result’s explainability or interpretability.

In later chapters of the book, we will look into the basics of Transformers and GANs. Both of these are making huge waves in the industry. As a result, all you come across is highly likely to be based on either of the two, from DALL-E to ChatGPT.

Early Models of Neuron-Inspired Networks

The idea of mimicking brain neurons to make intelligent systems is not new. But formalizing this idea to actually make it work was quite difficult. Making the networks trainable and learn through the Backpropagation algorithm was nothing less than a stroke of genius from Hinton’s side. Let’s start our journey with understanding the development of the earliest Neuron-Inspired Networks.

Understanding biological neurons

If you’ll go and do a quick search on the internet, you will find some articles stating that artificial neurons are just like biological neurons. I want to clarify that artificial neurons are not similar to biological ones but are mathematical representations of biological neurons. Though I’m not a biologist, I’m certain that biological neurons don’t use backpropagation to learn things. Biological neurons inspire artificial neurons, and that’s where the similarity ends.

One estimate is that the human brain contains over 1011 neurons and 1014 synapses in the human nervous system. Biological neuron switching is much slower than a computer’s transistor switching, but the connectivity is higher than in today’s supercomputers.

A biological neuron has three main parts:

	Neuron cell body

	Branching extensions called dendrites for receiving inputs

	An axon that carries the neuron’s output to the dendrites of other neurons

[image:]

Figure 1.12: Biological neurons (Img Src)

McCulloch-Pitts model of a neuron

A simple and popular model for neurons is the McCulloch-Pitts model. However, one should know that this is a strong mathematical abstraction of reality. So, let’s understand this model in more detail.

Components of the McCulloch-Pitts Model:

	
Input: The MCP neuron receives binary input (either 0 or 1) from multiple other neurons, just like a biological neuron receives signals from multiple other neurons.

	
Weights: These inputs are each associated with a weight, which can be positive (excitatory) or negative (inhibitory). In the simplest form of the model, these weights are not adjustable, unlike in modern artificial neural networks, where the weights are adjustable and learned through training.

	
Activation Function: The neuron computes a weighted sum of its inputs and then applies a thresholding function. If the sum is greater than or equal to the threshold, the neuron fires (outputs a 1); if the sum is less than the threshold, the neuron does not fire (outputs a 0).

[image:]

Figure 1.13: McCulloch-Pitts model of neuron (w1, w2…, wn are non-trainable here)

Example to understand the concept

Let us consider a simple MCP neuron with three input signals. Let us assume the threshold is set to 2.

	
We have three inputs: I1 = 1, I2 = 0, I3 = 1.

	
These inputs are associated with weights: W1 = -1 (inhibitory), W2 = 1 (excitatory), W3 = 2 (excitatory).

	
The neuron calculates the weighted sum of the inputs: Sum = I1*W1 + I2*W2 + I3*W3 = 1*(-1) + 0*1 + 1*2 = 1.

	
The weighted sum (1) is compared to the threshold (2). Since 1 < 2, the neuron’s output is 0, that is, the neuron does not fire.

This is a very basic example of an MCP neuron. Remember that the model drastically simplifies biological neurons and modern artificial neural networks. For instance, weights in an MCP neuron are static and do not change, while in modern neural networks, weights are adjusted during training through a process called backpropagation. Furthermore, the binary nature of the MCP model’s inputs, outputs, and weights is also a simplification. In most modern artificial neural networks, these quantities are real-valued.

So, MCP started the idea of neural networks, but because of its non-trainable weight, it is a useless model in most real-world scenarios. So, they needed to transform this idea making the weights adaptable and trainable.

Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) is an artificial neural network composed of multiple layers of neurons (also called nodes or perceptron’s), where each neuron in a layer is connected to all neurons in the previous layer. It consists of at least three layers - an input layer, one or more hidden layers, and an output layer.

MLPs are used in supervised learning problems for regression (predicting a continuous output) and classification (predicting a discrete output).

Example to understand the concept

Consider a simple MLP with two input neurons, one hidden layer with two neurons, and one output neuron. Let’s assume we’re trying to solve a binary classification problem. Here’s how it might work:

	
We have two inputs, x1 and x2.

	
These inputs are passed to the hidden layer, where each neuron applies weights w to the inputs and adds a bias b. The weights and biases are parameters that the MLP will learn during training. Each neuron j in the hidden layer computes a weighted sum: zj = w1j *x1 + w2j*x2 + bj.

	
Each neuron in the hidden layer then applies an activation function to the weighted sum to introduce non-linearity into the model. A common choice of activation function is the ReLU (Rectified Linear Unit) function, which is max(0, z). For example, let’s denote the output of neuron j in the hidden layer after applying the activation function as hj.

	
The hidden layer outputs h1 and h2 are then passed to the output neuron, which applies its weights and bias to compute a weighted sum: output = w1output*h1 + w2output*h2 + boutput.

	
For a binary classification problem, the output neuron often uses the sigmoid activation function to squash the output between 0 and 1: output = 1 / (1 + exp(-zoutput)). This output can be interpreted as the probability of the positive class.

Let’s write the preceding points concisely mathematically, with two inputs and two hidden neurons with one output neuron.

Let us denote the weights from the inputs to neuron j in the hidden layer as w1j and w2j, and the biases as bj. Also, weights from the hidden layer to the output as w1output and w2output , and the bias as boutput.

	
Z1hidden = w11*x1 + w21*x2 + b2

	
h1 = max(0, z1hidden) (ReLU activation)

	
z2hidden = w12*x1 + w22*x2 + b2

	
h2 = max(0, zhidden) (ReLU activation)

	
output = w1output *h1 + w2output *h2 + boutput

	
output = 1 / (1 + exp(-zoutput)) (Sigmoid activation)

[image:]

Figure 1.14: Simple NN with two inputs and two hidden neurons

This diagram shows the representation of neural networks described in the preceding equations. But the real-world networks have hundreds and thousands of neurons with several layers in it, the following diagram shows a much more realistic neural network that can solve simple tasks like classification or regression on some simple input arrays.

[image:]

Figure 1.15: A 4-layer deep neural network

I want the readers to understand this not only with examples but also with generalized mathematical equations. So, let’s look at how to define it in a generalized mathematical way.

We know that neural networks work with matrices, and here’s what the matrix-vector notation of the preceding definition looks like. Here the input is x ∈ Rm, the output is y ∈ R l and the interconnection matrices are W ∈ R l x n_h, V ∈ R n_ h x m for the output layer and hidden layer, respectively. Finally, the bias vector is β ∈ R n_h and consists of the threshold values of the nh hidden neurons.

[image:]

Many people struggle to grasp mathematical equations, so let’s understand what these representations mean.

x ∈ Rm : R represents the set of real numbers, and the superscript m indicates that x is a vector of length m. Each element of the vector x is a real number.

W ∈ R l x n_h : represents that the variable W belongs to the set of real-valued matrices with dimensions l rows and nh columns.

V ∈ R n_h x m : R represents the set of real numbers, and the superscript nh x m indicates that “V” is a matrix with nh rows and m columns. Each element of the matrix V is a real number.

nh : n hidden neurons.

σ(X) : Activation function for input X.

The preceding notation is more compact than the elementwise notation. For example, here’s the same equation represented in the elementwise notation.

[image:]

Given above is a simple example of an MLP with one hidden layer. In practice, MLPs can have many hidden layers and many neurons in each layer. Also, different types of activation functions can be used.

The parameters of the MLP (the weights and biases) are learned during training by minimizing a loss function that measures the difference between the MLP’s predictions and the true outputs. This is typically done using an optimization algorithm like stochastic gradient descent, which we will see in the upcoming chapters.

Note: You can visit all the links and references mentioned in this chapter by scanning the QR code given at the end. We highly recommend visiting the mentioned references as we try to keep them to a minimum and only add them in places where we feel that users should dive deeper into those topics.

Conclusion

Welcoming the readers and explaining how to utilize the book aptly, followed by AI developments during different decades and how they propelled the field in a given direction. Formally defining AI, ML, and DL are often used interchangeably, so it’s essential to know the difference between them. Next, we discuss the data representation/encodings followed by AI, ML, and DL subfields. This highlights how these models manipulate data to give us the desired results. Finally, we introduce the MCP and MLP and explain the math behind it using simple examples. These were the earliest forms of present-day neural networks.

In the next chapter, we will discuss Python and its essential components. Python is the major language for AI development, so gaining the skill and knowledge for real-life project development is super important. We will also set up the necessary environments to work with AI-related libraries. See you soon!!!

“The goal of AI is to replace human intuition with machine algorithms, but to do so in a way that respects the complexities and subtleties of human intelligence.” - Fei-Fei Li

https://github.com/OrangeAVA/Ultimate-Neural-Network-Programming-with-Python

OEBPS/images/Fig-1.7.jpg

OEBPS/images/Fig-1.8b.jpg
Can you elaborate on that? What do you mean by changing the pixels belonging to the.
highest gradient and looking at the segmentation maps? How did this help you evaluate the
robustness of differentloss functions?

S0, we trained three models, one with Binary loss, second with Dice loss and third one with
binary + dice loss. The model trained with Binary Dice loss can preserve the segmentation
maps much better than other two models

I see. So you trained these three models on the same data, but with different loss functions,
and then evaluated the performance of each model on a segmentation task by looking at
the quality of the segmentation maps they produced. Can you provide more details on this
process and how you quantiied the performance of the different models? What were the
main findings from this experiment?

Dice metric was used to evaluate it. And the main finding was Dice oss gives more precise
segmentation maps, and binary loss gives much more robustness. And combining the two.
loss functions gives more accurate and more robust results,

@

OEBPS/images/Fig-1.8a.jpg
Interview me about my recent paper titled “Robustness of different loss functions and their
impact on networks learning capability". Do not write answers for me. Ask me a question
and wait for my answer. Once you get my answer, ask me next queston.

‘Whatwas the main motivation for conducting this research?

“The main motivation for conducting ths research was to explore the robustness of different
loss functions and their impact on the learning capabilty of neural networks. We were
interested in understanding how different loss functions can affect the performance of
eural networks, and whether certain loss functions are better suited for certan types of
tasks or data

1asked to ask me questions not answer them, do i correctly this time

Okay,sure. Can you describe the methodology you used i this study? How did you evaluate 72
the robustness of different loss functions and theirimpact on networks learing capabilty?

1 changed the pixes belonging to the highest gradient and then looked at their

segmentation maps. P

OEBPS/images/Fig-1.8d.jpg
Ask a few more questions from my paper.

Sure, d be happy to ask more questions. Can you discuss the limitations of your study?
What are some potential avenues for future research n thi area?

Next step s that instead of changing the individual pixels, we would like to try change the
entire image at once and then see the result.

That sounds interesting. So you're suggesting that a potential avenue for future research in
this area would be to evaluate the robustness of different loss functions in the context of
‘more global perturbations to the input data,rather than just local perturbations at the pixel
level. I that correct? Can you explain why this would be a valuable direction for future

research, and what benefits it might provide?

OEBPS/images/Fig-1.8c.jpg
I see. S0 you trained these three models on the same data, but with diffeent loss functions,
and then evaluated the performance of each model on a segmentation task by looking at
the quality of the segmentation maps they produced. Can you provide more details on ths
process and how you quantified the performance of the diferent models? What were the

‘main indings from this experiment?

Dice metric was used to evaluate it And the main finding was Dice loss gives more precise
segmentation maps, and binary loss gives much more robustness. And combining the two
loss functions gives more accurate and more robust results.

I see. S0 you used the Dice metric to evaluate the performance of the diffeent models on
the segmentation task, and found that the model trained with Diceloss performed better in
terms of the quality of the segmentation maps it produced. You also found that the model
trained with binary loss was more robust, meaning it was less sensitive to changes in the
input data. And finally, you found that combining the two loss functions resulted in the most
accurate and robust model.Is that correct? Can you provide more details on how you
combined the two loss functions and how this improved the performance of the model?

OEBPS/images/Fig-1.9.jpg
Artifical Intelligence

OEBPS/images/Fig-1.1.jpg

OEBPS/images/Fig-1.10.jpg
Rules ——

Data

Classical Programming.

= Answers

Data

Answers ——»

Machine Learning

b Rules

OEBPS/images/cover.jpg
ANVA

Neural Network
Programming with

Create Powerful Modern Al Systems
by Harnessing Neural Networks with
Python, Keras, and TensorFlow

- =

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewers

		Welcome note

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Understanding AI History

		Structure

		Evolution of AI

		The early history of AI

		The most crucial development in the History of AI

		AI started evolving into new fields

		AI starts taking its modern form

		Understanding Intelligent Behavior

		AI beats humans at chess

		AI learning reasoning and language

		AI starts playing poker

		Conquering GO and Dota 2

		An experience with ChatGPT

		Difference between Artificial Intelligence, Machine Learning, and Deep Learning

		Formally defining AI terms

		Learning representations from data

		Sub-Fields of AI

		Artificial Intelligence (AI)

		Machine Learning (ML)

		Deep Learning (DL)

		Early Models of Neuron-Inspired Networks

		Understanding biological neurons

		McCulloch-Pitts model of a neuron

		Multilayer Perceptron (MLP)

		Conclusion

		2. Setting up Python Workflow for AI Development

		Structure

		Setting up Python Environment

		Installing Python

		Getting Anaconda for Data Science Environment Setup

		Setting up a Virtual Environment

		Installing packages

		Setting up VS Code

		Installing Git

		Setting up GitHub with VS Code

		Concepts of OOPS

		Encapsulation

		Accessing Variables

		Inheritance

		Conclusion

		3. Python Libraries for Data Scientists

		Structure

		Web Scraping

		Regex

		Multi-Threading and Multi-Processing

		Multi-Threading

		Multi-Processing

		Pandas Basics

		Conclusion

		4. Foundational Concepts for Effective Neural Network Training

		Structure

		Activation Functions

		RBF, Universal Approximators, and Curse of Dimensionality

		Radial Bias Function

		Neural Networks are universal approximators

		The curse of dimensionality

		Overfitting, Bias-Variance, and Generalization

		Overfitting problem

		Regularization and effective parameters

		Dropout

		Early stopping and validation set

		Bias-Variance trade-off

		Generalization

		Conclusion

		5. Dimensionality Reduction, Unsupervised Learning and Optimizations

		Structure

		Dimensionality reduction

		Principal component analysis (PCA)

		T-SNE

		Non-linear PCA

		Unsupervised learning

		Clustering

		Semi-supervised learning

		Generalizing active learning to multi-class

		Self-supervised learning

		Version space

		Understanding optimization through SVM

		Conclusion

		6. Building Deep Neural Networks from Scratch

		Structure

		Coding neurons

		A single neuron

		Layer of neurons

		Understanding lists, arrays, tensors, and their operations

		Dot product and vector addition

		Cross-product, transpose, and order

		Understanding neural networks through NumPy

		Neural networks using NumPy

		Processing batch of data

		Creating a multi-layer network

		Dense layers

		Activation functions

		Calculating loss through categorical cross-entropy loss

		Calculating accuracy s

		Conclusion

		7. Derivatives, Backpropagation, and Optimizers

		Structure

		Weights Optimization

		Derivatives

		Partial Derivatives

		Backpropagation

		Optimizers: SGD, Adam, and so on

		Gradient-based optimization

		Momentum-based optimization

		RMSProp

		Adam

		Conclusion

		8. Understanding Convolution and CNN Architectures

		Structure

		Intricacies of CNN

		Local Patterns and Global Patterns

		Spatial Hierarchies and Abstraction

		Convolution Operation and Feature Maps

		Pooling

		Padding

		Stride

		Introduction to CNN-based Networks

		Understanding the Complete Flow of CNN-based Network

		VGG16

		Inception Module: Naïve and Improved Version

		ResNet

		Other Variants of ResNet

		FractalNet and DenseNet

		Scaling Conv Networks: Efficient Net Architecture

		Different Types of Convolutions

		Depth-Separable Convolution

		Conclusion

		9. Understanding Basics of TensorFlow and Keras

		Structure

		A Brief Look at Keras

		Understanding TensorFlow Internals

		Tensors

		Computational Graphs

		Operations (Ops)

		Automatic Differentiation

		Sessions

		Variables

		Eager Execution

		Layers and Models (Keras)

		TensorFlow vs. PyTorch vs. Theano

		TensorFlow vs. PyTorch

		TensorFlow vs. Theano

		TensorFlow: Layers, Activations, and More

		Types of Layers

		Dense Layer (Fully Connected Layer)

		Convolution Layer

		Max Pooling Layer

		Dropout Layer

		Recurrent Layer (LSTM)

		Embedding Layer

		Flatten Layer

		Batch Normalization Layer

		Global Average Pooling Layer

		Upsampling/Transposed Convolution Layer

		Activation Functions

		Optimizers

		Weight Initialization

		Loss Functions

		Multi-Input Single-Output Network with Custom Callbacks

		Conclusion

		10. Building End-to-end Image Segmentation Pipeline

		Structure

		Fine-tuning and Interpretability

		Power of Fine-Tuning in Deep Learning

		SHAP - An Intuitive Way to Interpret Machine Learning Models

		Structuring Deep Learning Code

		Project Structure

		Python modules and packages

		Documentation

		Unit testing

		Debugging

		Logging

		Building End-to-end Segmentation Pipeline

		UNet and Attention Gates

		Config

		Dataloader

		Model building

		Understanding Attention block

		Executor

		Utils

		Evaluation

		main

		Conclusion

		11. Latest Advancements in AI

		Structure

		Transformers: Improving NLP Using Attention

		Recurrent Neural Network (RNN)

		Long-Short Term Memory (LSTM)

		Self-Attention

		Example to understand the concept:

		Understanding Key, Query, and Value

		Example to understand the concept:

		Transformer Architecture

		ChatGPT/GPT Overview

		Object Detection: Understanding YOLO

		Object Detector Architecture Breakdown

		Backbone, Neck, and Head

		Bag of Freebies (BoF)

		CmBN: Cross-mini-Batch Normalization

		Bag of Specials (BoS)

		Cross-Stage Partial (CSP) Connection

		YOLO A rchitecture S election

		Spatial Pyramid Pooling (SPP)

		PAN Path — Aggregation Block

		Spatial Attention Module (SAM)

		Image Generation: GAN’s and Diffusion models

		Generative Adversarial Networks

		Generative Discriminative models

		Variational Autoencoders

		GANs

		Diffusion Models

		DALL-E 2 Architecture

		The Encoder: Prior Diffusion Model

		The Decoder: GLIDE

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Understanding AI History

OEBPS/images/Fig-1.12.jpg
Neuron

Dendrites

OEBPS/images/Fig-1.11.jpg
Fixed encoding/representations
2 (Decimal)
Two 11 {Roman)
10 {Binary)

learned encoding/representations
[0.23, 0.45,0.92] (DL}

Two [-1.2,2.2..4.5]{ML)

[90, 78, 0.76...] {(Hashing)

OEBPS/images/Fig-1.14.jpg
@) O o

Input Layer € R Hidden Loyer € R? Output Layer € R'

OEBPS/images/Fig-1.13.jpg
R

y=fa)

OEBPS/images/Fig-1.2.jpg
Deep Architecture in the Brain

Higheolavel visual

Areava
P ® @ P bstasions

0 o' Primive'shags defectors

Edgegetactors.

Roina \<J it

OEBPS/images/Fig-1.15.jpg
)¢ AN
: oi‘«\\

o

OEBPS/images/23a.jpg
V=2 w‘,o-(Z::‘ ur,x]+/3,),i:1,n4 1

OEBPS/images/Fig-1.4.jpg

OEBPS/images/23.jpg

OEBPS/images/Fig-1.3.jpg
— investment & research = f(expectations, results)

19805

New hopes
1970%

Inflated Hype i i

1038 explosion Concerns

Dartmouth ledto about Al

Conference improved implications
1974-1980 19871993 features regulatory
AlWinter| ~ AlWinterll learning trends

1950 1960 1970 1980 1990 2000 2010 2020

Top-down kowledge representation: Bottom-up kowledge representation:
‘SymbolicAl Connectivism

OEBPS/images/Fig-1.6.jpg

OEBPS/images/Fig-1.5.jpg
NSE SREWOY

$300,000

liE]

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

