

[image: image]

Ultimate Tailwind
CSS Handbook

[image:]

Build sleek and modern websites with
immersive UIs using Tailwind CSS

[image:]

Kartik Bhat

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.

First published: August 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-76-1

www.orangeava.com

Om sahanaavavathu | sahanaubhunakthu |

Sahaveeryamkaravavahai | Tejaswi naavadheethamastu maa vidvishavahai ||

Dedicated to

All my teachers, beloved family, and my friends

About the Author

Kartik Bhat, basically a scribbler in Kannada language. Born in the year 1994. He has pursued a bachelor’s degree in computer science and engineering from Visvesvaraya Technological University Belagavi (Karnataka- India) in the year 2016. Has 5+ years of experience in web applications development and hands-on knowledge in various front-end and back-end technologies. As a part of startup teams, he has worked on multiple ways of full stack web development, and experienced different front-end libraries, back-end/API technologies. Since 2021, he has been working on projects comprising user interface development using Tailwind CSS. Currently lives in Dharwad (Karnataka - India) and works as Senior Software Developer.

Technical Reviewer

Soroush Sohrabi is a Senior Front-End Web Developer with 10 years of experience. He is a growth seeker and thrives on challenges. Soroush has the privilege of working directly with more than 6 Asian and 3 European companies, where he brings his expertise to create exceptional web experiences. His mastery lies in designing readable and scalable code that adheres to clean code principles. With a strong background in UI and UX designing, Soroush combines aesthetics and functionality to deliver user-centric solutions. He is passionate about staying up-to-date with the latest industry trends and technologies, constantly seeking opportunities to expand his skill set. Soroush's dedication to excellence and his ability to tackle complex projects makes him a valuable asset to any team.

LinkedIn profile:

https://www.linkedin.com/in/soroshism

Acknowledgement

I wish to thank the people who supported me in the journey of writing this book. My family fully encouraged me to write this book by motivating me to keep dedicated time to write this book, without compromising the content quality.

I am grateful to mention those mentors, guides, and the companies where I worked in my professional career that has given me knowledge in the field of web development, of course that is the foundation for this book too. My friends and colleagues really have a special role in my learning phase.

Also, I am thankful to the gratitude to the editorial team at Orange AVA for their continued guidance throughout the process for quite a long time to complete this book. I gratefully acknowledge Mr. Soroush Sohrabi for his kind and valuable technical review of this book.

Preface

Development of complete website, without writing single line of CSS directly. Looks curious right? Yes, Tailwind CSS makes it possible. Being a CSS framework, it provides a complete feature set to develop a website from scratch. It just needs you should have basic knowledge of HTML, CSS. Even if you don’t know these as well then, this book is for you. Begin with it.

This book provides an approach to the development of website and user interface components using Tailwind CSS. Begins with the introduction to HTML and CSS, which are foundation of website development. Then we explain concepts in Tailwind CSS and utilities available in it.

Further we develop a simple website that comprises six webpages using Tailwind CSS, here we will not write single line of CSS directly, Tailwind CSS manages itself. Then we push the developed code to GitHub and chain it with GitHub Pages deployment. This deploys the code so the user can access it using its URL. At last, we are providing some user components developed using Tailwind CSS.

Chapter 1 will explain basic concepts of HTML, CSS so that new readers can get basic foundation for further reading and experienced readers can get quick glance prior to core context. Then we will explain installing methods of Tailwind CSS to get started with it.

Chapter 2 will cover detailed explanation on principle concepts of the Tailwind CSS. These will describe how Tailwind CSS proves to be a good fit for user interface development easier and faster.

Chapter 3 will cover customization, base style available in Tailwind CSS as a utility class, here we cover layout building mechanism, spacing, and sizing mechanisms too.

Chapter 4 details styling mechanism like typography, border, transition and transforms so on related utility classes available in Tailwind CSS. These are related to element specific styling.

Chapter 5 will introduce website development flow, by explaining each user interface component we build a complete web page. In this chapter we will build homepage, gallery page and a menu page, where each webpage contains different user interface components.

Chapter 6 will provide continued information of advanced usage of Tailwind CSS in the development of user interface components. In this chapter as well, we are developing three web pages, blogs page, contact us page and faq page that completes full website. Then we are deploying a website under github pages.

Chapter 7 provides standard practices you need to keep in mind while developing website or more precisely user interface components. Then we are providing some examples of user components developed using Tailwind CSS.

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Ultimate-Tailwind-CSS-Handbook

The code bundles and images of the book are also hosted on
https://rebrand.ly/pubn0jv

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

Are you interested in Authoring with us?

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Getting Started with HTML, CSS, and Tailwind CSS

Introduction

In this chapter, we are going to learn about the definition of a website, and the basic principles behind the development of web pages. This chapter gives brief knowledge on the structure of a webpage and the technologies used for it by explaining the core concepts of HTML and CSS. Then, we will learn about Tailwind CSS, and its installation variants, and discuss applying it to our project.

Structure

In this chapter, we will cover the following topics:

	Defining website

	HTML

	What is CSS?

	Let’s begin with Tailwind CSS

	Installation and setup

	Standalone CLI: Use Tailwind CSS without Node.js

Defining website

A website is a document that has a certain link that can be accessed or visited on a browser. More precisely, a website is a document, which can be opened using the internet, where we can find information about a person, company, place, and so on.

This can be the basic definition of a website that everybody can interpret. Technically, a website is a set of documents built using various programming languages, each of which has its unique role.

When you refer a specific entity as a website, it is a collection of web pages interconnected by hyperlinks, where all of them are present under a single hood called domain.

Domain is a name that you need to visit a website, which begins with www and ends with .com, .uk, .in, and so on. Technically, domain in called as URL - Uniform Resource Locator that act as a mask for an IP-address, where website is located.

A website is a set of web pages. A web page is a document that represents a part of the data that comes under the website.

Consider the following example:

There is a website that gives information about certain places, and there are some parts present on that website like address, about, contact, and so on. These parts are said to be web pages. These represent specific information about that place's website.

Website and its representation

We are now aware that the website is an entity, and it runs on a browser. Hence, the browser is a medium between website data and visitors. Representation of data is a key point for every successful website. So, what does this representation mean? It’s a way users can conveniently access and experience the website on various devices.

The usage of a website on various devices matters a lot behind the success of a website. As a layperson, you may have noticed that the same website has a different interface when accessed from a desktop computer and a mobile device, isn’t it?

It is ultimately true that it can be inconvenient when a website gets loaded on a mobile device with an interface of a desktop. Mobile devices have a vertical orientation of usage, whereas desktop or laptop devices have a horizontal orientation. It is necessary to make the website look clean and effective on all types of devices, in both orientations.

Most of us have mobile devices and internet access in today's digital trend. According to a recent survey on website visits, visits from mobile devices (more than 50% - increasing every year) are more than visits from desktop devices. This highlights the importance of ensuring a website’s appearance on various devices. Thinking and implementing this approach is called the Mobile First approach. Here, the development concentrates on creating user-friendly experience on mobile devices and to further larger devices.

Tailwind CSS has made this approach easier. We will learn more about it in upcoming chapter.

Types of websites

We can distinguish websites into two major types:

	Static website

	Dynamic website

A static website consists of webpages with statically added data. These data are added straight to the web pages that will be displayed on a browser and are often added during the development phase of the website (when there are no frequent changes made). For example, a simple website showing information on places, animals, and so on.

Dynamic websites are those where data comes dynamically from other sources and are systematically displayed on webpages. As and when data changes from external sources, it will be rendered on these web pages, with different data being loaded dynamically in the same place on a webpage.

For example, websites such as job posting sites, news sites, and so on.

In this book, we are going to explain the development of a static website from scratch until its deployment. We have chosen a static one because we are focusing more on the design of the website rather than the display of dynamic data from external data points.

Webpage: a technical aspect

A page or a document, which consists of several lines of code, is termed as a web page. When the browser engine reads and understands the code written on the page, its visual representation will be loaded on a browser window. So, what kind of code does the browser understand?

Web pages are written in HTML language. HTML cannot be called a programming language as we are not creating any complex logic here. It is called markup language.

Markup language is a standard text-encoding system. It comprises easily understandable keywords, names, tags, and so on, which are used to structure the webpage.

HTML

HTML is considered as a standard markup language for those documents, which are meant to be displayed on web browsers.

[image:]

Figure 1.1: Full form of HTML

HTML was initially released in 1993. With the progressive improvements over the years, it is currently running with the 5th version (5.3 as of October 2022) known as HTML5. Files that hold HTML code have the extension .html.

HTML provides a sufficient number of built-in tags/elements to easily structure the webpage as per expectations which can be easily rendered on most current-day web browsers.

When you see a website loaded on a browser window, then it is nothing but an HTML document that gets rendered on the browser engine. HTML code or document or file is a set of arrangement of tags in a specific order to obtain a structure to display data.

HTML tags are reserved keywords enclosed with open–close angular brackets, meant to render a specific structure. Most of the tags are declared with open and close tags called block tags (open–close tags are interchangeably called start–end tags). Some of them can be used with single tags, which are called inline tags.

[image:]

Figure 1.2: (a) HTML block tag; (b) HTML inline tag

Here, we are providing the most used HTML tags or elements throughout this book. You will also get knowledge on different sets of HTML tags from some external sources:

	

Some commonly used HTML tags/elements

	

Tag

	

Description

	

Tag

	

Description

	

<head>

	

Head part of HTML

	

<title>

	

Defines Title of

Document of Browser

	

<body>

	

Defines the whole body of the HTML Document

	

<main>

	

Defines the main section of the Document

	

<div>

	

Division block

	

<p>

	

Paragraph

	

<h1>

	

Heading - 1

	

<h2>

	

Heading - 2

	

	

Line break

	

<hr />

	

Horizontal line

	

<table>

	

Defines table

	

	

Defines image

	

<td>

	

Table data

	

<tr>

	

Table row

	

	

Bold element

	

	

Span element

	

<a>

	

Hyperlink

	

<link>

	

To refer external CSS files

	

<script>

	

To refer to JavaScript code

	

<header>

	

Defines header part of Document

	

<footer>

	

Defines footer part of the Document

	

<figure>

	

Used to define image

	

	

To begin ordered list

	

	

To define list item

Table 1.1: Common HTML tags

By looking into these tag names, you can understand how easy it is to write an HTML document, isn't it? HTML comes with an easy-to-use set of built-in keywords.

Let’s look into the simple structure of an HTML document; as we are using HTML5, it is specifically an HTML5 document:

[image:]

Figure 1.3: Sample HTML document

Let’s learn some tags:

	
<!doctype html>: This is an indication tag. When we include it in a document, the browser understands that the document is using HTML5 for structuring the page.

	
<html></html>: This is a mandatory tag that must be present in an HTML document. All other HTML tags should be present within this paired tag.

	
<head></head>: This paired tag is used to refer to external files (.css, .js) and the title of the document.

	
<body></body>: The body tag is the main part of the document and it holds all the tags that are meant for page structuring.

	
<div></div>, <p></p>, : These are the tags that are added in a sequence to create a specific structure of the page, and they are the core part of an HTML document.

It is a general practice to define <style></style> tag within the <head></head> tag but it will not create a problem if you define it outside of it. The style tag brings the expected style to the document.

When you visit a website from a browser, you are allowed to view the code that is responsible for the visualization. Yes, it is available in the browser itself.

If you are using Windows, by right-clicking on a webpage, you get a pop-up menu, and then by clicking Inspect, you get the following:

[image:]

Figure 1.4: HTML code from the browser

In this snapshot, a set of tags is arranged in a specific order to create the structure of a page. You can also observe that these tags have various attributes like class, id, and so on, which provide style and interactivity to the page.

Styles and interactivity

HTML is meant for structuring the page but has limitations in terms of design parameters and user interactivity. To overcome it, we need to combine other technologies with HTML such as:

CSS: All visualization enhancement aspects, such as color patterns, margins, borders, shadow, can be achieved with this technology. As you read before, the term Mobile First Approach requires this CSS for its implementation. In the next section, we will provide brief information on the core concepts of CSS which are very much essential for understanding the working of Tailwind CSS.

JS: JavaScript: It is a scripting tool required to handle interactivity with the visitors of the website. Interactivity includes actions such as clicking, hovering on an element, submitting a form, fetching dynamic data from external sources, and so on.

The following diagram helps you understand the importance and capabilities of HTML–CSS–JS for the creation of webpages:

[image:]

Figure 1.5: What is HTML-CSS-JS

Throughout this book, we will learn how to apply Tailwind CSS to create a website from scratch. We are going to develop a static website, where the focus is purely on creating a web page rather than dynamic data fetching and handling through JS - which is beyond the scope of this book. However, to make some simple interactions with the page, we will explain the required JS concepts while developing web pages.

Although it is not mandatory to know JS, knowing some basics will help you to grow your knowledge to make a web page more interactive.

A web page is said to be complete or perfect if it has a proper structure with suitable visual enhancements and interactivity.

Here is a reference HTML page you can use to test chunks of code mentioned throughout the book:

[image:]

Figure 1.6: HTML reference document

As we are approaching website development, we strongly recommend that you follow the preceding syntax while writing a code to gain more confidence. This practice makes you well-versed with code than by just reading it in a book.

Cascading Style Sheet (CSS)

This chapter provides a brief explanation on fundamentals of CSS along with HTML, which is the foundation to understand and apply Tailwind CSS.

CSS is a visual enhancement technology that is applied to HTML documents to produce aesthetically neat webpages. CSS was developed by the World Web Consortium (w3c) in 1996. Currently, it is running third of it, called CSS3.

In this section, we cover typical aspects of CSS, such as types of CSS, how it works with HTML, and the Box Model.

What is Cascading Style Sheet (CSS)? It can be elaborated as follows:

	
Cascading: An arrangement or a sequence

	
Style: Appearance

	
Sheet: Set of rules

So, CSS can be defined as a document or a piece of code that defines a set of rules in a sequence to create some stylish appearance. CSS is a context that has no importance as an independent entity. These written set of rules need to be referred to somewhere to create a visual impact of it.

Visual Impact – Yes, this is how CSS has its identification. In general, if a website appears to be visually appealing, it means that CSS has been used to achieve that appearance. On that website, CSS is used to create various colors, shadow effects, margins, padding, text decorations, and so on.

Applying CSS in web development involves adding a set of design rules to the webpage, that is, to the HTML document. CSS rule will be adopted by HTML tag whenever it gets rendered on a web browser.

The preceding paragraph clearly states that CSS needs a channel to be visualized, and the HTML document plays as a channel for it. How does HTML adopt these rules provided by CSS or what CSS needs to get it visualized on the screen? Selectors.

Selectors

Selector is an entry point for a particular CSS rule. It’s the way we can define a rule! Without selectors, we cannot say a piece of CSS as a rule that affects the visual representation of data on an HTML webpage:

[image:]

Figure 1.7: CSS rule format

	

color: green ;

background-color: blue ;

width: 10px ;

height: 20px ;

	

div {

color: green ;

background-color: blue ;

width: 10px ;

height: 20px ;

}

	

It has no meaning (improper rule)

	

It has proper meaning (proper rule)

[image:]

Figure 1.8: Example of CSS rule

Now you can define the meaning of the CSS rule.

Set of styles (property – value pair) defined within a selector scope, which targets tags present on HTML document.

The preceding code sample demonstrates how CSS rules can be written. A CSS rule is considered a rule whenever it has a proper selector mentioned in it. Without that, the styles written in CSS will have no effect on any part of the HTML document.

Types of selectors

As we have understood, a CSS rule should contain a selector to make visual representations of styles defined. So, what these selectors can be? Can you guess?

If you know where the CSS rule will be projected for its execution, then you can answer it immediately. Yes, it is HTML, more concisely, a selector can be an HTML tag, the ID property of an HTML tag, the class property of an HTML class, and so on.

Let’s take a look at some important selectors of CSS. Do note that you need to read and understand them better from other external sources for your convenience:

Tag or element selector: Here, the HTML tag also known as an element, is used as a selector to apply style rules. When the HTML page is rendered on the browser, these rules will be applied to all instances of that element used as a selector:

p {

color: red ;

}

Here <p></p> tag is used as a selector to apply font color as red on the HTML page, if there are ten <p> tags on the HTML document then this CSS rule will be applied to all.

ID selector: The id attribute of HTML tag is used as a selector for projection of CSS rules. As, we use the id attribute as a unique identifier of tag on the HTML document, the rules with id selectors will affect only that tag (an HTML document can have multiple tags with the same id):

HTML –

<p id="paragraph"> It is first paragraph </p>

CSS –

#paragraph {

color: green ;

}

For id selectors, CSS requires the # (hash) symbol along with the ID of the HTML tag. Here, those elements having id="paragraph" receive green as their text color from CSS rule.

Class selector: The class attribute defined with an HTML tag is used for CSS rules projection. This is one of the most important selectors that you need to keep in mind, as Tailwind CSS refers to the same approach for its execution:

HTML –

<p class="description"> description of the paragraph </p>

CSS –

.description {

color: blue ;

}

For class selectors, CSS requires . (dot) symbol along with the class attribute of the HTML tag. Here, those elements having class="description" will receive a blue color as their text color from the CSS rule.

Pseudo selectors: These are special types of selectors, where based on a certain condition of the HTML tag, receive projected styles from the CSS rule. Conditions include on hover, on visited, on focus events or on enabled – disabled states or only first-child, last-child of the element. This has an important scope as well on Tailwind CSS, Do understand it better from external sources for your convenience:

HTML –

<p id="paragraph"> It is first paragraph </p>

CSS –

#paragraph:hover {

color: green ;

}

For pseudo selectors, CSS requires the colon (:) symbol in between the selector keyword and the condition for an HTML tag. Here, the elements having id="paragraph" will receive green as their text color from the CSS rule when we hover the mouse over it. We expect you to read and understand more about these selectors’ sections for your ease of understanding.

Styles – (property–value pairs)

Style rules are at the heart of CSS rules!

These will define the visual enhancements that you need to project on the HTML’s part. The selector leads the rule and property–value pairs which define the actual style to be represented.

In each rule, there is a property–value pair, where the Property field holds one of the many keywords defined in CSS for design-related things and the Value field holds an arbitrary value supported by the respective Property field:

	

Property

	

Value

	

height, width, padding, margin

	

digit with (px,rem,em)

	

background-image

	

url

	

text-indent

	

center, left, right

	

color, background-color

	

any color (hex, rgb, color name)

	

display

	

Block flex, none

Table 1.2: Property – value pairs of CSS rule

CSS Box Model

CSS considers every element as a box with certain properties. These properties are combined and called as CSS Box Model. The following figure shows its components:

[image:]

Figure 1.9: CSS Box Model

The box model contains four components:

	
Margin: It is the space between the border of an element and other elements around it.

	
Border: It is the boundary line of an element.

	
Padding: It is the space between the boundary line and the actual content.

	
Content: It is the area that holds the data to be rendered (image, paragraph, and so on).

As CSS focuses on the Box Model, it is important to understand the Box Model in detail. Manipulation is directly performed on the Box Model to make an element look good aesthetically.

Except for content, all others can take a value as a number for all directions or each direction separately.

The following tables depict various ways to define the box model participants to give different effects:

	

div {

padding : 1px

}

	

div{

 padding-top: 1px ;

 padding-right: 1px ;

 padding-bottom: 1px ;

 padding-left: 1px ;

}

Table 1.3: This adds padding of 1px for all directions. (left column represents the shorthand form of the right column)

	

div {

margin : 10px 20px ;

}

	

div {

 margin-top : 10px ;

 margin-bottom: 10px ;

 margin-left: 20px;

 margin-right : 20px;

}

Table 1.4: This adds a margin of 10px for vertical direction and 20px for horizontal direction

Types of CSS

Types of CSS are not differentiated based on version or syntax. They are based on how we use CSS on a webpage. Let’s take a brief look at each.

In website development terminology, a webpage is a place where our CSS is referenced. It is the place where we can visualize those sets of style rules.

Inline CSS

This method is for adding CSS to a webpage where those style rules are declared within the style attribute of an HTML tag.

This type of CSS has effects only on that tag or the children tags within that tag. This way of adding CSS makes the handling of styles more difficult when the number of tags on a webpage grows.

For example:

<div style="background-color: yellow; color: blue">

 This has yellow background and blue text

</div>

In this example, you can see that this kind of CSS doesn’t require any selectors, as it directly targets an HTML tag, so we can consider it a tag or element selector:

	
Advantage: Easy-to-apply styles to a specific HTML element without disturbing the other elements.

	
Disadvantage: Code loses readability as each tag gets its style.

Internal CSS

It’s an approach of adding CSS to the webpage where rules are written as a separate section of the page, within the <style></style> tags of the HTML document. These rules can affect targeted HTML elements throughout the document. These kinds of CSS rules are helpful to create generalized rule sets that can affect multiple similar sets of selector parameters within the context of the HTML document.

Since all style rules are on the same page, the web page will render along with the HTML code and CSS code. It’s a best practice to keep these styles (style tag) before the body element. This is because when there are many style rules declared, by declaring them after the body element, on a partial load of pages, the HTML elements may render without an expected style until the page loads completely. If we declare them before the body, then only after executing all style rules, the HTML elements will be rendered.

For example:

CSS:

<style>

div {

margin: 2px ;

}

#paragraph {

color: green ;

}

.box {

padding: 3px;

}

</style>

HTML:

<body>

<div> This is block 1 </div>

<div> This is block 2 </div>

<div> This is block 3 </div>

<div> This is block 4 </div>

<p id="paragraph"> This is paragraph </p>

<div class="box"> It is the box </div>

</body>

In this block of code, the style related to the div selector (tag selector) gets projected to all four instances of div on the page and # paragraph (id selector) related style will be projected only to instances of the p element. class selector .box affects the div element with class box.

	
Advantage: Code readability increases and rules can be generalized within the document.

	
Disadvantage: While creating a website, these rules cannot be accessed outside the current document.

External CSS

This is the most used CSS type when developing a website. Here, all CSS rules are kept in a separate file with an extension .css, which is then referred to within the HTML document.

Like internal CSS, using different types of selectors, we can write various CSS rules for HTML elements. By using the <link /> tag of HTML, the external CSS file will be added to the current document:

style.css

div {

margin: 2px ;

}

#paragraph {

color: green ;

}

.box {

padding: 3px;

}

page.html

<html>

<head>

 <link href="style.css" />

</head>

<body>

<div> This is block 1 </div>

 <div> This is block 2 </div>

 <div> This is block 3 </div>

 <div> This is block 4 </div>

 <p id="paragraph"> This is paragraph </p>

 <div class="box"> It is the box </div>

</body>

</html>

Compared to adding CSS using an internal CSS approach, we can observe the same result, except CSS rules are present in some external files with the extension .css.

This approach makes rules generalization easier, as we can refer to this external CSS file in any number of HTML documents, where we want similar style rules to be applied. Rules are written only once but referred to at multiple places wherever we want the same style to be visualized. This is a developer-friendly approach to keep the code cleaner.

Media queries

Again, we are mentioning the word Mobile First Approach.

The previous section explains the importance of presenting websites on different kinds of devices, right?

We need to adopt the mobile-first approach to ensure we are developing a website that renders perfectly on various devices.

As this deals with the aesthetics of the website, we need to handle it in CSS. This can be done using media queries.

Media query is the CSS rules will be changed based on the condition we are mentioning. These conditions can include screen resolutions and the min-max height of the device.

Devices are often differentiated by their dimensions, more specifically their screen resolutions. Desktops, laptops, mobiles, tablets, and so on, each has their unique screen resolution.

We often write our code on a desktop or laptop and consider it as correct based on the output we see on that resolution. But it may not be the case when we look at the same website on devices with various dimensions/screen resolutions.

Therefore, it is important to make design adjustments to the webpage to make it accessible effectively on all devices. Mentioning screen resolution as a condition for CSS rules is nothing but writing a media query for the web page. Media query will be along with keyword @media:

@media only screen and (max-width: 600px) {

body {

background-color: blue;

}

}

Here you can see a typical example of how a media query is written. The CSS rule called background-color as blue will be projected on the body element of an HTML document only when the browser window/device resolution is 600px wide or less:

@media only (min-width:360px) and (max-width: 800px) {

div {

width: 10px;

height: 30px

}

}

@media only (min-width:801px) and (max-width: 1200px) {

div {

width: 20px;

height: 50px

}

}

In this example, the same CSS rule on the div element is set to different values based on different screen resolutions. Devices with a screen resolution between 400px and 800px have one set of values while those with a resolution between 801px and 1200px have a different set of values.

Key points to remember

When you mention all three different types of CSS on the same HTML document for the same element, inline CSS has the highest priority to apply style rules to that element. In the absence of inline CSS, internal CSS takes priority. Style rules defined in external files are overridden by style rules defined within the document scope for the same selector.

In the absence of any style rules for some element, it will inherit style rules from its parent element. So, while applying CSS to elements with children, the same rules will imply to those children as well (except for Box Model parameters):

CSS Rules

.data-box {

color: green;

}

HTML Elements

<div class="data-box">

Heading Text

<p>paragraph</p>

<div>simple text</div>

<p style="color:red;">red colored text</p>

</div>

Here the text color of all the text present under <div> with class data-box will be green, as they inherit from the parent, except the last <p> element, as it has its own style rule defined for the color property.

CSS rules are case-insensitive. While writing rules, we must provide proper text for selector, property, and value fields, else CSS cannot identify the rule for visualization:

[image:]

Table 1.5: CSS styling method

The keywords you are using on an HTML document should be the same while writing CSS rules for it. CSS searches for the selector on the HTML document and adds style to it when it is rendered on the web browser.

If you write CSS rules with the same selector and the same property but different value fields, the one that is written later will be considered for targeting an element of the HTML document. CSS reads code from top to bottom, adds styles for the respective selectors, and keeps only the recently read style rule for the element:

CSS Rules

#paragraph {

color: green;

font-size: 10px;

}

#paragraph {

color: red;

}

HTML Element

<p id="paragraph">

This is paragraph text

</p>

When this code got rendered on the web browser, it visualized the <p> element with color as red and font-size:10px. You can observe CSS has overridden only similar properties on similar selectors (color property on the preceding code sample) and those are defined only once and are added as a style on HTML document.

How to override the default behavior of considering only the last definition of a rule among multiple definitions written before in the code? CSS has a solution for it - !important.

!important is the keyword to be added to the style rules among multiple definitions, which one needs to be projected on an HTML element. When CSS encounters the symbol ! (exclamation) important, it considers this definition as a high priority for projection and ignores any other similar definitions written either before or after it:

 CSS Rules

#paragraph {

color: green !important;

font-size: 10px;

}

#paragraph {

color: red;

}

In this code sample as per default behavior, an element with id as paragraph should get a style where color is red but as we applied !important keyword on similar definition written before. So, CSS projects this style to that HTML element.

Introducing Tailwind CSS

Now we are at the actual focus of this book. The knowledge you earned in the previous section is the basic knowledge to digest upcoming concepts. Remembering these concepts is very essential throughout reading this book:

[image:]

Figure 1.10: Tailwind CSS Logo

Tailwind CSS is an open-source CSS framework, authored by Adam Wathan and Steve Schoger, under the name Tailwind Labs as development activity. It was first featured in the year May 2019.

After various enhancements with different aspects of user interface development, currently, version 3.3.2 is running in the market, attracting a big number of web developers' interest. They believed in and achieved an intuitive way of applying styles to HTML documents with a faster development experience.

Tailwind CSS has more than 61k stars (as of Oct 2022) on GitHub, which shows that it is gaining and winning interest these days for its support of the rapid building of user interfaces (UI). It is called the Utility-First CSS framework.

Utility First CSS? It is nothing but low-level utility classes to build expected visualization on HTML documents. By using these low-level utility classes, you are not restricted to stick with any predefined components; instead, you are free to build any kind of custom designs of your wish.

Utility classes are self-explanatory classes; there is no need of remembering complex names to apply it on HTML document. Tailwind CSS comes with a set of such class names that are named according to their intended purpose. These can also be called single-purpose CSS classes, and each one of them has a corresponding CSS rule.

Need of Tailwind CSS

Tailwind CSS is popular because of the faster development experience for its users. Then, how it makes the development process faster?

Developing a fit and fine webpage as you know requires knowledge of HTML and CSS on a primary note. You will create a structure using HTML and then make it visually impacted, with multiple device-friendly activities using CSS. Right? As a primary definition on the development of a webpage, it is correct up to the point.

As you read that Tailwind CSS provides utility classes to development, using these classes alone you can create a complete user interface of your wish without writing any CSS rule directly for your HTML document.

Yes, writing a huge set of CSS rules is not required to achieve various aspects on HTML documents, such as color patterns, responsive design, and so on. In fact, you can completely avoid writing any inline, internal, or external CSS rule when you are with Tailwind CSS. Amazing, isn’t it?

This book is meant for educating you on this approach itself. We will develop a complete website without worrying about directly writing a CSS rule by ourselves. You are going to enjoy website development alongside reading this book.

A webpage that has a cleaner look and can convey all the information of the webpage on various devices without disturbing the user experience is said to be a responsive website.

Applying Tailwind CSS on HTML

HTML has a set of elements to define the structure of a webpage, most of these elements or tags can hold various attributes for different purposes. An internal or external CSS can be mapped into these using class attributes.

It is that simple to mention class names to the elements that are already provided by Tailwind CSS:

	

This sentence has good design, has background color and center-aligned

	

<div class = “bg-gray-300 text-center font-bold italic underline">

 This sentence has good design, has background color and center-aligned

</div>

	

div {

background-color: #d1d5db;

text-align: center ;

font-weight: bold ;

font-style: italic ;

text-decoration: underline ;

}

Table 1.6: Glimpse on Tailwind CSS flavoring

From Table 1.5, you can easily understand how Tailwind CSS makes our work easier and saves the time we spend on writing CSS rules. Chaining different class lists on the class attribute of the HTML element yields those style rules that were applied when it got rendered on a web browser. It’s a work that is already done behind the scenes to experience a faster development process.

Apart from lots of prebuilt classes for rapid development, Tailwind CSS supports a high level of customization that is required for complex design patterns. This is one of the reasons that makes Tailwind CSS compete with popular component-based frameworks.

Advantages of Tailwind CSS

Tailwind CSS produces class names that are named almost to the intended purpose. There is no need to remember these class names, which makes the learning curve easy.

User interface - it is a technical term for what a website user sees on a web browser. Designing this user interface is done using CSS, which visualizes the styles. In our case, applying Tailwind CSS makes it faster.

When using Tailwind CSS, it is not mandatory to write our own CSS rules set, which avoids direct interaction with CSS files as we get most of the things done from pre-built classes themselves.

To implement a responsive design of a webpage, we need to keep many aspects into account and address them carefully (header, footer, menu, popup, and so on). In such scenarios, the CSS rules set grows to multiple sets of lines. Tailwind CSS provides a cleaner approach for this, with breakpoint-oriented class names excel to target different device resolutions.

Being a low-level CSS framework as its learning curve is not so steep, it is easy to get adopted by groups of people working in a broader context. Tailwind CSS helps to define systematic coherence in design.

Tailwind CSS’s production version of CSS file contains only those sets of CSS rules that have been referred to through class names in the HTML document, not all the hundreds of pre-built class names supported in the framework. It boosts the loading time of CSS into the browser.

As you are free to develop any design of your wish, there are scenarios where you need to use the same pattern in multiple places on the same page or other web pages of the same website. Tailwind CSS allows you to prepare a component and reuse it anywhere on your website, it enhances the Don’t Repeat Yourself (DRY) strategy, which keeps code cleaner.

In the coming chapters of this book, we are using the latest version of Tailwind CSS to make you learn recent and advanced features and its brief example and for website development.

As of April 2023, the latest version of Tailwind is Tailwind CSS v3 (3.2.3).

Installing and setting up Tailwind CSS

Tailwind CSS is written in JavaScript and distributed as an NPM package, which means you need to have a node environment running for Tailwind CSS to work.

Your system needs to have NodeJS installed before you begin with the installation of Tailwind CSS in your system:

	NodeJS: It is a JavaScript runtime environment that executes JavaScript code outside a web browser.

	NPM: Node Package Manager, for NodeJS.

Follow these steps:

	Let’s create a folder to begin with our installation. We will name it TailwindCSSProject.

We suggest using VS code for code writing, although it is up to you to use your convenient IDE for code writing. (VS code is user-friendly and the useful features are already inbuilt).

NodeJS is an environment and NPM is a package manager. As NPM works with a command line, you must execute a specific command to download packages for your work. In this case, we are downloading or installing our Tailwind CSS using NPM commands. It is called Tailwind CSS Command Line Interface (CLI).

OEBPS/images/line.jpg

OEBPS/images/Figure-1.2.jpg
<tagname> this is data </tagname> tagname /> this is data

Content

tag Content
open tag Close tag

(@) (b)

OEBPS/images/Figure-1.4.jpg
el dn-en.
e bor™>

i 4ua-<hroms 4--un-aBRIE padon” 4uta-thema-<olor-~HeB3535 data-Slenanor dvich-mdedektEs > (
Vol Cloar st smeth e s S w0
oty typen-tant/cos” sdiac screantyles

<ot dna-elenento.type-"upds hasdr data.elesenton-4-"HBSE chass="slenanton lementor- 4031 vpds-butLder e 031

ity cluc"sTeman et 5"

" crocion clace-"slomntorseceion lamentar.to.setion clssenor-elessnt. elosontor-elesent. 403142 elemetor-section boxed lementr-

Selghh dafast <lemenio.oecion bulgh Safole- Suta L stads ot slmers typececion dets seingoc {-bethirobuckgromd
I

bt Classe"elenentocolmn elenentor-<1-160 elemeton-ep-colomn lamentor-elemnt elenento-leent-STCISTS" dta-L6-"STCT" data-
clenan type--cslomns i)
it Class=”elemento-coluan-srap elemntor-elenen populates™s e
ot Cassoelemantor-idget urap/4i0s
<aver
<goter
<poser
<atwr
aae

OEBPS/images/Figure-1.3.jpg
<ldoctype html>
<html>

<head>
<title></title> yHead Section| Head
<style></style> tags [Section

</head>

<body> i
Block
<div>

<p></p>

</div>

Common HTML
HTML Tags |Body Tag

</body>

</html>

OEBPS/images/Figure-1.6.jpg
<!doctype html>
<html>
<head>
<style>
</style>

Head Section

</head>
<body>

Body Section

</body>
</html>

OEBPS/images/Figure-1.5.jpg
CSS

£

L]

OEBPS/images/Figure-1.8.jpg
Selector

\

div {
color: green ;
background-color: blue ;
width: 1@px ;
height: 26px ;

Styles

Property Value

OEBPS/images/Figure-1.7.jpg
selector {

property :
property :
property :
property :

value
value
value
value

OEBPS/images/Figure-1.9.jpg
—]__ymargin

border

[}padding

content

OEBPS/images/21.jpg
div { DIV {

font-size: 10px; Colour : red

color: red; FontSize: 20cm;

Properly defined rules Improper defined rules

OEBPS/images/cover.jpg
Ultimate

Tailwind CSS
Handbook

Build sleek and modern
websites with immersive Uls
using Tailwind CSS

Kartik Bhat

OEBPS/images/logo.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		Technical Reviewer

		Acknowledgement

		Preface

		Errata

		Table of Contents

		1. Getting Started with HTML, CSS, and Tailwind CSS

		Introduction

		Structure

		Defining website

		Website and its representation

		Types of websites

		Webpage: a technical aspect

		HTML

		Styles and interactivity

		Cascading Style Sheet (CSS)

		Selectors

		Types of selectors

		Styles – (property–value pairs)

		CSS Box Model

		Types of CSS

		Inline CSS

		Internal CSS

		External CSS

		Media queries

		Key points to remember

		Introducing Tailwind CSS

		Need of Tailwind CSS

		Applying Tailwind CSS on HTML

		Advantages of Tailwind CSS

		Installing and setting up Tailwind CSS

		Apply Tailwind CSS using CDN

		Standalone CLI - Tailwind CSS without Node.js

		Tailwind CSS in production

		Conclusion

		2. Design Principles for Tailwind CSS

		Introduction

		Structure

		Utility-first classes

		Events and states

		Responsive design

		Targeting a breakpoint range

		Dark mode

		Reusing styles

		Code editor support – multi cursor editing

		Using frameworks

		CSS abstraction

		Extracting classes with @apply

		Advantages of this approach

		Adding custom styles

		Arbitrary variants

		Handling ambiguities

		CSS and @layer

		Customizing base styles

		Customizing component classes

		Customizing utility styles

		Function and directives

		Directives

		@tailwind

		@layer

		@apply

		@config

		Functions

		theme()

		screen()

		Conclusion

		Points to remember

		Multiple choice questions

		Answers

		3. Utility-First Classes and Customization Options

		Introduction

		Structure

		Customization

		Content

		Classes Safelisting

		Theme

		Extend

		Screens

		Colors

		Spacing

		Plugins

		Prefix

		Base styles

		Preflight

		Extending Preflight

		Disabling Preflight

		Layout

		Aspect ratio

		Container

		Columns

		Based on column count

		Based on column width

		Break After – Break Before – Break Inside

		break-before

		break-inside

		Box decoration break – box sizing

		Display

		Floats - clear - isolation

		Object Fit – Object Position

		Overflow

		Overscroll behavior

		Position

		Top – Right – Bottom – Left

		Negative value as a size

		Visibility

		Z-Index

		Flexbox and Grid

		Flex-Basis

		Flex Direction

		Flex Wrap

		Flex

		Flex Grow

		Flex Shrink

		Order

		Grid template columns

		Grid column start/end

		Grid template rows

		Grid row start/end

		Grid Auto Flow

		Grid Auto Columns

		Grid Auto Rows

		Gap

		Justify – Align – Place

		Justify Content

		Justify Items

		Justify Self

		Align content

		Align Items

		Align Self

		Place Content

		Place Items

		Place Self

		Spacing

		Padding

		Margin

		Space between

		Sizing

		Width

		Min-width

		Max-width

		Height

		Min-height

		Max-height

		Conclusion

		Points to remember

		Multiple choice questions

		Answers

		4. Element-Specific Styling with Utility- First Classes

		Introduction

		Structure

		Typography

		Font

		Font family

		Font size

		Font smoothing

		Font style

		Font weight

		Font variant numeric

		Letter spacing

		Line clamp

		Line height

		Relative line height

		Fixed line height

		List style

		List style type

		List style position

		Text

		Text align

		Text color

		Text decoration

		Text decoration color

		Text decoration style

		Text decoration thickness

		Text underline offset

		Text transform

		Text overflow

		Text indent

		Vertical align

		Whitespace

		Word break

		Content

		Backgrounds

		Background attachment

		Background clip

		Background color

		Background origin

		Background position

		Background repeat

		Background size

		Background image

		Gradient color stops

		Borders

		Border radius

		Border width

		Border color

		Border style

		Divide width

		Divide color

		Divide style

		Outline width

		Outline color

		Outline style

		Outline offset

		Ring width

		Ring color

		Ring offset width

		Ring offset color

		Effects

		Box shadow

		Box shadow color

		Opacity

		Mix blend mode

		Background blend mode

		Normal filters

		Blur

		Brightness

		Contrast

		Drop shadow

		Grayscale

		Hue rotate

		Invert

		Saturate

		Sepia

		Backdrop filters

		Backdrop blur

		Backdrop brightness

		Backdrop contrast

		Backdrop grayscale

		Backdrop hue rotate

		Backdrop invert

		Backdrop opacity

		Backdrop saturate

		Backdrop sepia

		Tables

		Border collapse

		Border spacing

		Table layout

		Transitions and animations

		Transition property

		Transition duration

		Transition timing function

		Transition delay

		Animation

		Transforms

		Scale

		Rotate

		Translate

		Skew

		Transform origin

		Interactivity

		Accent color

		Appearance

		Cursor

		Caret color

		Pointer events

		Resize

		Scroll behavior

		Scroll margin

		Scroll padding

		Scroll snap align

		Scroll snap stop

		Scroll snap type

		Touch action

		User select

		Will change

		SVG

		Accessibility: Screen readers

		Conclusion

		Points to remember

		Multiple choice questions

		Answers

		5. Developing a Website with Tailwind CSS

		Introduction

		Structure

		Website

		Categories of websites

		Static website

		Dynamic website

		Types of websites

		Requirement of website

		Website – the developer’s viewpoint

		The working way of website

		Parts of the website

		Building a restaurant website

		Parts of our website

		Think in Tailwind way

		Let’s begin development

		Webpages

		Header and footer

		Home page or Index page

		Gallery page

		Our ambience

		Clicks from kitchen

		Menu page

		Text block

		Menu Block

		Conclusion

		6. Advanced Website Development with Tailwind CSS

		Introduction

		Structure

		Blogs page

		Contact us page

		FAQ page

		GIT: a brief note

		GIT working flow

		Some of the terms present in GIT

		GIT operations

		GitHub

		GitHub account

		Deployment

		Conclusion

		Points to remember

		Multiple choice questions

		Answers

		7. Best Practices for Tailwind CSS

		A glance

		Keep it in mind

		Bonus

		Component 1

		Component 2

		Component 3

		Component 4

		Component 5

		Component 6

		Component 7

		Component 8

		Component 9

		Component 10

		Component 11

		Conclusion

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Getting Started with HTML, CSS, and Tailwind CSS

OEBPS/images/Figure-1.10.jpg
tailwindcss

OEBPS/images/Figure-1.1.jpg
Hyper Text Markup Language

HTML

