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Preface





This book covers many aspects of web development using Node.js. This book also introduces the important concepts of Node.js which can be used to build real-time web applications.


This book takes a practical approach for web developers who want to learn Node.js from scratch and develop a good understanding of how to develop real-time web applications using Node.js.


This book is divided into 15 chapters. We will cover most of the Node.js basic concepts and some advanced concepts that are used for developing backend applications.


In Chapter 1, we will learn a few terms and concepts that are crucial to understanding Node.js. Some of the key concepts will include non-blocking events, event loops, asynchronous execution, JavaScript runtime environment, REPL, NPM, and so on. This introduction chapter will help in getting started with Nodejs and involve activities like installation, running cli commands, running the first Nodejs program.


In Chapter 2, we will dive deeper and learn about the core built-in modules and underlying features that are responsible for making Node.js a great technology. We will cover some of the core concepts, including Event Loop, Asynchronous programming, Event, and callbacks.


In Chapter 3, we will learn about Express and cover topics like Introduction to Express core concepts, along with installation on local systems. We will also learn how to create our first backend server using express.js which supports routes and middlewares.


In Chapter 4, we're going to take a closer look at the fundamentals of RESTful services and focus on creating some of the backend RESTful APIs and handling different routes. We will learn about request validations and response transformation, which is an important part of building APIs using Node.js.


In Chapter 5, we will learn about the NoSQL database that we can use for a variety of requirements in our application. This chapter will focus on exploring more MongoDB and cover basic things about how to install and use MongoDB as a backend database and perform some basic CRUD operations using Mongo-cli.


In Chapter 6, we will try to hook Node.js with our backend database, i.e., MongoDB, and perform some of the CRUD operations to save and retrieve data from the database using REST APIs. This chapter deals mostly with storing in databases and performing data manipulation using Mongoose.


In Chapter 7, we will learn about template engines that we used to build and hook frontend web pages and how to add dynamic content using special syntax. We will explore EJS template engines and create some dynamic content for testing purposes.


In Chapter 8, we will learn about middleware and different types of commonly used middleware inside any real Node.js application. We will also learn how to create custom middleware and use it in our application.


In Chapter 9, we will learn how to secure our application using some popular authentication techniques, such as form validation, tokens, and cookies. We will also review topics like role-based Authorizations based on permissions.


In Chapter 10, we will be introducing socket.io for building real-time applications like chatbots. We will cover the theory of socket programming and use socket.io for creating simple chat applications to test communication between client and server.


In Chapter 11, we will learn how to handle errors and persisting logs which can be used for further debugging. This chapter will cover some of the techniques for error handling and logging them.


In Chapter 12, we will focus on understanding how to write test cases and perform unit tests using Mocha and chai tools.


In Chapter 13, we will learn how to debug any Node. js-related issues in local and production. Here we will explore some of the widely used tools like REPL, Node Inspector, and so on.


In Chapter 14, we will discuss topics on performing build and deploying your node application to a server. We will cover how to create and publish our package to the NPM repository so that the module can be used by another team or developer.


In Chapter 15, we will give a walk-through about some of the advanced topics that are not in the scope of this book, such as building highly distributed systems, leveraging messaging systems like Kafka, Multi-Threaded Systems, and so on. tandards Recommendations (PSR) to serve data for your Nuxt app.
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CHAPTER 1


Getting Started with Node.js



Introduction

This chapter will help in get started with Node.js, involving activities such as installation, running CLI commands, and creating our first Node.js applications. In this chapter, we will also briefly review some of the topics covered across further chapters of this book.

Structure

In this chapter, the following topics will be covered:


	History of Node.js

	Defining Node.js

	Some Important Uses of Node.js

	Installing and Setting Up a Local Environment

	Understanding Some of the Core Concepts of Node.js

	Node.js Console REPL

	NPM and package.json


	Creating our First Applications



History of Node.js

Today, JavaScript is one of the world’s most popular programming languages. Node.js was created by Ryan Dahl back in 2009 and was initially supported only on Linux and MacOS. Its early development and maintenance were sponsored by Joyent.

In 2010, NPM, a package manager, was introduced, which makes it very easy for developers to publish and share the source code of Node.js. In late 2014, because of internal conflict over Joyent governance, a group of techies who were also contributors to the original node project forked Node into something called IO.js for rapid development and to make the latest features available. In early 2015, the Node.js foundation was announced with key members such as IBM, Intel, Microsoft, PayPal, and many more.

The first official release of Node.js after its merger with IO.js was versioned as 4.x. The new Node.js foundation has taken the entire framework to new heights by releasing new versions with the latest features as well as fixing several issues related to security and performance, which have become a key for the adoption of Node.js into mainstream enterprise web application development.

Unlike other programming languages such as JAVA and .NET, PHP Node is also a platform. This means you have full control over your app logic and the environment within which it must operate. You can effectively write your app code using JavaScript or TypeScript and utilize amazing server stack support.

Defining Node.js

As per official documentation from the Node.js website:

Node.js is an open-source and cross-platform JavaScript runtime environment. It is a popular tool for almost any kind of project!

Let’s break this definition down into three important parts, as follows:

First, Node.js is an open-source framework, which means the source code for Node.js is publicly available for sharing, modification, and improvements.

Second, Node.js is cross-platform, which means we can run any application developed using Node.js on any platform such as Mac, Windows, and Linux.

Finally, Node.js is a JavaScript runtime environment, which means it provides all required infrastructure and support to execute application code using the V8 JavaScript engine outside the browser environment.

Some other definitions are as follows. The following definition is taken from https://www.toptal.com:

Node.js is composed of Google’s V8 JavaScript engine, the libUV platform abstraction layer, and a core library that is written in JavaScript. Additionally, Node.js is based on the open web stack (HTML, CSS, and JS) and operates over the standard port 80.

As per flaviocopes (https://flaviocopes.com/nodejs/):

Node.js is open source and cross-platform, and since its introduction in 2009, it has become hugely popular and now plays a significant role in the web development scene. If GitHub stars are one popularity indication factor, having 100k+ stars means being very popular.

Features of Node.js

Some of the core features of Node.js are as follows:


	
Asynchronous
The core of Node.js lies in the fact that its APIs are mostly based on asynchronous nature where Node.js doesn’t wait for processing requests; it keeps on moving to the next one using the Event loop technique. It works on events, and when processing is done, it will get a response back to the caller of the service.



	
Event Driven
Node provides a module called Event that has an EventEmitter class, which gives us the power to implement event-driven programming. An event handler is a user-defined function that is called when an event is triggered. The main loop listens for event triggers and calls the appropriate event handler.

An EventEmitter has several methods, including emit(), which is used to trigger the event. emit() has two arguments: the first is the name of the event, and the second argument is used to pass the data. The on() method is used to listen for and execute published events.



	
No Buffering
In Node.js, there is no buffering of data because of its asynchronous nature, and users always receive data more easily as they don’t have to keep waiting for the entire operation to complete. This all happens when we use callback functions, which help to keep processing data until everything is done completely.



	
Single-Threaded Architecture
Node.js architecture is based on a single-threaded event loop model architecture that can handle multiple client requests at the same time. The main event loop is executed by a single thread, but in the background, most of the time-consuming I/O work is done using separate threads. Due to this, all operations performed by Node.js are asynchronous (non-blocking design) to accommodate event loops. The event loop allows node.js to perform all non-blocking operations seamlessly.



	
Highly Scalable
Node.js backend applications are highly scalable and can handle millions of requests using a single thread asynchronously and can use child processes to partition applications horizontally to handle all requests.



	
Fast Execution
Node.js can execute code much faster by using the V8 engine, which compiles JavaScript code into machine code and helps to reduce the overall time taken to handle multiple requests in Node.js applications.



	
Cross-Platform
The main advantage of Node.js is running applications across multiple platforms like Windows, Mac, Linux, and more. Since it’s a very lightweight framework, it helps to build and deploy easily on server-based processor architecture.





Reasons for Node.js Popularity

While we have explored some of the key features that have made Node.js one of the popular frameworks across enterprises, it’s not only driving the development community towards Node.js. Let’s discuss some more general benefits of using Node.js to build enterprise applications:


	
Single JavaScript language
Node.js is a technology with which you can build end-to-end JavaScript applications. Learn one language, and you can develop both the frontend and backend for your apps.



	
Widely Adoption of Node.js
Several major companies, such as LinkedIn, Netflix, and PayPal, have all migrated from other back-end technologies to Node.js.



	
Full-stack Development Demand
Full-stack development is one of the most sought-after skill sets by companies right now. If you’re a front-end developer, learning Node.js will help you become a full-stack developer easily.



	
Huge Community Support
There is a huge community support for Node.js, and you will always get help on any issues or concerns related to development.





Apart from this, the following are some of the key features that also made Node.js so popular:


	Building real-time apps like chat

	Real-time gaming applications

	Apps that require lots of asynchronous I/O operations

	Scalable web applications like e-commerce

	Serverless web apps using Azure function, AWS Lambda, or Google Cloud functions

	Lightweight mobile friendly RESTful APIs

	Power of running entire application on a single thread



There are many frameworks that are open source and can be used to develop applications on top of core Node.js, such as:


	Express.js

	Meteor.js

	Koa.js

	Sails.js

	Next.js

	Hapi.js



Node.js cannot be used in case of the following facts:


	Performance bottlenecks with heavy computation tasks

	
Callback hell issue

	Immature tooling and dependency management

	Unstable APIs developed by third parties

	Applications using high CPU usage



Node.js versus Browser JavaScript

The following table displays the difference between JavaScript and Node.js:








	
	
JavaScript


	
Node.js





	
1


	
JavaScript is a popular programming language mostly used for client-side scripting


	
Node.js is a JavaScript runtime environment, which is used to run on the server





	
2


	
JavaScript can run only on browser


	
Node.js runs outside the browser on backend servers like Linux/windows/mac





	
3


	
Mostly used for performing client-side scripting


	
Node.js helps to write backend server-side applications





	
4


	
JavaScript is used for DOM manipulation in HTML


	
Node.js is not used for doing DOM manipulations





	
5


	
JavaScript can run on any browser, which has support for running JavaScript engines


	
JavaScript code can only be run using the V8 engine available inside Node.js





	
6


	
Mostly used for developing frontend libraries


	
Node.js is primarily used for creating backend servers like RESTFul API





	
7


	
Used for building network-centric apps


	
Node.js applications are highly distributed and run on multiple servers






Table 1.1: Difference between Node.js and Browser JavaScript

Installing Node.js

There are various ways by which we can install Node.js on our local system. The easiest way to install is by downloading it from the official website of Node.js.

Perform the following steps to download and install Node.js on the Windows system:


	Go to the official website: https://nodejs.dev/download/


	Download for 64-bit Windows setup file node-v20.10.0-x64.msi 
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Figure 1.1: Downloading Node.js setup file



	Run the setup by double-clicking the downloaded file from the setup files and follow these steps:

	Click Install and wait for it to finish setup.

	Once the setup is completed, open cmd or Terminal and type node –-version to verify the successfully installed node version.
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Figure 1.2: Checking Node.js Version





Here are the following steps to install Node.js on a Mac system:


	Download the macOS installer from the official website:

[image: ]


Figure 1.3: Downloading setup file for macOS



	Running Node.js Installer:
Introduction -> Licence -> Select Destination -> Agree Installation Type -> Install -> Authenticate with your Mac cred -> Summary
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Figure 1.4: Node.js Installation on Mac



	
Verify Node.js Installation:
$ node -v node -v // The command tells what version of Node.js is installed currently.



	Update NPM version:
$ sudo npm install npm --global // Update the npm cli client

Now let’s install Node.js on Linux/Unix.

We can install any software on a Linux machine by using the APT package repository. Before installing any software, we need to update the System’s Package repository.



	Update System’s Package:
$ sudo apt update
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Figure 1.5: Software update on Linux



	Download and install Node.js:
$ sudo apt install nodejs -y
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Figure 1.6: Node.js Installation on Linux



	Installing NPM:
$ sudo apt install npm -y
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Figure 1.7: NPM Installation on Linux



	
Checking installed versions:
$ nodejs –version
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Figure 1.8: Checking Node.js Installation on Linux





Installing NVM on Windows

We can install NVM through the following link:

https://learn.microsoft.com/en-us/windows/dev-environment/javascript/nodejs-on-windows

The following steps will be used to install NVM on Windows:


	We need to download the latest package from https://github.com/coreybutler/nvm-windows/releases
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Figure 1.9: Downloading NVM package



	
Running installation from downloaded exe file:
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Figure 1.10: Starting NVM installation process



	Setting the installation path, keep the default:
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Figure 1.11: Setting up installation path



	
Click Install to start the installation process:
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Figure 1.12: Start installation



	Accept the pop-up to Node xxx is already installed. Do you want to NVM control this version:
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Figure 1.13: Allow NVM to control existing Node.js version



	
Finish setup.
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Figure 1.14: Click Finish to complete NVM installation





Verifying NVM Installation

Let’s perform the following step to verify NVM installation on our local system:


	Open CMD and type nvm command:
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Figure 1.15: Open CMD to verify installation



	
To check the list of Node.js installation on Windows, type nvm list:
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Figure 1.16: Get the list of all Node.js versions



	To switch Node.js versions, type nvm use 14.20.0:
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Figure 1.17: Switching to different Node.js versions





Some Core Concepts of Node.js

Let us understand some core concepts of Node.js.

V8 Engine

Node.js implements Google’s incredibly powerful JavaScript engine, also known as Chrome V8.

What exactly do we mean by JavaScript engine?

A JavaScript engine is responsible for compiling and executing JavaScript code and managing resources and memory allocation written in C++. The V8 engine is already being used in our Chrome browser. V8 can be made to run as a standalone program or be embedded into any C++ program, thus enabling a JavaScript-based scripting interface, all the while delivering incredible performance and flexibility. This also allows you to expand and introduce your own flavor of JavaScript as needed in a specific scenario. Since V8 is a virtual machine, which means that it abstracts the underlying hardware from the actual JavaScript code by simulating a universal environment for the execution environment. You can use V8 and consequently not just on Windows, Mac, and Linux almost seamlessly. This is great since it enables developers to deploy their apps virtually into any kind of execution environment without worrying too much about the underlying hardware.

JavaScript, coupled with the performance benefits of C++ programming, can make a difference. Now as far as Node.js goes, V8 is implemented along with an abstraction layer called libuv, which enables Node.js to perform seamless input and output operations across a gamut of operating systems in a non-blocking way. Along with libuv, node.js also comes with a built-in core library that provides a host of useful methods that developers can use to write programs, such as web servers and network apps.
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Figure 1.18: V8 engine core layers

Blocking versus Non-blocking Operations

Let’s try and understand what this really means, and why it makes Node.js different from other server technologies, such as Java, PHP, and more.

Blocking operations happen when the execution of JavaScript code inside the Node.js process has to wait until all the code executes synchronously and the control moves to execute the next statement.

For example, when we read a File System using the fs NPM package:

const fs = require(“fs”);

const data = fs.readFileSync(“/file.md”); // blocks here until file is read

console.log(data);

In the preceding code, fs.readFileSync() will block the execution of any additional JavaScript unless the entire file data is read completely and the output is shown in the console.

Non-blocking operations are asynchronous in nature and don’t wait for the operation to complete; they continue to execute the next line of statements. Once the operation is successful, the code inside the error first callback function (err, data) is executed:

const fs = require(“fs”);

fs.readFile(“/file.md”, (err, data) => {

if (err) throw err;

console.log(data);

});

In the preceding example, the file content is read asynchronously. After operation is completed, the callback function (err, data) is executed to either throw an error or log data into the console.
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Figure 1.19: Synchronous vs. Asynchronous I/O

Event Loop

Node.js is a single-threaded, event-driven framework that can execute asynchronous, non-blocking code. It is efficient regarding memory, thanks to these features. Although JavaScript is single-threaded, Node.js can conduct non-blocking I/O operations because of the event loop. This is accomplished by delegating tasks to the operating system whenever it is practical.
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Figure 1.20: Synchronous vs. Asynchronous I/O

The Event Loop has one simple job - to monitor the Call Stack, the Callback Queue, and the Microtask queue. If the Call Stack is empty, the Event Loop will take the first event from the microtask queue and then from the callback queue and will push it to the Call Stack, which effectively runs it. Such an iteration is called a tick in the Event Loop.

As JavaScript is single-threaded, which means two statements in JavaScript cannot be executed in parallel. Execution happens line by line, which means each JavaScript statement is synchronous and blocking in nature. However, there is a way to run your code asynchronously or in parallel. If you use the setTimeout() function, your code executes after a specified time (in milliseconds).

Let’s understand this with the following example:

console.log(“Start”);

setTimeout(function callbackFunc(){

console.log(“Settimeout called after 5 seconds”);

// now sum will be called”

sum();

},5000);

fetch(“http://example.com/”).then(function outPutFunc(){

console.log(“Call back from example api”);

});

function sum(x, y){

return x +y;

}

//......................

//.....................

console.log(“end”);

setTimeout takes a callback function as the first parameter and a time in milliseconds as the second parameter. After the execution of the preceding statement in the browser console, it will print:

Start

End

Call back from example api

Settimeout called after 5 seconds

Now sum will be called

Note: Your asynchronous code runs after all the synchronous code is done executing.

Following are the key steps that happen while running the preceding application:


	JS engine executes the first line and prints Start in the console.

	The Second line sees the setTimeout(), a function named callbackFunc, and the JS engine pushes the callbackFunc function to the callback queue.

	Subsequently, the pointer will directly jump to line seven, and there it will see the promise. The JS engine pushes the outputFunc() function to the microtask queue.

	Then, it will execute other lines of code, and finally at the end of the program, it will print End.



After the main thread ends execution, the event loop will first check the microtask queue and then call back the queue. In our case, it takes the callbackFunc() function from the microtask queue and pushes it into the call stack. Then, it will pick the outputFunc() function from the callback queue and pushes it into the call stack.
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Figure 1.21: Example of Event loop in action

Callback functions

JavaScript is synchronous by default, which means code will be executed in a sequential fashion. For example, the following code will be executed line by line and the final output will be logged to the console:

const a = 1;

const b = 2;

const c = a * b;

console.log(c);

doSomething();

As per the official definition from the Node.js website https://nodejs.dev/en/learn/javascript-asynchronous-programming-and-callbacks

A callback is a simple function that’s passed as a value to another function and will only be executed when the event happens. We can do this because JavaScript has first-class functions, which can be assigned to variables and passed around to other functions (called higher-order functions)

setTimeout(() => {

// runs after 2 seconds

}, 2000);

Above the setTimeout function, there is a classic example that accepts the first argument as a callback function, and the second parameter is time in milliseconds after which the callback function will be executed.

Callback functions are a great way of handling asynchronous function calls, but with every callback, it adds a level of nesting and results in callback hell when there are lots of callbacks happening within the same code:

window.addEventListener(‘load’, () => {

document.getElementById(‘button’).addEventListener(‘click’, () => {

setTimeout(() => {

fetch(“http://example.com/”).then(function cbF() {

items.forEach(item => {

// more code

});

});

}, 2000);

});

});

This example shows so many callback functions are invoked within 10 lines of code; it becomes very messy to handle this kind of situation of callback hell.

Defining Callback Hell in Node.js

Callback functions are used for the lazy execution of a function until another function has executed and returned data. However, in some cases, we may need to nest multiple callbacks within callbacks. This nested nature of callbacks can stretch horizontally and become unreadable and confusing if you have many interdependent consecutive asynchronous requests. This nesting of callbacks within callbacks is called callback hell and is sometimes also referred to pyramid of doom.

In the following code, we have called multiple setTimout(), which accept a callback function. In this case, every time a setTimeout callback function is executed, it triggers a new setTimeout() function in return:

function callbackhellexample() {

// first setTimeout function

setTimeout(() => {

console.log(10)

// second setTimeout function

setTimeout(() => {

console.log(20)

// third setTimeout function

setTimeout(() => {

console.log(30)

}, 500)

}, 2000)

}, 1000)

};

Once the innermost setTimeout function completes execution, then only the callback function returns execution to the outside upper callback function.

Ways to Avoid Callback hell

The following are some of the ways to avoid callback hell issues in Node.js:

Promise

A Promise is a JavaScript object that represents the eventual success or failure of an asynchronous operation and its final output. In other words, a Promise is an object to which you attach callback functions instead of passing directly into a function.

Following is an example of how we can create a promise, and based on the operation status, either resolve is called if successful, or reject in case of failure:

var displayGreeting = (name) => alert(‘Welcome ‘ + name);

var processUserInput = () => {

return new Promise((resolve, reject) => {

var name = prompt(“please enter name”);

if (name) {

resolve(name)

}

reject(false);

});

}

processUserInput().then(res => displayGreeting(res));

A promise is a proxy for a value that isn’t necessarily known at the time the promise is created. This enables the handler to be associated with the final success value or failure reason of the asynchronous action. This allows asynchronous methods to return values like synchronous methods. Instead of returning a final value immediately, an asynchronous method returns a promise to return the value later.
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Figure 1.22: Example of Promise execution

A promise can have one of the following states:


	
Pending: This is the initial state of promise, which is neither completed nor rejected.

	
Completed: This means when the operation was completed successfully.

	
Failed: This means the operation failed.



A promise has the following two key components:


	
resolve
The resolve callback function is executed when there is a successful execution of some operation and we want to return the result.



	
reject
The reject callback function is called and an error is returned after the operation fails due to some unexpected failure condition.





Let’s try to understand with a simple example.

Here we define the function getMulNum() to calculate the multiplication of two integers a and b. In the function, we use the promise constructor new Promise() to create a new promise.

The multiplication of a and b is calculated. The callback is triggered if the sum is less than or equal to 50. Otherwise, a callback reject is called. The new promise is passed to the myPromise variable, which is then returned.

function getMulNum(a, b) {

const myPromise = new Promise((resolve, reject) => {

const mul = a * b;

if (mul <= 50) {

resolve(“Successful result”)

} else {

reject(new Error(‘Result must be less than 50’))

}

})

return myPromise

}


Async and Await


JavaScript execution happens by default in a synchronous nature. This means that every line of code gets executed from top to bottom without waiting for any results.

However, there are a lot of areas in our program that comprise asynchronous code, and one of the key ways to handle them is by using the Async/Await functionality, which we get as support in the language.

Async: The async function allows you to write code based on promises as if they were synchronous, making sure they don’t interrupt the thread of execution. It works asynchronously on the event loop, and asynchronous functions always return a value. It guarantees that the promise will return, and if it doesn’t, JavaScript will automatically wrap it into a promise that resolves by value.

const getUserData = async () => {

var data = {firstname: ‘john’, lastname: ‘Doe’ };

return data;

}

getUserData().then(data => console.log(`${data.lastname} ${data.lastname}`));

Await: The await function is used to wait for a promise to resolve or reject. This can only be used inside an async block. Using this keyword, you can make your code wait until the promise returns a result. It just makes the async block wait.

The await keyword tells the JavaScript engine to stop executing the current function until the promise is resolved and returns the value of the promise. You can think of it as an infinite loop that checks to see if the promise has been resolved and, if so, returns the value of the resolved promise.

The await keyword only works inside asynchronous functions (coroutines, as explained earlier). The problem with asynchronous functions is that they return promises instead of values. This means that every time you need to execute an async function, you must wait for it if you want to get the return value.

In Figure 1.23, Task 1 caller is invoked and waits for a response to come after the completion of the task. In the meantime, we can observe that the Task 2 caller is also invoked, and similar to Task 1, it also waits for a response.

Once Task 1 is completed, the response is returned, and after this, Task 2 returns the response.
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Figure 1.23: Example of Async/Await execution

Let’s take another look at the mathOpreationAsync example. However, we use the sleep function instead of setTimeout(), so that we can later use await to implement mathOpreationAsync. The sleep function returns a promise resolved to ms milliseconds and works using setTimeout:

function sleep(ms) {

return new Promise((resolve) => setTimeout(resolve, ms));

}

async function mathOpreationAsync(x, y) {

// this code waits here for 500 milliseconds

await sleep(500);

// done waiting. let’s calculate and return the value

return x+y;

}

// mathOpreationAsync is an async function, which means it returns a Promise.

mathOpreationAsync(5, 7).then((result) => {

console.log(“The result of the addition is:”, result);

})


Choosing the Appropriate Approach


You have the following options for doing asynchronous processing in JavaScript:


	callback

	promise

	async/await



If you have no other choice or just want to handle asynchronous operations, use callback. Even then the code is completely manageable and understandable.

When there are multiple chained (or dependent) asynchronous operations and if you try to use callback in this situation, you’ll quickly end up in callback hell. In order to avoid this, Promises is preferred, which is a great tool for keeping operations organized and predictable.

async/await is also a great tool if you don’t really want or need to use observables, but want to use Promises. You can write “synchronous” code using async/await and manage Promise chains more easily.

REPL Console

The REPL (READ, EVAL, PRINT, LOOP) is a computer environment similar to shells (Unix/Linux) and command prompts in Windows. Node.js comes with an inbuilt REPL environment when installed. This system is a very useful way of interacting with the user by issuing commands/expressions that are used.


	
Read: This operation reads input from the user and parses it into JavaScript data structures, storing them in memory.

	
Eval: The parsed JavaScript data structure is evaluated against the result.

	
Print: Finally, the result is printed after evaluation.

	
Loop: This is used to Loop the input command.



Press Ctrl+C twice to exit the NODE REPL environment.

Getting Started with the REPL

To work in NODE’s REPL environment, open a terminal (UNIX/LINUX) or command prompt (Windows), type node, and press Enter to start the REPL.
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Figure 1.24: Starting REPL terminal

Here are some of the examples of using REPL:


	Simple Arithmetic operations



Basic maths operations can be performed, such as addition, subtraction, multiplication, and division, as shown in the following figure:
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Figure 1.25: Arithmetical operations in REPL

The REPL can be used to perform operations on strings. Concatenate the following strings in your REPL by typing:
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Figure 1.26: String operations in REPL


	Calling functions



We write functions to handle specific tasks that can perform complex operations. REPL provides an easy way to handle these methods. In JavaScript, we commonly use the global console.log() method to print messages. Regular JavaScript functions can also be written to solve a problem and work on complex logic.

In the following example, we have written the addTwoNumbers() function, which accepts two arguments and produces an output sum of 30.
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Figure 1.27: Sum operations using a function call in REPL


	Using variables



We can use variables to store values and use them at a later point while performing operations.
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Figure 1.28: Using variables in REPL


	Loops and Multiline expressions



We can use multiline expressions to write loops and other statements that cannot be written in a single line. For example, when we use a do while loop for iteration, then we must write all the statements in different lines as follows:
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Figure 1.29: Loops and Multiline expression in REPL


	Using underscore variable



We can use _ variable to get the last result from Node REPL. Let’s create two variables and perform some arithmetic operations.

var x = 10;

var y = 20;

var z = 0;

x + y;

z = _ * 100;
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Figure 1.30: Using Underscore in REPL


	Using dot commands



There are some special commands that start with a dot (.) and are used to perform some of the core functions of the REPL command line tool, as follows:


	
.help: Shows the dot commands help.

	
.editor: Enables editor mode, allowing you to write multiline JavaScript code with ease. Once in this mode, press Ctrl-D to run the code you wrote.

	
.break: When inputting a multi-line expression, entering the .break command will abort further input, similar to pressing ctrl-C.

	
.clear: Resets the REPL context to an empty object and clears any multi-line expression currently being input.

	
.load: Loads a JavaScript file relative to the current working directory.

	
.save: Saves all you entered in the REPL session to a file (specify the filename).

	
.exit: Exits the REPL (same as pressing Ctrl-C two times).



Using NPM and Package.json

A package manager is defined as a system or set of tools used to automate installing, upgrading, configuring, and using the software. Most package managers are used for discovering and installing developer tools on the local machine or production servers.

Maven is one of the package managers from Java, which is used for automating the process of installation, upgradation, and removal of system dependencies for a given application.

A package manager also deals with bundling of packages and distribution of software.

NPM is the default package manager for the Node.js JavaScript runtime environment maintained by npm, Inc. It consists of a command line (CLI tool) program, also called as npm, and an online database (npm registry) for hosting public(free) and private(paid) packages (https://www.npmjs.com/).

Some of the important NPM commands are explained here.

Init

This command is used to initialize an empty node.js project with a pre-configured package.json file having either a default option or user-defined values.
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Figure 1.31: NPM init command sample output

Install

This command is used to install all the dependencies that the project needs inside the node_modules folder at the root of the application where package.json resides.

Installing Single Package

We can install a single package if required to include any module dependencies. For this command, we have multiple flags that can be added along with the package name:


	
--save
When we use the save flag, a package entry is added to the package.json file’s dependencies section (which includes packages required for the project to run effectively in production environments). When we install any package without specifying any flag, its entry gets added to the dependencies section.



	
–save-dev
This will install and add the current module entry to the package.json file’s devDependencies section (which includes packages only used for project development propose).



	
--no-save
This will only install modules but does not add any entry to the package.json file dependencies.



	
--save-optional 
This will install the module along with adding the entry to the optionalDependencies section of the package.json file.



	
--no-optional 
This will prevent optional dependencies from getting installed.
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Figure 1.32: NPM install command sample output

Update

This command will check all the packages for any newer version that might be available following the given versioning constraints.


	
Update <package-name>
This command will only update a single package.



	
Versioning
NPM also helps in managing versions, which means we can specify any higher or lower versions, and its dependencies accordingly get installed with compatible versions.



	
Running tasks
This command is very useful in running any specific scripts like build, starting the server, or running unit tests.

“scripts”: {

“start-dev”: “node dev.server.js”,

“start”: “node prod.server.js”

}



	
Uninstall
This command helps to uninstall modules from a given project or application.



	
Publish
This command is used to publish packages from your local dev machine to the npm registry for sharing purposes. Once published this can be downloaded by others and used in their project.



	
Login
This command is used to log into the npm.js (https://www.npmjs.com/) account of the official website.





Attributes of Package.json

Following is a detailed list of attributes defined inside package.json:


	
name: The name of the package, normally the application or module title. There are some restrictions on the name property:

	Maximum length of 214 URL-friendly characters

	No uppercase letters

	No leading periods (.) or underscores (_) (except for scoped packages)





	
version: The current version of the package of that module. Node.js modules use a Semantic Versioning approach where three different levels of versioning are used. For example, version 2.0.1 is divided into three levels:

	Major-X.0.0

	Minor-0.X.0

	Patch-0.0.X



where X is the current level of the version.

Semantic Versioning (also known as SemVer) is a version control system that has evolved in recent years. This is a constant problem for software developers, distribution managers, and consumers. Having a global approach to version management for your software development projects is the best way to keep track of what’s happening with your software, such as new tools, extensions, libraries, and visits almost every day. This problem can be solved using Semantic Versioning. Simply put, this is a way to calculate the computer’s output.

So, SemVer looks like Major.Minor.Patch.
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