

[image: image]

Ultimate Node.js for
Cross-Platform App
Development

[image:]

Learn to Build Robust, Scalable, and
Performant Server-Side JavaScript
Applications with Node.js

[image:]

Ramesh Kumar

[image:]

www.orangeava.com

Copyright © 2024 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

First published: February 2024

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-81-96815-15-8

www.orangeava.com

Dedicated To

My beloved parents:

Late Shri Jai Prakash Narayan
Late Shanti Devi

and

My wife Arti, my son Aayansh, and my daughter Anaisha

About the Author

Ramesh Kumar is currently working as an Engineering Manager at Moback Technologies India Pvt Ltd. He possesses over 13+ years of experience in Full-Stack Development based on ASP.NET, .NET Core, and popular JavaScript frameworks like Angular/NodeJS. His responsibilities include managing a team of 15 engineers, and assisting the team prioritize items and deliver products to stakeholders.

In addition, Ramesh contributes to development activities, such as developing features, code reviews, and resolving technical blockers. worked on building web applications using Microsoft Technologies like C#, Asp.net Core, GIT, and SQL Server. He has experience in front-end technologies like jQuery, Angular, and React.

In a recent project, Ramesh worked on NodeJS backend development. He has hands-on experience in DevOps tools such as TFS, Git, Azure DevOps, and Webpack.

His work can be found on GitHub under the username "rameshksh." He is highly self-motivated and eager to try newer technologies and use them to build next-generation software.

Ramesh has extensive experience working on Agile-based projects and delivering them on time with the highest quality product and has also worked on different cloud platforms like Azure and GCP.

About the Technical Reviewers

Bhargav Bachina is a distinguished figure in the IT industry, boasting a remarkable 12-year journey marked by innovation and leadership in software architecture. His career is a testament to his profound expertise across technological stacks, from front-end and back-end development to the complexities of cloud computing. Bhargav's proficiency in Java, JavaScript, Python, and Node.js has made him a versatile and adept navigator in the world of software development.

As a visionary software architect, Bhargav is renowned for his skill in architecting and implementing comprehensive end-to-end solutions. His commitment to excellence and a deep-seated passion for technology have been instrumental in developing cutting-edge web and mobile platforms. His approach, consistently driven by a quest for excellence, has not only led to the success of numerous projects but also established him as a thought leader in the field.

In his current role as the CTO of a startup in the educational domain, Bhargav is on the brink of launching an innovative project, adding yet another milestone to his illustrious career. Furthermore, his contributions as a fractional CTO have made him a sought-after guide and mentor in the startup community. His insights and guidance are highly valued by emerging startups that connect with him on LinkedIn for his expertise.

Beyond his technical and leadership roles, Bhargav is a prolific writer. His journey as a writer began five years ago on Medium, where he has penned over 700 articles. These writings have reached an audience of over 8 million globally, resonating deeply within the tech community. His articles have been pivotal in guiding and enlightening many, earning him a significant following of 22k on Medium. His influence extends to LinkedIn, where his contributions are frequently lauded for their impact.

Bhargav's commitment to sharing knowledge is further evidenced by his active presence on GitHub. With around 431 repositories, he has become a resource for many in the tech community, evidenced by the regular stars and forks his repositories receive. Bhargav Bachina's journey is more than a career narrative; it's a source of inspiration and a roadmap for aspiring IT professionals worldwide.

To learn more about Bhargav, please visit the following sites:

	
Medium: https://medium.com/@bhargavbachina

	
GitHub: https://github.com/bbachi

	
YouTube: https://www.youtube.com/@bachinalabs

Vikas Kad is a highly skilled professional boasting a decade of hands-on experience in the dynamic realm of technology. Specializing as a full-stack JavaScript developer, he has cultivated expertise in crafting comprehensive solutions across various domains. His proficiency extends to working on both mono and microservices, showcasing a versatile approach to software development.

Within the intricate landscape of technology, Vikas has made notable contributions in domains such as CAD, E-commerce, AIOPS, and blockchain. His technical acumen is not confined to a specific niche, allowing him to adapt and excel in diverse environments.

Over the course of his 10-year journey, Vikas has demonstrated a passion for creating robust and scalable applications. Whether delving into the intricacies of CAD systems, navigating the complexities of E-commerce platforms, leveraging AIOPS for intelligent operations, or exploring the revolutionary world of blockchain, Vikas has consistently delivered innovative solutions.

This wealth of experience has positioned him as a valuable asset in the tech industry, embodying a commitment to staying at the forefront of advancements. Vikas Kad's journey reflects a dedication to excellence in full-stack JavaScript development and a profound understanding of various domains, making him a sought-after professional in the ever-evolving tech landscape.

Acknowledgements

THANK YOU!

First of all, praise and thanks to almighty God for his blessings during my journey towards writing this book and successful completion of work. I would like to express my deep and sincere gratitude to Orange AVA for offering me to write a book based on the Node.js technology stack. It was a great privilege and honor to work with such a great publication and their incredible support for writing this book.

I sincerely thank my wife and entire family for their cooperation and patience during the overall journey. Without them, I couldn’t have focused entirely on presenting my idea.

I am extremely grateful to my parents for their love, prayers, care, and sacrifices in educating me to such an extent that today I have become an author.

Special thanks to Sonali and Priyanka for providing their constant feedback and encouragement on completing my work. I express special thanks to Bhargav Bachina for the technical review of my work.

Finally, I would like to thank all the people who directly or indirectly supported me during this challenging time and helped to overcome all the obstacles and finish my work.

Preface

This book covers many aspects of web development using Node.js. This book also introduces the important concepts of Node.js which can be used to build real-time web applications.

This book takes a practical approach for web developers who want to learn Node.js from scratch and develop a good understanding of how to develop real-time web applications using Node.js.

This book is divided into 15 chapters. We will cover most of the Node.js basic concepts and some advanced concepts that are used for developing backend applications.

In Chapter 1, we will learn a few terms and concepts that are crucial to understanding Node.js. Some of the key concepts will include non-blocking events, event loops, asynchronous execution, JavaScript runtime environment, REPL, NPM, and so on. This introduction chapter will help in getting started with Nodejs and involve activities like installation, running cli commands, running the first Nodejs program.

In Chapter 2, we will dive deeper and learn about the core built-in modules and underlying features that are responsible for making Node.js a great technology. We will cover some of the core concepts, including Event Loop, Asynchronous programming, Event, and callbacks.

In Chapter 3, we will learn about Express and cover topics like Introduction to Express core concepts, along with installation on local systems. We will also learn how to create our first backend server using express.js which supports routes and middlewares.

In Chapter 4, we're going to take a closer look at the fundamentals of RESTful services and focus on creating some of the backend RESTful APIs and handling different routes. We will learn about request validations and response transformation, which is an important part of building APIs using Node.js.

In Chapter 5, we will learn about the NoSQL database that we can use for a variety of requirements in our application. This chapter will focus on exploring more MongoDB and cover basic things about how to install and use MongoDB as a backend database and perform some basic CRUD operations using Mongo-cli.

In Chapter 6, we will try to hook Node.js with our backend database, i.e., MongoDB, and perform some of the CRUD operations to save and retrieve data from the database using REST APIs. This chapter deals mostly with storing in databases and performing data manipulation using Mongoose.

In Chapter 7, we will learn about template engines that we used to build and hook frontend web pages and how to add dynamic content using special syntax. We will explore EJS template engines and create some dynamic content for testing purposes.

In Chapter 8, we will learn about middleware and different types of commonly used middleware inside any real Node.js application. We will also learn how to create custom middleware and use it in our application.

In Chapter 9, we will learn how to secure our application using some popular authentication techniques, such as form validation, tokens, and cookies. We will also review topics like role-based Authorizations based on permissions.

In Chapter 10, we will be introducing socket.io for building real-time applications like chatbots. We will cover the theory of socket programming and use socket.io for creating simple chat applications to test communication between client and server.

In Chapter 11, we will learn how to handle errors and persisting logs which can be used for further debugging. This chapter will cover some of the techniques for error handling and logging them.

In Chapter 12, we will focus on understanding how to write test cases and perform unit tests using Mocha and chai tools.

In Chapter 13, we will learn how to debug any Node. js-related issues in local and production. Here we will explore some of the widely used tools like REPL, Node Inspector, and so on.

In Chapter 14, we will discuss topics on performing build and deploying your node application to a server. We will cover how to create and publish our package to the NPM repository so that the module can be used by another team or developer.

In Chapter 15, we will give a walk-through about some of the advanced topics that are not in the scope of this book, such as building highly distributed systems, leveraging messaging systems like Kafka, Multi-Threaded Systems, and so on. tandards Recommendations (PSR) to serve data for your Nuxt app.

Downloading the code
bundles and colored images

Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:

https://github.com/ava-orange-education/Ultimate-Node.js-for-Cross-Platform-App-Development

[image:]

The code bundles and images of the book are also hosted on
https://rebrand.ly/ef14f9

[image:]

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Getting Started with Node.js

Introduction

This chapter will help in get started with Node.js, involving activities such as installation, running CLI commands, and creating our first Node.js applications. In this chapter, we will also briefly review some of the topics covered across further chapters of this book.

Structure

In this chapter, the following topics will be covered:

	History of Node.js

	Defining Node.js

	Some Important Uses of Node.js

	Installing and Setting Up a Local Environment

	Understanding Some of the Core Concepts of Node.js

	Node.js Console REPL

	NPM and package.json

	Creating our First Applications

History of Node.js

Today, JavaScript is one of the world’s most popular programming languages. Node.js was created by Ryan Dahl back in 2009 and was initially supported only on Linux and MacOS. Its early development and maintenance were sponsored by Joyent.

In 2010, NPM, a package manager, was introduced, which makes it very easy for developers to publish and share the source code of Node.js. In late 2014, because of internal conflict over Joyent governance, a group of techies who were also contributors to the original node project forked Node into something called IO.js for rapid development and to make the latest features available. In early 2015, the Node.js foundation was announced with key members such as IBM, Intel, Microsoft, PayPal, and many more.

The first official release of Node.js after its merger with IO.js was versioned as 4.x. The new Node.js foundation has taken the entire framework to new heights by releasing new versions with the latest features as well as fixing several issues related to security and performance, which have become a key for the adoption of Node.js into mainstream enterprise web application development.

Unlike other programming languages such as JAVA and .NET, PHP Node is also a platform. This means you have full control over your app logic and the environment within which it must operate. You can effectively write your app code using JavaScript or TypeScript and utilize amazing server stack support.

Defining Node.js

As per official documentation from the Node.js website:

Node.js is an open-source and cross-platform JavaScript runtime environment. It is a popular tool for almost any kind of project!

Let’s break this definition down into three important parts, as follows:

First, Node.js is an open-source framework, which means the source code for Node.js is publicly available for sharing, modification, and improvements.

Second, Node.js is cross-platform, which means we can run any application developed using Node.js on any platform such as Mac, Windows, and Linux.

Finally, Node.js is a JavaScript runtime environment, which means it provides all required infrastructure and support to execute application code using the V8 JavaScript engine outside the browser environment.

Some other definitions are as follows. The following definition is taken from https://www.toptal.com:

Node.js is composed of Google’s V8 JavaScript engine, the libUV platform abstraction layer, and a core library that is written in JavaScript. Additionally, Node.js is based on the open web stack (HTML, CSS, and JS) and operates over the standard port 80.

As per flaviocopes (https://flaviocopes.com/nodejs/):

Node.js is open source and cross-platform, and since its introduction in 2009, it has become hugely popular and now plays a significant role in the web development scene. If GitHub stars are one popularity indication factor, having 100k+ stars means being very popular.

Features of Node.js

Some of the core features of Node.js are as follows:

	
Asynchronous
The core of Node.js lies in the fact that its APIs are mostly based on asynchronous nature where Node.js doesn’t wait for processing requests; it keeps on moving to the next one using the Event loop technique. It works on events, and when processing is done, it will get a response back to the caller of the service.

	
Event Driven
Node provides a module called Event that has an EventEmitter class, which gives us the power to implement event-driven programming. An event handler is a user-defined function that is called when an event is triggered. The main loop listens for event triggers and calls the appropriate event handler.

An EventEmitter has several methods, including emit(), which is used to trigger the event. emit() has two arguments: the first is the name of the event, and the second argument is used to pass the data. The on() method is used to listen for and execute published events.

	
No Buffering
In Node.js, there is no buffering of data because of its asynchronous nature, and users always receive data more easily as they don’t have to keep waiting for the entire operation to complete. This all happens when we use callback functions, which help to keep processing data until everything is done completely.

	
Single-Threaded Architecture
Node.js architecture is based on a single-threaded event loop model architecture that can handle multiple client requests at the same time. The main event loop is executed by a single thread, but in the background, most of the time-consuming I/O work is done using separate threads. Due to this, all operations performed by Node.js are asynchronous (non-blocking design) to accommodate event loops. The event loop allows node.js to perform all non-blocking operations seamlessly.

	
Highly Scalable
Node.js backend applications are highly scalable and can handle millions of requests using a single thread asynchronously and can use child processes to partition applications horizontally to handle all requests.

	
Fast Execution
Node.js can execute code much faster by using the V8 engine, which compiles JavaScript code into machine code and helps to reduce the overall time taken to handle multiple requests in Node.js applications.

	
Cross-Platform
The main advantage of Node.js is running applications across multiple platforms like Windows, Mac, Linux, and more. Since it’s a very lightweight framework, it helps to build and deploy easily on server-based processor architecture.

Reasons for Node.js Popularity

While we have explored some of the key features that have made Node.js one of the popular frameworks across enterprises, it’s not only driving the development community towards Node.js. Let’s discuss some more general benefits of using Node.js to build enterprise applications:

	
Single JavaScript language
Node.js is a technology with which you can build end-to-end JavaScript applications. Learn one language, and you can develop both the frontend and backend for your apps.

	
Widely Adoption of Node.js
Several major companies, such as LinkedIn, Netflix, and PayPal, have all migrated from other back-end technologies to Node.js.

	
Full-stack Development Demand
Full-stack development is one of the most sought-after skill sets by companies right now. If you’re a front-end developer, learning Node.js will help you become a full-stack developer easily.

	
Huge Community Support
There is a huge community support for Node.js, and you will always get help on any issues or concerns related to development.

Apart from this, the following are some of the key features that also made Node.js so popular:

	Building real-time apps like chat

	Real-time gaming applications

	Apps that require lots of asynchronous I/O operations

	Scalable web applications like e-commerce

	Serverless web apps using Azure function, AWS Lambda, or Google Cloud functions

	Lightweight mobile friendly RESTful APIs

	Power of running entire application on a single thread

There are many frameworks that are open source and can be used to develop applications on top of core Node.js, such as:

	Express.js

	Meteor.js

	Koa.js

	Sails.js

	Next.js

	Hapi.js

Node.js cannot be used in case of the following facts:

	Performance bottlenecks with heavy computation tasks

	
Callback hell issue

	Immature tooling and dependency management

	Unstable APIs developed by third parties

	Applications using high CPU usage

Node.js versus Browser JavaScript

The following table displays the difference between JavaScript and Node.js:

	
	
JavaScript

	
Node.js

	
1

	
JavaScript is a popular programming language mostly used for client-side scripting

	
Node.js is a JavaScript runtime environment, which is used to run on the server

	
2

	
JavaScript can run only on browser

	
Node.js runs outside the browser on backend servers like Linux/windows/mac

	
3

	
Mostly used for performing client-side scripting

	
Node.js helps to write backend server-side applications

	
4

	
JavaScript is used for DOM manipulation in HTML

	
Node.js is not used for doing DOM manipulations

	
5

	
JavaScript can run on any browser, which has support for running JavaScript engines

	
JavaScript code can only be run using the V8 engine available inside Node.js

	
6

	
Mostly used for developing frontend libraries

	
Node.js is primarily used for creating backend servers like RESTFul API

	
7

	
Used for building network-centric apps

	
Node.js applications are highly distributed and run on multiple servers

Table 1.1: Difference between Node.js and Browser JavaScript

Installing Node.js

There are various ways by which we can install Node.js on our local system. The easiest way to install is by downloading it from the official website of Node.js.

Perform the following steps to download and install Node.js on the Windows system:

	Go to the official website: https://nodejs.dev/download/

	Download for 64-bit Windows setup file node-v20.10.0-x64.msi

[image:]

Figure 1.1: Downloading Node.js setup file

	Run the setup by double-clicking the downloaded file from the setup files and follow these steps:

	Click Install and wait for it to finish setup.

	Once the setup is completed, open cmd or Terminal and type node –-version to verify the successfully installed node version.

[image:]

Figure 1.2: Checking Node.js Version

Here are the following steps to install Node.js on a Mac system:

	Download the macOS installer from the official website:

[image:]

Figure 1.3: Downloading setup file for macOS

	Running Node.js Installer:
Introduction -> Licence -> Select Destination -> Agree Installation Type -> Install -> Authenticate with your Mac cred -> Summary

[image:]

Figure 1.4: Node.js Installation on Mac

	
Verify Node.js Installation:
$ node -v node -v // The command tells what version of Node.js is installed currently.

	Update NPM version:
$ sudo npm install npm --global // Update the npm cli client

Now let’s install Node.js on Linux/Unix.

We can install any software on a Linux machine by using the APT package repository. Before installing any software, we need to update the System’s Package repository.

	Update System’s Package:
$ sudo apt update

[image:]

Figure 1.5: Software update on Linux

	Download and install Node.js:
$ sudo apt install nodejs -y

[image:]

Figure 1.6: Node.js Installation on Linux

	Installing NPM:
$ sudo apt install npm -y

[image:]

Figure 1.7: NPM Installation on Linux

	
Checking installed versions:
$ nodejs –version

[image:]

Figure 1.8: Checking Node.js Installation on Linux

Installing NVM on Windows

We can install NVM through the following link:

https://learn.microsoft.com/en-us/windows/dev-environment/javascript/nodejs-on-windows

The following steps will be used to install NVM on Windows:

	We need to download the latest package from https://github.com/coreybutler/nvm-windows/releases

[image:]

Figure 1.9: Downloading NVM package

	
Running installation from downloaded exe file:

[image:]

Figure 1.10: Starting NVM installation process

	Setting the installation path, keep the default:

[image:]

Figure 1.11: Setting up installation path

	
Click Install to start the installation process:

[image:]

Figure 1.12: Start installation

	Accept the pop-up to Node xxx is already installed. Do you want to NVM control this version:

[image:]

Figure 1.13: Allow NVM to control existing Node.js version

	
Finish setup.

[image:]

Figure 1.14: Click Finish to complete NVM installation

Verifying NVM Installation

Let’s perform the following step to verify NVM installation on our local system:

	Open CMD and type nvm command:

[image:]

Figure 1.15: Open CMD to verify installation

	
To check the list of Node.js installation on Windows, type nvm list:

[image:]

Figure 1.16: Get the list of all Node.js versions

	To switch Node.js versions, type nvm use 14.20.0:

[image:]

Figure 1.17: Switching to different Node.js versions

Some Core Concepts of Node.js

Let us understand some core concepts of Node.js.

V8 Engine

Node.js implements Google’s incredibly powerful JavaScript engine, also known as Chrome V8.

What exactly do we mean by JavaScript engine?

A JavaScript engine is responsible for compiling and executing JavaScript code and managing resources and memory allocation written in C++. The V8 engine is already being used in our Chrome browser. V8 can be made to run as a standalone program or be embedded into any C++ program, thus enabling a JavaScript-based scripting interface, all the while delivering incredible performance and flexibility. This also allows you to expand and introduce your own flavor of JavaScript as needed in a specific scenario. Since V8 is a virtual machine, which means that it abstracts the underlying hardware from the actual JavaScript code by simulating a universal environment for the execution environment. You can use V8 and consequently not just on Windows, Mac, and Linux almost seamlessly. This is great since it enables developers to deploy their apps virtually into any kind of execution environment without worrying too much about the underlying hardware.

JavaScript, coupled with the performance benefits of C++ programming, can make a difference. Now as far as Node.js goes, V8 is implemented along with an abstraction layer called libuv, which enables Node.js to perform seamless input and output operations across a gamut of operating systems in a non-blocking way. Along with libuv, node.js also comes with a built-in core library that provides a host of useful methods that developers can use to write programs, such as web servers and network apps.

[image:]

Figure 1.18: V8 engine core layers

Blocking versus Non-blocking Operations

Let’s try and understand what this really means, and why it makes Node.js different from other server technologies, such as Java, PHP, and more.

Blocking operations happen when the execution of JavaScript code inside the Node.js process has to wait until all the code executes synchronously and the control moves to execute the next statement.

For example, when we read a File System using the fs NPM package:

const fs = require(“fs”);

const data = fs.readFileSync(“/file.md”); // blocks here until file is read

console.log(data);

In the preceding code, fs.readFileSync() will block the execution of any additional JavaScript unless the entire file data is read completely and the output is shown in the console.

Non-blocking operations are asynchronous in nature and don’t wait for the operation to complete; they continue to execute the next line of statements. Once the operation is successful, the code inside the error first callback function (err, data) is executed:

const fs = require(“fs”);

fs.readFile(“/file.md”, (err, data) => {

if (err) throw err;

console.log(data);

});

In the preceding example, the file content is read asynchronously. After operation is completed, the callback function (err, data) is executed to either throw an error or log data into the console.

[image:]

Figure 1.19: Synchronous vs. Asynchronous I/O

Event Loop

Node.js is a single-threaded, event-driven framework that can execute asynchronous, non-blocking code. It is efficient regarding memory, thanks to these features. Although JavaScript is single-threaded, Node.js can conduct non-blocking I/O operations because of the event loop. This is accomplished by delegating tasks to the operating system whenever it is practical.

[image:]

Figure 1.20: Synchronous vs. Asynchronous I/O

The Event Loop has one simple job - to monitor the Call Stack, the Callback Queue, and the Microtask queue. If the Call Stack is empty, the Event Loop will take the first event from the microtask queue and then from the callback queue and will push it to the Call Stack, which effectively runs it. Such an iteration is called a tick in the Event Loop.

As JavaScript is single-threaded, which means two statements in JavaScript cannot be executed in parallel. Execution happens line by line, which means each JavaScript statement is synchronous and blocking in nature. However, there is a way to run your code asynchronously or in parallel. If you use the setTimeout() function, your code executes after a specified time (in milliseconds).

Let’s understand this with the following example:

console.log(“Start”);

setTimeout(function callbackFunc(){

console.log(“Settimeout called after 5 seconds”);

// now sum will be called”

sum();

},5000);

fetch(“http://example.com/”).then(function outPutFunc(){

console.log(“Call back from example api”);

});

function sum(x, y){

return x +y;

}

//......................

//.....................

console.log(“end”);

setTimeout takes a callback function as the first parameter and a time in milliseconds as the second parameter. After the execution of the preceding statement in the browser console, it will print:

Start

End

Call back from example api

Settimeout called after 5 seconds

Now sum will be called

Note: Your asynchronous code runs after all the synchronous code is done executing.

Following are the key steps that happen while running the preceding application:

	JS engine executes the first line and prints Start in the console.

	The Second line sees the setTimeout(), a function named callbackFunc, and the JS engine pushes the callbackFunc function to the callback queue.

	Subsequently, the pointer will directly jump to line seven, and there it will see the promise. The JS engine pushes the outputFunc() function to the microtask queue.

	Then, it will execute other lines of code, and finally at the end of the program, it will print End.

After the main thread ends execution, the event loop will first check the microtask queue and then call back the queue. In our case, it takes the callbackFunc() function from the microtask queue and pushes it into the call stack. Then, it will pick the outputFunc() function from the callback queue and pushes it into the call stack.

[image:]

Figure 1.21: Example of Event loop in action

Callback functions

JavaScript is synchronous by default, which means code will be executed in a sequential fashion. For example, the following code will be executed line by line and the final output will be logged to the console:

const a = 1;

const b = 2;

const c = a * b;

console.log(c);

doSomething();

As per the official definition from the Node.js website https://nodejs.dev/en/learn/javascript-asynchronous-programming-and-callbacks

A callback is a simple function that’s passed as a value to another function and will only be executed when the event happens. We can do this because JavaScript has first-class functions, which can be assigned to variables and passed around to other functions (called higher-order functions)

setTimeout(() => {

// runs after 2 seconds

}, 2000);

Above the setTimeout function, there is a classic example that accepts the first argument as a callback function, and the second parameter is time in milliseconds after which the callback function will be executed.

Callback functions are a great way of handling asynchronous function calls, but with every callback, it adds a level of nesting and results in callback hell when there are lots of callbacks happening within the same code:

window.addEventListener(‘load’, () => {

document.getElementById(‘button’).addEventListener(‘click’, () => {

setTimeout(() => {

fetch(“http://example.com/”).then(function cbF() {

items.forEach(item => {

// more code

});

});

}, 2000);

});

});

This example shows so many callback functions are invoked within 10 lines of code; it becomes very messy to handle this kind of situation of callback hell.

Defining Callback Hell in Node.js

Callback functions are used for the lazy execution of a function until another function has executed and returned data. However, in some cases, we may need to nest multiple callbacks within callbacks. This nested nature of callbacks can stretch horizontally and become unreadable and confusing if you have many interdependent consecutive asynchronous requests. This nesting of callbacks within callbacks is called callback hell and is sometimes also referred to pyramid of doom.

In the following code, we have called multiple setTimout(), which accept a callback function. In this case, every time a setTimeout callback function is executed, it triggers a new setTimeout() function in return:

function callbackhellexample() {

// first setTimeout function

setTimeout(() => {

console.log(10)

// second setTimeout function

setTimeout(() => {

console.log(20)

// third setTimeout function

setTimeout(() => {

console.log(30)

}, 500)

}, 2000)

}, 1000)

};

Once the innermost setTimeout function completes execution, then only the callback function returns execution to the outside upper callback function.

Ways to Avoid Callback hell

The following are some of the ways to avoid callback hell issues in Node.js:

Promise

A Promise is a JavaScript object that represents the eventual success or failure of an asynchronous operation and its final output. In other words, a Promise is an object to which you attach callback functions instead of passing directly into a function.

Following is an example of how we can create a promise, and based on the operation status, either resolve is called if successful, or reject in case of failure:

var displayGreeting = (name) => alert(‘Welcome ‘ + name);

var processUserInput = () => {

return new Promise((resolve, reject) => {

var name = prompt(“please enter name”);

if (name) {

resolve(name)

}

reject(false);

});

}

processUserInput().then(res => displayGreeting(res));

A promise is a proxy for a value that isn’t necessarily known at the time the promise is created. This enables the handler to be associated with the final success value or failure reason of the asynchronous action. This allows asynchronous methods to return values like synchronous methods. Instead of returning a final value immediately, an asynchronous method returns a promise to return the value later.

[image:]

Figure 1.22: Example of Promise execution

A promise can have one of the following states:

	
Pending: This is the initial state of promise, which is neither completed nor rejected.

	
Completed: This means when the operation was completed successfully.

	
Failed: This means the operation failed.

A promise has the following two key components:

	
resolve
The resolve callback function is executed when there is a successful execution of some operation and we want to return the result.

	
reject
The reject callback function is called and an error is returned after the operation fails due to some unexpected failure condition.

Let’s try to understand with a simple example.

Here we define the function getMulNum() to calculate the multiplication of two integers a and b. In the function, we use the promise constructor new Promise() to create a new promise.

The multiplication of a and b is calculated. The callback is triggered if the sum is less than or equal to 50. Otherwise, a callback reject is called. The new promise is passed to the myPromise variable, which is then returned.

function getMulNum(a, b) {

const myPromise = new Promise((resolve, reject) => {

const mul = a * b;

if (mul <= 50) {

resolve(“Successful result”)

} else {

reject(new Error(‘Result must be less than 50’))

}

})

return myPromise

}

Async and Await

JavaScript execution happens by default in a synchronous nature. This means that every line of code gets executed from top to bottom without waiting for any results.

However, there are a lot of areas in our program that comprise asynchronous code, and one of the key ways to handle them is by using the Async/Await functionality, which we get as support in the language.

Async: The async function allows you to write code based on promises as if they were synchronous, making sure they don’t interrupt the thread of execution. It works asynchronously on the event loop, and asynchronous functions always return a value. It guarantees that the promise will return, and if it doesn’t, JavaScript will automatically wrap it into a promise that resolves by value.

const getUserData = async () => {

var data = {firstname: ‘john’, lastname: ‘Doe’ };

return data;

}

getUserData().then(data => console.log(`${data.lastname} ${data.lastname}`));

Await: The await function is used to wait for a promise to resolve or reject. This can only be used inside an async block. Using this keyword, you can make your code wait until the promise returns a result. It just makes the async block wait.

The await keyword tells the JavaScript engine to stop executing the current function until the promise is resolved and returns the value of the promise. You can think of it as an infinite loop that checks to see if the promise has been resolved and, if so, returns the value of the resolved promise.

The await keyword only works inside asynchronous functions (coroutines, as explained earlier). The problem with asynchronous functions is that they return promises instead of values. This means that every time you need to execute an async function, you must wait for it if you want to get the return value.

In Figure 1.23, Task 1 caller is invoked and waits for a response to come after the completion of the task. In the meantime, we can observe that the Task 2 caller is also invoked, and similar to Task 1, it also waits for a response.

Once Task 1 is completed, the response is returned, and after this, Task 2 returns the response.

[image:]

Figure 1.23: Example of Async/Await execution

Let’s take another look at the mathOpreationAsync example. However, we use the sleep function instead of setTimeout(), so that we can later use await to implement mathOpreationAsync. The sleep function returns a promise resolved to ms milliseconds and works using setTimeout:

function sleep(ms) {

return new Promise((resolve) => setTimeout(resolve, ms));

}

async function mathOpreationAsync(x, y) {

// this code waits here for 500 milliseconds

await sleep(500);

// done waiting. let’s calculate and return the value

return x+y;

}

// mathOpreationAsync is an async function, which means it returns a Promise.

mathOpreationAsync(5, 7).then((result) => {

console.log(“The result of the addition is:”, result);

})

Choosing the Appropriate Approach

You have the following options for doing asynchronous processing in JavaScript:

	callback

	promise

	async/await

If you have no other choice or just want to handle asynchronous operations, use callback. Even then the code is completely manageable and understandable.

When there are multiple chained (or dependent) asynchronous operations and if you try to use callback in this situation, you’ll quickly end up in callback hell. In order to avoid this, Promises is preferred, which is a great tool for keeping operations organized and predictable.

async/await is also a great tool if you don’t really want or need to use observables, but want to use Promises. You can write “synchronous” code using async/await and manage Promise chains more easily.

REPL Console

The REPL (READ, EVAL, PRINT, LOOP) is a computer environment similar to shells (Unix/Linux) and command prompts in Windows. Node.js comes with an inbuilt REPL environment when installed. This system is a very useful way of interacting with the user by issuing commands/expressions that are used.

	
Read: This operation reads input from the user and parses it into JavaScript data structures, storing them in memory.

	
Eval: The parsed JavaScript data structure is evaluated against the result.

	
Print: Finally, the result is printed after evaluation.

	
Loop: This is used to Loop the input command.

Press Ctrl+C twice to exit the NODE REPL environment.

Getting Started with the REPL

To work in NODE’s REPL environment, open a terminal (UNIX/LINUX) or command prompt (Windows), type node, and press Enter to start the REPL.

[image:]

Figure 1.24: Starting REPL terminal

Here are some of the examples of using REPL:

	Simple Arithmetic operations

Basic maths operations can be performed, such as addition, subtraction, multiplication, and division, as shown in the following figure:

[image:]

Figure 1.25: Arithmetical operations in REPL

The REPL can be used to perform operations on strings. Concatenate the following strings in your REPL by typing:

[image:]

Figure 1.26: String operations in REPL

	Calling functions

We write functions to handle specific tasks that can perform complex operations. REPL provides an easy way to handle these methods. In JavaScript, we commonly use the global console.log() method to print messages. Regular JavaScript functions can also be written to solve a problem and work on complex logic.

In the following example, we have written the addTwoNumbers() function, which accepts two arguments and produces an output sum of 30.

[image:]

Figure 1.27: Sum operations using a function call in REPL

	Using variables

We can use variables to store values and use them at a later point while performing operations.

[image:]

Figure 1.28: Using variables in REPL

	Loops and Multiline expressions

We can use multiline expressions to write loops and other statements that cannot be written in a single line. For example, when we use a do while loop for iteration, then we must write all the statements in different lines as follows:

[image:]

Figure 1.29: Loops and Multiline expression in REPL

	Using underscore variable

We can use _ variable to get the last result from Node REPL. Let’s create two variables and perform some arithmetic operations.

var x = 10;

var y = 20;

var z = 0;

x + y;

z = _ * 100;

[image:]

Figure 1.30: Using Underscore in REPL

	Using dot commands

There are some special commands that start with a dot (.) and are used to perform some of the core functions of the REPL command line tool, as follows:

	
.help: Shows the dot commands help.

	
.editor: Enables editor mode, allowing you to write multiline JavaScript code with ease. Once in this mode, press Ctrl-D to run the code you wrote.

	
.break: When inputting a multi-line expression, entering the .break command will abort further input, similar to pressing ctrl-C.

	
.clear: Resets the REPL context to an empty object and clears any multi-line expression currently being input.

	
.load: Loads a JavaScript file relative to the current working directory.

	
.save: Saves all you entered in the REPL session to a file (specify the filename).

	
.exit: Exits the REPL (same as pressing Ctrl-C two times).

Using NPM and Package.json

A package manager is defined as a system or set of tools used to automate installing, upgrading, configuring, and using the software. Most package managers are used for discovering and installing developer tools on the local machine or production servers.

Maven is one of the package managers from Java, which is used for automating the process of installation, upgradation, and removal of system dependencies for a given application.

A package manager also deals with bundling of packages and distribution of software.

NPM is the default package manager for the Node.js JavaScript runtime environment maintained by npm, Inc. It consists of a command line (CLI tool) program, also called as npm, and an online database (npm registry) for hosting public(free) and private(paid) packages (https://www.npmjs.com/).

Some of the important NPM commands are explained here.

Init

This command is used to initialize an empty node.js project with a pre-configured package.json file having either a default option or user-defined values.

[image:]

Figure 1.31: NPM init command sample output

Install

This command is used to install all the dependencies that the project needs inside the node_modules folder at the root of the application where package.json resides.

Installing Single Package

We can install a single package if required to include any module dependencies. For this command, we have multiple flags that can be added along with the package name:

	
--save
When we use the save flag, a package entry is added to the package.json file’s dependencies section (which includes packages required for the project to run effectively in production environments). When we install any package without specifying any flag, its entry gets added to the dependencies section.

	
–save-dev
This will install and add the current module entry to the package.json file’s devDependencies section (which includes packages only used for project development propose).

	
--no-save
This will only install modules but does not add any entry to the package.json file dependencies.

	
--save-optional
This will install the module along with adding the entry to the optionalDependencies section of the package.json file.

	
--no-optional
This will prevent optional dependencies from getting installed.

[image:]

Figure 1.32: NPM install command sample output

Update

This command will check all the packages for any newer version that might be available following the given versioning constraints.

	
Update <package-name>
This command will only update a single package.

	
Versioning
NPM also helps in managing versions, which means we can specify any higher or lower versions, and its dependencies accordingly get installed with compatible versions.

	
Running tasks
This command is very useful in running any specific scripts like build, starting the server, or running unit tests.

“scripts”: {

“start-dev”: “node dev.server.js”,

“start”: “node prod.server.js”

}

	
Uninstall
This command helps to uninstall modules from a given project or application.

	
Publish
This command is used to publish packages from your local dev machine to the npm registry for sharing purposes. Once published this can be downloaded by others and used in their project.

	
Login
This command is used to log into the npm.js (https://www.npmjs.com/) account of the official website.

Attributes of Package.json

Following is a detailed list of attributes defined inside package.json:

	
name: The name of the package, normally the application or module title. There are some restrictions on the name property:

	Maximum length of 214 URL-friendly characters

	No uppercase letters

	No leading periods (.) or underscores (_) (except for scoped packages)

	
version: The current version of the package of that module. Node.js modules use a Semantic Versioning approach where three different levels of versioning are used. For example, version 2.0.1 is divided into three levels:

	Major-X.0.0

	Minor-0.X.0

	Patch-0.0.X

where X is the current level of the version.

Semantic Versioning (also known as SemVer) is a version control system that has evolved in recent years. This is a constant problem for software developers, distribution managers, and consumers. Having a global approach to version management for your software development projects is the best way to keep track of what’s happening with your software, such as new tools, extensions, libraries, and visits almost every day. This problem can be solved using Semantic Versioning. Simply put, this is a way to calculate the computer’s output.

So, SemVer looks like Major.Minor.Patch.

OEBPS/images/1.19_blocking_vs_non-blocking.jpg
Synchronous /O

Thread waits during /O operation
Thread —_——

File /O

Thread doesn't wait during /O operation
Thread e——m—
! FilelO !

OEBPS/images/logo.jpg

OEBPS/images/1.2.jpg
= C:\WINDOWS\system32\cmd X F

C:\Users\#w>node --version
v20.10.0

C:\Users\ie>

OEBPS/images/line.jpg

OEBPS/images/1.1_latest.jpg
Downloads

Latest LTS Version: 20.10.0 (includes npm 10.2.3)
Download the Node.js source code or a pre-builtinstaller for your platform, and start developing today.

LTS Current

st User Latest Features

Windows Installer macOs Installer Source Code
podes010064ms node 20100946 nodes2000ta0gs
Windows Installer (.msi) 32t sevit Arwes
Windows Binary (.zip) 32:bit 6abit ARME#
macos Installer (.pkg) it/ ARMES
macos Binary (tar.gz) sebit e
Linux Binaries (x64) 64-bit

Linux Binaries (ARM) ARMVT AR

Source Code nodev20.10.0targz

OEBPS/images/1.21_calltack.jpg
Lall
Stack

Call to
API

operation if 7\
stack is

em
L Browser

/ APIs

sum() will be sent

~ J to event queue
Event (i after timeout
Loop

Event
Queue

OEBPS/images/1.20_event_loop.jpg
Registe,
G ,7//40
ot

REQUESTS, ETC

INTENSIVE

EVENT LOOP

| OPERATON
(single thread) i

: | File System | &

Database

~ % Computation
Trigger Collback “"lion Complete H-+------rerrr- i

OEBPS/images/1.23_Async_await.jpg
Task 1 caller

Task 2 caller

Task 2

callback
Scheduler S
Task 1 execution Task 2 execution

Time

Task 1 Task 2
invocation invocation

OEBPS/images/1.10_nvm_step_2.jpg
@ Setup - NVM for Windows 1.1.12 = X

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
2agreement before continuing with the installation.

The MIT License (MIT)
Copyright (c) 2022 Ecor Ventures LLC.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and assodiated documentation files (the "Software®), to deal
in the Software without restriction, including without limitation the rights.

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

(O1accept the agreement
© 1o not accept the agreement

OEBPS/images/1.22_promise_example.jpg
Promise A
Resolves to true or false

result
true or
false

Only if true

Only if false

Final Promise

then

Call-back Call-back
(success) (failure)

OEBPS/images/1.11_nvm_step_3.jpg
@ Setup - NVM for Windows 1.1.12 -

Select Destination Location
Where should NVM for Windows be installed?

= Setup vl install NVM for Windows into the following folder.

To continue, click Next. If you would like to select a different folder, dick Browse.

C:\Users WD\ AppOata\Roaming\nvm Browse...

At least 11.0 M8 of free disk space s required.

Back Cancel

OEBPS/images/1.25_sum_output.jpg
= C:\WINDOWS\system32\cmd X aF

C:\Users\rames>node
Welcome to Node.js v20.160.0.

Type ".help" for more information.
>

>
> 4+5

9

> 10+300

310

> 20-5

15

> 10%3 %3

(]

> 100/3
33.333333333333336
>

OEBPS/images/1.12_nvm_install_final.jpg
@ Setup - NVM for Windows 1.1.12 - X4

Ready to Install
Setup is now ready to begin installing NVM for Windows on your computer.

Click Install to continue with the installation, or dlick Back if you viant to review or
change any settings.

Destination location:
C:\Users\rames\AppData\Roaming\nvm

s [vt] | cone

OEBPS/images/1.24_starting_repl.jpg
F C:\WINDOWS\system32\cmd X Tr |

C:\Users\rames>node

Welcome to Node.js v20.160.0.

Type ".help" for more information.
>

>

>

OEBPS/images/1.13_nvm_popup.jpg
) Setup - NVM for Windows 1.1.12 — X

Installing
Please wait while Setup installs NVM for Windows on your computer.

Extracting files...

version?
Yes

Setup
Node v19.8.1 is already installed. Do you want NVM to control this

OEBPS/images/1.14_nvm_final.jpg
Completing the NVM for
Windows Setup Wizard

Setup has finished installing NVM for Windows on your
computer. The application may be launched by selecting the
installed shortcuts.

Click Finish to exit Setup.

OEBPS/images/1.26_string_output.jpg
| C:\WINDOWS\system32\cmd X 3r 2

C:\Users\rames>node

Welcome to Node.js v20.10.0.

Type ".help" for more information.
> I|Helloll + n n + n W0r1d|"

'Hello world’

OEBPS/images/1.15_nvm_install_verification.jpg
= comoousopensnmd X |+

ni
s

e

crosoft indows [version

10.0.22621.2725)

3 Wicrosaft Corporation. ALL rights reserved

Ausers\rammnve

Rusning version 1,112

e

en Uist [avaitaste)
a'as 1
vn off
vn proxy urt]

age:

vn curzent
vn debug
e nstall <versions (srch]

nva node_nizror [urt]

Show 1 node 15 running in 52 or 64 bit sode
Display active version.

Check the VNN process for knomn probless Ctroubleshooter).

The version can be a specific version, "latest for the latest current version, o *its® for ¢

£ recent LTS version. Optionally zpecify shether to install the 32 o 64 bit version (defau

€0 systen arch). set [areh] to *all® to install 52 AND 6u bit versions
Add “-insecure to the end of this comand o bypass SSL validation of the resote domnload serv

List the node.ss installations. Type "availabler at the end to see shat can be installed. Alia

Enable node s version sanagement.
Disable node. s version nanagenent.

Set'a proxy to use for donleads. Leave [url) Blank to see the current proxy.

Set [urt] to *none" to remove the proxy.

Set the node mirror. Defaults to hetps://nodejs.org/dist/. Leave [url] blank to use default ur

OEBPS/images/1.16_nvm_list.jpg
= C:\WINDOWS\system32\cmd X + | v

C:\Users\mmmesw>nvm list

* 19.8.1 (Currently using 64-bit executable)
16.16.0
14.20.0
12.19.1
10.24.1
10.15.0

OEBPS/images/1.17-nvm_switch.jpg
C:\Users\semEg>nvm use 16.16.0
node v16.16.0 (64-bit) is not installed.

C:\Users\rames>nvm use 14.206.6
Now using node v14.20.8 (64-bit)

C:\Users\@mms>

OEBPS/images/1.18_v8_engine.jpg
libuv

Network 1/0

B 2 ED =D 5

File
/0

DNS
Ops.

User
code

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Technical Reviewers

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Getting Started with Node.js

		Introduction

		Structure

		History of Node.js

		Defining Node.js

		Features of Node.js

		Reasons for Node.js Popularity

		Node.js versus Browser JavaScript

		Installing Node.js

		Installing NVM on Windows

		Verifying NVM Installation

		Some Core Concepts of Node.js

		V8 Engine

		Blocking versus Non-blocking Operations

		Event Loop

		Callback functions

		Defining Callback Hell in Node.js

		Ways to Avoid Callback hell

		Promise

		Async and Await

		Choosing the Appropriate Approach

		REPL Console

		Getting Started with the REPL

		Using NPM and Package.json

		Init

		Install

		Installing Single Package

		Update

		Attributes of Package.json

		The First Console Application Using Node.js

		The First Web Application Using Node.js

		Conclusion

		Further Readings

		Test Your Node.js Basic Knowledge

		Answers

		2. Deep Dive into Node.js

		Introduction

		Structure

		Traditional Web Application Architecture

		Architecture of Node.js

		Event Loop

		Phase Methods in Details

		Non-blocking or Asynchronous I/O

		Bank and Cafe

		Core Node Modules

		Buffers

		Creating Buffers

		Writing Buffers

		Reading from Buffers

		Converting Buffer to JSON

		Concatenating Buffers

		Comparing Buffers

		Copying Buffer

		Events

		Emit an event with arguments

		Detach an event listener

		Extend the EventEmitter class

		File System

		File Reading

		File Open

		File Information

		HTTP

		Path

		Process

		Stream

		Reading from Stream

		Writing to Stream

		Piping Stream

		Chaining Stream

		Conclusion

		Questions

		Answers

		3. Introducing Express.js

		Introduction

		Structure

		Express.js Overview

		Key Features of Express.js

		Benefits of Express.js

		Installing Express.js

		How Express.js Works

		Adding Routes in Express

		Request/Response Object

		Using Middleware in Express

		Application-level middleware

		Router-level middleware

		Error-handling middleware

		Built-in middleware

		Third-party middleware

		Serving Static Files

		Express Application Generator

		Conclusion

		Questions

		Answers

		4. Creating REST API and Routing

		Introduction

		Structure

		Introduction to RESTful Services

		Benefits of RESTful APIs

		Different Kinds of HTTP Verbs

		Idempotency of Different HTTP Verbs

		How RESTful APIs Work

		Creating the First HTTP Server

		Adding Routes

		Using Swagger with Node.js

		Setting up Swagger in Node.js

		Request Validations

		Validating Request Body

		Request Transformation

		Response Transformation

		Understanding HTTP Status Codes

		CORS Request Handling with Express

		Configuring CORS with Express

		API Error Handling

		Conclusion

		Further Readings

		5. Working with MongoDB

		Introduction

		Structure

		Introducing Database

		Use Case of Database

		Types of Database

		Advantages of Using Databases

		Disadvantages of Using Databases

		Database Management System (DBMS)

		Usage of DBMS

		Types of Data Models in DBMS

		Advantages of DBMS

		Disadvantages of DBMS

		ACID Properties in DBMS

		Basics of MongoDB

		RDBMS versus MongoDB

		Key Components of MongoDB Architecture

		How MongoDB Works

		Features of MongoDB

		Advantages of MongoDB

		Disadvantages of MongoDB

		Installing MongoDB on Windows

		Creating our First Connection to MongoDB

		Mongo Shell for MongoDB

		Installing the Mongo Shell

		Connecting to MongoDB Database

		Running Mongo Shell Application

		Basic Commands for Mongo Shell

		Introduction to MongoDB Compass

		Installation of Compass on Windows

		Conclusion

		Further Readings

		6. Data Persistence

		Introduction

		Structure

		Understanding ORM Tool

		Introduction to Mongoose

		Characteristics of Mongoose

		Advantages of Mongoose

		Disadvantages of Mongoose

		Key Terminologies

		Schema and Model

		Connecting to MongoDB through Mongoose

		Database connection

		Basic Mongoose Operations

		Create operation

		Retrieve operation

		Update operation

		Delete operation

		Real-world Example

		Conclusion

		Further Reading

		7. Template Engines

		Introduction

		Structure

		Templating engines

		Working of template engines

		Advantages of template engines

		Disadvantages of template engines

		Key components of template engines

		HTML rendering with templates

		Exploring the EJS template engine

		Creating dynamic content using EJS

		Conclusion

		Further readings

		8. Middleware Functions

		Introduction

		Structure

		Introduction to Middleware

		Importance of Middleware

		Advantages of Using Middleware

		Key Components of Middleware

		Understanding the Next() Function

		Using Inbuilt Middleware with Express

		Types of Express Middleware

		Application-level Middleware

		Router-level Middleware

		Built-in Middleware

		Error Handling with Middleware

		Third-party Middleware

		List of Third-party Middleware

		Creating our First Custom Middleware

		Middleware Chaining

		Conclusion

		Further Readings

		9. Authentication and Authorization

		Introduction

		Structure

		Introduction to Authentication and Authorization

		Brief about Authentication

		Importance of Authentication

		Authentication Types

		Popular Authentication Techniques

		Password-based Authentication

		Passwordless Authentication

		2FA/MFA

		Single Sign-On (SSO)

		Social Authentication

		Brief about Authorization

		Importance of Authorization

		Authorization Techniques

		Role-based Access Control

		JSON Web Token

		SAML

		OpenID Authorization

		OAuth

		Difference between Authentication and Authorization

		Securing Real-World APIs

		Running Application

		Conclusion

		Further Readings

		10. Socket.IO

		Introduction

		Structure

		Exploring WebSocket programming

		Introducing WebSocket

		Usage of WebSockets

		Advantages of WebSocket

		Disadvantages of WebSocket

		WebSocket versus HTTP

		Establishing WebSocket Connections

		WebSocket Protocol

		Using Socket.IO with Express

		Communication between Client and Server

		Reasons to Choose Node.js and Socket.IO

		Creating a Simple Chat Application

		Conclusion

		Further Readings

		11. Handling and Logging Errors

		Introduction

		Structure

		Defining Errors in JavaScript

		Types of Errors

		Defining Error Handling in JavaScript

		Factors Causing Errors in Node.js

		Types of Errors in Node.js

		Functional Errors

		Programming Errors

		Understanding Error Handling in Depth

		Error Handling Inside Express

		Express.js Default Error Handling

		Custom Error Handling

		Handling Errors Using Middleware Functions

		Adding Multiple Middleware Handlers

		Building Express Applications with Error Handling

		Logging Errors in Node.js Application

		Using Winston Logger

		Conclusion

		Further Readings

		12. TDD with Mocha and Chai

		Introduction

		Structure

		Node.js Unit Testing Concepts

		Importance of Unit Testing

		Test-Driven Development Fundamentals

		Test-Driven Development Workflows

		Key Principles of Test-Driven Development

		Different Types of Testing Frameworks

		Unit Testing key concepts

		Advantages of Unit Testing in Node.js

		Node.js Unit Test Anatomy

		Advantages of using Mocha and Chai

		Practical tips for writing unit tests

		Methods to write unit tests

		Introduction to Behavior-Driven Development (BDD)

		BDD and Unit Testing

		Key Benefits of BDD

		Installation of Mocha and Chai

		Hooks used in writing Unit Tests

		BeforeEach

		AfterEach

		Spices

		Stubs

		Mocks

		Async code

		Callback and Promise

		Conclusion

		Further Readings

		13. Debugging

		Introduction

		Structure

		Introduction to Debugging

		Importance of Debugging

		Debugging Strategies

		Debugging Techniques

		Using Console.log

		Using Node Inspector

		Using Node.js debug module

		Debugging an Express Application

		Creating a Node.js application

		Installing the Node.js debugger using “Nodemon”

		Start debugging in VS Code

		Run the debugger with Breakpoint

		Conclusion

		Further Readings

		14. Build and Deployments

		Introduction

		Structure

		Creating an NPM Package

		Initializing Git Repository

		Initializing NPM

		Creating the First NPM Package

		Testing the NPM Package

		Running test application

		Publishing Your NPM Package

		Introduction to Continuous Integration and Continuous Delivery

		Defining Continuous Integration (CI)

		Defining Continuous Delivery (CD)

		Defining Continuous Deployment (CD)

		Defining Continuous Testing (CT)

		Key elements of CI/CD

		Importance of CI/CD

		Deployment Service

		Deployment pipeline

		Advantages of pipeline deployment

		Key components of the deployment pipeline

		Stages of Deployment Pipeline

		Introduction of pipeline tools

		Deploying Node.js applications Using Docker

		Creating a demo project

		Creating Dockerfile

		Building the Docker image

		Running docker image as a container

		Kubernetes Introduction

		Key Components of Kubernetes

		Kubernetes deployment and services background

		Deploying Node.js applications to a Kubernetes cluster

		Conclusion

		Further Readings

		15. Future Scope

		Introduction

		Structure

		Distributed Systems

		Centralized systems vs Distributed systems

		Key Features of Distributed Architecture

		Advantages of distributed systems

		Disadvantages of distributed systems

		Event-based programming

		Building event-driven applications in Node.js

		Messaging systems like Kafka

		Key concepts of Kafka

		Running Kafka locally

		Multi-threaded system

		Advantages of Multithreading

		Running parallel child processes in Node.js

		Define Worker Threads

		Use of worker threads

		Child process example

		Conclusion

		Further Readings

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Getting Started with Node.js

OEBPS/images/1.28_repl_var.jpg
o

> a = 50

50

> var b = 100
undefined
>a*b

5000

> console.log("a mul b = ", a * b)
a mul b = 56000
undefined

>

OEBPS/images/1.27_function_call.jpg
7 CAWINDOWS\system32\cmd X +

C:\Users\rames>node

Welcome to Node.js v20.10.0.

Type ".help" for more information.
> console.log("Hellow world")
Hellow world

undefined

> function add(fNbr, INbr){ console.log(fNbr + INbr) }
undefined

> add

[Function: add]

> add(1e , 20)

30

undefined

>

OEBPS/images/1.3.jpg
Latest LTS Version: 20.10.0 (includes npm 10.2.3)

Download the Node.js source code or a pre-built installer for your platform, and start developing today.

LTS

Recommended For Most User

Current

Latest Features

macOs Installer

1|
-
Windows Installer Source Code

node20100x64msi

Windows Installer (.msi) 26t ebit ARMss
Windows Binary (.zip) 3261t Gabit ARG
macos Installer (.pkg) G4t/ ARMES

macos Binary (tar.g2) sbit ARMGS
Linux Binaries (x64)
Linux Bi

ries (ARM) AR ARMve
Source Code. node 201001z

OEBPS/images/1.29_repl_loops.jpg
> var x = 0

undefined

>var i =0

undefined

> for(i =0; i < 5; i++) {
. XtE;

Slconsoleslog @ xa=NuE£Ex:) -

X X X X -
EWNRWw

XE=U5'
undefined
>

—_—— - " " —

OEBPS/images/1.31_npm_init_step.jpg
© ps D:\Practice\HelloWorld> npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See “npm help init" for definitive documentation on these fields
and exactly what they do.

Use “npn install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press ~C at any time to quit.

package name: (helloworld) sample

version: (1.6.6)

description: This is sample node application
entry point: (app-Js)

test comnand: npm run

git repository:

keywords: Node Introduction

author: Ramesh

License: (ISC)

About to write to D:\Practice\Helloworld\package.json:

{
“name”: "sample”,
“version”: "1..0",

"Introduction™
1
“author”: "Ramesh”,
“license": "ISC"

OEBPS/images/1.30_repl_underscore.jpg
> var x = 10;
undefined

> var y = 20;
undefined

> var z = 0;
undefined
>x+y;

30

>z = _ * 100;
3000

>

OEBPS/images/1.32_npm_install_express.jpg
 PS D:\Practice\Helloworld> npm i express --save
npm notice created a lockfile as package-lock.json. You should commit this file.
npm sample@1.0.0 No repository field.

+ express@4.18.2
added 57 packages from 42 contributors and audited 57 packages in 5.368s

7 packages are looking for funding
run “npm fund® for details

found © vulnerabilities

PS D:\Practice\Helloworld> []

OEBPS/images/qr1.jpg

OEBPS/images/qr.jpg

OEBPS/images/1.4-mac_installation.jpg
Introduction
Licence
Destination Select
Installation Type
Installation

o Summary

install Node.js
The installation was completed successfully.
This package has installed:

+ Node.s v12.13.0to /usr/local/bin/node
« npmv6.12.00 /usr/local/bin/npm

Make sure that /usr/local/bin is in your $PATH.

OEBPS/images/1.6-linux_insallation_step_.jpg
linuxuser@ubuntu20: ~ Q

Lnuxuserqubuntu20:-§[sudo apt tnstall nodejs -y
Reading package 1ists... Done
Building dependency tree
Reading state infornation... Done
The following packages were automatically installed and are no longer required:
bfprint-2-tod1 1ibllvne
use 'sudo apt autorenove' to remove them.
The following additional packages will be installed:
Uibc-ares2 Libnodesd nodejs-doc
Suggested packages:
npn
The following NEW packages will be installed:
Tibc-ares2 1ibnodesd nodejs nodejs-doc
o upgraded, 4 newly tnstalled, 6 to remove and © not upgraded.
Need to get 6,807 k8 of archives.
After this operation, 30.7 M of additional disk space will be used.
o% [Waiting for headers][]

OEBPS/images/1.5-linux_insallation_step_.jpg
m linuxuser@ubuntu20: ~ Qs - = @

Linuxuser@ubuntuze:~5.

http://securit on/ubuntu focal-security InRelease [109 k8]
http://us.archive.ubuntu.con/ubuntu focal InRelease
http://us.archive.ubuntu.con/ubuntu focal-updates InRelease [114 kB]
http://security.ubuntu.con/ubuntu focal-security/main and64 DEP-11 Metadata [24.3 k8

http://us.archive.ubuntu.con/ubunty focal-backports InRelease [161 k8]
http://security.ubuntu.con/ubuntu focal-security/universe and64 DEP-11 Metadata [56.

http://us.archive.ubuntu.con/ubuntu focal-updates/main and64 DEP-11 Metadata [263 kB
http://us.archive.ubuntu.con/ubuntu focal-updates/universe ands4 DEP-11 Metadata [20

http://us.archive.ubuntu.con/ubuntu focal-updates/nultiverse andss DEP-11 Metadata [
8]

0 http://us.archive.ubuntu.con/ubuntu focal-backports/universe andss DEP-11 Metadata
(1,768 B]

Fetched 876 kB in 65 (140 kB/s)

Reading package lists. .. Done

Bullding dependency tree

Reading state information. .. Done

ALL packages are up to date.

Linuxuser@ubuntu20: -5

OEBPS/images/1.8_Installation_check.jpg
" linuxuser@ubuntu20: ~

ubuntu20:-$ nodejs --version
vio
Auxsergubuntu20:-$ [

OEBPS/images/1.7_linux_insallation_step_3.jpg
m linuxuser@ubuntu20: ~ Q

s

Reading package ists... Done

Butlding dependency tree

Reading state infornation... Done

The following packages were automatically installed and are no longer required:
ibfprint-2-todi 1ibllvmy

Use 'sudo apt autoremove' to remove then.

The following additional packages will be installed:
build-essential dpkg-dev fakeroot g++ g++-9 gcc gcc-9 gyp libalgorithm-diff-perl
Uibalgorithn-diff-xs-perl ibalgorithn-merge-perl ibasans libatonici libc-dev-bin
Libce-dev ibcrypt-dev libfakeroot libgcc-9-dev libitni libjs-inherits
ibjs-is-typedarray 1ibjs-psl libjs-typedarray-to-buffer liblsane libnode-dev
1ibquadnathe 1ibssl-dev ibstdc++-9-dev libtsane libubsani 1ibuvi-dev linux-libc-dev
make manpages-dev node-abbrev node-ajv node-ansi node-ansi-align node-ansi-regex
node-ansi-styles node-ansistyles node-aproba node-archy node-are-we-there-yet
node-asap node-asn1 node-assert-plus node-asynckit node-aws-sign2 node-aws4
node-balanced-match node-bcrypt-pbkdf node-bl node-bluebird node-boxen
node-brace-expansion node-builtin-nodules node-butltins node-cacache node-call-lintt
node-canelcase node-caseless node-chalk node-chownr node-ci-info node-cli-boxes
node-cliut node-clone node-co node-color-convert node-color-nane node-colors
node-columnify node-combined-strean node-concat-map node-concat-strean
node-config-chain node-configstore node-console-control-strings node-copy-concurrently
node-core-util-is node-cross-spawn node-crypto-randon-string node-cyclist

OEBPS/images/1.9_nvm_installation.jpg
@nvm-noinstall.zip
@nvm-noinstall.zip.checksum.txt

N Dnvm-setup.exe
@nvm-setupzip
@nvm-setup.zip.checksum.txt
@nvm-update.zip
@nvm-update zip.checksum.txt
[source code (zip)

[source code (tar.gz)

465 M8
34 Bytes
552 MB
502MB
34 Bytes
415M8

34 Bytes

4days ago
4days ago
3 days ago
4days ago
4days ago
4days ago
4days ago
4days ago

4days ago

OEBPS/images/cover.jpg
NVA

for
Cross-Platform
App Development

Learn to Build Robust, Scalable,
and Performant Server-Side JavaScript
Applications with Node.js

Ramesh Kumar
Y

