

[image: image]

Ultimate SwiftUI
Handbook for iOS
Developers

[image:]

A complete Guide to native app development
for iOS, macOS, watchOS, tvOS, and visionOS

[image:]

Dúóng Đình Báo (James) Thăng

[image:]

www.orangeava.com

Copyright © 2023 Orange Education Pvt Ltd, AVA™

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.

First published: October 2023

Published by: Orange Education Pvt Ltd, AVA™

Address: 9, Daryaganj, Delhi, 110002

ISBN: 978-93-88590-93-8

www.orangeava.com

Dedicated to

My beloved parents:

Dúóng Kim Húóng

Lê Thi Thu Hà

About the Author

Dúóng Đình Báo (James) Thăng's journey through the tech world is a testament to the idea that anyone can follow their passion and acquire new skills. While his educational background lies in Finance and Economics, he felt a compelling drive to explore the dynamic realm of app development. The potential of it is that anyone in this modern world now has a smartphone with them and spends most of their daily time on it. With dedication and self-education, he transitioned into a seasoned iOS developer and then a professional one, accumulating over 3 years of valuable industry experience.

His proficiency extends to both UIKit and SwiftUI, enabling him to create intuitive and user-friendly applications. He has successfully conceptualized, developed, and launched eight distinctive applications. These projects span a wide spectrum of domains, includingfinance, augmented reality, gaming, educational technology, and point-of-sale systems. Each of these apps has made a lasting positive impact, benefiting thousands of users.

As the author of this SwiftUI book, he has had the privilege of delving even further into this cutting-edge framework. This book not only reflects his passion for SwiftUI but also his commitment to helping others unlock their full potential. Through comprehensive insights and practical guidance, he aims to empower both aspiring and experienced developers to harness the power of SwiftUI and navigate the ever-evolving landscape of iOS development.

His motivation derives from an unwavering passion for innovation. He is deeply committed to crafting apps that not only meet but exceed user expectations, pushing the boundaries of what is possible in the iOS ecosystem. This journey has taught him that self-education is a powerful tool, and he is eager to inspire and empower others to embark on their learning journeys and achieve their aspirations in the ever-evolving world of iOS development through this book.

About the Reviewers

Catalin Patrascu is an experienced iOS Engineer and Mobile Technologist with over 13 years of experience developing mobile applications for various startups and mid-size companies as a freelancer.

Since the first iPhone was released, he has been developing iOS apps, transitioning from Windows development to mobile.

While Catalin has always been a goal-oriented, data-driven developer, in recent years he has shifted his focus towards building maintainable apps that are both robust and scalable. He has developed a keen interest in prioritizing the testability of the code and has become an expert in system design, refactoring, and automated testing.

He is now a content creator who shares insights on building maintainable iOS apps through system design, refactoring, and automated testing.

Nilesh Jha has over 8 years of experience in Software industries and has been using iOS frameworks since 2014. Nilesh currently works for a Consulting firm in London and also creates videos on YouTube under the channel App Developer. When he's not working on technology and the weather is nice, he likes to go near sea beaches.

Acknowledgement

I would like to express my gratitude to a few people who have provided me withcontinuous and ongoing support throughoutthe writing of this book. First and foremost, I would like to thank my parents for their continuous encouragement in writing the book — I could never have completed this book without their support.

I gratefully acknowledge Mr. Catalin Patrascu for his kind technical support for this book and Miss Sonali for her support from the very first chapter. Special thanks to Paul Hudson and his online blog, Hacking with Swift.

I extend my gratitude to the team at Orange Education for being supportive enough to provide meample time to write and refine this book.

Preface

This book is your comprehensive guide to iOSSwiftUI app development in a rapidly evolving landscape. From the foundational principles of Swift programming to advanced topics like networking, data persistence, and data visualization, this book equips you with the skills needed to create robust and engaging iOS applications.

With each chapter, you'll delve deeper into the world of app development, gaining practical insights and hands-on experience. In the opening chapters, we explore Swift programming language and SwiftUI, Apple's revolutionary framework for building user interfaces.

Then, we venture into essential aspects like networking, data persistence, and data visualization, providing you with the tools to create feature-rich and responsive apps. Whether you're an aspiring app developer or a seasoned coder looking to enhance your skill set, this book offers a structured pathway to success. Our aim is not just to teach you how to write code but to empower you to build innovative and user-centric apps that make a difference. Join us on this exciting journey, and let's create outstanding iOS applications together.

Chapter 1: In the opening chapter titled "Introduction to Swift Programming," readers will embark on a journey into the world of Swift, the powerful programming language for iOS, macOS, watchOS, and tvOS development.

By the end of this chapter, readers will have gained a solid understanding of the key concepts and tools they'll need to start their journey into Swift programming, setting a strong foundation for the chapters that follow.

Chapter 2: In this chapter, we will learn about the Layout concept and ideas in SwiftUI and understand how to break out complex UI into small and reusable pieces.

By the end of Chapter 2, readers will have gained a solid grasp of SwiftUI's core concepts and tools. They'll be equipped to create user interfaces with SwiftUI, laying the groundwork for more advanced UI development covered in subsequent chapters.

Chapter 3: will seamlessly continue from Chapter 2. This chapter focuses on the intricate details of how SwiftUI handles the layout of views and provides readers with a comprehensive understanding of the layout system.

By the end of Chapter 3, readers will have gained a deep understanding of how SwiftUI handles layout decisions, along with practical knowledge of fundamental View Modifiers, the coordinate system, positioning versus alignment, and life cycle methods. This knowledge will empower them to create complex and responsive user interfaces in their iOS apps.

Chapter 4: State and Property Wrapper are like the backbone of SwiftUI. They allow developers to manage the data that powers their app's user interface in a clean and efficient way. We will learn through these concepts in this chapter, and along the way, we will combine all of the previous knowledge to build a very familiar App from scratch: The Calculator.

Chapter 5: "Design Patterns with MVVM," is a pivotal chapter, as it delves into the world of software design patterns and specifically focuses on the MVVM (Model-View-View Model) pattern within the context of iOS development. This chapter equips readers with the knowledge and tools to create well-structured and maintainable iOS applications.

Chapter 6: In this chapter, we will be looking at commonly found elements and UI designs in a modern mobile application. Theyhavemultiple screens with different user stories. The tab bar and navigation bar are two important elements of modern user interface design. We will see how they work and recreate them in SwiftUI. Later, we will learn about compositional layout and how to make a modern complex layout like the Instagram or Spotify app.

Chapter 7: "Networking with SwiftUI – Part 1" is a critical chapter of the book, as it explores the essential topic of networking within the context of SwiftUI and iOS app development. In this chapter, readers will gain valuable insights into how to communicate with remote servers, retrieve data, and integrate it into their SwiftUI applications.

Chapter 8: "Networking with SwiftUI – Part 2," is a continuation of your exploration into networking concepts within SwiftUI and iOS app development. In this chapter, you will go through the development of a real-world application, providing practical insights into working with external APIs, handling authentication with OAuth 2.0, and integrating UIKit components into SwiftUI.

Chapter 9: In this chapter, we will learn about local storage, its meaning, and the purpose of using it.

Local storage is a crucial aspect of iOS app development, enabling the storage and retrieval of user-specific data within an application. In SwiftUI development, there are various techniques and frameworks available for local storage implementation, including UserDefaults, CoreData, and File Manager. Each of these options offers distinct features and capabilities to handle different types of data.

Chapter 10: With iOS 16, Apple introduced their solution built in SwiftUI to make charts. This framework works seamlessly combining SwiftUI with the declarative syntax. And this year, it even received more updates with iOS 17.

In this chapter, we will explore Swift Charts and recreate some of the most commonly used charts ranging from bar charts, line charts, pie charts to donut charts. During the process, we will make a simple application of expense tracking, which will visualize the spending data in different kinds of charts.

Downloading the code
bundles and colored images

Please follow the link to download the
Code Bundles of the book:

https://github.com/OrangeAVA/Ultimate-SwiftUI-Handbook-for-iOS-Developers

The code bundles and images of the book are also hosted on
https://rebrand.ly/9b4056

In case there’s an update to the code, it will be updated on the existing GitHub repository.

Errata

We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@orangeava.com

Your support, suggestions, and feedback are highly appreciated.

DID YOU KNOW

Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.

At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.

ARE YOU INTERESTED IN AUTHORING WITH US?

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!

For more information about Orange Education, please visit www.orangeava.com.

CHAPTER 1

Swift Language

Introduction

Swift is a powerful and modern programming language that was introduced by Apple in 2014. It has quickly gained popularity among developers due to its simplicity, safety, and performance. Swift is designed to be easy to learn and use, even for those who have never coded before, yet it is also a language that can be used to develop complex applications for iOS, macOS, watchOS, and tvOS. With its concise syntax and advanced features, such as optionals and closures, Swift is a versatile language that can be used for a wide range of applications. In this era of mobile and desktop computing, Swift is a language that every programmer should consider learning to stay competitive in the industry.

Structure

In this chapter, the following topics will be covered:

	Setting up Xcode

	Variable and constant

	Type and Optional Type in Swift

	Common ways to unwrap Optional Type

	
Logical operators

	Conditional statements

	Array vs dictionary

	Scope and function

	Struct vs class

Downloading Xcode

On your Mac, go to the AppStore => Search for Xcode => Install it. Depending on your Wi-Fi, this will take around one to a couple of hours. When you are done and ready, let’s take a quick tour of it.

Xcode 14.2 is used at the moment of writing this book. Now, let’s make our first Programming Project: “Hello World”.

Launch Xcode from your Mac, and then on the top left, select File => New => Project:

[image:]

Figure 1.1: Launching Xcode

In this book, we will only be using the App category for iOS, and most iOS developments will choose this Option to start a New Project. While there are other things to explore, they are just templates with pre-setups. The option App will provide a clean New one to start. Now, click Next.

[image:]

Figure 1.2: Setting of project metadata

	Here we will be setting the Project important metadata. The Name of this Project which will be Hello World. The Team here is the Developer Team. Now if you want to ship App to AppStore then you will need to buy yearly Subscription which will be $99 for Individual and $199 for Corporation. But if you just doing it for your own in the Personal Computer then just register your team with your personal Apple ID. One of the best advice here is just keep building and learning until you are fully ready then consider buying a real Developer Program.

Next is the Organization Identifier, which has to be a Unique String (Sentence). As you can see, the Organization Identifier and the Product Name will be used to generate the Bundle Identifier of the Project. The purpose of the Bundle Identifier is to uniquely identify one Project from many others App on the AppStore. The common practice here is to use the Reverse of your own Website Domain. If you don’t have one, then we suggest this format: com.your_name.your_birthday.your_app_name. Anyway, make sure it is Unique.

For the Interface, make sure to select SwiftUI. Storyboard is for UIKit development, which won’t be covered in this Book. The Programming language is Swift, and also, uncheck Core Data and Tests options. Those are not needed right now.

Then, hit Next to choose where you want to Save this Project. We will Save it on the Desktop for now. Let’s see what we got for the first Project:

[image:]

Figure 1.3: Development Environment

Here is our Project on Xcode, and we can clearly categorize them into four sections. Let’s go one by one from left to right:

	Within the Red Rectangle Section is our File Management. We will mostly spend time create New Files and Navigate between the File System here. There also more important functionalities on this Tab like: Searching through Project, Information about Memory Usage, Perform Testing and Location of debuggers.

	Within the Yellow Rectangle will be our Coding Space. As you can see the File named Content View been selected from the left. This is the Code inside it and we will be writing Swift Code here.

	Next inside the Blue Area is our Live Preview which is only available for SwiftUI projects. Here will appear exactly what is written from the code from the Blue Rectangle. There are an Image of a globe and a text “Hello World”. And as we code and modify, the Live Preview will change automatically to reflect what it is look like on real device. And it is also interactive too. Actions will work like button click or the logic of the App. Pretty great as this is one of the game changers compare to the older ways.

	
Now we have the Green one on the right side. It is like a quick, convenient interface Toolbox. Like where you select font, color, alignment on Words or brusher and effects on Photoshop.

	You may also notice there is a small Purple down there at the bottom-right corner of the Blue section. Well, that button will open up another Area which is the Debug Area. But more on it later when we are making projects. Now let’s learn some Swift first.

Defining variable

In a programming language, a variable is a storage location in a computer’s memory that has been given a name and a data type, and it can be used to store a value of that data type. The value of a variable can change during the execution of a program, which makes it a useful tool for storing data that can be manipulated and used to solve problems. Variables are an essential part of programming and are used in almost every program that is written.

Here's an abstract example: think about a Variable like a box that has enough space to contain something. You store the value by assigning it to the Variable with the = syntax. The value can be a Number or a text message that will be stored inside that box. Then, later whenever that value is needed, you can always open the Box to take it out and use it.

Open Xcode to the Playground, and let’s declare some variables.

File => New => Playground => choose the MacOS tab with the blank option. This is just a convenient way to write plain code and see what happens:

[image:]

Figure 1.4: Variable versus Constant

We declare three variables here: greeting, myName, and myAge. You can see their inside value on the left side. First, let’s distinguish between a variable and a constant. Both are used to store value, but as the name implies, a variable is a value that is expected to change, like myAge here because I am getting older and older. But my name does not change over time, so it should be a Constant. As you will see later, it is totally fine when we try to change myAge, but it is an error when we try to change myName. We use var to declare a Variable and let to declare a constant. Now, you may ask, then why we don’t just use var all the time for everything? Well, the answer is performance optimization. It’s generally a good idea to use constants whenever possible because they can help to prevent accidental changes to important values that could affect the behavior of a program. Constants also make it easier to understand the code because the values they represent are clearly marked as being fixed.

Also, one thing to remember is that we use // to write a comment in our Swift Code. A comment is a piece of text in a code file that is not executed as part of the program. Comments are used to explain/clarify the code, or to add notes or suggestions for other developers/or your future self who may be reading/rereading the code.

Now let’s shift our focus to the part after the variable / constant name, where we see :String and :Int. These are Type Annotation used to specify the type of a variable or constant. They can be very useful for providing clarity and for catching type-related errors at compile time. The code in the aforementioned example can be interpreted as follows: we want to create two variables, greeting and myName, which will be of type String (for Text), and 1 constant, myAge, which will be of type Int (for a whole number).

It's generally a good idea to use type annotations whenever the type of a variable or constant is not immediately obvious from the context, or the value being assigned. However, it's important to keep in mind that type annotations are not required in Swift, and, in many cases, the type can be inferred from the value being assigned.

If you are completely new to programming, you will be confused here about Type: What is it and what does it mean?

In Swift, a Type is a classification of values that determines what operations can be performed on those values. Every value in Swift has a type, which is specified when the value is created. For example, the string literal "Hello, playground" is a value of type String, the integer literal 26 is a value of type Int, and the floating-point literal pi 3.14159 is a value of type Double.

In Swift, there are two main categories of types as follows:

	
Nominal types: It include user-defined types such as classes (class), structures (struct), enumerations (enum), and protocols (protocol).

	
Structural types: It include all other types, such as the built-in types like Integer (Int), floating number (Double), true false value (Bool), and for text (String), as well as compound types like tuples and optional types.

We will soon see and use all of these in later chapters.

Each Type in Swift defines a set of characteristics that determine how values of that type can be used. For example, the String type defines methods and properties for working with strings, the Int type defines methods and properties for working with integers, and so on.

Types are an important concept in Swift because they help to ensure that values are used correctly and safely in your code. They also enable the Swift compiler to optimize the performance of your code by generating efficient machine code for the different types of values.

Swift is a type-safe language, which means the language helps you to be clear about the types of values your code can work with. If part of your code requires a String, type safety prevents you from passing it an Int by mistake. Likewise, type safety prevents you from accidentally passing an optional String to a piece of code that requires a non-optional String. Type safety helps you catch and fix errors as early as possible in the development process:

[image:]

Figure 1.5: Swift is Type strict

We try to change myAge to “Jack”, and Xcode auto notify us with a very descriptive error that it cannot assign a String to a type Int variable. Here is one of the most effective shortcuts to remember: on your Mac, hold the Option key + right click on the variable name => you will be able to check which Type it is supposed to be: myAge should be an Int here.

Some people find it difficult and not convenient with Type-Safe Language. However, it makes our code predictable, less Buggy, and better compile time. Type-safe languages help prevent type errors, which are errors that occur when a value has a different type than what is expected. These errors can be difficult to spot and can lead to unexpected behavior in a program. By ensuring that all values have the correct type, type-safe languages can help make code more predictable and easier to debug. Additionally, type-safety can help improve the performance of a program, as the compiler can optimize code more effectively when it knows the types of variables at compile time. Finally, type-safety can also make it easier to reason about code, as it can help ensure that values are used consistently and in ways that are compatible with their intended purpose.

Optional Type and nil

In Swift, there is also one value that any variable/constant can be: nil. Nil here means nothing, an unknown value, or the absence of value. Why can a variable be in this state? For various reasons such as wrong decoding, missing data, or because we purposely want it to be because we don’t have the value of it yet when we declare it.

An optional is a type that can either hold a value or hold nil, indicating that the value is absent. Optionals are used to represent values that may be absent or unknown. We can have an optional Int, which can be Int or nil, option String, or of any other type. Optionals are denoted using a ? after the type name:

[image:]

Figure 1.6: Unwrapping

To use the value of an Optional, we need to unwrap it. There are some ways but here we are using the if let closure. Again, Swift is type-safe language, so we cannot have a nil value when it is supposed to use/receive an Integer.

Now, let’s look at some common ways to unwrap optional types in Swift.

Common ways to unwrap Optional Type

In Swift, there are several ways to unwrap optional types, depending on the situation and your preference for handling potential nil values. Here are the most common ways to unwrap optionals:

Forced Unwrapping

This method is denoted by adding an exclamation mark “!” after the optional variable or property. It forcefully unwraps the optional, assuming that it has a non-nil value:

[image:]

Figure 1.7: Force unwrapping

However, if the optional is nil at runtime, it will cause a runtime crash (a "fatal error: unexpectedly found nil while unwrapping an Optional" error). Because of it, this is not a recommended way in practice.

Optional Binding with if let:

Using the if let construct, you can conditionally unwrap an optional and assign its non-nil value to a new variable within the scope of the if block. This method avoids crashes and allows you to handle the case where the optional might be nil:

[image:]

Figure 1.8: Optional binding with if-let

Optional Binding with guard let:

Similar to if let, guard let is used to conditionally unwrap an optional and assign its non-nil value to a new variable. It is usually used within functions to exit early if the optional is nil, making the rest of the function safe to use with the unwrapped value:

[image:]

Figure 1.9: Optional binding with guard-let

Nil Coalescing Operator ??

The nil coalescing operator provides a way to provide a default value when an optional is nil. It unwraps the optional if it has a value, or returns the default value specified on the right-hand side if the optional is nil:

[image:]

Figure 1.10: nil coalescing operator

Optional Chaining

Optional chaining is a way to call methods, access properties, or call subscripts on an optional that might be nil. If the optional is nil, the entire expression evaluates to nil without causing a runtime crash:

[image:]

Figure 1.11: Optional chaining

We will learn about Struct later in this chapter. Each of these methods has its use cases, and the choice of which one to use depends on the scenario and how you want to handle potential nil values.

Optionals are a powerful feature of Swift and are used extensively in the language, particularly when working with optional values or when handling errors.

Logical operators

In the Swift programming language, operators are special symbols or characters that perform specific operations on one or more values and return a result.

Swift supports a variety of operators, including arithmetic operators, comparison operators, logical operators, assignment operators, range operators, and more.

Here are some examples of common operators in Swift:

	
Arithmetic operators: + (addition), - (subtraction), * (multiplication), / (division)

	
Comparison operators: == (equal to), != (not equal to), > (greater than), < (less than), >= (greater than or equal to), <= (less than or equal to)

	
Logical operators: && (and), || (or), ! (not, opposite)

	
Assignment operators: = (assign a value to a variable or constant), += (add and assign), -= (subtract and assign), *= (multiply and assign), /= (divide and assign)

	
Range operators: ..< (half-open range), ... (closed range)

[image:]

Figure 1.12: Swift operators

Operators in Swift can be used in expressions and can be combined with other operators with Logical Operators to create more complex expressions. Because SwiftUI is a declarative programming style, we will be using a lot of operators when developing using it.

Conditional statements

Sometimes, it is useful to execute different sections of code based on certain conditions. This can include running additional code when an error occurs or displaying a message when a value becomes too high or low or when it’s true or false. To achieve this, you can make certain parts of your code conditional.

In Swift, there are two ways to add conditional branching to your code: the if statement and the switch statement. The if statement is generally used for evaluating simple conditions with a limited number of possible outcomes, while the switch statement is better for more complex conditions with multiple potential combinations and can be helpful in cases where pattern matching can aid in selecting the appropriate code branch to execute. The best practice is to consider using switch statement when there are more than three different states.

Here is an example, both will have the same result:

[image:]

Figure 1.13: if else vs switch case

Sometimes, what we want is not just one condition alone. This is where the use case of Logical Operators comes in: && means and, || mean or, ! means the opposite of it. These will become very handy in coding later, especially when we want a different appearance when some conditions are satisfied.

Here are the examples:

[image:]

Figure 1.14: Example of conditions

Now, there is one important concept to note here: The Ternary Condition Operator.

The ternary conditional operator is a special operator with three parts, which takes the form: question ? answer1 : answer2.

It is a shorthand way to write an if statement that returns a value. Both the following codes are the same:

[image:]

Figure 1.15: Ternary condition operator

Because of the way SwiftUI code work, we will be purposely using a lot of ternary conditional operator. So, it is better to get used to it.

Collection Type: Array

There will be times when we find ourselves needing a collection of related data, not just a single one. For example, 7 days of the week or all 30 days of the month. This is why we need Collection Types in every Programming Language. In Swift, there are several different types of collections, including array, dictionary, and set. We will talk about Array and Dictionary since they are commonly used.

Definition: An array is an ordered list of values. The same value can appear in an array multiple times at different positions. All of the elements inside it must be of the same Type. You can use an array to store a list of items, such as strings, numbers, or even other arrays.

Here's an example of how you can create an array in Swift:

[image:]

Figure 1.16: Create an array

When dealing with collection types, the actions that are frequently used include accessing, modifying, and iterating through all values. Let’s explore those now for an Array.

Remember that an array is an ordered list, and we can access the value we need by its index. Each Element of an Array will have an index representing its current position, and the starting index will always be 0:

[image:]

Figure 1.17: Array visualization

It’s such a famous concept that we programmers have a joke that we start counting from 0, not 1. We access an array value by the syntax: ArrayName[index]. And if we want to change its inside value, we just use the assign operator: ArrayName[index] = newValue. We also use count – 1 to access the last index: .count is a property available with all Collection Types and will return the length of it. We substract 1 because Array index starts from 0.

We use .append() above to add more items to the end of an Array. There are other modifications such as adding more items or removing item(s) from an Array. All are available inside Swift Language, and you will easily find them with just a simple search on Google.

One more thing to note here is that if we want to modify or change the value of an Array, we must declare it as a Variable with var syntax.

When using Collection Types, most of the time, there will always be one that we want to iterate through every Element of it. In Programming, we can do this with the help of Loop.

A loop is a control flow construct that allows a block of code to be executed repeatedly. There are several types of loops in Swift, including for loops, while loops, and repeat loops.

Here is an example of using a for loop to iterate through our weekdays Array:

[image:]

Figure 1.18: For loop

There are two ways to use a for loop here. One is where we only need the value, and the other is where we also need its index position. And we can get both returned to us by .enumerated(). These two ways are the most use cases, so, keep that in your mind. Now, let’s move on to discuss our next Collection Type: Dictionary.

Collection type - Dictionary

Definition: The first thing to imply here is that, unlike an Array, a Dictionary is an unordered list. This means the value we store in them will not be in the same order each time we retrieve them.

Each element of a Dictionary will be a key-value pair. Each value is associated with a unique key, which acts as an identifier for that value within the dictionary. You use a dictionary when you need to look up values based on their identifier, in much the same way that a real-world dictionary is used to look up the definition for a particular word. Dictionaries are a powerful tool for storing data, and they’re particularly useful when you need to look up values quickly:

[image:]

Figure 1.19: Dictionary visualization

Here's an example of how to create a dictionary in Swift:

[image:]

Figure 1.20: Dictionary example

In this example, the dictionary is a collection of names and their corresponding favorite fruits. The keys are the names (Anna, Brian, and Craig), which are of type String, and the values are the favorite fruits ("Apple", "Banana", and "Coconut"), which are also String.

We can then access and check the inside value using a specific key. If it is does not exist yet, like in my case, then Swift will return nil. Later, there are commonly used actions, just like in an Array, including adding, updating, and removing value. Now to iterate through a Dictionary, we can use the same syntax with a for loop, just like we have already done with an Array. However, because a Dictionary is an unordered list, every time we run the loop, the order of each element will be different. And instead of an index to find where the value is located, Dictionary will have a key to do that.

There are several key differences between Array and Dictionary that can influence when you might choose to use one over the other. Here are some factors to consider:

	
Access time: Arrays are index-based, so you can access elements in an array quickly by their position in the array. Dictionaries, on the other hand, are key-based, so you access values by looking up the key. In general, it's faster to look up a value in a dictionary than it is to search through an array for a particular value.

	
Ordering: Arrays maintain the order of their elements, so if you need to preserve the order of your items, an array might be a better choice. Dictionaries, on the other hand, do not maintain the order of their key-value pairs.

	
Uniqueness: Arrays can contain multiple copies of the same value, but dictionary keys must be unique. If you need to ensure that there are no duplicate values in your collection, a dictionary might be a better choice.

Overall, you should choose an array when you need an ordered collection of values that may contain duplicates, or when you need to store values of different types. You should choose a dictionary when you need to look up values quickly using a unique key, or when you need to ensure that there are no duplicate keys in your collection.

There is one more Collection Type in Swift: Set. We won’t be covering it here, but if you have time, take a look at it. It has some very interesting and special characteristics.

And well, that’s quite a whole lot of knowledge. So, take some rest before we jump into one of the most important building block Concept of Programming: Function.

Function

So far, we have discussed ways of storing Data. In App Development and Programming itself, almost everything we do can be simplified into either Storing Data or Processing Data.

Data can be created and stored in a variety of formats, such as variables, arrays, dictionaries, databases, or in some kind of complicated Data Structure. Programmers use different Data Structures to store data efficiently and retrieve it quickly. There is no such perfect solution, each has pros and cons. And being able to choose the suitable one for the specific circumstance is a crucial skill of a good programmer.

Processing data is another crucial aspect of programming. After being created or stored, Data then is often processed to make it more useful or to perform some action. Common operations include sorting, searching, filtering, and transforming data. This step is the main purpose of Function.

OEBPS/images/line.jpg

OEBPS/images/Figure-1.10.jpg
let optionalNilvalue: Int? = nil @ nil
let unwrappedNilValue = optionalNilValue ?2 @ // If optionalValue is ®0
nil, unwrappedvValue will be @

OEBPS/images/Figure-1.12.jpg
. Sty comien ot
monaso = o s
- e
ey
= " 3

/1 comparison Operators

1=1 // true because 1 is equal to 1
211/ true because 2 isn't equel to 1

251 /7 trus bocsuse 2 is groster than 1

1<2 7 true because 1 is less than 2

151 /7 true because 1 is grester than or equal to 1
21/ false because 2 isn't less than or squal to 1

17/ Assignmant oparators
var a =1

a2

/1 Range operators
for dndex in 1...5 ¢

Print(\(index) tines 5 is \(index % 5)%)
B

BIHE"

m(5times)

w—wean @

OEBPS/images/Figure-1.11.jpg
struct SomeStruct {
var value: Int
}

let optionalStruct: SomeStruct? = SomeStruct(value: 42)
let result = optionalStruct?.value
// result will be an Int? containing 42, or nil if optionalStruct is nil

OEBPS/images/Figure-1.14.jpg
// Time in 24 hour format
var tine = 8
var weather = *raining"

if time

}

10 8& weather = *raining" {
print(*Book a Car to work because it is rainingl’)

if 1(weather == "raining") {

print(*It is not raining, we can go outside and play.")

¥ else {

»

print(*It is raining, we should stay inside.")

let hungry = true
let thirsty = false

if hungry || thirsty {

print(*Let’s get something to eat and drink.")

} else {

3

print(*We are not hungry or thirsty.

-5
@ raining

8 'Book a Car toworkin

@8 1tis raining, we should stay inside’

e
®faise

8Let's got something to eat and drink\n

OEBPS/images/Figure-1.13.jpg
// Time in 24 hour format
var time = 8

if time <= 12 {
print(*Good morning)

} olse if time <= 18 {
print(*Good afternoon*)

} else {
print(*Good evening*)

3

switch time {
case 0...12:

print("Good morning”)
case 13...18:

print("Good aftexnoon”)
default:

print(“Good evening”)
3

@ Good morningln

®"Good moming\n

OEBPS/images/Figure-1.16.jpg
"

1/ Add more itens to Array
daysOfiock.apoend(*Saturday™)
Sunday®)

11 Aecess iten In an Arzey
daysoeekle)

/7 Last day of the wesk
dayaOficekldaya0fsek.count - 11

8 Monday’ Tuseday, “Wednosdoy' Trursdoy” “Fday')

5 (Manday, Tussday, Wecnesday, Thursdy Fridey’, “Satuday’)

- Mandy

sy

OEBPS/images/Figure-1.01.jpg

OEBPS/images/Figure-1.15.jpg
97
9%
9

100

101

102

103

104

105

106

108

let b
let ¢

5
10

won

varmin=b<c?b:c
print(min)

ifb<c{
min
} else {
min

b

}
print(min)

=5
®5\n"

5"

OEBPS/images/Figure-1.02.jpg

OEBPS/images/Figure-1.18.jpg
var dateOfWeek: [String] = [*Monday", “Tuesday",
“Wednosday+, “Thursdsy*, "Friday", “Saturdsy
Sunday]

for day in dateoteek

print(day) 0 times)
»

1921 far (indox, day) in date0fvash
print(*Index \(index)

nunerated() {
tday)) = times)

»

OEBPS/images/Figure-1.03.jpg
Trsge(systomsne: “gloner)

«

OEBPS/images/Figure-1.17.jpg
Indexes Values

0 Six Eggs

il Milk

2 Flour

3 Baking Powder
4 Bananas

OEBPS/images/Figure-1.04.jpg
inport Cocoa

1/ String is the Type represent Text

Lot gre
Lot nyane:

Steing = Hello, playground”
String = *Janes Than

770t 15 foF whol Numbsr

var syAge

Int =26

1/ Since it it 2023 s0 T am 1 year older

yAge += 1

yNane =

sk (@) Canvo s o ke e aa constart

" vieto,payground
) ames T

-z

-z

OEBPS/images/Figure-1.05.jpg
eee O S . i
=enaan » . EESE
ST ot
e import Cocon

11 String s the Type represent Text
let greeting: String = “Hello, playground®
Tot ayNane: String = *Janes Thang"

17 Tnt i for whale husber

var AGE: Int = 26

ot an 1 yesr older

l fyAge = Jack’ © Camotassign vakie oftype String'totype it

orror: Chapterd.playground:15:9: error: canot assign velus of type 'String! to type ‘Int'
yAge = "Jack®

OEBPS/images/Figure-1.19.jpg
RevE Values

YYZ ——— Toronto Pearson

DuB

>< London Heathrow
LHR

Dublin Airport

OEBPS/images/Figure-1.06.jpg
// Current Temperature, not know yet because data is being calculate
var temperature: Int? CL

1/ Now we have data, which is 26 Celcius
temperature = 26 w2

if let temperature {
print(*Current temperature is \(temperature)®) " Current temperature is 26\1"
»

// bata is recalculate, 5o set to unknown
temperature = nil CL

if let temperature {

print(*Current temperature is \(temperature)*)
¥ else {

print(*We are recalculating, please wait*) 8"We are recalculating, please waiti”
}

OEBPS/images/cover.jpg
NVA

Ultimate SwiftUI
Handbook for

A complete guide to native
app development for iOS, macOS,
watchOS, tvOS, and visionOS

/ . 2 =
Duong Pinh Bao (James) Thang

OEBPS/images/Figure-1.07.jpg
// Force unwrapping
let optionalValue: Int? = 42
let unwrappedValue = optionalValue!

OEBPS/images/Figure-1.08.jpg
let optionalValue: Int? = 42

if let unwrappedValue = optionalValue {
// Use unwrappedValue safely here
} else {
// Handle the case when optionalValue is nil

}

OEBPS/images/Figure-1.09.jpg
func processValue(_ optionalValue: Int?) {
guard let unwrappedValue = optionalValue else {
return // Exit early if optionalValue is nil
}
// Use unwrappedValue safely here

OEBPS/images/logo.jpg

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Reviewers

		Acknowledgement

		Preface

		Errata

		Table of Contents

		1. Swift Language

		Introduction

		Structure

		Downloading Xcode

		Defining variable

		Optional Type and nil

		Common ways to unwrap Optional Type

		Forced Unwrapping

		Optional Chaining

		Logical operators

		Conditional statements

		Collection Type: Array

		Collection type - Dictionary

		Function

		Scope

		Struct

		Class and Class vs Struct

		2. Introduction to View in SwiftUI

		Introduction

		Structure

		Fundamental view

		View in SwiftUI

		View Modifier

		Conclusion

		3. Implementing Layout in SwiftUI

		Introduction

		Structure

		Layout in SwiftUI

		Positioning View in SwiftUI

		Alignment View in SwiftUI

		Lifecycle methods in SwiftUI

		Conclusion

		4. State, Binding, Property Wrapper, and Property Observer

		Introduction

		Structure

		Layout the Calculator

		Making it Interactive

		State

		State versus Binding

		Property Wrapper

		Property Observer

		Conclusion

		5. Design Patterns with MVVM

		Introduction

		Structure

		Design Pattern

		Design Pattern in iOS development

		Architecture patterns

		Design patterns

		MVVM Pattern

		Implementing MVVM Pattern into the Calculator App (1)

		ObservableObject and @StateObject

		Implementing MVVM Pattern into the Calculator App (2)

		Conclusion

		6. Tab Bar, Navigation, and Compositional Layout

		Introduction

		Structure

		Tab bar

		Navigation in iOS development

		NavigationView and NavigationLink

		Navigation stack

		Compositional layout

		Load image

		LazyVGrid and LazyHGrid

		Conclusion

		7. Networking with SwiftUI - Part 1

		Introduction

		Structure

		Networking

		RESTful APIs

		JSON

		URLSession

		Making our first API call

		JSONDecoder and Decodable

		Completion block, Enumeration, and threads

		Main Thread

		Background Thread

		Asynchronous Programming with Async Await

		Conclusion

		8. Networking with SwiftUI - Part 2

		Introduction

		Structure

		Laying out the project

		OAuth 2.0

		Setting up Unsplash APIs

		Authorization with OAuth 2.0

		Presenting a website inside our app with WebKit

		POST request and GET request

		Singleton design pattern

		Completing the project

		Downloading images from URL using URLSession

		Conclusion

		9. Local Storage with UserDefaults, CoreData, and File Manager

		Introduction

		Structure

		Persistency with Local Storage

		UserDefaults

		Introduction to CoreData

		Setting up CoreData in SwiftUI

		Read and write data with CoreData in SwiftUI

		Storing images inside users’ phones with File Manager

		Conclusion

		10. Construct Beautiful Charts with Swift Charts

		Introduction

		Structure

		Introduction to Swift Charts

		Swift Charts foundations

		Setting up the project

		Creating a Bar chart

		Creating a Line chart

		Creating a Pie chart

		Creating a Donut chart

		Conclusion

		iOS 17 Appendix

		Reference

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Swift Language

OEBPS/images/Figure-1.20.jpg
// Favourite Fruit of our friends
os: [String ¢ String] = [*Amna®: “Apple’,
“Craig*: *Coconut’]

/1 Anma Favorite Fruit
Lot favoriteFruit = nanes(*Anna‘]

// Check mine, unexisted yet
Lot nyFavoriteFruit = names(*Janes*]

/1 Adding my Favo
namos[*Janes "] =

/1 Update Anna favourite fruit
names[*Anna*] = "Orang:

/1 Romove Brian favourite fruit
names[“arian*] = nil

80Crag:“Cocorut’ “Anna'"Appl’,“Bran’.“Banana’]

= Watermelon”

#01°Craig":“Cocont,“Bran" “Banana’, “James" Watermeln' “Amar ‘Appla’]

= orange"
Craig': “Coconut’

i
8 Crig" “Coconut’,

Bran" “Banana’, emes" Wetermslon’ “Ama'Orange’]

