

[image: image]






Ultimate Flutter
Handbook


[image: ]


Learn Cross-Platform App Development with
Visually Stunning UIs and Real-World Projects


[image: ]


Lahiru Rajeendra Mahagamage




[image: ]




www.orangeava.com









Copyright © 2023 Orange Education Pvt Ltd, AVA™


All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.


Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.


Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information.


First published: October 2023


Published by: Orange Education Pvt Ltd, AVA™


Address: 9, Daryaganj, Delhi, 110002


ISBN: 978-93-88590-86-0


www.orangeava.com









Dedicated to


My beloved Parents


Athula Mahagamage


and


Nilanthi Karunathilake











About the Author





Meet Lahiru Rajeendra Mahagamage, a luminary in the world of software development and the guiding force behind your journey through the captivating realm of Flutter in his latest masterpiece, Ultimate Flutter Handbook. Armed with a Bachelor of Science degree in Information Technology, Lahiru embarked on an extraordinary career, leaving an indelible mark on the tech landscape.


With over four years of hands-on experience as a software virtuoso, Lahiru's expertise shines brightly. His journey led him to the vibrant city of Melbourne, Australia, where he currently thrives as a Flutter developer, pushing the boundaries of innovation.


Beyond his impressive academic and professional achievements, Lahiru is an educator at heart. He has passionately cultivated a flourishing YouTube channel dedicated to unraveling the intricacies of Flutter. This platform isn't just a medium for knowledge sharing; it's a community, where developers, enthusiasts, and aspiring learners converge to explore Flutter's boundless potential.


Lahiru's profound love for Flutter is a driving force behind his work. His YouTube channel is a testament to his unwavering commitment to empowering others with the skills needed to excel in this dynamic framework.


Ultimate Flutter Handbook is a manifestation of Lahiru's journey, experiences, and profound insights. In this book, he distills his wealth of knowledge into a comprehensive guide, replete with practical examples and hands-on guidance. Whether you're a seasoned developer striving to reach new heights or a curious newcomer eager to embark on a journey of discovery, Lahiru is your dedicated companion.


Thank you for choosing this book and embarking on an exhilarating learning adventure with Lahiru Mahagamage. Together, we'll unlock the full potential of Flutter and craft exceptional applications that leave an indelible mark on the digital landscape.











Acknowledgement





I would like to express my deepest gratitude to my parents for their unwavering support, encouragement, and belief in me throughout this incredible journey of writing my first book, "Ultimate Flutter Handbook." Your love and motivation have been my guiding light, and I couldn't have accomplished this without you.


I also extend my sincere appreciation to the entire team at OrangeAva Publishing Company for believing in the vision of this book and providing invaluable guidance and resources to bring it to life. Your dedication to excellence and commitment to helping authors achieve their goals are truly commendable.


To all my friends and colleagues who offered their insights, feedback, and encouragement, I am profoundly grateful. Your contributions have enriched the content of this book and made it more valuable to readers.


Lastly, to the vibrant Flutter community and all the aspiring developers eager to master this powerful framework, I wrote this book with you in mind. Your passion for innovation and dedication to learning inspire me every day. May this book empower you to create exceptional Flutter applications and embark on your own journey of becoming a pro.


Thank you all for being a part of this remarkable chapter in my life.











Preface





Welcome to "Ultimate Flutter Handbook." I'm delighted to have you as a reader on this exciting journey through the vast landscape of Flutter, Google's powerful and versatile UI toolkit for building natively compiled applications for mobile, web, and desktop from a single codebase.


Flutter has taken the development world by storm, and for good reason. Its ability to create beautiful, performant, and expressive user interfaces across multiple platforms has revolutionized the way we build apps. Whether you're a seasoned developer looking to expand your skill set or a newcomer eager to dive into the world of app development, this book is designed to be your trusted companion.


As you turn the pages of this book, you'll embark on a comprehensive and hands-on exploration of Flutter. We'll start with the basics and gradually delve into more advanced concepts. Whether you're interested in creating mobile apps for Android and iOS, developing for the web, or even exploring desktop applications, you'll find the knowledge and tools you need here.


This book is divided into nine simple chapters. Here's what you can expect from this book:


Chapter 1 will give you an introduction on what Flutter is, the benefits of using Flutter, and what types of apps can be created using Flutter and its architecture.


Chapter 2 will guide you through the installation of Flutter and running it. It will give you step-by-step instructions on requirements needed for Flutter to run, making the environment ready for development (downloading, installing and configuring of flutter SDK and IDEs), creating, running and adding assets to your first Flutter application, and understanding its folder structure.


Chapter 3 will focus on how understandingof Widgets is crucial for Flutter. This chapter will cover some of the basic widgets and some popular widgets that are used when creating an app. Each Widget is explained and given an example of how to use it.


Chapter 4 will cover stateful and stateless widgets. In addition to that, it will give you a better understanding of when and where to use Stateless and Stateful Widgets. This includes code snippet for Stateless and Stateful Widgets.


Chapter 5 will dive deep into the use of Navigator, which is used to move to and back from different screens. This chapter will also shed some light on how to show a popup, or as Flutter says, Model Dialogs.


Chapter 6 is where you can learn about connecting your Flutter app to the database. We will be using Firebase and guide you step-by-step on creating a Firebase project and adding Firebase to Flutter. Next, it will guide you on how to create, read, update and delete data. In addition to that, how to use Listeners to update Realtime.


Chapter 7 will show you how to work with asynchronous programming. This chapter will cover Futures, Awaits, and Async.


Chapter 8 will provide you with an idea about how to organize your data, and how to store data in device memory to be retained even after the app is closed.


Chapter 9 is where you learn about building and releasing the Flutter app. Here you will learn how to change the app name, app icon and manage versioning of the app.











Downloading the code
bundles and colored images





Please follow the link to download the
Code Bundles of the book:


https://github.com/OrangeAVA/Ultimate-Flutter-Handbook


The code bundles and images of the book are also hosted on
https://rebrand.ly/215d4d


In case there’s an update to the code, it will be updated on the existing GitHub repository.


Errata


We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :


errata@orangeava.com


Your support, suggestions, and feedback are highly appreciated.











DID YOU KNOW


Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.


At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.


PIRACY


If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.


ARE YOU INTERESTED IN AUTHORING WITH US?


If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.


REVIEWS


Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!


For more information about Orange Education, please visit www.orangeava.com.














CHAPTER 1


Introduction to Flutter





Introduction


Flutter is a powerful, open-source mobile application development framework created by Google. It uses the Dart programming language and offers a variety of features such as a fast development cycle, customizable widgets, and hot reload. The unique architecture of Flutter allows for building high-performance apps for both iOS and Android platforms with a single codebase.


By the end of this chapter, you will have a better understanding of what Flutter can be used for, the benefits of using Flutter and how Flutter architecture works.


Structure


In this chapter, we will cover the following topics:




	Diving into Flutter


	Benefits of using Flutter


	Flutter in real world


	Flutter architecture


	What’s next?





Diving into Flutter


Imagine you want to build a native application that has a beautiful interface and runs smoothly on iOS, Android, and the web in a short time frame and low budget. Back in the day, you would have to acquire at least three developers and maintain three different codebases. In addition to that, implementing bug fixes or new features to the application means waiting for three developers to complete their application. Now you might be thinking about how to write this app once and release it to multiple platforms such as iOS, Android, and the web.


Several cross-platform development frameworks have been created to address this issue. A few of the popular ones are Ionic, React Native, Xamarin and Flutter. Out of these, Flutter has been increasing its popularity due to its ability to develop native-like applications in a short period of time and being easy to learn.


Flutter was founded by Google, an open-source mobile UI framework. Flutter uses Dart language to create applications. It supports not just iOS, Android, and the web, but also macOS, Windows, and Linux applications too.


Benefits of using Flutter


Flutter has been gaining popularity among the developing community. Being able to create cross-platform applications is not the only reason why you should consider using Flutter to create your application. Here are some other reasons why you should choose Flutter.




	
Customizable widgets: Flutter uses widgets to create its UI. Flutter lets you build your own custom widgets which enables you to create flexible and beautiful UI. This gives the developer full control over how each element is seen and behaves on the screen.


	
Hot reload and hot restart feature: One of the best features that Flutter brings to the table is the hot reload and hot restart feature. It enables the developer to see the results or test instantaneously without having to terminate and re-run the build every time a new feature is added, removed or even when a bug is fixed. This helps to reduce the build time significantly and increase the productivity of the developer. You can rebuild the widget tree by hot reloading while the hot restart feature can be used in an instance where major changes are done to the code and/or if the state needs to be reset.


	
Small learning curve: Under the hood, Flutter uses Dart to build its apps. Dart is a very simple programming language that has been created by Google to compete with JavaScript (JS).


	
Ability to maintain a single code base: Since Flutter allows you to develop cross-platform apps, you don’t have to maintain multiple source codes.


	
Reduced development time and cost: Flutter can cut down the development time to half compared to the use of native technologies. Therefore, it will reduce the cost of hiring multiple developers and reduce labor hours as well as time to release a fully functional app.


	
Native-like performance: Flutter's ability to compile code into native like code for all the platforms will allow the developers to create high-performance applications in the native language. It offers faster development, better performance, and more flexibility.


	
Having good documentation and community support: Having good documentation and community support for technology is essential for its success. Flutter, backed up by Google, not only has great documentation, but it also has an incredibly active community that is always willing to help new developers who are just getting started with Flutter development. This makes it easier for developers to ask questions or find solutions when they run into problems while developing their apps.





Flutter in real world


Flutter is a versatile and powerful framework that can be used to create a wide range of mobile apps, including but not limited to:




	
E-commerce apps: Flutter's widgets and animations make it easy to create visually appealing and interactive e-commerce apps.


	
Social media apps: The framework's support for real-time data and web sockets makes it a great choice for building social media apps.


	
Gaming apps: Flutter's high performance and support for 2D and 3D animations make it a great choice for developing mobile games.


	
Business apps: Flutter's ability to create custom widgets and its support for offline data storage make it a great choice for building business apps.


	
Educational apps: Flutter's ability to create visually appealing and interactive apps makes it a great choice for building educational apps.


	
Travel apps: The framework's ability to access native features and integrate with Google Maps makes it a great choice for building travel apps.


	
IoT and connected devices: Flutter has great support for building apps for IoT and connected devices, thanks to its ability to communicate with Bluetooth and other low-level APIs.


	
Dashboard and Monitoring apps: Flutter's ability to create custom widgets and its support for real-time data make it a great choice for building monitoring and dashboard apps.


	
Healthcare apps: The framework's ability to access native features such as camera and microphone make it a great choice for building healthcare apps.


	
Mapping and Navigation apps: Flutter's ability to integrate with Google Maps and other mapping services makes it a great choice for building navigation apps.





This list is not exhaustive, and Flutter can be used to create many other types of apps that are not mentioned here. Thanks to its expressive and flexible design, Flutter allows developers to create a wide variety of apps that are fast, responsive, and visually attractive.


Flutter architecture


Flutter is a layered architecture that helps developers create beautiful and expressive applications for mobile, web, and desktop platforms. It uses a layered approach which makes it easier for developers to create apps quickly and efficiently. The layers include the Framework layer, Engine layer, and Embedder layer (Figure 1.1).




[image: ]




Figure 1.1: Flutter Architectural Layers
(https://docs.Flutter.dev/resources/architectural-overview)


Framework Layer


The Framework is the layer that sits on top among the three layers. It provides the basic building blocks of an application such as widgets, rending, animation, layout, and gestures. The core functionality of the framework, including the widget tree, the rendering engine, and the Dart runtime. It also provides the basic building blocks for creating an app, such as the Stateful Widget and Stateless Widget classes.


The core of the Flutter architecture is the use of widgets. A widget in Flutter represents a visual element of an app, such as a button or a text field. Widgets are not just simple UI elements, however; they also contain logic and state. This allows for a highly modular and reusable codebase, as well as easy management of the app's state. The Flutter framework also includes several built-in widgets and other tools that make it easy to create beautiful, responsive apps with minimal effort. For example, the Material library provides a set of widgets that are based on Google's Material Design guidelines, and the Cupertino library provides a set of widgets that are based on Apple's iOS design guidelines. Additionally, Flutter includes a powerful layout engine that makes it easy to create complex, responsive UI with minimal code.


Engine Layer


The engine layer is built on top of the Impeller graphics library, which provides a high-performance 2D rendering engine. Impeller is used to draw the widgets and other elements that make up a Flutter app, and it also handles tasks such as compositing and GPU acceleration.


The engine layer also includes a Dart runtime, which is used to execute the Dart code that powers a Flutter app. The Dart runtime is responsible for handling the execution of the app's code, as well as managing its memory and resources.


The engine layer also includes a set of C++ bindings, which provide a bridge between the Dart code and the native platform. These bindings allow the app to access platform-specific features, such as the camera or the device's sensors, and they also provide a way for the app to handle platform-specific events, such as touch input or notifications.


One of the key benefits of the engine layer is its ability to provide a consistent, high-performance experience across multiple platforms. Because the engine layer is written in C++, it can be easily ported to different platforms, such as Android and iOS. This allows a single codebase to be used to create apps for multiple platforms, which can significantly reduce the development time and costs.


Embedder Layer


The embedder layer is responsible for providing the necessary bindings and APIs to run the Flutter engine on a specific platform. It provides the necessary hooks to the host platform's windowing system, input system, and other native services. This allows the Flutter engine to access the platform-specific features and resources it needs to run the app.


One of the key responsibilities of the embedder layer is to create the necessary environment for the Flutter engine to run. This includes creating the window for the app to run in, as well as handling the input and output events. The embedder layer also manages the app's lifecycle and handles platform-specific events, such as push notifications or background tasks.


He embedder layer also includes a set of APIs that allow the Flutter app to interact with the host platform. These APIs provide access to platform-specific features, such as the camera or sensors, as well as services such as in-app purchases or push notifications.


The embedder layer is written in C++, and it's designed to be platform-specific, meaning that a different implementation of the embedder layer is required for each platform. This allows the Flutter engine to be easily ported to different platforms and provides a consistent experience across multiple platforms.


The layered architecture of Flutter allows for a clear separation of concerns between different parts of the framework, which makes it easy to understand and maintain. The architecture is also designed to be highly modular, which allows for easy customization and extensibility.


In summary, Flutter is a well-designed framework that uses a layered architecture to separate concerns between different parts of the framework. The main layers of the architecture are the engine layer, the embedder layer, the framework layer, and the application layer. This allows for a clear separation of concerns, making the framework easy to understand and maintain, and also easy to customize and extend.


Up next


In the following chapters, we will focus on the application layer, where you will learn how to implement the business logic and behavior of your app. We will cover topics such as state management, data persistence, and networking.


Finally, we will explore how to deploy your app to the different platforms and how to handle platform-specific features. We will also cover some tips and best practices for debugging and optimizing your app.


At the end of the book, you will be able to create a fully functional, high-performance app using Flutter and be able to take on more complex projects in the future.


Conclusion


Flutter is a powerful, open-source mobile application development framework created by Google. It uses the Dart programming language and offers a variety of features such as a fast development cycle, customizable widgets, and hot reload. Its unique architecture allows for building high-performance apps for iOS, Android, MacOS, Windows, and Linux platforms with a single codebase. Overall, Flutter is a great option for developers looking to create visually stunning, high-performing mobile apps.


The next chapter will cover what you need to start your Flutter development journey. Moreover, it will guide you on how to set up your development environment, creating and running your first Flutter app. Furthermore, it will give you a good understanding of Flutter folder structure and how to add assets such as images to your Flutter app.


Points to Remember




	Flutter is an open-source mobile application development framework created by Google.


	It uses the Dart programming language.


	Flutter offers a fast development cycle and customizable widgets.


	It has a hot reload feature, which allows developers to see changes made in the code instantly in the app.


	Flutter's architecture allows for building high-performance apps for both iOS and Android platforms with a single codebase.


	Flutter is the most-suitable for creating visually stunning and high-performing mobile apps.


	With Flutter, developers can build apps for web, mobile, desktop, and more.





Multiple Choice Questions




	
What programming language is used in Flutter?



	JavaScript


	Python


	Dart


	C#






	
What is the main purpose of Flutter’s “hot reload” feature?



	To improve app performance


	To fix bugs in the code








OEBPS/images/line.jpg





OEBPS/nav.xhtml




Table of Contents





		Cover Page



		Title Page



		Copyright Page



		Dedication Page



		About the Author



		Acknowledgement



		Preface



		Errata



		Table of Contents



		1. Introduction to Flutter



		Introduction



		Structure



		Diving into Flutter



		Benefits of using Flutter



		Flutter in real world



		Flutter architecture



		Framework Layer



		Engine Layer



		Embedder Layer







		Up next



		Conclusion



		Points to Remember



		Multiple Choice Questions



		Answers











		2. Getting Started



		Introduction



		Structure



		Requirements



		Getting the development environment ready



		Creating your first Flutter app



		Understanding folder structure



		Running your first Flutter app



		Adding assets



		Conclusion



		Multiple Choice Questions



		Answers











		3. Widgets WidgetsWidgets!



		Introduction



		Structure



		Understanding Widgets



		Basic Widgets



		Scaffold



		Container



		Center



		Text



		Row



		Column



		SizedBox



		Stack



		ElevatedButton







		Some more widgets



		Icons



		Flexible



		Expanded



		Image



		Form



		FormField



		RichText



		Align



		ListView



		FutureBuilder



		StreamBuilder







		Conclusion



		Multiple Choice Questions



		Answers







		References







		4. Stateful and Stateless Widgets



		Introduction



		Structure



		Introduction to Stateless and Stateful Widgets



		StatelessWidget



		Key features of StatelessWidget



		Benefits of Using StatelessWidget



		StatefulWidget







		Choosing between Stateless and Stateful Widgets



		Using Stateless Widget



		Using Stateful Widget



		Stateful Widget Lifecycle: initState, didUpdateWidget, and more



		Managing State: Using setState() and InheritedWidget



		Using setState() for Local State Management



		How setState() works



		Using InheritedWidget for Global State Management











		Conclusion



		Task



		Questions



		Answers







		References







		5. Navigation and Routing



		Introduction



		Structure



		Introduction to Navigator



		Working of the Navigator



		Using Navigator to route



		Using Named route



		Model Dialogs



		Dialog Types Model







		Conclusion



		Task



		Questions



		Answers







		Reference







		6. Firebase Firestore with Flutter



		Introduction



		Structure



		Introduction to Firebase Firestore



		Creating your Firebase project



		Adding Firebase to Flutter



		CRUD Functions



		Using Firebase Firestore



		Create



		Read



		Get all documents



		Filtering documents



		Ordering documents



		Limiting the number of documents







		Update



		Updating single document



		Updating multiple documents







		Delete



		Delete a single document



		Delete multiple documents











		Listeners



		Listening to the entire collection



		Listening to the entire collection



		Adding filters and limiting results







		Listening to the selected document



		Listening to a selected collection



		Adding filters and limiting results











		Conclusion



		Task



		Multiple Choice Questions



		Answers







		References







		7. Futures, Awaits, and Async



		Introduction



		Structure



		Understanding Asynchronous Programming



		The need for asynchronous operations in mobile applications



		Benefits and challenges of asynchronous programming







		Futures



		Creating a future



		Handling a future



		Handling future errors



		Handling future errors with .catchError method



		Handling future by using FutureBuilder







		Await



		Async



		Using Async







		Conclusion



		Task



		Questions



		Answers







		References







		8. Persistence and Data Modeling



		Introduction



		Structure



		Data models



		Factory methods



		Creating data models with factory methods







		Storing data on to the device



		Create



		Read



		Update



		Delete







		Conclusion



		Task



		Part 1



		Part 2











		Multiple Choice Questions



		Answers







		References







		9. Deploying



		Introduction



		Structure



		Changing the app name



		Adding an app icon



		Adding simple app icon



		Adding an adaptive app icon







		Versioning



		Introduction to versioning



		Importance of versioning



		Implementing versioning in a Flutter application







		Building and releasing



		Building



		Android



		iOS











		Conclusion



		Task



		Multiple Choice Questions



		Answers







		References















Guide





		Title Page



		Copyright Page



		Table of Contents



		1. Introduction to Flutter











OEBPS/images/logo.jpg





OEBPS/images/Figure-1.1.jpg
Framework
Dart

Engine
CIC++

Embedder

Platform-specific

Material Cupertino

Widgets

Rendering

Foundation

Render Surface Setup | Native Plugins App Packaging
Thread Setup Event Loop Interop





OEBPS/images/cover.jpg
AVA

Ultimate
Handbook

Learn Cross-Platform App Development
with Visually Stunning Uls and
Real-World Projects

Lahiru Rajeendra Mahagamage





