

[image: image]






Micro Frontends
Architecture for
Scalable Applications


[image: ]


Master Modular and Efficient Web Development
with Micro Frontends, DDD, and CI/CD for
Scalable, Distributed Frontend Applications


[image: ]


Vanderlei Alves da Silva




[image: ]




www.orangeava.com









Copyright © 2025 Orange Education Pvt Ltd, AVA®


All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.


Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.


Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.


First Published: July 2025


Published by: Orange Education Pvt Ltd, AVA®


Address: 9, Daryaganj, Delhi, 110002, India


275 New North Road Islington Suite 1314 London,


N1 7AA, United Kingdom


ISBN (PBK): 978-93-49888-39-5


ISBN (E-BOOK): 978-93-49888-41-8


Scan the QR code to explore our entire catalogue




[image: ]




www.orangeava.com









Dedicated To


My Beloved Parents:
José Franciso da Silva
Terezinha Alves de Campos Silva


Wife
Eloisa Helena Stephany Picolo


And Daughter
Iris Picolo Silva


Without Whom My Life Would Lose Its Light, and This Creation Could Never Be











About the Author





Vanderlei Alves da Silva is a seasoned Frontend Architect with over 15 years of experience in designing and building distributed systems and cloud-native applications. His career is driven by a deep passion for system architecture and frontend development, helping industry-leading organizations to craft scalable, resilient, and user-focused software.


What drives Vanderlei is the belief that a well-crafted software has the power to solve real human problems — whether it is helping someone’s grandmother find what she is looking for on a webpage or solving complex organizational challenges at scale. For him, writing a code is more than just engineering; it is a form of storytelling — every function, every interface, and every design choice contributes to the evolving story of a system.


Throughout his career, Vanderlei has remained deeply committed to innovation and continuous learning. His work spans high-impact client/server applications, and cutting-edge frontend architectures designed to scale with the growing demand. He thrives on the technical and human challenges of building systems that grow gracefully, without compromising usability or performance.


As the author of Micro Frontends Architecture for Scalable Applications, Vanderlei brings together years of practical experience, hard-earned lessons, and forward-looking insights. This book represents not only a consolidation of his knowledge, but also a vision for the future of frontend architecture — especially as artificial intelligence begins to reshape how we build and scale modern applications. His aim is to empower developers and architects alike, to think systemically, build confidently, and architect software that truly serves people!











About the Technical Reviewer





Maksym Hopei is a software engineer, architect, and engineering leader with over a decade of experience designing and building distributed systems at scale. Throughout his career, he has navigated the complexity of modern software architecture—from high-throughput messaging platforms to resilient microservices and AI-integrated systems. His work spans startups and enterprise environments, where he has led cross-functional teams, established engineering best practices, and guided organizations through complex technical transformations.


With deep expertise in backend architecture, observability, cloud infrastructure, and developer experience, Maksym brings a pragmatic, systems-oriented mindset to everything he builds. He is particularly interested in service boundaries, team scaling, system resilience, and the evolving relationship between software systems and intelligent agents. He believes great engineering isn't just about technology—it's about designing systems that are understandable, evolvable, and aligned with the human context in which they operate.











Acknowledgements





There are a few people I would like to thank for their continued support, throughout the writing of this book. First and foremost, I am deeply grateful to my wife for her constant encouragement — I could never have completed this book without her unwavering support.


I am also profoundly thankful to every individual who, throughout the course of my career, has shared their knowledge and experiences with me. Their lessons have helped me grow both personally and professionally, and those learnings have played a vital role in shaping this work.


A special mention goes to Mr. Maksym Hopei, book reviewer, whose friendship I truly cherish. I am proud to have worked alongside him for several years, and now to count him as a companion in the making of this book give me immense pleasure!


My sincere gratitude also goes to the team at Orange Education Pvt Ltd for their trust and support throughout this unforgettable journey of publishing this book.











Preface





The book aims to give a comprehensive understanding, with hands-on examples, and easy to digest reading, about micro frontends.


It starts by defining frontend and backend development, exploring what is considered a valuable architecture, and introducing various frontend architecture patterns.


The core section dives into micro-frontends. It explores the foundational concepts, such as Domain-Driven Design, Decentralized Governance, and Independent Deployments. It explains how these principles enable highly observable (easy-to-monitor) micro-frontends. Readers are then guided through in-depth discussions on integration strategies, their advantages and disadvantages.


Communication and routing are covered next, exploring topics such as Container Applications, State Management, Cross-Application Communication, and Routing. Finally, UI/UX considerations for micro-frontends, and how they interact with different backend patterns are addressed.


The final part focuses on the best practices for testing (unit, integration, and end-to-end), deployment strategies, and security considerations essential for micro-frontend applications. The book concludes with a real-world use case, and a look at the future of micro-frontends, discussing emerging trends, potential directions, and the impact of Artificial Intelligence (AI) will have on it.


Chapter 1: In this chapter, we explore the often perceived dichotomy between frontend and backend development. We have delved into the intricate dance between these two realms and reveal the synergy required to create seamless and dynamic web applications. By the end, readers will understand that true innovation and efficiency in web development come from uniting these fields into a singular, collaborative discipline.


Chapter 2: In this chapter, we investigate the principles of architecture and design, emphasizing their central role in creating resilient and scalable applications. We then turn the focus our lens on the frontend architecture—its definition, main concerns and importance for the whole system.


Chapter 3: In this chapter, we explore the various frontend architectural patterns, providing a comprehensive overview of the design, applicability, advantages and disadvantages of each pattern.


Chapter 4: This chapter introduces the key principles behind the micro frontend architecture. By the the end, readers will have a clear vision that should guide them when adopting it.


Chapter 5: The chapter introduces techniques on how to slice each micro frontend implementation, and how to compose/integrate them accordingly to different needs. It explores the pros and cons of each composition strategy, providing concrete examples to illustrate the different concepts.


Chapter 6: This chapter defines the container/shell application responsibilities in the context of micro frontend architecture. It also touches the state management, cross (micro frontend) application communication, routing requirements, and shared dependencies as well as the related performance concerns, bringing concrete examples to illustrate the concepts.


Chapter 7: This chapter centers attention on user interface and experience requirements from a micro frontend architecture standpoint. It spotlights the advantages and challenges as well as the current available tooling to support it.


Chapter 8: This part covers the available backend integration options, and how they can be used together towards legacy system migrations. The main API standards (REST, GraphQL, gRPC, and WebSockets) as well as SDK client generation.


Chapter 9: This chapter examines the comprehensive landscape of testing strategies essential for modern application development focused in the distinct factors brought by the micro frontend architecture.


Chapter 10: This chapter discusses the importance of a solid automation strategy for deploying the different micro frontends, and the different techniques for managing their releases.


Chapter 11: This chapter introduces techniques for observability in micro frontends using well-known tools such as Datadog and Sentry for application metrics, logging, tracing, real user monitoring, and error tracking.


Chapter 12: In this final chapter, we explore a systematic approach on how to introduce micro frontends incrementally in organizations, using a real use-case to highlight the key actions needed for a successful implementation. Additionally, we have examined other relevant use case to provide a comprehensive overview and offer considerations regarding the future of Micro Frontend architecture, including the present and future usage of artificial intelligence in this space. Thus, readers will have a practical view of the concepts studied so far in a real use-case scenario.











Get a Free eBook





We hope you are enjoying your recently purchased book! Your feedback is incredibly valuable to us, and to all other readers looking for great books.


If you found this book helpful or enjoyable, we would truly appreciate it, if you could take a moment to leave a short review with a 5 star rating on Amazon. It helps us grow, and lets other readers discover our books.


As a thank you, we would love to send you a free digital copy of this book, and a 30% discount code on your next cart value on our official websites:


www.orangeava.com


www.orangeava.in (For Indian Subcontinent)


[image: ] Here's how:


Leave a review for the book on Amazon.


Take a screenshot of your review, and send an email to info@orangeava.com (it can be just the confirmation screen).


Once, we receive your screenshot, we will send you the digital file, within 24 hours.


Thank you so much for your support - it means a lot to us!











Downloading the code
bundles and colored images





Please follow the link or scan the QR code to download the
Code Bundles and Images of the book:


https://github.com/ava-orange-education/-Micro-Frontends-Architecture-for-Scalable-Applications




[image: ]




The code bundles and images of the book are also hosted on
https://rebrand.ly/fae67b




[image: ]




In case there’s an update to the code, it will be updated on the existing GitHub repository.


Errata


We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :


errata@orangeava.com


Your support, suggestions, and feedback are highly appreciated.











DID YOU KNOW


Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.


At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA® Books and eBooks.


PIRACY


If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.


ARE YOU INTERESTED IN AUTHORING WITH US?


If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.


REVIEWS


Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!


For more information about Orange Education, please visit www.orangeava.com.












CHAPTER 1


A Tale of Two Worlds



Introduction

It might seem obvious, but it is a pattern we cannot overlook: trends from the past often find their way back into the spotlight. This phenomenon is evident across various fields such as fashion, politics, and technology. Imagine hiking a familiar trail where certain landmarks, once forgotten, suddenly reappear with newfound significance. Just as styles from the 1970s, 1980s, and 1990s are showcased on billboards as the latest trends, we see political landscapes shifting like the cyclical nature of a well-worn path. The political pendulum swings back and forth, with power and public opinion shifting between different ideologies and parties over time.

In the realm of technology, we witness similar patterns. As we navigate the terrain of full-stack web applications, explored further in the upcoming section, we will see how past innovations re-emerge, reshaping the landscape and guiding us on our journey toward the future.

Structure

This chapter will cover the following topics:


	React Server Components vs Server Side Includes

	Frontend Development

	Backend Development

	Full Stack Web Framework



React Server Components vs Server Side Includes

In order to explore a bit of this deja vu feeling and get ourselves warmed up, we will be starting with a small react code snippet:



[image: ]


Figure 1.1: React Component

A basic HomePage component that includes (via import statements) three external components: Header, Main, and Footer, as its first introduction React was an exclusive client (browser) library, just like the other well-known alternatives, such as Angular, Vue.js, and so on. However, with the introduction of Server Components for react, the same component can be executed in the server as well.

To some, that may click memories of Server Side Includes, introduced in the early 1990s:


[image: ]


Figure 1.2: Server Side Includes

Could that be seen as a similar pattern to fashion cycles and/or political pendulum?

From a positive standpoint, something once seen with clear divergency, seen as two distinct worlds, in great extension reflects from:


	
Single Page Applications (SPAs): Motivated by the wish to have more interactive pages where actions from users should not require a complete page reload, SPAs led a trend in adding more processing to clients, bringing an ever-growing complexity into the clients and therefore a need for specialized development teams.

	
Backend as data and business logic layer: Mainly as a consequence of the adoption of SPAs, where they were responsible for all the presentation layers, backend services were seen as solely data and business logic providers.



They have once again fuzzy boundaries. Would one consider the SSI example above a frontend or a backend implementation? Would a server side render react application be a frontend or backend development?

From a negative standpoint, we have all the technological innovations, some of which we shall see during the upcoming chapters, that tell these two implementations apart.

With that in mind, let us explore a bit more about these two worlds, their similarities and differences.

Frontend Development

In a typical setup where backend engineers were responsible for providing some http api based interface (Rest, Graphql, SOAP …) and frontends were responsible for consuming those and handling all the users’ interaction with the system, we have the following scenario.


[image: ]


Figure 1.3: Traditional split between frontend and backend development

However, the technological pendulum has swung back and a more accurate definition would not be limited to specific clients:

“Frontend development refers to the development part that deals with the user interface (UI) and user experience (UX).”


[image: ]


Figure 1.4: Modern split between frontend and backend development

It is interesting to note that frontend development has significantly expanded its responsibilities. It is no longer restricted to specific platforms, such as browsers, but now encompasses the entire user interface and experience, regardless of the client/server infrastructure.

Users have in their hands a myriad of devices that can be used to access the application and their expectations are to be able to use it everywhere, from desktop browsers to smartwatches.


[image: ]


Figure 1.5: Applications are expected run everywhere

This evolution brings both great possibilities and new challenges. Concerns related to:


	
Scalability: The ability of the system to handle increasing loads efficiently, whether by growing in user base, features, or content, online systems are now present everywhere, therefore their loads are reasonable to expect to be way higher than before.

	
Interoperability: The capability of the frontend to work seamlessly with other systems, platforms, or third-party services, the concerns once limited to different operation systems and/or browser vendors, now it relies on a multitude of different devices with distinct operation systems, browsers, and more importantly, user expectation on how the given interface should behave in that context.

	
Performance: How quickly and efficiently a frontend application loads and responds to user interactions considering all different kinds of clients it may have.

	
Aesthetics: The visual appeal and user experience of the application which can be further segmented into:

	
Design Consistency: Maintaining a consistent design language across the application and different clients in order to ensure a cohesive look and feel.

	
Responsive Design: The application should adapt its layout and design to different screen sizes and orientations, ensuring a good user experience on all devices.

	
Animation and Interactivity: Thoughtful use of animations and interactive elements in order to enhance user experience without overwhelming or distracting them.

	
Accessibility: Ensuring that the design is accessible to users with disabilities (for example, by providing text alternatives for images, ensuring sufficient color contrast, and making the UI navigable by keyboard);





	
Security: The ability of the application to protect user data from vulnerabilities and attacks.



They have gained additional layers of complexity. Consequently, the need for new architectural styles has emerged to address these multifaceted demands.

Backend Development

Readers may be at first influenced by expanded responsibilities in the frontend development, inclined to think that the backend development had your responsibilities decreased. This understanding could not be more false—our goals in the software industry today are way bigger and the tasks we have on our hands, way more audacious.

Using a hiking expedition metaphor let us quickly explore from where we came and where we are standing now.

We used to organize ourselves as an entire hiking expedition as one large group where everyone sticks together and does everything collectively. However, as we ventured into more challenging and unpredictable terrain, we realized that this approach was inefficient and limiting. To navigate these adventurous paths more effectively, we had to organize our hiking expedition with various specialized teams, allowing us to distribute responsibilities, enhance decision-making, and ensure better preparedness for obstacles such as steep climbs, river crossings, and rapidly changing weather conditions. Over time, the expedition realized that smaller, more agile sub-groups could improve efficiency and adaptability by enabling faster problem-solving, reducing delays, and allowing each team to focus on their expertise, such as navigation, supplies, or safety. Later, the expedition strategy was further refined by deeply understanding the terrain and tailoring the hiking approach to specific regions, ensuring that each challenge was met with the right skills and preparation.

In this scenario, we depict the following phases:


	
Monolithic Expedition: In the early days of software development, applications were built as monolithic systems, where all functionalities were tightly integrated into a single, large unit.

	
From Monolithic to Service Oriented Architecture (SOA): The expedition realizes that moving as one large group is inefficient. SOA emerged as a way to organize these efforts, much like splitting the group into specialized teams, where they are relatively independent, focusing on their tasks while adhering to a shared mission.

	
From SOA to Microservices: To further enhance flexibility, the expedition breaks down the teams into smaller, self-sufficient groups or individual hikers, each responsible for specific tasks or trail segments, increasing agility and adaptability.

	
DDD Applied to Microservices: Each small group or hiker now operates with a deep understanding of their specific domain (terrain), using specialized knowledge and language to optimize their part of the journey.



It is relevant to mention that there are still several domains in which monolithic applications are the most appropriate option, notably applications where strong consistency is the main goal or scalability is not a concern.

As for the systems, to mention a few, where scalability, reliability, fault tolerance, performance, and geographical distribution are requisites, the approach proposed by microservices architecture, along with Domain-Driven Design (DDD), has proven consistently to be the most effective one.


[image: ]


Figure 1.6: From Monolith to distributed architecture with DDD

As described in Figure 1.6, we have a mindset shift towards distributed architectures where distributed teams are able to focus on their own domains and services, as described in the following schema:


[image: ]


Figure 1.7: From Monolith to distributed architecture with DDD

This evolution in backend development illustrates the growing complexity and responsibility in our field. While frontend development has expanded, the backend has not diminished in importance—on the contrary, it has become more strategic and sophisticated. We have moved from monolithic architectures, where everything was tightly coupled, to service-oriented approaches that introduced specialization, and finally to microservices, where agility and scalability take center stage. By applying Domain-Driven Design (DDD), we ensure that each service is deeply aligned with its domain, optimizing performance and maintainability. And as a counterpart evolution, the micro frontend architecture came, to the frontend realm, as:

A natural extension to the successful backend distributed architecture into the frontend development realm.

Full Stack Web Framework

The Full Stack term began to gain prominence in the early 2010s, somewhat together with frontend and backend terms, mainly as a way to describe the “old fashioned” developer that was still working with the templating engines, such as SSI, Perls, PHP, and so on, but later come as a counterbalance, a pendulum swinging back, against the specialization proposed by the Frontend and Backend mindsets, arguing in favor of the need of generalist professionals.

Note: A template engine is a software component that processes templates and dynamically generates output, typically in the form of HTML, XML, or other text-based formats. It allows developers to separate presentation (UI) from business logic by embedding placeholders or logic within a template file, which is then populated with data at runtime.

It reflects a need for people proficient in both areas, capable of handling both client-side and server-side development tasks, but the level of responsibilities and expertise required imposes a great challenge for developers to keep up with all these demands.

The release of Node.JS enabled the appearance of isomorphic applications - web applications where both the client and server use the same codebase - which offered a more viable solution for the generalist/specialist dichotomy. It relieves a bit the level of expertise in programming languages and all the tooling around them required to maintain systems working.

In this context the appearance of the so-called Full Stack Web Frameworks - frameworks that provide a comprehensive set of tools and libraries to support both frontend and backend development - was natural and enabled developers to write code in a similar fashion to what depicted in Figure 1.1 React Component, where components execution were not restricted to client anymore, but universally available (running on server and client).

An isomorphic application might look like the following:



[image: ]


Figure 1.8: Javascript Isomorphic applications

The application code sits in between the client and server, containing components that its context executions can be client only, server only, or have both client and server.

The following table shows the major javascript frameworks and their Full Stack Web Framework also referred to server side rendering capability.







	
Framework


	
server side rendering capability





	
Angular


	
@angular/ssr package





	
React


	
Remix and Next.JS frameworks





	
Qwik


	
Already built with server side rendering





	
Svelte


	
Sveltekit framework





	
Vue


	
vue/server-renderer package and Nuxt framework






Table 1.1: Frameworks and server side rendering capabilities

Isomorphic applications are not restricted to the JavaScript language. The <script> tag was not designed exclusively for JavaScript; its type and legacy language attributes allowed early browsers to support multiple scripting languages. However, JavaScript became the most convenient and widely adopted option, leading to its monopoly in frontend development.

The WebAssembly open standard specification expands the Full Stack landscape by enabling code written in multiple languages to run in web browsers. This introduces a significant paradigm shift, challenging JavaScript’s historical dominance and opening the door to a broader selection of tools and technologies. In this evolving ecosystem, some notable frameworks worth mentioning include:







	
Full Stack framework


	
Language





	
Leptos


	
Rust





	
Blazor


	
C#





	
Dioxus Labs


	
Rust






Table 1.2: Full Stack frameworks written on top of WebAssembly

It is worth noting that these frameworks and the WebAssembly technology as a whole are still in a relatively beginning phase used in niched contexts, but all bring the same idea—of a technology enabling components, written in the same codebase, normally with some decorators, tags and alike to state where should it be executed (client, server or both) and in some cases supported devices (browsers, mobile and so on).

Conclusion

Just as trends from the past resurface to shape the present, developers, just like hikers navigating a well-worn trail, must recognize familiar markers—the recurring dynamics between frontend and backend. Mastering both contexts is paramount for engineers aiming to create valuable applications. This holistic knowledge equips developers with the ability to make knowledgeable decisions, optimize performance, and enhance user experience. It enables them to anticipate how frontend changes can impact backend operations and vice versa, ensuring a seamless and efficient integration. Moreover, it fosters better communication and collaboration within development teams, bridging gaps between different roles and facilitating a more cohesive development process.

Ultimately, a comprehensive grasp of both domains empowers one to select the most appropriate Frontend Architecture and understand the Micro Frontend applicability in this scenario.

In the next chapter, we will dive deeper into the principles of architecture and design, exploring what makes an architecture valuable and how frontend architecture fits into this broader framework.


References



	https://react.dev/reference/rsc/server-components

	https://webassembly.org/

	https://nodejs.org/

	https://nextjs.org/

	https://nuxt.com/

	https://remix.run/

	https://angular.dev/guide/ssr

	https://kit.svelte.dev/

	https://vuejs.org/guide/scaling-up/ssr.html

	https://www.w3.org/TR/2011/WD-html5-author-20110809/the-script-element.html#scriptingLanguages

	https://webassembly.org/

	https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor

	https://leptos.dev/









CHAPTER 2


Valuable Architecture



Introduction

As the morning sun rose higher over the rugged peaks, casting a warm, golden hue upon the towering cliffs and winding trails, a group of intrepid hikers began their ascent. Much like the careful planning and deliberate steps required to conquer a mountain, so too is the journey of software engineering, where architecture and design serve as the detailed maps and sturdy boots guiding the way.

Yet could one clearly depict the contrasts found in detailed maps and sturdy boots for hiking in the same fashion for architecture and design in the realm of software development? What is exactly meant by Micro Frontend Architecture?

Structure

This chapter will cover the following topics:


	Architecture and Design

	Software Architecture and Design Building Blocks

	Exploring a Use Case

	Frontend Architecture vs Frontend Design





	Frontend Architecture

	Frameworks

	Frontend Architecture Aim







Architecture and Design

Architecture lays the foundation, much like the blueprint of a grand edifice. It defines the system’s structure, its core components, and the interactions among them, ensuring stability and scalability.

Design, on the other hand, delves into the finer details, refining the features and functionalities within the architectural framework.

However, what does architecture and design look like? Is it a collection of diagrams using some well-known standard format? Is it some formal written document? Or something else?

The reality is: architecture and design do not look like anything

They are abstract ideas expressed in a variety of ways, via diagrams, plain English, via draws on whiteboards, via talks, and any other communication tools used to expectantly have all the team with a crystal clear understanding.

And where exactly are the boundaries between the two terms? What exactly are the system’s structure and the core components? And the finer details?

The reality is: there is no clearly defined separation line

One may ask, understanding frontend as a part of a whole, a domain focused on the input and output of data to individuals that interact with a software application or system, could the term architecture still be applied? Or would it be a system detail and therefore design a better term?

In order to have a good reasoning on this philosophical question, let’s explore the basic concepts around architecture and design and therefore comprehend where the frontend architecture and the micro frontend architecture fit in the bigger picture.

Software Architecture and Design Building Blocks

The following picture depicts a high-level system context down to detailed code, from architecture to design concerns, from the most impactful components to the least ones.

We understand, in this context, impactful components as the ones that:


	if done wrong will require the most effort to be corrected;

	if done wrong will decrease the system maintainability over time;

	if done wrong will decrease the system capability to answer business demands;



In that sense, an application code bug in a payment component, for instance, would definitely be an urgent issue that would require immediate action, but would most likely demand a punctual fix; on the other hand, a wrong architectural decision would for sure demand a whole refactoring on the system and in some cases risk the system’s existence.



[image: ]


Figure 2.1: Software Architecture and Design building blocks

C4 Model

As stated, architecture and design do not look like anything, we could be discussing using plain English or any other desired way, but for our context, we will be using the C4 Model.


OEBPS/images/1.1.jpg
import Header from "../components/Header";
import Main from "../components/Main";
import Footer from "../components/Footer";

const HomePage = () => {
return (
<>
<Header />
<Main>
<h2>Welcome to My Website</h2>
<p>This is the main content area.</p>
</Main>
<Footer />
</>

bH

export default HomePage;





OEBPS/images/1.2.jpg
<body>
<!——#include file="header.html" -—>
<hl>Welcome to My Website</hl>
<p>This is the main content area.</p>
<!——#include file="footer.html" -—>
</body>





OEBPS/images/1.3.jpg
Backend Development

application






OEBPS/images/1.4.jpg
Backend Development

Application

Domain Logic






OEBPS/images/1.5.jpg
Users expect application runs everywhere

Desktop native
application 5
Mobile native

T application

Smart TVs ¢——

Desktop
Browser

Smart
watches





OEBPS/images/1.6.jpg
Distributed Architecture

Service Oriented
Architecture
Monolith Micro
Application Services
Domain

Driven Design





OEBPS/images/cover.jpg
ANVA

Architecture for Scalable
Applications

Master Modular and Efficient

Web Development with Micro Frontends,
DDD, and CI/CD for Scalable,
Distributed Frontend
Applications

Vanderlei Alves da Silva





OEBPS/images/1.7.jpg
Micro services Architecture

Domain 1 Domain 2
=3 Micro
(Wl service 3

service 1

Micro
Micr service 4
service 2 -






OEBPS/images/1.8.jpg
//r Client ﬁ\\

Javascript
/ The \
Application
o i
Server

\\gJavascriptg//






OEBPS/images/line.jpg





OEBPS/images/cqr.jpg





OEBPS/nav.xhtml




Table of Contents





		Cover Page



		Title Page



		Copyright Page



		Dedication Page



		About the Author



		About the Technical Reviewer



		Acknowledgements



		Preface



		Get a Free eBook



		Errata



		Table of Contents



		1. A Tale of Two Worlds



		Introduction



		Structure



		React Server Components vs Server Side Includes



		Frontend Development



		Backend Development



		Full Stack Web Framework



		Conclusion



		References







		2. Valuable Architecture



		Introduction



		Structure



		Architecture and Design



		Software Architecture and Design Building Blocks



		C4 Model



		System Contexts



		Containers



		Components



		Code



		Exploring a Use Case



		Frontend Architecture versus Frontend Design







		Frontend Architecture



		Frameworks



		Frontend Architecture Aim







		Conclusion



		References







		3. Frontend Architectural Patterns



		Introduction



		Structure



		Static Page Websites



		Static Page Websites with Static Site Generators



		Websites versus Web Applications







		JAMstack



		Server Side Rendered



		Lightweight Javascript Libraries



		Incremental Server-Side Rendering







		Single Page Applications



		Client Responsibilities



		Client-Side Rendering (CSR)



		Client-Side Routing



		Data Fetching and State Management



		Session and Authentication Management:



		Client-Side Security



		Caching and Performance Optimization



		Handle Client-Side Errors



		Modern Frameworks



		Local-First Architecture



		Additional Considerations







		Isomorphic Applications



		Rendering Process



		Client Hydration



		Resumability







		Micro Frontends



		Origins



		Principle



		Advantages



		Challenges



		Complex Integration and Shared Resources



		Performance Overhead



		Duplication of Dependencies



		Coordination Overhead



		Complexity in Routing and State Management



		When Not Use



		Small or Simple Applications



		Lack of Organizational Scale







		Conclusion



		References







		4. Micro Frontend Foundations



		Introduction



		Structure



		Domain-Driven Design



		Domain, Subdomains, and Bounded Contexts



		Ubiquitous Language



		Bringing It All Together



		Strategies for DDD Non-Adherent Organizations







		Decentralized Governance



		Independent Deployments



		The Fallacy of Control



		The Myth of Centralization as a “Safer” Option







		Highly Observable



		Monitoring / Observability







		Conclusion



		References







		5. Integration Strategies



		Introduction



		Structure



		Per Feature X Per Page Slicing



		Per Page Slicing



		Slicing: Decision Making Flow



		Shell Application







		Server-side Template Composition



		Trade offs



		Designing for Resilience







		Edge-side Composition



		Client-side Composition



		Run-time Integration via iFrames



		Run-time Integration via Javascript



		Single-SPA



		Run-time Integration via WebComponents



		WebComponents



		Module Federation



		Client-Side Composition Digest







		Client-Side Composition: Native Apps



		Super Apps



		Native Modules with JavaScript Bridge



		React Native Module Federation







		Build-time Integration



		Conclusion



		References







		6. Communication and Routing



		Introduction



		Structure



		Shell Application



		Public Contracts Stability



		Resource Isolation







		State Management



		Cross Application Communication



		Custom Events



		Shared Messaging Services



		Query Parameters



		PostMessage API







		Routing



		Single Global Router



		Independent Routing in Each Micro Frontend



		Routing in Server/Edge-Side Composition







		Shared Dependencies



		The Shell Application Journey



		Conclusion



		References







		7. UI/UX and Design System



		Introduction



		Structure



		Design System



		Atomic Design



		Components Hierarchy



		Design System / Atomic Design / Frontend Architecture







		Micro Frontend Design Consistency



		Implementation Strategy



		Conclusion



		References







		8. Backend Patterns



		Introduction



		Structure



		Backend For Frontend



		API Gateway



		API Aggregation



		API Standards



		RESTful APIs and GraphQL



		RPC: gRPC and tRPC



		Data Formats







		Client SDK Generation



		Conclusion



		References







		9. Testing Strategies



		Introduction



		Structure



		Unit and Component Tests



		Contract Testing



		Consumer-Driven Contracts







		Integration Testing



		End-to-End Testing



		Visual Regression Testing



		Versioning and Compatibility



		Performance Testing



		Accessibility Testing



		Security Testing



		Conclusion



		References







		10. Deployment Strategies



		Introduction



		Structure



		Continuous Integration / Continuous Deployment (CI/CD)



		On-demand Environments







		Blue-Green Deployment



		Canary Releases



		Conclusion



		References







		11. Observability



		Introduction



		Structure



		Context



		Application Metrics



		Logging



		Tracing



		Error Tracking



		Conclusion



		References







		12. A Micro Frontend Adoption



		Introduction



		Structure



		Context



		Business Requirements



		Organization Structure



		Tech Stack



		Architectural Considerations



		Challenges Faced



		Scale Frontend Development



		Design System and UI Unification



		Aligning Different Development Cultures



		Communication Across Distributed Teams and Time Zones







		Main Outcomes



		Defining Success: Measuring the Impact of Micro Frontends







		Other Relevant Use Case



		Migration Strategy: The Two-System Transition



		Challenges Faced



		Main Outcomes







		Future of Micro Frontends



		Artificial Intelligence and Micro Frontends



		The Pitfalls of AI Assistants



		The Future of Micro Frontend Development with AI



		Conversational Interfaces: Reshaping User Experience







		Conclusion



		References







		Index











Guide





		Title Page



		Copyright Page



		Table of Contents



		1. A Tale of Two Worlds











OEBPS/images/tick.jpg





OEBPS/images/qr1.jpg





OEBPS/images/qr.jpg





OEBPS/images/logo.jpg





OEBPS/images/2.1.jpg
Architecture

System
Higher Contexts
o
tower &
impact
Containers
J Components.
4
Design ¢

Code





