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Preface





In the rapidly evolving landscape of web application development, the need for robust and efficient testing methodologies is more pronounced than ever. As developers and testers grapple with increasingly complex web applications, the role of automation testing has become crucial. Recognizing this need, "Ultimate Web Automation Testing with Cypress" emerges as a comprehensive guide meticulously designed to navigate the intricacies of Cypress – a modern web automation testing tool.


As an experienced software testing professional and an ardent advocate of Cypress, I have witnessed firsthand the transformative impact of this tool in web testing. With its intuitive syntax and powerful features, Cypress has redefined the testing standards, making it accessible, efficient, and, most importantly, aligned with the real-world demands of web application development.


This book is a culmination of my experiences and lessons learned over the years, distilled into a format that is both educational and practical. Whether you are a software tester, a manual QA engineer transitioning to automation, or a developer keen on mastering testing skills, this book is tailored to enhance your understanding and application of Cypress.


Structured in a clear and logical format, the book covers many topics, from setting up Cypress and writing your first test to developing advanced techniques like custom commands, API testing, and CI/CD integration. Each chapter is crafted to build upon the previous one, ensuring a seamless learning curve for readers of all levels.


Real-world examples and exercises throughout the book provide hands-on experience, bridging the gap between theory and practice. This approach ensures that readers understand the concepts and apply them effectively in their projects.


Writing this book has been an enriching experience, and I hope it serves as a valuable resource for professionals seeking to excel in the dynamic field of web automation testing. With Cypress as your tool, you are well-equipped to deliver flawless web applications and accelerate your professional growth in the competitive software testing landscape.


Chapter 1 introduces the reader to Cypress, which is a well-known test automation tool for web applications. The advantages of utilizing Cypress for automated testing will be highlighted and compared to other testing frameworks, including Selenium. Additionally, this chapter will offer an overview of the latest Cypress 12 release's key features and enhancements.


Chapter 2 will guide readers on how to prepare their development environment to start using Cypress. This will involve the installation of Node.js, the installation and customization of Cypress, and the initiation of a new Cypress project. The chapter will supply a sequence of clear instructions and address different configurations to guarantee an uninterrupted setup process.


Chapter 3 will guide readers through the process of composing their initial test utilizing the Cypress Test Runner. It will offer an explanation of the application of Cypress commands, hooks, and aliases and how to implement these principles while devising test scenarios. By the conclusion of this chapter, readers will have a strong base for generating and executing Cypress tests.


Chapter 4 will concentrate on Cypress-based end-to-end testing. It will teach the audience how to perform tests on user interactions, manage various types of elements, and handle timeouts and retries in their tests. The chapter will present sample cases and recommend optimal approaches to enable the audience to craft efficient and dependable E2E tests.


Chapter 5 delves into component testing using Cypress. The chapter explains how to test individual web components and distinguishes between component testing and end-to-end testing. It provides step-by-step guidance to configure tools and libraries for component testing with Cypress.


Chapter 6 explains how to perform API testing using Cypress. The chapter will include instructions on testing both RESTful and GraphQL APIs, as well as validating API responses. Practical examples and helpful tips will be provided throughout the chapter to assist readers in creating complete API tests with Cypress.


Chapter 7 will introduce readers to the concept of data-driven testing with Cypress. The chapter will cover the use of JSON files, reading data from databases, and implementing data-driven test cases. Upon completion of this chapter, readers will be able to develop adaptable and reusable test cases by utilizing a variety of data sources.


Chapter 8 delves into advanced techniques with Cypress, including creating customized commands, utilizing videos and screenshots for debugging, and working with plugins. These techniques will enable readers to enhance their test automation process, resulting in more efficient and maintainable tests.


Chapter 9 offers information on Cypress Cloud and its features, such as Smart Orchestration and Flaky Test Management. Additionally, readers will be introduced to Cypress Analytics, a tool that provides valuable insights into the performance and reliability of their test suite. This chapter will provide readers with the knowledge necessary to optimize their test automation process by utilizing these advanced features.


Chapter 10 covers the integration of Cypress with popular version control systems like GitHub and GitLab, as well as the implementation of Behavior-Driven Development (BDD) using Cucumber with Cypress. This chapter will enable readers to adopt a more collaborative approach to test automation while utilizing Git hooks for automated testing.


Chapter 11 provides readers with insights on CI/CD principles and the process of integrating Cypress into their CI/CD pipelines by using tools such as Docker and Jenkins. The chapter also discusses other CI/CD tools that are compatible with Cypress, thus giving readers a range of options to choose from based on their project requirements.


Chapter 12 delves into different reporting techniques and tools that Cypress offers. It covers built-in Cypress reporting, third-party reporting tools and plugins, and generating custom reports. After reading this chapter, readers will have a clear understanding of how to effectively present and analyze their test results.


Chapter 13 offers a summary of the key concepts covered in the book, shares best practices for using Cypress, and gives guidance for further research. By the end of this chapter, readers will have a solid understanding of Cypress and its capabilities, and they will feel confident in applying these skills to their projects. Additionally, it concludes with a list of resources and communities to help readers continue their journey with Cypress and stay up-to-date with the latest developments in web automation testing.
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CHAPTER 1


Getting Started with Cypress Testing



Introduction

This chapter introduces the reader to Cypress, a famous test automation tool for web applications. It will describe the benefits of using Cypress for automated testing and compare it to other testing frameworks, such as Selenium. This chapter also provides an overview of the most important features and improvements in the latest Cypress 12 release.

Structure

In this chapter, we will discuss the following topics:


	Introduction to Cypress

	Benefits of using Cypress for automation testing

	Difference between Cypress and Selenium

	Key features of Cypress 12



Introduction to Cypress

The history and development of the Cypress automation tool can be traced back to 2014, when it was initially released by Brian Mann, the founder and creator of Cypress.io. The tool aimed to provide a better alternative to existing automation tools, such as Selenium. Cypress was designed to be easy to use and give the developers a more robust and reliable testing experience. Over the years, Cypress has undergone numerous updates and improvements, with the latest version, 12.10, at the time of writing this book.

One of the most significant advantages of Cypress over other test automation tools is the unique architecture that allows it to run directly in the browser. This approach enables faster execution times and gives developers more control over the testing environment.

Moreover, Cypress offers a comprehensive set of features for end-to-end testing, including automatic waiting, real-time reloading, and an easy-to-use API. Its integration with popular frontend frameworks such as React, Angular, and Vue.js also makes it a preferred choice for many developers across the globe.

Overall, Cypress has come a long way since its first release and has positioned itself as a powerful automation tool that continues to evolve to meet the ever-changing needs of the software development industry.

Overview of Cypress

Cypress is a robust JavaScript-based end-to-end testing framework designed to simplify and streamline web application testing. It was built specifically for modern web development. Cypress enables developers and testers to create and run tests directly within the browser, allowing real-time interaction with the application under test. With its intuitive API, automatic waiting and retries, and seamless integrations with popular web technologies and frameworks, Cypress has become a popular choice for teams seeking to improve the efficiency and reliability of their testing processes. As an end-to-end testing framework, Cypress covers the entire spectrum of the user experience, from UI interactions to API calls, ensuring that applications function correctly and meet user expectations.

Cypress is an open-source testing framework that strives to simplify and streamline the testing process. Here are its key features:


	A user-friendly interface that provides visual feedback during test execution.

	Automatic waiting and real-time reloading help eliminate the need for manual timeouts and reloading.

	The ability to easily stub and mock network requests allows greater control over test scenarios.

	A rich set of APIs simplifies creating and managing test suites and cases.

	
The ability to preserve cookies, local storage, and session storage between tests to maintain a consistent browser context.



According to experienced Cypress experts, one of the best practices for using Cypress is to write small test cases that focus on specific features or functionalities of the application instead of writing large test suites that test everything simultaneously. This approach can help identify and isolate issues, making troubleshooting and fixing them easier.

Advantages of Cypress

Under the advantages of Cypress, we usually understand the features that are beneficially different from the Selenium-based testing frameworks. There are several key advantages of using Cypress including:


	
Ease of setup: Cypress requires minimal configuration and can be easily integrated into existing projects.

	
Speed: Cypress executes tests directly in the browser, which results in faster test runs and more accurate results.

	
Debugging capabilities: The Cypress Test Runner offers an interactive interface that allows developers to debug tests in real-time.

	
Improved reliability: Cypress automatically waits for elements to become available and actions to complete, reducing the likelihood of flaky tests.

	
Cross-browser testing: Cypress can run tests across multiple browsers. It supports Chrome-family browsers (Chrome, Electron, and Microsoft Edge), Firefox, and WebKit (Safari’s browser engine) – experimental support based on Playwright WebKit.

	
Test Retries: Cypress can retry failed tests to help reduce test flakiness and continues integration build failures.



One of the most significant advantages of Cypress is its ability to run tests in real time, with automatic reloading of code and tests.

Integration with Modern Web Technologies and Frameworks

Cypress is designed to work seamlessly with popular web frameworks and technologies, making it an ideal choice for testing modern web applications. Some examples of its compatibility include:


	
JavaScript-centric: Focusing on JavaScript as its primary language, Cypress is a natural fit for modern web development. JavaScript is the dominant language for both front-end and back-end development. This allows developers to work with a single language throughout the entire development and testing process.

	
Framework agnostic: Cypress is not tied to any specific front-end framework, which means it can be used for testing applications built with popular frameworks like React, Angular, Vue, and more. This flexibility allows teams to adopt Cypress regardless of their chosen front-end technology.

	
Integration with modern tools: Cypress can be easily integrated with popular development tools and platforms, such as Webpack, Babel, and TypeScript. This allows developers to leverage existing tooling and configurations to streamline the testing process further.

	
Support for Single Page Applications (SPAs): Cypress is well-suited for testing SPAs, which have become a typical architecture in modern web development. It can handle dynamic content loading, routing, and asynchronous operations, ensuring that tests accurately represent real-world user interactions.

	
Extensibility through plugins: Cypress has a thriving plugin ecosystem, allowing developers to extend its functionality and integrate it with other tools and services. Plugins are available for tasks such as visual regression testing, code coverage, and accessibility testing, making incorporating Cypress into a comprehensive testing strategy easy.

	
Built-in CI/CD compatibility: Cypress can be easily integrated with Continuous Integration and Continuous Deployment (CI/CD) pipelines, enabling automated testing as part of the development and deployment process. It supports popular CI/CD platforms such as Jenkins, Travis CI, CircleCI, and GitLab CI, among others.



In conclusion, Cypress is a powerful and versatile end-to-end testing framework that offers numerous advantages over traditional Selenium-based testing solutions. In addition, its compatibility with modern web technologies and frameworks makes it an excellent choice for developers to streamline and improve their testing processes. As we delve deeper into Cypress, you will discover how its unique features and capabilities can significantly enhance the quality and reliability of your web applications.

Benefits of using Cypress for automation testing

Diving deeper into Cypress, we must recognize the benefits that made Cypress famous as a test automation tool.

Easy to use and set up is one of the most significant advantages of Cypress. It is straightforward to install, and the documentation is comprehensive, making it easy for beginners to get started with Cypress quickly. In addition, with Cypress, you can write tests in JavaScript, a widely used language, further adding to its accessibility.

Cypress has excellent documentation, making it easy for developers to learn and start with the framework. Moreover, it has a robust community support system, with numerous forums and resources for users to help each other. The community is continually growing, and Cypress is evolving, making it a reliable and future-proof choice for automation testing.

Also, we will learn a few more key benefits of using Cypress as a test automation tool including:


	Real-time reloading and time-travel debugging.

	Automatic waiting and retries.

	Simple and easy-to-understand API.

	Built-in parallelization and dashboard features.

	Integration with CI/CD tools.

	Wide range of plugins and community support.



Real-time reloading and time-travel debugging

Cypress is designed with a focus on providing a better developer experience. One significant feature differentiating it from other testing tools is its real-time reloading and time-travel debugging capabilities.

Real-time reloading means that whenever you make a change to your test code, Cypress will automatically reload the test in the browser, allowing you to see the effects of your changes instantly. This feature significantly speeds up the development and debugging process.

Time-travel debugging refers to the ability to move back and forth through your test’s execution, enabling you to see the exact state of your application at any given step. This powerful feature makes it much easier to identify and fix issues in your tests.

Example:

// cypress/e2e/spec.cy.js

describe(‘My first test’, () => {

it(‘Visits the home page’, () => {

cy.visit(‘http://example.com’) // Your application URL

cy.get(‘h1’).contains(‘Welcome’)

})

})

As you modify the preceding test code, Cypress will automatically reload the test, and you can see each step in action using the time-travel debugging feature.

Automatic waiting and retries

Cypress eliminates the need for manual waiting or hard-coded timeouts by automatically waiting for elements to be available and visible before interacting with them. It also retries commands until they pass or time out, ensuring tests are stable and less flaky.

Example:

 // cypress/e2e/automatic-waiting.cy.js

describe(‘Automatic waiting and retries’, () => {

it(‘Waits for an element to be visible before interacting’, () => {

cy.visit(‘http://example.com’)

cy.get(‘#my-element’).should(‘be.visible’)

})

})

In the preceding example, Cypress will wait for the element with the ID `my-element` to be visible before proceeding. The test will fail if the element is not visible within the default timeout (4 seconds).

Simple and easy-to-understand API

Cypress offers a straightforward API that is easy to learn and understand. This makes it accessible for both beginners and experienced developers alike. In addition, the API’s intuitive design enables developers to write clean, readable, and maintainable test code.

Example:

 // cypress/e2e/simple-api.cy.js

describe(‘Simple API test’, () => {

it(‘Logs in a user and checks for a welcome message’, () => {

cy.visit(‘http://example.com’)

cy.get(‘#username’).type(‘username)

cy.get(‘#password’).type(‘password)

cy.get(‘#login-button’).click()

cy.url().should(‘include’, ‘/dashboard’)

cy.contains(‘Welcome, username’)

})

})

The preceding example demonstrates how easy it is to understand and write a Cypress test. The code is clear, concise, and easy to read, making it straightforward for developers of all experience levels.

Built-in parallelization and dashboard features

Cypress has built-in support for parallel test execution, allowing you to scale your tests across multiple machines and browsers. This feature helps reduce test execution time and provides more efficient feedback.

The Cypress Dashboard Service offers additional features like test analytics, video recording of test runs, and team collaboration tools. These features can be invaluable for managing large-scale test suites and improving overall testing workflows.

Such features are available only by purchasing a paid plan in Cypress Cloud. But by using free plugins like cypress-parallel or cypress-split, you can run tests in Parallel.

Integration with CI/CD tools

Cypress can easily integrate with widespread continuous integration (CI) and continuous delivery (CD) tools such as Jenkins, GitLab, and CircleCI. This seamless integration helps ensure that your tests are always up-to-date and that your application remains reliable throughout the development lifecycle.

Example:

To integrate Cypress with GitHub Actions, create a `.github/workflows/main.yml` file with the following content:

name: Cypress Tests

on: push

jobs:

cypress-run:

runs-on: ubuntu-latest

steps:

- name: Checkout code

uses: actions/checkout@v3

- name: Run Cypress tests

uses: cypress-io/github-action@v5

with:

build: npm run build

start: npm start

The preceding example is a basic CI setup and job using the Cypress GitHub Action to run Cypress tests within the Electron browser.

Wide range of plugins and community support

Cypress has a growing ecosystem of plugins that extends its core functionality, allowing you to tailor the framework to your specific needs. These plugins cater to various use cases, including visual testing, accessibility testing, and integration with popular JavaScript frameworks. Additionally, the Cypress community is active and supportive, providing valuable resources and assistance to help you succeed with your testing efforts.

Example:

The `cypress-axe` plugin is famous for integrating a11y (accessibility) testing with Cypress. The plugin adds the axe-core library to your Cypress tests, allowing you to run accessibility audits on your web application.

To install and use the cypress-axe plugin, follow these steps:

npm install --save-dev cypress-axe

Import the plugin:

// cypress/support/e2e.js

import ‘cypress-axe’

Use the plugin in your test:

// cypress/e2e/accessibility.cy.js

describe(‘Accessibility testing’, () => {

beforeEach(() => {

cy.visit(‘http://example.com’)

cy.injectAxe()

})

it(‘Checks for accessibility violations’, () => {

cy.checkA11y()

})

})

In this example, we installed and used the cypress-axe plugin to check for accessibility violations in our web application.

In conclusion, Cypress offers many benefits for web automation testing, including real-time reloading, time-travel debugging, automatic waiting, a simple API, built-in parallelization, CI/CD integration, and a wide range of plugins with solid community support. As a result, you can create more robust and reliable web applications by incorporating Cypress into your development workflow.

Difference between Cypress and Selenium

As Selenium is a primarily known library for test automation, it will be beneficial to compare it with Cypress. Here, we will explore the key differences between Cypress and Selenium. The comparison will include the following aspects:


	Architecture: Cypress’s direct browser access versus Selenium’s WebDriver-based approach

	Language support: JavaScript in Cypress versus multiple languages in Selenium

	
Automatic waiting and command retries in Cypress

	Speed and performance comparison

	Ease of setup and learning curve



Architecture: Cypress’s direct browser access versus Selenium’s WebDriver-based approach

Cypress and Selenium have different architectures, resulting in differences in capabilities and performance.

Cypress operates directly within the browser, executing commands as soon as they are issued. This allows Cypress to provide real-time feedback, time-travel debugging, and automatic waiting. Additionally, since it runs in the same run-loop as your application, it can access and manipulate the DOM directly, offering better control and reliability.

Selenium, on the other hand, relies on the WebDriver protocol to communicate with the browser. This means that commands need to be sent from the test script to the WebDriver server, which then forwards them to the browser. This extra communication layer introduces latency and can result in slower test execution.

It can be summarized as follows:








	
Feature


	
Cypress


	
Selenium





	
Architecture


	
Direct browser access


	
WebDriver-based





	
Real-time feedback


	
Yes


	
No





	
Time-travel debugging


	
Yes


	
No





	
Automatic wait


	
Yes


	
No (requires explicit waits)






Table 1.1: Comparison of architecture

Language Support: JavaScript in Cypress versus multiple languages in Selenium

Cypress is built exclusively for JavaScript, meaning you can only write your tests in JavaScript. This can be an advantage for teams that are well-versed in JavaScript and want a consistent language across their development and testing stack. Therefore, Cypress tests anything that runs in the context of a browser, no matter which language has been used to write an application.

Selenium supports multiple programming languages, including Java, C#, Ruby, Python, and JavaScript. This flexibility allows developers to choose a language that best suits their skillset or the requirements of their project.

Automatic waiting and command retries in Cypress

One of the critical differences between Cypress and Selenium is how they handle waiting and retries (refer Table 1.2).

Cypress automatically waits for elements to become available and actions to complete before proceeding, eliminating the need for manual timeouts and retries. This intelligent waiting mechanism significantly reduces flakiness and improves test reliability.

Selenium, by contrast, often requires explicit waiting strategies and timeouts to handle asynchronous operations, which can make tests more complex and prone to flakiness.








	
Feature


	
Cypress


	
Selenium





	
Automatic waits


	
Yes


	
No (requires explicit waits)





	
Command retries


	
Yes


	
No (must be implemented manually)






Table 1.2: Comparison of waiting and retries

Speed and performance comparison

Regarding speed and performance, Cypress has some advantages over Selenium (refer Table 1.3).

Cypress’s direct browser access architecture and automatic waiting capabilities lead to faster test execution, as there is less latency and no need for manual waits. Additionally, Cypress has built-in parallelization support, which can significantly reduce the overall test execution time when running multiple test suites.

Selenium’s WebDriver-based approach can result in slower test execution due to the additional layer of communication between the test script, WebDriver server, and browser. Parallelization is possible in Selenium but requires additional setup and configuration, such as third-party tools like Selenium Grid or TestNG.

Moreover, Cypress’s real-time feedback and time-travel debugging capabilities allow developers to quickly identify and fix issues in their tests, further improving the overall testing process’s efficiency.








	
Feature


	
Cypress


	
Selenium





	
Test execution speed


	
Faster due to direct browser access


	
Slower due to the WebDriver-based approach





	
Parallelization


	
Built-in


	
Requires additional setup (for example, Selenium Grid, TestNG)





	
Real-time feedback and debugging


	
Yes


	
No





	
Browser support


	
Chrome-family browsers (Chrome, Electron, and Microsoft Edge), WebKit (Safari’s browser engine), and Firefox.


	
Chrome, Firefox, Safari, Edge






Table 1.3: Comparison of speed and performance

Ease of setup and learning curve

Cypress is known for its ease of setup, with minimal configuration required to start writing and running tests. In addition, its user-friendly API and extensive documentation make it relatively easy for developers to learn and adopt.

Selenium, while powerful, can be more challenging to set up and configure, particularly when integrating with different browsers and testing environments. The learning curve for Selenium can be steeper, particularly for those who are new to WebDriver API and its associated concepts.








	
Feature


	
Cypress


	
Selenium





	
Easy of Setup


	
Easier


	
More complex





	
Learning Curve


	
Lower


	
Higher






Table 1.4: Comparison of easiness of setup and learning curve

In conclusion, both Cypress and Selenium offer valuable features for web application testing. Still, their differences in architecture, language support, waiting mechanisms, speed, performance, and ease of setup can make one more suitable, depending on your specific needs and preferences.

Cypress may be better for teams primarily working with JavaScript or TypeScript and seeking a faster, more user-friendly testing framework. However, it might be more practical to use Selenium for teams that require support for multiple programming languages or have existing test suites written in Selenium.

It is also worth noting that the choice between Cypress and Selenium doesn’t have to be mutually exclusive. In some cases, teams may choose to use both frameworks, leveraging the unique strengths of each to create a comprehensive testing strategy. For example, Cypress could be used for end-to-end and component testing for JavaScript-heavy applications. At the same time, Selenium could be employed for cross-browser testing or tests written in other languages.

Ultimately, the best choice depends on your specific requirements, team skillset, and project goals. However, by understanding the key differences between Cypress and Selenium, you can make an informed decision that best supports your testing needs and helps ensure the quality and reliability of your web applications.

Key features of Cypress 12

Initially released in 2014, Cypress has been continuously evolving and improving over the years to become a leading choice for web automation testing. Its strong focus on delivering a superior developer experience has attracted a significant user base and a thriving community. Over the years, the Cypress team has been dedicated to incorporating user feedback and addressing the ever-changing landscape of web development, resulting in a robust and feature-rich testing tool.

At version 12.10, Cypress has come a long way since its inception. It boasts numerous advanced features, such as real-time feedback, time-travel debugging, automatic waiting, a simple JavaScript API, a built-in parallelization, supporting multiple browsers, supporting not only end-to-end testing but also component testing, multiple origins, caching sessions when logging, and switching users in tests.

Cypress persistently rolls out new features, enhancements, and bug fixes to ensure an up-to-date and reliable testing experience. Accompanying these updates is extensive technical documentation thoroughly covering all alterations associated with each release. This thorough documentation enables users to stay informed about the latest improvements and adapt their testing strategies accordingly, ensuring optimal utilization of the Cypress testing tool.

Consequently, it is essential to examine the crucial features introduced in Cypress version 12, as these enhancements significantly contribute to the tool’s overall capabilities and user experience. Furthermore, by understanding the latest updates and advancements, we can better appreciate Cypress’s value to the web automation testing landscape.

Multiple origins testing with ‘cy.origin()’

One of the most significant new features in Cypress 12 is the ability to test multiple origins in a single test using the new `cy.origin()` command. This command allows you to change the origin of the current page and test interactions between different domains.

Example:

 // cypress/e2e/cross-origin.cy.js

describe(‘Cross-origin test’, () => {

it(‘User should be able to login’, () => {

cy.visit(‘http://example.com’);

//clicking log in button redirects to another domain

cy.get(‘#login-button’).click();



cy.origin(‘auth.yourAuthDomain.com’, () => {

cy.get(‘#username’).type(‘username);

cy.get(‘#password’).type(‘password);

//clicking on submit does auth and redirects back to example.com

cy.get(‘#submit-button’).click();

});

cy.contains(‘Welcome, username’)

})

})

In the preceding example, we visit ‘http://example.com’, then click the Login button that redirects us to another domain, ‘auth.yourAuthDomain.com’, where we authenticate using the username and password and click the Submit button. The last action redirects us back to the original domain, ‘http://example.com’ already logged in.

Browser context preservation with `cy.session()`

Cypress 12 `cy.session()` command became generally available for end-to-end testing, allowing you to preserve cookies, local storage, and session storage between tests to maintain a consistent browser context. This is particularly useful when testing complex applications that rely on cookies or other persistent data.

Example:

// Caching session when logging in via page visit

cy.session(name, () => {

cy.visit(‘/login’)

cy.get(‘#username’).type(‘username);

cy.get(‘#password’).type(‘password);

cy.get(‘#login-button’).click();

cy.contains(‘Welcome, username’)

})

In the preceding example, we create a session with a specific name, and after successful login, we cache the session by caching and restoring cookies, local storage, and session storage. Our login code’s steps to create the session will only be performed once when it’s called the first time in any given spec file. After that, subsequent calls will restore the session from the cache.

Test isolation

One of the significant updates in version 12.0 is test isolation. While Cypress has always recommended writing tests in a clean context, this feature now enforces running tests in a clean browser context through test isolation. This means that each test runs in its clean browser context, with cookies, local storage, and session storage cleared between tests. This ensures that each test has a consistent starting point and is not affected by any previous tests. This option is configurable but is enabled by default.

// Example configuration in cypress.config.js with testIsolation disabled

const { defineConfig } = require(‘cypress’)

module.exports = defineConfig({

e2e: {

testIsolation: false,

// other configuration options

},

})

It is important to note that any tests that relied on the browser to be at a particular state will not work with the new test isolation behavior.

This feature is only available for e2e testing configuration. Cypress does not support the test isolation feature configuration in component testing. By running the component tests, Cypress always resets the browser context before each test.

Fix for dreaded detached DOM errors

Cypress v12 has introduced a fix for one of Cypress’s oldest and most annoying issues, the “Detached DOM” error. Cypress throws an error when an element is queried from a parent element and becomes detached from the DOM. The new fix involves enhancing the DOM resolution logic to re-query new elements that might have replaced the older elements due to DOM updates. This will lead to tests being more reliable and stable.

The current behavior throws an error when Cypress tries to interact with a detached element, with a suggestion to re-query for the element or add ‘guards,’ which delay Cypress from running new commands. However, the desired behavior is for Cypress to re-query the previously found element and continue the command with any newfound elements. The proposal is to make this an option passed to the command to allow this or not.

Here’s an example of the issue:

it(‘this will fail but should not’, () => {

cy.visit(‘index.html’)

cy.get(“select”).select(“First”)

// adding any wait time will make it pass

// cy.wait(0)

cy.get(“input”).type(“Hello”)

})

In the preceding example, when the `cy.get(“input”).type(“Hello”)` command is run, if the select element has been detached from the DOM due to a framework re-render or code reacting to an event, Cypress throws an error.

The fix for this issue will make tests more reliable and eliminate the need for ‘guards’ or re-querying elements.

In summary, keeping yourself updated with Cypress’s changelog is crucial for making the most of this impressive testing tool. By attentively monitoring the changelog, you can be confident that you’re utilizing the most recent features, enhancements, and bug resolutions the Cypress team constantly delivers. Not only does this empower you to maintain a state-of-the-art testing approach, but it also assists you in adjusting your tests to accommodate any potential breaking changes or deprecated features. Additionally, being well-informed about Cypress’s ongoing progress enables you to offer valuable input to the community, nurturing a robust ecosystem that supports the tool’s growth and improvement. In the end, staying vigilant about the Cypress changelog is a vital practice for tapping into the full capabilities of this versatile web automation testing tool and achieving consistent and effective testing results.

Conclusion

This chapter is all about introducing Cypress, a tool that is widely used for checking web applications automatically. In this chapter, we delved into why Cypress is a great tool for this job and how it is different from other similar tools, especially Selenium. We also took a close look at Cypress 12, the latest version of the tool, on the day of writing this book, discussing its new features and how it has been improved. By the end of the chapter, readers had a solid understanding of what Cypress is, its advantages, how it stands against its competitors, and what makes the new version of Cypress 12 special.

As we move forward to Chapter 2: Setting Up the Development Environment, we are going to explore the initial steps to start using Cypress. This includes setting up the necessary software on the reader’s computers, such as Node.js and Cypress, and learning how to start your very first Cypress project. Instructions will be provided in a step-by-step manner to ensure a smooth process.

Further Reading

Certainly, it’s always beneficial to delve deeper into the topic to gain a more comprehensive understanding. Here are some resources that would supplement the material covered in the book:


	
Cypress official documentation: The official Cypress documentation (https://docs.cypress.io/) is an invaluable resource. It provides a detailed overview of all aspects of Cypress, from installation to advanced concepts.

	
Cypress GitHub repository: The Cypress GitHub repo (https://github.com/cypress-io/cypress) is a great place to check for updates, report issues, and even contribute to the project. This can help you stay up-to-date with the latest developments and understand common issues users face.



Remember, the key to mastering any tool is a mix of theoretical understanding and practical application.







CHAPTER 2


Setting Up the Development Environment



Introduction

In this chapter, readers will learn how to set up their development environment to start using Cypress. We will go through the processes like installing Node.js, installing and configuring Cypress, and creating a new Cypress project. The chapter will provide step-by-step instructions and cover various configurations to ensure a smooth setup process.

Structure

In this chapter, we will discuss the following topics:


	Installing Node.js

	Installing Cypress

	Configuring Cypress

	Creating your first Cypress project



Installing Node.js

Node.js is an open-source, cross-platform JavaScript runtime environment built on Chrome’s V8 JavaScript engine. It was created by Ryan Dahl in 2009 to address the limitations of traditional web servers that needed help to handle numerous concurrent connections efficiently.

Node.js enables developers to use JavaScript to write server-side code, allowing them to build scalable, high-performance web applications. Before Node.js, JavaScript was used primarily for client-side programming in web browsers. By expanding JavaScript to the server side, Node.js has revolutionized web development and allowed developers to use a single language for both front-end and back-end development.

There are several reasons why Node.js has become so popular, including:


	
JavaScript everywhere: As mentioned earlier, Node.js allows developers to write server-side code using JavaScript. This means that developers proficient in JavaScript can now work on both the front-end and back-end without learning a new programming language, leading to more efficient and streamlined development processes.

	
Event-driven, non-blocking architecture: Node.js is built on an event-driven architecture that uses a non-blocking I/O model. This makes it particularly well-suited for handling concurrent connections and building scalable, high-performance web applications. For example, in traditional server-side environments, each connection request creates a new thread, which can lead to performance issues as the number of connections increases. Node.js, on the other hand, uses a single-threaded event loop to handle multiple connections, making it more efficient in managing resources.

	
NPM (Node Package Manager): Node.js has a built-in package manager called npm, a vast repository of open-source libraries and modules. Npm makes it easy for developers to find, share, and reuse code, resulting in faster development cycles and a vibrant community of contributors.

	
Wide adoption: Many prominent companies and organizations, including Netflix, LinkedIn, Walmart, and NASA, have embraced Node.js for their web applications. This widespread adoption has led to a thriving ecosystem, a wealth of resources, and an active community that continually contributes to the platform’s growth and development.

	
Easy to learn: JavaScript is one of the most popular programming languages widely taught in computer science programs and coding boot camps. This makes it relatively easy for new developers to learn Node.js and quickly become productive.



Node.js has gained popularity due to its ability to enable JavaScript on the server side, its event-driven and non-blocking architecture, the extensive npm ecosystem, widespread adoption, and ease of learning. This combination of features has made Node.js a powerful tool for web development and an attractive choice for developers and organizations.

In this chapter, it is essential to mention about package managers. We’ve already mentioned NPM (Node Package Manager). The alternative choice can be Yarn - a package manager that Facebook designed.

NPM and Yarn are two popular package managers in the JavaScript ecosystem. They help developers manage dependencies and install, update, and remove libraries or packages required for the projects. Both package managers aim to make it easier to work with JavaScript libraries, but they differ in their approach and features.

NPM (Node Package Manager)

NPM is the default package manager for Node.js and was introduced in 2010. It provides a command-line interface for developers to interact with a vast repository of open-source libraries and modules. NPM has become popular due to the following reasons:
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