

[image: image]






Ultimate Web
Automation Testing
with Cypress


[image: ]


Master End-to-End Web Application
Testing Automation to Accelerate
Your QA Process with Cypress


[image: ]


Vitaly Skadorva




[image: ]




www.orangeava.com









Copyright © 2023 Orange Education Pvt Ltd, AVA™


All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.


Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Orange Education Pvt Ltd or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.


Orange Education Pvt Ltd has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capital. However, Orange Education Pvt Ltd cannot guarantee the accuracy of this information. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.


First published: December 2023


Published by: Orange Education Pvt Ltd, AVA™


Address: 9, Daryaganj, Delhi, 110002


ISBN: 978-81-96782-69-6


www.orangeava.com









Dedicated To


My beloved wife


Tatyana Shkoda


and


My Daughter Maria and My Son David











About the Author





Vitaly Skadorva holds a Master's degree in Civil Engineering and a Bachelor's degree in Computer Science, blending a unique perspective of structured engineering principles with cutting-edge technological expertise. With over fifteen years of experience in the software testing industry, he has carved a niche as a seasoned professional, deeply passionate about web automation testing and dedicated to pursuing quality assurance excellence.


His journey in the tech world has involved collaboration with a broad spectrum of clients and work on various technologies, contributing to the delivery of superior web applications globally. Renowned for his expertise in Cypress and other contemporary testing tools, the author has, in recent years, focused on honing his skills in web automation testing using Cypress. This specialization has enabled him to lead and mentor teams, integrating Cypress into their testing workflows and enhancing efficiency and accuracy.


Beyond his professional accomplishments, the author is an avid contributor to the software testing community. He frequently shares valuable insights on best practices in testing, drawn from his extensive experience and testing practices, and keeps abreast of the evolving trends in web automation. His commitment to sharing knowledge and fostering learning has earned him respect in web application testing.











About the Technical Reviewer





Veerkumar Patil is a highly experienced Software Testing Professional with a remarkable track record spanning over a decade in the field of Information Technology. He has made significant contributions across diverse sectors such as e-commerce, travel, banking, and telecommunications. Veerkumar's expertise extends to testing complex applications across various technology domains. He is well-versed in Test Automation, utilizing a range of testing frameworks including Selenium, Cypress, and Playwright. His proficiency extends to Continuous Integration and Continuous Deployment (CI/CD) practices, where he has worked with tools such as Azure DevOps, Gitlab, and GitHub Actions.


Veerkumar has a solid foundation in API Testing and has excelled in building automation frameworks for API testing using tools like Rest-Assured and Karate. He is also recognized as an open-source contributor for various NPM packages designed to facilitate parallelization of Cypress Testing. Veerkumar's extensive experience includes crafting automation frameworks for testing intricate business applications and processes.


Currently, he serves as the QE lead at Red Hat, where he plays a pivotal role in testing customer-facing applications for Red Hat's products. Beyond his professional responsibilities, Veerkumar is passionate about sharing his knowledge with the community through his YouTube channel and actively participates in various testing communities, where he presents valuable insights and experiences.











Acknowledgements





Writing this book has been a journey of exploration, learning, and immense satisfaction. Reflecting on the process, I see several individuals and a particular tool without which this journey would have been incomplete.


First and foremost, I extend my deepest gratitude to my wife, Tatyana Shkoda. Tatyana, your unwavering support, encouragement, and patience have been the bedrock of my strength and perseverance. Your belief in my abilities and endless love has fueled my dedication to this project. I am eternally grateful for your companionship and understanding throughout this endeavor.


To my children, Maria and David, you have been my source of joy and inspiration. Your youthful curiosity and boundless energy have a way of simplifying the complexities of life and work. In many ways, this book is a testament to the bright future I envision for you both, filled with the wonders of learning and the power of knowledge. Thank you for your patience and bearing with the many hours I spent away from you while pursuing this project. You are the light of my life, and I hope to instill in you the same passion for learning and growth that has driven me.


A special acknowledgment goes to Gleb Bahmutov, whose expertise and insights into Cypress have been invaluable. Gleb, your contributions to the field of web testing and your pioneering work with Cypress have inspired this book, greatly enhancing its content with your profound knowledge and experience.


Lastly, I must express my appreciation for Cypress as a tool. Cypress has revolutionized the world of web testing, providing a powerful and user-friendly platform. It has been an integral part of my professional life and the writing of this book. The capabilities and ease of use offered by Cypress have significantly contributed to the success of many projects, and for that, I am immensely thankful.


To everyone who has been a part of this journey, directly or indirectly, I extend my heartfelt thanks. Your support and influence have shaped this book and my professional journey in countless ways.











Preface





In the rapidly evolving landscape of web application development, the need for robust and efficient testing methodologies is more pronounced than ever. As developers and testers grapple with increasingly complex web applications, the role of automation testing has become crucial. Recognizing this need, "Ultimate Web Automation Testing with Cypress" emerges as a comprehensive guide meticulously designed to navigate the intricacies of Cypress – a modern web automation testing tool.


As an experienced software testing professional and an ardent advocate of Cypress, I have witnessed firsthand the transformative impact of this tool in web testing. With its intuitive syntax and powerful features, Cypress has redefined the testing standards, making it accessible, efficient, and, most importantly, aligned with the real-world demands of web application development.


This book is a culmination of my experiences and lessons learned over the years, distilled into a format that is both educational and practical. Whether you are a software tester, a manual QA engineer transitioning to automation, or a developer keen on mastering testing skills, this book is tailored to enhance your understanding and application of Cypress.


Structured in a clear and logical format, the book covers many topics, from setting up Cypress and writing your first test to developing advanced techniques like custom commands, API testing, and CI/CD integration. Each chapter is crafted to build upon the previous one, ensuring a seamless learning curve for readers of all levels.


Real-world examples and exercises throughout the book provide hands-on experience, bridging the gap between theory and practice. This approach ensures that readers understand the concepts and apply them effectively in their projects.


Writing this book has been an enriching experience, and I hope it serves as a valuable resource for professionals seeking to excel in the dynamic field of web automation testing. With Cypress as your tool, you are well-equipped to deliver flawless web applications and accelerate your professional growth in the competitive software testing landscape.


Chapter 1 introduces the reader to Cypress, which is a well-known test automation tool for web applications. The advantages of utilizing Cypress for automated testing will be highlighted and compared to other testing frameworks, including Selenium. Additionally, this chapter will offer an overview of the latest Cypress 12 release's key features and enhancements.


Chapter 2 will guide readers on how to prepare their development environment to start using Cypress. This will involve the installation of Node.js, the installation and customization of Cypress, and the initiation of a new Cypress project. The chapter will supply a sequence of clear instructions and address different configurations to guarantee an uninterrupted setup process.


Chapter 3 will guide readers through the process of composing their initial test utilizing the Cypress Test Runner. It will offer an explanation of the application of Cypress commands, hooks, and aliases and how to implement these principles while devising test scenarios. By the conclusion of this chapter, readers will have a strong base for generating and executing Cypress tests.


Chapter 4 will concentrate on Cypress-based end-to-end testing. It will teach the audience how to perform tests on user interactions, manage various types of elements, and handle timeouts and retries in their tests. The chapter will present sample cases and recommend optimal approaches to enable the audience to craft efficient and dependable E2E tests.


Chapter 5 delves into component testing using Cypress. The chapter explains how to test individual web components and distinguishes between component testing and end-to-end testing. It provides step-by-step guidance to configure tools and libraries for component testing with Cypress.


Chapter 6 explains how to perform API testing using Cypress. The chapter will include instructions on testing both RESTful and GraphQL APIs, as well as validating API responses. Practical examples and helpful tips will be provided throughout the chapter to assist readers in creating complete API tests with Cypress.


Chapter 7 will introduce readers to the concept of data-driven testing with Cypress. The chapter will cover the use of JSON files, reading data from databases, and implementing data-driven test cases. Upon completion of this chapter, readers will be able to develop adaptable and reusable test cases by utilizing a variety of data sources.


Chapter 8 delves into advanced techniques with Cypress, including creating customized commands, utilizing videos and screenshots for debugging, and working with plugins. These techniques will enable readers to enhance their test automation process, resulting in more efficient and maintainable tests.


Chapter 9 offers information on Cypress Cloud and its features, such as Smart Orchestration and Flaky Test Management. Additionally, readers will be introduced to Cypress Analytics, a tool that provides valuable insights into the performance and reliability of their test suite. This chapter will provide readers with the knowledge necessary to optimize their test automation process by utilizing these advanced features.


Chapter 10 covers the integration of Cypress with popular version control systems like GitHub and GitLab, as well as the implementation of Behavior-Driven Development (BDD) using Cucumber with Cypress. This chapter will enable readers to adopt a more collaborative approach to test automation while utilizing Git hooks for automated testing.


Chapter 11 provides readers with insights on CI/CD principles and the process of integrating Cypress into their CI/CD pipelines by using tools such as Docker and Jenkins. The chapter also discusses other CI/CD tools that are compatible with Cypress, thus giving readers a range of options to choose from based on their project requirements.


Chapter 12 delves into different reporting techniques and tools that Cypress offers. It covers built-in Cypress reporting, third-party reporting tools and plugins, and generating custom reports. After reading this chapter, readers will have a clear understanding of how to effectively present and analyze their test results.


Chapter 13 offers a summary of the key concepts covered in the book, shares best practices for using Cypress, and gives guidance for further research. By the end of this chapter, readers will have a solid understanding of Cypress and its capabilities, and they will feel confident in applying these skills to their projects. Additionally, it concludes with a list of resources and communities to help readers continue their journey with Cypress and stay up-to-date with the latest developments in web automation testing.











Downloading the code
bundles and colored images





Please follow the link to download the
Code Bundles of the book:


https://github.com/ava-orange-education/Ultimate-Web-Automation-Testing-with-Cypress


The code bundles and images of the book are also hosted on
https://rebrand.ly/bbdaa7


In case there’s an update to the code, it will be updated on the existing GitHub repository.


Errata


We take immense pride in our work at Orange Education Pvt Ltd and follow best practices to ensure the accuracy of our content to provide an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :


errata@orangeava.com


Your support, suggestions, and feedback are highly appreciated.











DID YOU KNOW


Did you know that Orange Education Pvt Ltd offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.orangeava.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: info@orangeava.com for more details.


At www.orangeava.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on AVA™ Books and eBooks.


PIRACY


If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at info@orangeava.com with a link to the material.


ARE YOU INTERESTED IN AUTHORING WITH US?


If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please write to us at business@orangeava.com. We are on a journey to help developers and tech professionals to gain insights on the present technological advancements and innovations happening across the globe and build a community that believes Knowledge is best acquired by sharing and learning with others. Please reach out to us to learn what our audience demands and how you can be part of this educational reform. We also welcome ideas from tech experts and help them build learning and development content for their domains.


REVIEWS


Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at Orange Education would love to know what you think about our products, and our authors can learn from your feedback. Thank you!


For more information about Orange Education, please visit www.orangeava.com.












CHAPTER 1


Getting Started with Cypress Testing



Introduction

This chapter introduces the reader to Cypress, a famous test automation tool for web applications. It will describe the benefits of using Cypress for automated testing and compare it to other testing frameworks, such as Selenium. This chapter also provides an overview of the most important features and improvements in the latest Cypress 12 release.

Structure

In this chapter, we will discuss the following topics:


	Introduction to Cypress

	Benefits of using Cypress for automation testing

	Difference between Cypress and Selenium

	Key features of Cypress 12



Introduction to Cypress

The history and development of the Cypress automation tool can be traced back to 2014, when it was initially released by Brian Mann, the founder and creator of Cypress.io. The tool aimed to provide a better alternative to existing automation tools, such as Selenium. Cypress was designed to be easy to use and give the developers a more robust and reliable testing experience. Over the years, Cypress has undergone numerous updates and improvements, with the latest version, 12.10, at the time of writing this book.

One of the most significant advantages of Cypress over other test automation tools is the unique architecture that allows it to run directly in the browser. This approach enables faster execution times and gives developers more control over the testing environment.

Moreover, Cypress offers a comprehensive set of features for end-to-end testing, including automatic waiting, real-time reloading, and an easy-to-use API. Its integration with popular frontend frameworks such as React, Angular, and Vue.js also makes it a preferred choice for many developers across the globe.

Overall, Cypress has come a long way since its first release and has positioned itself as a powerful automation tool that continues to evolve to meet the ever-changing needs of the software development industry.

Overview of Cypress

Cypress is a robust JavaScript-based end-to-end testing framework designed to simplify and streamline web application testing. It was built specifically for modern web development. Cypress enables developers and testers to create and run tests directly within the browser, allowing real-time interaction with the application under test. With its intuitive API, automatic waiting and retries, and seamless integrations with popular web technologies and frameworks, Cypress has become a popular choice for teams seeking to improve the efficiency and reliability of their testing processes. As an end-to-end testing framework, Cypress covers the entire spectrum of the user experience, from UI interactions to API calls, ensuring that applications function correctly and meet user expectations.

Cypress is an open-source testing framework that strives to simplify and streamline the testing process. Here are its key features:


	A user-friendly interface that provides visual feedback during test execution.

	Automatic waiting and real-time reloading help eliminate the need for manual timeouts and reloading.

	The ability to easily stub and mock network requests allows greater control over test scenarios.

	A rich set of APIs simplifies creating and managing test suites and cases.

	
The ability to preserve cookies, local storage, and session storage between tests to maintain a consistent browser context.



According to experienced Cypress experts, one of the best practices for using Cypress is to write small test cases that focus on specific features or functionalities of the application instead of writing large test suites that test everything simultaneously. This approach can help identify and isolate issues, making troubleshooting and fixing them easier.

Advantages of Cypress

Under the advantages of Cypress, we usually understand the features that are beneficially different from the Selenium-based testing frameworks. There are several key advantages of using Cypress including:


	
Ease of setup: Cypress requires minimal configuration and can be easily integrated into existing projects.

	
Speed: Cypress executes tests directly in the browser, which results in faster test runs and more accurate results.

	
Debugging capabilities: The Cypress Test Runner offers an interactive interface that allows developers to debug tests in real-time.

	
Improved reliability: Cypress automatically waits for elements to become available and actions to complete, reducing the likelihood of flaky tests.

	
Cross-browser testing: Cypress can run tests across multiple browsers. It supports Chrome-family browsers (Chrome, Electron, and Microsoft Edge), Firefox, and WebKit (Safari’s browser engine) – experimental support based on Playwright WebKit.

	
Test Retries: Cypress can retry failed tests to help reduce test flakiness and continues integration build failures.



One of the most significant advantages of Cypress is its ability to run tests in real time, with automatic reloading of code and tests.

Integration with Modern Web Technologies and Frameworks

Cypress is designed to work seamlessly with popular web frameworks and technologies, making it an ideal choice for testing modern web applications. Some examples of its compatibility include:


	
JavaScript-centric: Focusing on JavaScript as its primary language, Cypress is a natural fit for modern web development. JavaScript is the dominant language for both front-end and back-end development. This allows developers to work with a single language throughout the entire development and testing process.

	
Framework agnostic: Cypress is not tied to any specific front-end framework, which means it can be used for testing applications built with popular frameworks like React, Angular, Vue, and more. This flexibility allows teams to adopt Cypress regardless of their chosen front-end technology.

	
Integration with modern tools: Cypress can be easily integrated with popular development tools and platforms, such as Webpack, Babel, and TypeScript. This allows developers to leverage existing tooling and configurations to streamline the testing process further.

	
Support for Single Page Applications (SPAs): Cypress is well-suited for testing SPAs, which have become a typical architecture in modern web development. It can handle dynamic content loading, routing, and asynchronous operations, ensuring that tests accurately represent real-world user interactions.

	
Extensibility through plugins: Cypress has a thriving plugin ecosystem, allowing developers to extend its functionality and integrate it with other tools and services. Plugins are available for tasks such as visual regression testing, code coverage, and accessibility testing, making incorporating Cypress into a comprehensive testing strategy easy.

	
Built-in CI/CD compatibility: Cypress can be easily integrated with Continuous Integration and Continuous Deployment (CI/CD) pipelines, enabling automated testing as part of the development and deployment process. It supports popular CI/CD platforms such as Jenkins, Travis CI, CircleCI, and GitLab CI, among others.



In conclusion, Cypress is a powerful and versatile end-to-end testing framework that offers numerous advantages over traditional Selenium-based testing solutions. In addition, its compatibility with modern web technologies and frameworks makes it an excellent choice for developers to streamline and improve their testing processes. As we delve deeper into Cypress, you will discover how its unique features and capabilities can significantly enhance the quality and reliability of your web applications.

Benefits of using Cypress for automation testing

Diving deeper into Cypress, we must recognize the benefits that made Cypress famous as a test automation tool.

Easy to use and set up is one of the most significant advantages of Cypress. It is straightforward to install, and the documentation is comprehensive, making it easy for beginners to get started with Cypress quickly. In addition, with Cypress, you can write tests in JavaScript, a widely used language, further adding to its accessibility.

Cypress has excellent documentation, making it easy for developers to learn and start with the framework. Moreover, it has a robust community support system, with numerous forums and resources for users to help each other. The community is continually growing, and Cypress is evolving, making it a reliable and future-proof choice for automation testing.

Also, we will learn a few more key benefits of using Cypress as a test automation tool including:


	Real-time reloading and time-travel debugging.

	Automatic waiting and retries.

	Simple and easy-to-understand API.

	Built-in parallelization and dashboard features.

	Integration with CI/CD tools.

	Wide range of plugins and community support.



Real-time reloading and time-travel debugging

Cypress is designed with a focus on providing a better developer experience. One significant feature differentiating it from other testing tools is its real-time reloading and time-travel debugging capabilities.

Real-time reloading means that whenever you make a change to your test code, Cypress will automatically reload the test in the browser, allowing you to see the effects of your changes instantly. This feature significantly speeds up the development and debugging process.

Time-travel debugging refers to the ability to move back and forth through your test’s execution, enabling you to see the exact state of your application at any given step. This powerful feature makes it much easier to identify and fix issues in your tests.

Example:

// cypress/e2e/spec.cy.js

describe(‘My first test’, () => {

it(‘Visits the home page’, () => {

cy.visit(‘http://example.com’) // Your application URL

cy.get(‘h1’).contains(‘Welcome’)

})

})

As you modify the preceding test code, Cypress will automatically reload the test, and you can see each step in action using the time-travel debugging feature.

Automatic waiting and retries

Cypress eliminates the need for manual waiting or hard-coded timeouts by automatically waiting for elements to be available and visible before interacting with them. It also retries commands until they pass or time out, ensuring tests are stable and less flaky.

Example:

 // cypress/e2e/automatic-waiting.cy.js

describe(‘Automatic waiting and retries’, () => {

it(‘Waits for an element to be visible before interacting’, () => {

cy.visit(‘http://example.com’)

cy.get(‘#my-element’).should(‘be.visible’)

})

})

In the preceding example, Cypress will wait for the element with the ID `my-element` to be visible before proceeding. The test will fail if the element is not visible within the default timeout (4 seconds).

Simple and easy-to-understand API

Cypress offers a straightforward API that is easy to learn and understand. This makes it accessible for both beginners and experienced developers alike. In addition, the API’s intuitive design enables developers to write clean, readable, and maintainable test code.

Example:

 // cypress/e2e/simple-api.cy.js

describe(‘Simple API test’, () => {

it(‘Logs in a user and checks for a welcome message’, () => {

cy.visit(‘http://example.com’)

cy.get(‘#username’).type(‘username)

cy.get(‘#password’).type(‘password)

cy.get(‘#login-button’).click()

cy.url().should(‘include’, ‘/dashboard’)

cy.contains(‘Welcome, username’)

})

})

The preceding example demonstrates how easy it is to understand and write a Cypress test. The code is clear, concise, and easy to read, making it straightforward for developers of all experience levels.

Built-in parallelization and dashboard features

Cypress has built-in support for parallel test execution, allowing you to scale your tests across multiple machines and browsers. This feature helps reduce test execution time and provides more efficient feedback.

The Cypress Dashboard Service offers additional features like test analytics, video recording of test runs, and team collaboration tools. These features can be invaluable for managing large-scale test suites and improving overall testing workflows.

Such features are available only by purchasing a paid plan in Cypress Cloud. But by using free plugins like cypress-parallel or cypress-split, you can run tests in Parallel.

Integration with CI/CD tools

Cypress can easily integrate with widespread continuous integration (CI) and continuous delivery (CD) tools such as Jenkins, GitLab, and CircleCI. This seamless integration helps ensure that your tests are always up-to-date and that your application remains reliable throughout the development lifecycle.

Example:

To integrate Cypress with GitHub Actions, create a `.github/workflows/main.yml` file with the following content:

name: Cypress Tests

on: push

jobs:

cypress-run:

runs-on: ubuntu-latest

steps:

- name: Checkout code

uses: actions/checkout@v3

- name: Run Cypress tests

uses: cypress-io/github-action@v5

with:

build: npm run build

start: npm start

The preceding example is a basic CI setup and job using the Cypress GitHub Action to run Cypress tests within the Electron browser.

Wide range of plugins and community support

Cypress has a growing ecosystem of plugins that extends its core functionality, allowing you to tailor the framework to your specific needs. These plugins cater to various use cases, including visual testing, accessibility testing, and integration with popular JavaScript frameworks. Additionally, the Cypress community is active and supportive, providing valuable resources and assistance to help you succeed with your testing efforts.

Example:

The `cypress-axe` plugin is famous for integrating a11y (accessibility) testing with Cypress. The plugin adds the axe-core library to your Cypress tests, allowing you to run accessibility audits on your web application.

To install and use the cypress-axe plugin, follow these steps:

npm install --save-dev cypress-axe

Import the plugin:

// cypress/support/e2e.js

import ‘cypress-axe’

Use the plugin in your test:

// cypress/e2e/accessibility.cy.js

describe(‘Accessibility testing’, () => {

beforeEach(() => {

cy.visit(‘http://example.com’)

cy.injectAxe()

})

it(‘Checks for accessibility violations’, () => {

cy.checkA11y()

})

})

In this example, we installed and used the cypress-axe plugin to check for accessibility violations in our web application.

In conclusion, Cypress offers many benefits for web automation testing, including real-time reloading, time-travel debugging, automatic waiting, a simple API, built-in parallelization, CI/CD integration, and a wide range of plugins with solid community support. As a result, you can create more robust and reliable web applications by incorporating Cypress into your development workflow.

Difference between Cypress and Selenium

As Selenium is a primarily known library for test automation, it will be beneficial to compare it with Cypress. Here, we will explore the key differences between Cypress and Selenium. The comparison will include the following aspects:


	Architecture: Cypress’s direct browser access versus Selenium’s WebDriver-based approach

	Language support: JavaScript in Cypress versus multiple languages in Selenium

	
Automatic waiting and command retries in Cypress

	Speed and performance comparison

	Ease of setup and learning curve



Architecture: Cypress’s direct browser access versus Selenium’s WebDriver-based approach

Cypress and Selenium have different architectures, resulting in differences in capabilities and performance.

Cypress operates directly within the browser, executing commands as soon as they are issued. This allows Cypress to provide real-time feedback, time-travel debugging, and automatic waiting. Additionally, since it runs in the same run-loop as your application, it can access and manipulate the DOM directly, offering better control and reliability.

Selenium, on the other hand, relies on the WebDriver protocol to communicate with the browser. This means that commands need to be sent from the test script to the WebDriver server, which then forwards them to the browser. This extra communication layer introduces latency and can result in slower test execution.

It can be summarized as follows:








	
Feature


	
Cypress


	
Selenium





	
Architecture


	
Direct browser access


	
WebDriver-based





	
Real-time feedback


	
Yes


	
No





	
Time-travel debugging


	
Yes


	
No





	
Automatic wait


	
Yes


	
No (requires explicit waits)






Table 1.1: Comparison of architecture

Language Support: JavaScript in Cypress versus multiple languages in Selenium

Cypress is built exclusively for JavaScript, meaning you can only write your tests in JavaScript. This can be an advantage for teams that are well-versed in JavaScript and want a consistent language across their development and testing stack. Therefore, Cypress tests anything that runs in the context of a browser, no matter which language has been used to write an application.

Selenium supports multiple programming languages, including Java, C#, Ruby, Python, and JavaScript. This flexibility allows developers to choose a language that best suits their skillset or the requirements of their project.

Automatic waiting and command retries in Cypress

One of the critical differences between Cypress and Selenium is how they handle waiting and retries (refer Table 1.2).

Cypress automatically waits for elements to become available and actions to complete before proceeding, eliminating the need for manual timeouts and retries. This intelligent waiting mechanism significantly reduces flakiness and improves test reliability.

Selenium, by contrast, often requires explicit waiting strategies and timeouts to handle asynchronous operations, which can make tests more complex and prone to flakiness.








	
Feature


	
Cypress


	
Selenium





	
Automatic waits


	
Yes


	
No (requires explicit waits)





	
Command retries


	
Yes


	
No (must be implemented manually)






Table 1.2: Comparison of waiting and retries

Speed and performance comparison

Regarding speed and performance, Cypress has some advantages over Selenium (refer Table 1.3).

Cypress’s direct browser access architecture and automatic waiting capabilities lead to faster test execution, as there is less latency and no need for manual waits. Additionally, Cypress has built-in parallelization support, which can significantly reduce the overall test execution time when running multiple test suites.

Selenium’s WebDriver-based approach can result in slower test execution due to the additional layer of communication between the test script, WebDriver server, and browser. Parallelization is possible in Selenium but requires additional setup and configuration, such as third-party tools like Selenium Grid or TestNG.

Moreover, Cypress’s real-time feedback and time-travel debugging capabilities allow developers to quickly identify and fix issues in their tests, further improving the overall testing process’s efficiency.








	
Feature


	
Cypress


	
Selenium





	
Test execution speed


	
Faster due to direct browser access


	
Slower due to the WebDriver-based approach





	
Parallelization


	
Built-in


	
Requires additional setup (for example, Selenium Grid, TestNG)





	
Real-time feedback and debugging


	
Yes


	
No





	
Browser support


	
Chrome-family browsers (Chrome, Electron, and Microsoft Edge), WebKit (Safari’s browser engine), and Firefox.


	
Chrome, Firefox, Safari, Edge






Table 1.3: Comparison of speed and performance

Ease of setup and learning curve

Cypress is known for its ease of setup, with minimal configuration required to start writing and running tests. In addition, its user-friendly API and extensive documentation make it relatively easy for developers to learn and adopt.

Selenium, while powerful, can be more challenging to set up and configure, particularly when integrating with different browsers and testing environments. The learning curve for Selenium can be steeper, particularly for those who are new to WebDriver API and its associated concepts.








	
Feature


	
Cypress


	
Selenium





	
Easy of Setup


	
Easier


	
More complex





	
Learning Curve


	
Lower


	
Higher






Table 1.4: Comparison of easiness of setup and learning curve

In conclusion, both Cypress and Selenium offer valuable features for web application testing. Still, their differences in architecture, language support, waiting mechanisms, speed, performance, and ease of setup can make one more suitable, depending on your specific needs and preferences.

Cypress may be better for teams primarily working with JavaScript or TypeScript and seeking a faster, more user-friendly testing framework. However, it might be more practical to use Selenium for teams that require support for multiple programming languages or have existing test suites written in Selenium.

It is also worth noting that the choice between Cypress and Selenium doesn’t have to be mutually exclusive. In some cases, teams may choose to use both frameworks, leveraging the unique strengths of each to create a comprehensive testing strategy. For example, Cypress could be used for end-to-end and component testing for JavaScript-heavy applications. At the same time, Selenium could be employed for cross-browser testing or tests written in other languages.

Ultimately, the best choice depends on your specific requirements, team skillset, and project goals. However, by understanding the key differences between Cypress and Selenium, you can make an informed decision that best supports your testing needs and helps ensure the quality and reliability of your web applications.

Key features of Cypress 12

Initially released in 2014, Cypress has been continuously evolving and improving over the years to become a leading choice for web automation testing. Its strong focus on delivering a superior developer experience has attracted a significant user base and a thriving community. Over the years, the Cypress team has been dedicated to incorporating user feedback and addressing the ever-changing landscape of web development, resulting in a robust and feature-rich testing tool.

At version 12.10, Cypress has come a long way since its inception. It boasts numerous advanced features, such as real-time feedback, time-travel debugging, automatic waiting, a simple JavaScript API, a built-in parallelization, supporting multiple browsers, supporting not only end-to-end testing but also component testing, multiple origins, caching sessions when logging, and switching users in tests.

Cypress persistently rolls out new features, enhancements, and bug fixes to ensure an up-to-date and reliable testing experience. Accompanying these updates is extensive technical documentation thoroughly covering all alterations associated with each release. This thorough documentation enables users to stay informed about the latest improvements and adapt their testing strategies accordingly, ensuring optimal utilization of the Cypress testing tool.

Consequently, it is essential to examine the crucial features introduced in Cypress version 12, as these enhancements significantly contribute to the tool’s overall capabilities and user experience. Furthermore, by understanding the latest updates and advancements, we can better appreciate Cypress’s value to the web automation testing landscape.

Multiple origins testing with ‘cy.origin()’

One of the most significant new features in Cypress 12 is the ability to test multiple origins in a single test using the new `cy.origin()` command. This command allows you to change the origin of the current page and test interactions between different domains.

Example:

 // cypress/e2e/cross-origin.cy.js

describe(‘Cross-origin test’, () => {

it(‘User should be able to login’, () => {

cy.visit(‘http://example.com’);

//clicking log in button redirects to another domain

cy.get(‘#login-button’).click();



cy.origin(‘auth.yourAuthDomain.com’, () => {

cy.get(‘#username’).type(‘username);

cy.get(‘#password’).type(‘password);

//clicking on submit does auth and redirects back to example.com

cy.get(‘#submit-button’).click();

});

cy.contains(‘Welcome, username’)

})

})

In the preceding example, we visit ‘http://example.com’, then click the Login button that redirects us to another domain, ‘auth.yourAuthDomain.com’, where we authenticate using the username and password and click the Submit button. The last action redirects us back to the original domain, ‘http://example.com’ already logged in.

Browser context preservation with `cy.session()`

Cypress 12 `cy.session()` command became generally available for end-to-end testing, allowing you to preserve cookies, local storage, and session storage between tests to maintain a consistent browser context. This is particularly useful when testing complex applications that rely on cookies or other persistent data.

Example:

// Caching session when logging in via page visit

cy.session(name, () => {

cy.visit(‘/login’)

cy.get(‘#username’).type(‘username);

cy.get(‘#password’).type(‘password);

cy.get(‘#login-button’).click();

cy.contains(‘Welcome, username’)

})

In the preceding example, we create a session with a specific name, and after successful login, we cache the session by caching and restoring cookies, local storage, and session storage. Our login code’s steps to create the session will only be performed once when it’s called the first time in any given spec file. After that, subsequent calls will restore the session from the cache.

Test isolation

One of the significant updates in version 12.0 is test isolation. While Cypress has always recommended writing tests in a clean context, this feature now enforces running tests in a clean browser context through test isolation. This means that each test runs in its clean browser context, with cookies, local storage, and session storage cleared between tests. This ensures that each test has a consistent starting point and is not affected by any previous tests. This option is configurable but is enabled by default.

// Example configuration in cypress.config.js with testIsolation disabled

const { defineConfig } = require(‘cypress’)

module.exports = defineConfig({

e2e: {

testIsolation: false,

// other configuration options

},

})

It is important to note that any tests that relied on the browser to be at a particular state will not work with the new test isolation behavior.

This feature is only available for e2e testing configuration. Cypress does not support the test isolation feature configuration in component testing. By running the component tests, Cypress always resets the browser context before each test.

Fix for dreaded detached DOM errors

Cypress v12 has introduced a fix for one of Cypress’s oldest and most annoying issues, the “Detached DOM” error. Cypress throws an error when an element is queried from a parent element and becomes detached from the DOM. The new fix involves enhancing the DOM resolution logic to re-query new elements that might have replaced the older elements due to DOM updates. This will lead to tests being more reliable and stable.

The current behavior throws an error when Cypress tries to interact with a detached element, with a suggestion to re-query for the element or add ‘guards,’ which delay Cypress from running new commands. However, the desired behavior is for Cypress to re-query the previously found element and continue the command with any newfound elements. The proposal is to make this an option passed to the command to allow this or not.

Here’s an example of the issue:

it(‘this will fail but should not’, () => {

cy.visit(‘index.html’)

cy.get(“select”).select(“First”)

// adding any wait time will make it pass

// cy.wait(0)

cy.get(“input”).type(“Hello”)

})

In the preceding example, when the `cy.get(“input”).type(“Hello”)` command is run, if the select element has been detached from the DOM due to a framework re-render or code reacting to an event, Cypress throws an error.

The fix for this issue will make tests more reliable and eliminate the need for ‘guards’ or re-querying elements.

In summary, keeping yourself updated with Cypress’s changelog is crucial for making the most of this impressive testing tool. By attentively monitoring the changelog, you can be confident that you’re utilizing the most recent features, enhancements, and bug resolutions the Cypress team constantly delivers. Not only does this empower you to maintain a state-of-the-art testing approach, but it also assists you in adjusting your tests to accommodate any potential breaking changes or deprecated features. Additionally, being well-informed about Cypress’s ongoing progress enables you to offer valuable input to the community, nurturing a robust ecosystem that supports the tool’s growth and improvement. In the end, staying vigilant about the Cypress changelog is a vital practice for tapping into the full capabilities of this versatile web automation testing tool and achieving consistent and effective testing results.

Conclusion

This chapter is all about introducing Cypress, a tool that is widely used for checking web applications automatically. In this chapter, we delved into why Cypress is a great tool for this job and how it is different from other similar tools, especially Selenium. We also took a close look at Cypress 12, the latest version of the tool, on the day of writing this book, discussing its new features and how it has been improved. By the end of the chapter, readers had a solid understanding of what Cypress is, its advantages, how it stands against its competitors, and what makes the new version of Cypress 12 special.

As we move forward to Chapter 2: Setting Up the Development Environment, we are going to explore the initial steps to start using Cypress. This includes setting up the necessary software on the reader’s computers, such as Node.js and Cypress, and learning how to start your very first Cypress project. Instructions will be provided in a step-by-step manner to ensure a smooth process.

Further Reading

Certainly, it’s always beneficial to delve deeper into the topic to gain a more comprehensive understanding. Here are some resources that would supplement the material covered in the book:


	
Cypress official documentation: The official Cypress documentation (https://docs.cypress.io/) is an invaluable resource. It provides a detailed overview of all aspects of Cypress, from installation to advanced concepts.

	
Cypress GitHub repository: The Cypress GitHub repo (https://github.com/cypress-io/cypress) is a great place to check for updates, report issues, and even contribute to the project. This can help you stay up-to-date with the latest developments and understand common issues users face.



Remember, the key to mastering any tool is a mix of theoretical understanding and practical application.







CHAPTER 2


Setting Up the Development Environment



Introduction

In this chapter, readers will learn how to set up their development environment to start using Cypress. We will go through the processes like installing Node.js, installing and configuring Cypress, and creating a new Cypress project. The chapter will provide step-by-step instructions and cover various configurations to ensure a smooth setup process.

Structure

In this chapter, we will discuss the following topics:


	Installing Node.js

	Installing Cypress

	Configuring Cypress

	Creating your first Cypress project



Installing Node.js

Node.js is an open-source, cross-platform JavaScript runtime environment built on Chrome’s V8 JavaScript engine. It was created by Ryan Dahl in 2009 to address the limitations of traditional web servers that needed help to handle numerous concurrent connections efficiently.

Node.js enables developers to use JavaScript to write server-side code, allowing them to build scalable, high-performance web applications. Before Node.js, JavaScript was used primarily for client-side programming in web browsers. By expanding JavaScript to the server side, Node.js has revolutionized web development and allowed developers to use a single language for both front-end and back-end development.

There are several reasons why Node.js has become so popular, including:


	
JavaScript everywhere: As mentioned earlier, Node.js allows developers to write server-side code using JavaScript. This means that developers proficient in JavaScript can now work on both the front-end and back-end without learning a new programming language, leading to more efficient and streamlined development processes.

	
Event-driven, non-blocking architecture: Node.js is built on an event-driven architecture that uses a non-blocking I/O model. This makes it particularly well-suited for handling concurrent connections and building scalable, high-performance web applications. For example, in traditional server-side environments, each connection request creates a new thread, which can lead to performance issues as the number of connections increases. Node.js, on the other hand, uses a single-threaded event loop to handle multiple connections, making it more efficient in managing resources.

	
NPM (Node Package Manager): Node.js has a built-in package manager called npm, a vast repository of open-source libraries and modules. Npm makes it easy for developers to find, share, and reuse code, resulting in faster development cycles and a vibrant community of contributors.

	
Wide adoption: Many prominent companies and organizations, including Netflix, LinkedIn, Walmart, and NASA, have embraced Node.js for their web applications. This widespread adoption has led to a thriving ecosystem, a wealth of resources, and an active community that continually contributes to the platform’s growth and development.

	
Easy to learn: JavaScript is one of the most popular programming languages widely taught in computer science programs and coding boot camps. This makes it relatively easy for new developers to learn Node.js and quickly become productive.



Node.js has gained popularity due to its ability to enable JavaScript on the server side, its event-driven and non-blocking architecture, the extensive npm ecosystem, widespread adoption, and ease of learning. This combination of features has made Node.js a powerful tool for web development and an attractive choice for developers and organizations.

In this chapter, it is essential to mention about package managers. We’ve already mentioned NPM (Node Package Manager). The alternative choice can be Yarn - a package manager that Facebook designed.

NPM and Yarn are two popular package managers in the JavaScript ecosystem. They help developers manage dependencies and install, update, and remove libraries or packages required for the projects. Both package managers aim to make it easier to work with JavaScript libraries, but they differ in their approach and features.

NPM (Node Package Manager)

NPM is the default package manager for Node.js and was introduced in 2010. It provides a command-line interface for developers to interact with a vast repository of open-source libraries and modules. NPM has become popular due to the following reasons:


OEBPS/nav.xhtml




Table of Contents





		Cover Page



		Title Page



		Copyright Page



		Dedication Page



		About the Author



		About the Technical Reviewer



		Acknowledgements



		Preface



		Errata



		Table of Contents



		1. Getting Started with Cypress Testing



		Introduction



		Structure



		Introduction to Cypress



		Overview of Cypress



		Advantages of Cypress



		Integration with Modern Web Technologies and Frameworks







		Benefits of using Cypress for automation testing



		Real-time reloading and time-travel debugging



		Automatic waiting and retries



		Simple and easy-to-understand API



		Built-in parallelization and dashboard features



		Integration with CI/CD tools



		Wide range of plugins and community support







		Difference between Cypress and Selenium



		Architecture: Cypress’s direct browser access versus Selenium’s WebDriver-based approach



		Language Support: JavaScript in Cypress versus multiple languages in Selenium



		Automatic waiting and command retries in Cypress



		Speed and performance comparison



		Ease of setup and learning curve







		Key features of Cypress 12



		Multiple origins testing with ‘cy.origin()’



		Browser context preservation with `cy.session()`



		Test isolation



		Fix for dreaded detached DOM errors







		Conclusion



		Further Reading







		2. Setting Up the Development Environment



		Introduction



		Structure



		Installing Node.js



		NPM (Node Package Manager)



		Yarn







		Installing Cypress



		Configuring Cypress



		Project structure







		Creating your first Cypress project



		Conclusion



		Further Readings







		3. Writing Your First Test



		Introduction



		Structure



		Introducing the Cypress Test Runner



		Writing a simple test case



		Using Cypress commands



		Navigating commands



		Querying DOM commands



		Action commands



		Assertion commands



		Network requests commands



		Cookies and local storage commands







		Using Cypress assertions



		BDD assertions



		TDD assertions



		Sinon-Chai assertions



		Complex assertions



		Assertion timeout







		Understanding hooks and aliases



		Introducing hooks



		Using aliases



		Scopes of hooks and aliases



		Hooks scope



		Aliases scope







		Best practices for using hooks and aliases



		Dealing with asynchronous operations







		Conclusion



		Further readings







		4. End-to-End (E2E) Testing



		Introduction



		Structure



		Overview of E2E testing



		The crucial role of E2E testing



		E2E testing with Cypress: A new age in testing







		Testing user interactions



		Clicking and double clicking



		Typing into input fields



		Checking and unchecking boxes



		Selecting options in dropdowns



		Working with events



		Drag and Drop



		Hovering



		File uploads



		Keyboard interactions



		Scrolling



		Right clicking







		Form interactions



		Dealing with popups and alerts



		Working with iframes







		Working with different types of elements



		Text elements



		Input fields



		Buttons



		Links



		Images



		Lists



		Tables



		Scalable vector graphics (SVGs)



		Forms



		Dialog and pop-up windows



		Canvas



		Audio and video elements



		Shadow DOM



		Custom Elements



		Map Elements







		Handling timeouts and retries



		Timeouts



		Automatic retries



		Custom retries



		Best practices for handling timeouts and retries







		Conclusion



		Further readings







		5. Component Testing



		Introduction



		Structure



		Introduction to component testing



		Types of component testing



		Timing of component testing execution







		Differentiating component testing and unit testing



		Component testing vs end-to-end testing



		Setting up component testing with Cypress



		Writing component tests



		Scaffold React Application



		Testing React components



		Crafting a component



		First component test



		Locating elements and assertions



		Incorporating props into components



		Testing interactions



		Testing React components with events



		Testing Angular components



		Building an Angular component



		Component inputs



		Interactions with the component



		Testing Angular component events



		Testing Vue.js components



		Building a Vue.js component



		Locating elements and assertions



		Incorporating props into components



		Testing interactions



		Testing Vue.js components with events







		Best practices for component testing



		Understand the component’s functionality



		Isolate the component



		Use descriptive test titles



		Favor integration over snapshot tests



		Test different states



		Test events and side effects



		Keep tests DRY, but not at all costs



		Incorporate accessibility checks



		Continuously run tests in your development environment



		Use a test-first methodology (TDD/BDD)







		Debugging and troubleshooting component tests



		Utilize Cypress’s time traveling and real-time reloading



		Use cy.log for custom logging



		Use cy.pause for pausing execution



		Use Cypress’s built-in debuggability



		Reviewing test artifacts







		Integrating component tests into your testing workflow



		Running component tests locally



		Running component tests in continuous integration



		Writing component tests



		Running component tests







		Conclusion



		Further readings







		6. API Testing



		Introduction



		Structure



		Introduction to API testing



		Understanding RESTful APIs



		Exploring GraphQL



		Comparing REST and GraphQL



		Cypress for API Testing







		Testing RESTful APIs



		Testing GraphQL APIs



		Aliasing Multiple Queries or Mutations



		Expectations for Query or Mutation Results



		Modifying a Query or Mutation Response











		Validating API responses



		Conclusion



		Further Readings







		7. Data-Driven Testing



		Introduction



		Structure



		Overview of data-driven testing



		Data-Driven Testing in Action







		Using JSON Files for Test Data



		Reasons for Using JSON Files



		Structuring JSON Files for Test Data



		Reading JSON Files in Cypress



		Implementing Data-Driven Tests with JSON Files







		Reading Data from Databases



		Reasons for Using Databases for Test Data



		Setting up the Database Connection



		Setting up MongoDB Connection



		Setting up MySQL Connection



		Using MongoDB and MySQL Data in Cypress Tests







		Implementing Data-Driven Test Cases



		Segregation of Test Data and Production Data



		Leveraging Realistic Data in Tests



		Minimizing Test Data Duplication



		Employing Cypress Plugins for Database Testing



		Setting up a Test Database



		Connecting Cypress to the Test Database



		Test Cases for CRUD Operations



		Test Case to Verify Data Integrity



		Testing Database Transactions



		Testing Database Migrations







		Conclusion



		Further Reading







		8. Advanced Cypress Techniques



		Introduction



		Structure



		Cypress custom commands



		Creating a custom command



		Using a custom command



		Custom command overwrites



		Asynchronous custom commands



		Chaining custom commands



		Passing options to custom commands



		Custom commands with aliases



		Validating custom commands



		Use cases for custom commands



		Overriding existing commands



		Handling errors in custom commands



		Debugging custom commands



		Best practices for custom commands







		Using videos and screenshots for debugging



		Debugging with screenshots



		Debugging with videos



		Using screenshots and videos effectively







		Working with Cypress plugins



		Configuration



		Preprocessors



		Run lifecycle



		Spec lifecycle



		Browser launching



		Screenshot handling



		cy.task



		List of plugins



		Crafting a plugin



		Custom plugin examples



		Interacting with a database



		Plugin Events



		Environment variables



		Browser launch API



		Custom Webpack preprocessor



		Existing Cypress plugin examples



		cypress-cucumber-preprocessor



		cypress-axe







		Handling authentication and authorization



		Authentication vs authorization



		Approaches to testing authentication and authorization



		Testing the UI



		Programmatic login



		Handling authorization



		Testing API authorization



		Authentication by visiting a different domain with cy.origin()



		Programmatic login using Auth0 authentication







		Parallel test execution



		Using CI/CD tools for parallelization



		Parallelization beyond the Dashboard: plugins



		cypress-parallel



		cypress-split







		Cross-browser testing



		Running tests in a specific browser



		Running tests in all supported browsers



		Electron browser: an integral part of Cypress



		Chrome browsers



		Firefox browsers



		Managing test flakiness across different browsers



		Comparing browser behaviors



		WebKit (experimental)







		Network stubbing and mocking



		Using the cy.intercept() command



		Intercepting responses and asserting with cy.wait()







		POST request stubbing



		Wildcards and glob patterns







		Visual regression testing



		Setting up cypress-image-snapshot plugin



		Creating your first visual test



		Dealing with dynamic content



		Image comparison strategies



		Setting up cypress-visual-regression



		Basic usage of cypress-visual-regression



		Dealing with dynamic content



		Customizing cypress-visual-regression







		Conclusion



		Further Reading







		9. Cypress Cloud, Smart Orchestration, and Flaky Test Management



		Introduction



		Structure



		Introduction to Cypress Cloud



		Understanding Cypress Cloud



		Key features of Cypress Cloud



		Detailed test recording and optimized management







		Smart Orchestration in Cypress



		Introduction to Smart Orchestration



		Parallelization



		Load Balancing



		Spec Prioritization



		Run Cancellation







		Managing flaky tests



		Network instability



		Concurrency issues



		Test order dependency



		Insufficient wait for rendering or asynchronous operations



		Test retry ability



		Use of cy.should() assertion for automatic retrying



		Flaky test management in Cypress Cloud



		Test retries and flake detection



		Flagging flaky tests



		Flaky test analytics



		Flake severity



		Flake alerting







		Leveraging Cypress Analytics



		Accessing Cypress Analytics



		Key metrics in Cypress Analytics



		Combining Analytics with Other Cypress Features







		Conclusion



		Further Reading







		10. Integrating with GitHub, GitLab, and Cucumber



		Introduction



		Structure



		Version control with GitHub and GitLab



		Types of version control systems



		Importance of version control



		Version control with Git



		GitHub



		Setting up projects on GitHub



		Integrating Cypress with GitHub



		Collaboration on GitHub



		GitLab



		Setting up projects on GitLab



		Integrating Cypress with GitLab



		Collaboration on GitLab







		Using Git Hooks for automated testing



		Setting up Git Hooks with Husky



		Using Git Hooks for automated testing



		Caveats and considerations



		Git Hooks examples



		Running specific Cypress tests with Git Hooks



		Using pre-push Hook for integration tests



		post-merge Hook for regression tests







		Implementing BDD with Cucumber and Cypress



		Setting up Cypress and Cucumber



		Comparison: Traditional testing vs BDD with Cucumber and Cypress







		Conclusion



		Further reading







		11. Continuous Integration and Continuous Deployment (CI/CD)



		Introduction



		Structure



		Overview of CI/CD



		Components of CI/CD



		Configuration management tools



		Ansible



		Puppet



		Chef



		Terraform



		Docker







		Monitoring and logging



		Deployment strategies



		Blue-Green deployment



		Canary deployment



		A/B testing



		Rolling deployment







		CI/CD Workflow with Cypress



		Benefits of CI/CD with Cypress:











		Integrating Cypress with Docker



		Running tests in a Docker Container



		Tips for using Cypress with Docker



		1. Multi-stage builds



		2. Docker Compose



		3. Cypress configuration



		4. Integration with CI/CD tools



		5. Running Cypress tests on different browsers







		Building Jenkins Pipelines with Cypress



		Creating a Jenkins Pipeline



		Running Cypress tests in Docker



		Reporting with Cypress and Jenkins







		Other CI/CD tools for Cypress



		Travis CI



		GitLab CI/CD



		Parallelization



		Running on merge requests







		GitHub actions



		Comparing CI/CD tools







		Conclusion



		Further reading







		12. Reporting and Test Results



		Introduction



		Structure



		Overview of reporting techniques



		Different types of reports



		Reporting formats



		HTML report example



		JSON report example



		JUnit XML report example



		Console report example







		Cypress and reporting







		Built-in Cypress reporting



		Cypress Test Runner



		Test status and command log



		Screenshots and videos



		Test results in CI







		Third-party reporting tools and plugins



		Mocha reporters



		Mochawesome







		Cypress-multi-reporters



		cypress-mochawesome-reporter











		Generating custom reports with Cypress



		Customizing Mochawesome reports



		Generating reports with custom data



		Creating custom reports







		Analyzing test results for insights and improvements



		Basic analytical techniques



		Advanced analytical techniques



		Actioning insights



		Measuring test effectiveness



		Understanding the test report



		Analyzing test failures



		Analyzing test duration



		Identifying patterns



		Summary











		Conclusion



		Further reading







		13. Conclusion



		Introduction



		Structure



		Recap of critical concepts



		Introduction to Cypress



		Setting up and starting with Cypress



		Writing tests in Cypress



		End-to-End (E2E) testing with Cypress



		Component testing



		API testing



		Data-driven testing



		Advanced techniques



		Cypress cloud and advanced features



		Integration with VCS and BDD



		Continuous integration and deployment



		Reporting







		Best practices for using Cypress



		Structure your tests



		Waiting strategies



		Using Page Object Model (POM)



		Handling dynamic data



		Avoid dependent tests



		Efficient selectors



		Regularly update Cypress



		Implement continuous integration



		Reusable functions



		Adopt data-driven testing



		Cross-browser testing



		Reviewing test failures







		Resources for further learning



		Official documentation



		Cypress Real World App (RWA)



		Blogs and tutorials



		Udemy and other online courses



		Cypress plugins



		Cypress GitHub repository



		Communities and forums



		Conferences and workshops



		Continuous integration services











		Index











Guide





		Title Page



		Copyright Page



		Table of Contents



		1. Getting Started with Cypress Testing











OEBPS/images/line.jpg





OEBPS/images/logo.jpg





OEBPS/images/cover.jpg
ANVA

Web Automation
Testing with

Master End-to-End Web Application
Testing Automation to Accelerate
Your QA Process with Cypress

\ Vitaly Skadorva
» T





