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For my grandparents – the biggest fans of my writing. Mówiłam, że jak dorosnę, zostanę pisarka!
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I WAS THREE, maybe four years old when my parents switched off all the lights in our small but cosy flat. At once intrigued and nervous, I watched Dad turn on a small desk lamp and point it towards a cheap plastic globe, focusing the light on the east coast of the US as best as he could. ‘Look,’ he said, ‘it’s dark here in Warsaw, but your aunt in New York must be just getting ready for lunch.’ He explained that the Earth is round and that it never stops rotating, unlike the spinning tops I liked playing with. And that, always, somewhere it is day and somewhere it is night.


After this special evening, the globe became my favourite toy. I kept spinning it, pointing my finger to places I wanted to visit, captivated by their names – from Ashgabat to Zanzibar. As a pre-teen, I expressed this growing passion for geography by plastering my bedroom walls with maps, saving just a little spot for a picture of a celebrity crush. It was much later that I realized that the world map on my wall and the globe, which supposedly represented the same planet, told two different stories.


On the flat map, Greenland was as big as the whole of Africa, but on the globe, the white island was dominated in size by the continent. I knew deep down that something wasn’t right, but only at university, during a differential geometry* lecture, did I learn about the reason for this jarring discrepancy. Even a task as simple as comparing areas of countries requires some knowledge about the mathematical principles behind the map we are using.


Flemish cartographer Gerardus Mercator created Mercator’s map with the characteristic right-angled latitude–longitude grid in the sixteenth century. Though still used today, it is widely known to be deceptive to the eye. The map’s area distortion conveniently supports the North-centric view of itself as being bigger and thereby more powerful. Almost half a millennium later, this map remains the standard view of the world. From primary school onwards, we are fed this worldview and its intrinsic implications of the region’s superiority, which impacts the way we see our home countries. Maps don’t just shape our sense of space; they sculpt our perception of other nations too.


[image: Diagram of a globe showing that the latitude and longitude coordinates of a point on the surface, 60 degrees north and 110 degrees west, are derived from the angles between that point and the Equator, and between that point and the Prime Meridian, respectively.]

FIGURE 0.1: Meridians, or lines of longitude, are imaginary lines on the Earth’s surface connecting the poles. Longitude specifies a point’s position with respect to the Prime Meridian. Parallels, or circles of latitude, are imaginary circles on the Earth’s surface parallel to the Equator. Latitude specifies a point’s position with respect to the Equator.





Mercator’s map gets bad press these days, yet we keep an online version of it in our pockets. Its property of preserving the angles between lines on the Earth lets us easily identify the north, which makes the map as useful for navigation today as it was at its birth. It should, however, come with a warning that it distorts the areas: a cartographer’s equivalent of ‘Objects in the mirror are closer than they appear’.


Mercator’s map isn’t distorted because of its creator’s malevolence or ineptitude. In 1827, Carl Friedrich Gauss, a polymath as grumpy and eccentric as he was ingenious, mathematically proved the impossibility of flawlessly translating a three-dimensional globe into a two-dimensional map. His Remarkable Theorem (that’s not a joke, but a translation of the theorem’s Latin name), while jargony and full of technical assumptions, boils down to this simple fact: perfectly reducing three dimensions to two is impossible. We can’t make a perfect map on a flat surface.


This book explores Gauss’s Remarkable Theorem and other mathematical developments that reveal the way we make maps and, consequently, see the world. Maps represent reality, but we can take full advantage of these visual aids only when we understand the underlying maths. Otherwise, we’re prone to draw wrong conclusions and inherit the mapmaker’s biases, whether intentional or not. For example, in Chapter 2 we’ll see different distortions resulting from different ways of depicting the globe on a flat sheet of paper, and we’ll gain mathematical tools to protect ourselves from being fooled by those deformations.


Beyond interpreting a map, we can use maths to turn a map into a solution to a real-life problem. In Chapter 7, for example, we’ll tackle situations in which maps and maths together can protect people from danger, be it a disease or a serial killer. With mathematical tools and insights, we can get much more information from a map than with our eyes and intuition alone. These maths-supported applications of maps become increasingly important with improving technology and computational power.


Throughout the book, we’ll see many examples of how mathematics and cartography inform each other, a relationship which has inspired the book’s title. While different on the surface, the jobs of a mathematician and a cartographer are surprisingly similar. To create useful models of real-world phenomena, both mathematicians and mapmakers must choose the information to keep and omit, and different choices will lead to different conclusions. This is why we need to understand not only what we see, but what we don’t see when presented with a map or a mathematical model. As we’ll learn, failure to do so may lead to anything from a commuter walking a few steps too many to an international conflict.


We’ll look at maps covering all scales and topics, from world maps to plans of our local streets, from counter-intuitive mosque orientations to misleading underground maps. We’ll visit Ancient Greece to estimate the radius of the Earth with unbelievable precision, without satellites or photography. We’ll pop into eighteenth-century Königsberg, a Prussian city whose seven bridges inspired a new field of mathematics called graph theory. We’ll also step into the world of fractal dimensions and, while we marvel at the surprisingly complex nature of a mundane cauliflower, we’ll understand why measuring a country’s borders is all but impossible and what geopolitical consequences this has.


We can’t function without maps. We depend on them when we commute, travel and interpret the news but also when we fight diseases, catch criminals and search for missing planes. Maps have been fuelled by mathematics and have also inspired numerous mathematical breakthroughs. Once we notice this connection between mathematics and cartography, we won’t be able to unsee it, and it will help us to understand how our world works.
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LIKE SO MANY PEOPLE, I grew up believing that until the brave Christopher Columbus’s ‘discovery’ of America, people were convinced that the Earth was flat. In history classes, we were taught that in 1492, Columbus, sailing westward from Palos de la Frontera in Spain, reached what he believed to be the ‘Indies’ (East Asia). This marked the end of the Middle Ages and the beginning of the Renaissance – or, as our textbooks claimed, the end of the Dark Ages and the start of the Age of Discovery. Without the great Columbus, our geography teachers would have been showing us continents and oceans on a pancake-shaped globe.


The myth that Columbus wanted to sail to eastern Asia to prove that the Earth was spherical seems to stem from Washington Irving’s 1828 fictional biography History of the Life and Voyages of Christopher Columbus. The truth is, educated people have known that the Earth isn’t flat since ancient times. Almost two millennia before Columbus’s travels, the Greek philosopher Aristotle published On the Heavens, in which he mentioned that during an eclipse one can observe a spherical Earth’s shadow on the Moon.* This by itself doesn’t exclude the possibility of a disk-shaped Earth, but it does when we combine it with the fact that the Earth’s shadow remains circular even as its orientation changes. Aristotle, noticing that the stars visible in Egypt and Greece differ, concluded that since Egypt and Greece are close to each other the Earth must be small. Columbus wrote, ‘Aristotle says between the end of Spain and the beginning of India is a small sea navigable in a few days.’ This possibility of an easy but fruitful journey must have sparked the curiosity of this experienced (and greedy) explorer.


When Columbus reached land on his westward voyage from Spain to the Indies, confident in his navigational abilities, he announced that he had achieved what others had proclaimed impossible: he had found a faster route to India, a land rich in silks and spices just waiting to be exploited and traded. But, as we all learn in primary school, instead of Asia, Columbus had reached today’s Bahamas, off the coast of North America, thus ‘discovering’ this continent for Europeans. I for one never once questioned how such a skilled navigator could make such a huge mistake. He knew that the Earth wasn’t flat, and he must surely have estimated how long the voyage would take. At first, I thought that he had mistaken America for Asia because he had simply miscalculated the distance between Spain and the Indies. Then I discovered that this wasn’t a mathematical mistake, but a matter of data fabrication. Columbus was familiar with accurate estimates of the Earth’s size, but he simply chose to ignore them. Crucially, these weren’t new figures coming from some cutting-edge research on measuring the Earth. The estimates were almost two millennia old.


Here comes the sun


Born in 276 bce in Cyrene in Ancient Greece (today’s Libya), Eratosthenes was a successful mathematician, geographer, poet, astronomer and music theorist. He moved to Egypt to become the chief librarian of the Library of Alexandria, one of the most famous libraries in history. He was also the first person known to scientifically compute the Earth’s circumference, with surprising precision. Although his book On the Measure of the Earth, which included this result, didn’t survive, it was described a few centuries later (we aren’t sure of the exact time) by the Greek astronomer Clomedes.


Eratosthenes thought about the Earth as a sphere. He knew that on the day of the summer solstice, the longest day of the year in the northern hemisphere, the sun shone directly on the Tropic of Cancer, lightening the bottoms of even the deepest wells.* Knowing that at noon local time – that is, at the time of the day when the sun is at its highest point in the sky – a deep well in Syene (today’s Aswan in Egypt) was lit by direct sunlight, Eratosthenes wanted to understand the position of the sun at the same time in Alexandria. By a lucky coincidence, the two cities lay along the same meridian, so the local noon occurred in both places at the same time.* To find the angle between sun rays and the Earth in Alexandria, Eratosthenes measured the angle between a vertical rod called a gnomon and its shadow, which turned out to be one-fiftieth of the full circle (360 degrees), so 7.2 degrees. A similar gnomon placed in Syene would cast no shadow, making this angle equal to zero degrees.


Now, imagine you’re about to cut yourself a slice of pizza. Everyone knows that the best part is the crust (right?) and the bigger the central angle of the slice, the larger part of the pie’s circumference – so, the more crust – you’ll get. In other words, the ratio between the part of the circle’s circumference between two radii and the whole circumference is equal to the ratio between the angle between these two radii and the full circle of 360 degrees. So, the distance between Alexandria and Syene divided by the Earth’s circumference is equal to the central angle between these two places divided by 360 degrees. Conveniently, the distance between Alexandria and Syene had already been measured to be 5,000 stadia, which is an ancient unit of measurement. To estimate the Earth’s circumference, Eratosthenes was missing just the central angle between the two cities.


[image: Diagram of Eratosthenes’s experiment. The sun’s rays are depicted by parallel arrows. The arrows align with the well in Syene but strike at an angle in Alexandria. Lines are drawn to demonstrate that this angle, θ, is equal to the central angle between the two cities.]

FIGURE 1.1: At the local noon of the summer solstice, sun rays are perpendicular to the ground in Syene and cast a shadow in Alexandria. The central angle between Syene and Alexandria and the angle between the sun rays and the gnomon in Alexandria have equal measures.





Eratosthenes assumed that sun rays are parallel to each other, which, although not technically true, for all practical purposes is a reasonable assumption. The sun is so far from the Earth and is so much bigger than our planet that only a tiny portion of the rays hit the Earth, making them almost parallel. This means that the central angle between Syene and Alexandria and the angle between the gnomon and the sun rays in Alexandria were created by a straight line (the extended Earth’s radius in Alexandria) crossing two parallel lines (the extended sun rays in Alexandria and Syene). From an old theorem, still taught in geometry classes today, Eratosthenes knew that this is a pair of equal angles.* This meant that the central angle between the two cities was equal to one-fiftieth of a full circle, which allowed him to conclude that the distance between Alexandria and Syene made up one-fiftieth of the Earth’s circumference. Thus, he arrived at the first scientific estimate of the Earth’s circumference: 50 × 5,000 = 250,000 stadia.


Historians disagree on the exact definition of the stadium measurement, which makes it impossible to assess the accuracy of Eratosthenes’s estimate. That exact value aside, most researchers still agree that he got astonishingly close to the actual value of about 40,000 kilometres. He was quite lucky, having made several errors along the way that cancelled each other out. For example, Syene didn’t lie exactly on the Tropic of Cancer, but slightly to the north of it. Also, contrary to his assumption that Syene and Alexandria were on the same meridian, the latter lay to the west. However, mathematical models never perfectly reflect reality. What’s most important is that Eratosthenes’s method was scientifically sound and, had he had access to more accurate measurement tools, his estimate wouldn’t have differed from the current best knowledge. That’s why he’s often considered the founder of scientific geodesy, which is the science of measuring the Earth’s shape, orientation in space and gravitational field.


Lies, damned lies, and Columbus


We left Christopher Columbus pondering his trip to the Indies. According to the scholar Ferdinand Columbus, who happened to be Christopher’s son, the explorer was familiar with the work of ancient and medieval geographers, including Eratosthenes. He used this knowledge to persuade others of his idea to get to the Indies by travelling westward. However, aware that any reasonable potential funder would consider this journey insane, Columbus carefully picked convenient facts and figures to present his argument.


To estimate the length of the potential westward journey to East Asia, Columbus needed two pieces of information: the Earth’s circumference and the width of Asia. The length of his journey would be close to the difference between these two values, so the smaller the Earth’s circumference and the wider Asia, the shorter the route to the Indies.


One of Columbus’s greatest inspirations was Marco Polo, a Venetian merchant who at the end of the thirteenth century travelled to Asia. Columbus learned about Polo’s journey from a contemporary, a Florentine mathematician and astronomer named Paolo dal Pozzo Toscanelli, who also went by the name of Paul the Physician. So respected was his knowledge of geography that Afonso V, the King of Portugal, asked him about the fastest route to the ‘land of spices’, that is, India. Back then, spices were as precious as toilet paper in early 2020, so the King considered exploring easier ways to get to Asia a worthy investment. He wanted to know if he should send people to sail around Africa or if going westward was a better idea. Toscanelli suggested a westward route, supporting his opinion with a nautical chart he had made. Although this map didn’t survive, in the following centuries multiple researchers recreated it based on later maps that had been influenced by it as well as Toscanelli’s detailed description of the westward route in the original letter.


Columbus, having learned about Toscanelli’s ideas for sailing west, wrote to him asking about the details. The Florentine physician replied attaching a copy of his letter to the King, together with the nautical chart that explained the route’s details. Columbus, confident (perhaps overconfident) in his sailing abilities, wasn’t looking for information, but for confirmation of his beliefs from a respected scholar – and he got what he wanted. Columbus and Toscanelli both believed in the accuracy of Marco Polo’s journals, in which Asia appeared thirty degrees of longitude wider than the estimates of contemporary scholars. To make things even more convenient, Polo had put the legendary rich island of Cipangu (today’s Japan) over 2,000 kilometres east of Asia’s coast, although its true shortest distance to the mainland is only about 200 kilometres. Despite these imaginary shortcuts, Toscanelli still estimated the journey to be about 9,000 kilometres – way more than any fifteenth-century sailor could handle. But Columbus’s talent for data fudging didn’t disappoint.


Before Columbus, multiple scholars had attempted to measure the Earth’s circumference. As we’ve seen with Eratosthenes, who did a great job with the tools at his disposal, even the best methods didn’t guarantee a perfect estimate, and a big issue was that different scholars used different units. Columbus decided to pick and choose his data to make the Earth as small as possible and the Indies as near as possible. In the end, he chose the estimate of the ninth-century Arab geographers who found the Earth’s circumference to be equal to 20,400 Arabic miles, each mile about 2,164 metres long.* This would make 44,146 kilometres, which was close to today’s value, but way too large a number for Columbus’s taste. So, he took the figure of 20,400 but claimed the unit to be not the Arabic but the Roman mile, which was equal to 1,480 metres – making the Earth’s circumference only about 30,192 kilometres. With these questionable calculations, Columbus reduced the Earth’s circumference by about a quarter. Even on this shrunken planet, the non-stop journey between the starting point in the Canary Islands and Cipangu would be too long for the most advanced ships. So, Columbus ‘added’ in some islands, all in spots perfect for breaks on the way to the destination, thus drastically reducing the longest stretch of continuous sailing. All these miscalculations brought Cipangu to approximately the same meridian as the Virgin Islands in the Caribbean, which likely impacted Columbus’s notorious confusion of continents.


Finally happy with his estimates, Columbus applied to João II, the new King of Portugal, for funding for the expedition. João’s royal mathematicians quickly spotted Columbus’s fabrications and realized that his plan wasn’t achievable. Undeterred by the rejection, he then tried his luck in Spain, where he was dismissed at least twice. But, after years of listening to Columbus’s arguments, King Ferdinand II and Queen Isabella I eventually approved his proposal, mostly thanks to the enthusiasm of the Spanish treasurer.


Columbus was lying to everyone else, but why was he lying to himself? In the end, he was the one who would pay a high price if the journey ended in a fiasco. As American historian Samuel Eliot Morison, author of the Pulitzer Prize-winning biography of Columbus, Admiral of the Ocean Sea, observed, ‘Columbus’s mind was not logical. He knew he could make it, and the figures had to fit.’ He died believing – at least officially – that he had discovered the westward route to the Indies, having come across the Bahamas after thirty-three days, about the same time he had expected to reach Cipangu. According to Morison, had there been no land between Spain and the Indies, Columbus likely wouldn’t have made it to Asia anyway because his ships weren’t advanced enough for such a long journey. Columbus was lucky, which can’t be said of the Americans decimated by European ‘explorers’.


If a navigator as skilful as Columbus couldn’t tell America from Asia, how could we even dream of making accurate maps? A breakthrough in measuring techniques came a few decades later, hidden in an appendix to an initially unsuccessful book that turned into a bestseller.



The magic of triangles


In 1524, just a few decades after Columbus’s travels, the young German mathematician and budding scientific publisher Peter Apian wrote and published Cosmographia, a textbook on topics ranging from astronomy to cartography to mathematical instruments. Despite its impressive scope, it wasn’t a huge success. Five years later, however, a Dutch mathematician, Gemma Frisius, lightly edited Apian’s book, and in this second edition, it became a popular introduction to scientific subjects such as astronomy and mathematics. Cosmographia’s success encouraged Frisius to publish new editions, into which he snuck some of his own work as appendices. The appendix of the third edition contained a detailed description of triangulation, a technique that changed mapmaking forever.


In times of GPS, we take measuring long distances for granted. But in the sixteenth century it was much easier to find angles than distances, which inspired Frisius’s idea.* Since measuring distances is hard, he thought, wouldn’t it be nice to have to do it only once, and then calculate other distances mathematically?


In the first step, a person conducting triangulation – a surveyor – measures the distance between two known points, known as the baseline. This used to be a physically demanding task, requiring moving a long, often heavy measure in a straight line, regardless of obstacles encountered along the way. Frisius noticed that even when the goal was to survey a large area, it was enough to measure only one distance and the rest would come from trigonometry.


Trigonometry is all about studying relationships between angles and side lengths in triangles. The surveyor creates a triangle, with the baseline as one side, and the third vertex at a point visible from the other two, for example, a tower or a mountain peak. Then, she measures the angles at the two observation points at either end of the baseline. Thanks to trigonometry, this is all the information needed to calculate the distances between the observation points and the point of interest, which has saved generations of surveyors from two arduous journeys through thick forests, mud or lakes between the observation points and the third vertex of the triangle. With the power of trigonometry, the surveyor can find two distances without leaving the safe, carefully chosen baseline.


This process by itself would significantly reduce the surveyor’s work, but Frisius took the idea even further. He suggested building a triangulation network, where each calculated side of a triangle would become a baseline of a new triangle. In principle, this would allow the surveyor to build an accurate map of a whole country without measuring a single distance beyond the baseline. In practice, one would measure additional distances to correct for inevitable measurement errors that would quickly add up in the process, but this wasn’t strictly necessary.


[image: Diagram of a triangle. The bottom vertices are the observation points, while the top vertex is the point of interest. The bottom edge is labelled ‘baseline.’ The remaining edges are labelled ‘calculated distance.’ The angles between the bottom and sides of the triangle are labelled ‘measured angle.’]

FIGURE 1.2: Triangulation is used to calculate the distances from two observation points to a point of interest, given the known distance between the observation points and the angles measured from the observation points.





[image: Diagram depicting the iterative process of building a triangulation network. First, a single triangle (left). Next, the calculated distance of that triangle becomes the baseline of a second triangle (centre). Finally, a third triangle is constructed through the same process (right).]

FIGURE 1.3: In a triangulation network, a calculated distance becomes a baseline of a new triangle.





Due to the popularity of Cosmographia, translated from Latin to French, Dutch and Spanish, the idea of triangulation quickly spread through Europe. Cartographers started using triangulation to create accurate maps, including Frisius’s famous student Mercator, who was surveying the Duchy of Lorraine (today’s north-eastern France). We’ll meet him again in the next chapter.


At the beginning of the seventeenth century, another Dutch mathematician, Willebrord van Royen Snell,* took triangulation to another level by applying it to measure the size of the Earth. Although he described his project in a book aptly named Eratosthenes Batavus (which translates to The Dutch Eratosthenes), his method differed from the ancient measurement by Eratosthenes. Snell used triangulation to find the accurate distance between Alkmaar and another Dutch city, Bergen-op-Zoom, about 130 kilometres almost directly south. Then, using astronomical observations, he found what fraction of the Earth’s circumference the stretch between Alkmaar and Bergen-op-Zoom comprised. From these two values, he calculated the Earth’s circumference within 4 per cent of the modern estimate, which, again, is impressive given the unsophisticated measurement and mathematical tools he had at his disposal.


Triangulation, a technique at once simple and powerful, not only allowed us to make accurate maps but also helped us establish the true shape of the Earth. The Earth not being flat doesn’t mean that it’s spherical – but to figure that out, we needed the first-ever international expedition.


Much ado about the shape of the Earth


The world-famous naval architect, historian of science and Pulitzer Prize finalist Larrie D. Ferreiro is eager to discuss geodesy, especially – he admits – with a fellow Imperial College alumna. Ferreiro’s job requires a deep understanding of politics and current events, so I’m not surprised that the moment he learns I’m in Warsaw, he has many questions about the impact of the war in Ukraine on the situation in neighbouring Poland. This leads us to a fascinating conversation about the importance of bringing political and social context to discussions about science, something which he has done successfully in his book Measure of the Earth.


By the seventeenth century, Europeans suspected that the Earth wasn’t a perfect sphere, but they couldn’t agree on the exact shape. The French philosopher René Descartes claimed that our planet was elongated at the poles, which would give it the shape of an egg.* On the other side of the English Channel, the British scientist Isaac Newton was arguing that the forces acting as the Earth spins flatten it at the poles and make it bulge along the Equator, so the planet resembles a grapefruit. In 1687, in his groundbreaking Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), Newton discussed the theory of gravity, an almost magical attracting force. It was a difference in gravity, Newton believed, that caused pendulum clocks to beat more slowly at the Equator than in Europe. He argued that the closer a clock was to the centre of the Earth, the larger gravitational force was acting on the pendulum, and the faster it was beating. This difference could only be explained by a flattened planet.


Far from an obscure scientific debate, deciding whether the Earth was egg- or grapefruit-shaped had strategic importance. The nation better at navigation would build a stronger empire, so neither the British nor the French could afford their ships getting off track by hundreds of miles, which might happen if navigators at sea assumed the wrong shape of the Earth. Winning a scientific argument also had symbolic meaning – each of the two superpowers wanted to prove the theory of their scientist: France supported the Cartesian egg shape, while Britain favoured the Newtonian grapefruit.


During our conversation, Ferreiro compares this debate to the Cold War race to the Moon, which ‘had nothing to do with science’. The US and the USSR each believed that whoever got there first would show the world which country and, by extension, which system – capitalism or communism – was worth supporting. Similarly, the battle over the shape of the Earth was as political as it was scientific. Paraphrasing a Prussian general, Carl von Clausewitz, Ferreiro argues that ‘science is the continuation of politics by other means’. He explains that ‘science by itself certainly is the search for facts, but if you step back and look at the important things – like who’s paying for it, who’s funding it, what is the intent of that support – you find very quickly that there [has] always, always been a political dimension of science.’


Jean-Frédéric Philippe Phélypeaux, Comte de Maurepas, a young but talented minister in the court of Louis XV, understood the political dimension of science. So, when in 1734 the French Academy of Sciences received a proposal that would settle the debate about the shape of the Earth once and for all, Maurepas became its greatest supporter. This ambitious project involved sending a mission all the way to the Equator to measure a degree of latitude.


Both the northern and southern hemispheres are divided into ninety degrees of latitude – from zero degrees at the Equator to ninety at the poles. If the Earth was a perfect sphere, the length of one degree of latitude would be the same everywhere and equal to the Earth’s circumference divided by 360, so to about 111 kilometres. Since the Earth isn’t spherical, however, one degree of latitude covers a different distance, depending on where it’s measured. This means that by comparing one degree of latitude at the Equator and the already measured degree of latitude in France, the French scientists would be able to figure out whether the Cartesian or Newtonian view of the world was correct. On an egg-shaped planet, a degree of latitude in France would cover a longer distance than a degree of latitude close to the Equator, while on a grapefruit-shaped planet, the opposite would be true.


Once the idea was approved, Maurepas had to choose the optimal destination for the scientific mission. He quickly rejected the hostile equatorial African coast and the remote tropical Asian islands, settling on a Spanish colony in South America: Peru. The King of Spain, who happened to be the uncle of France’s Louis XV, gave France his blessing to conduct their measurements on Spanish territory. To ensure their access to all the scientific knowledge gained during the expedition, and to reduce the chance of the French smuggling goods out of Peru, Spain insisted that ‘two intelligent Spaniards accompany the said scientists’. After intense preparations, in spring 1735 a team comprising both French and Spanish members set off to South America, marking the beginning of an unprecedented international scientific expedition.


The group of academics, accustomed to carrying out theoretical research from their comfy armchairs, was unprepared for the challenges awaiting them in Peru. They didn’t expect the extreme cold of the high peaks of the Andes, the understandable hostility of Peruvians towards European invaders, or the local politics. Most of all, they had estimated that the mission would take two years. Little did they know when they set out that the first member of the group wouldn’t return home for over a decade, and some wouldn’t return at all. Given how unfit for the task the mission participants were, it’s a miracle that the mission succeeded.*


Using triangulation, the expedition aimed to find the distance between Quito in the north and Cuenca in the south. The physical demands of the job surprised the surveyors. The distance between the two cities, both in today’s Ecuador, was over 300 kilometres, approximately the same as from London to Paris or from Boston to New York City. But this wasn’t the worst part. As triangulation requires a network of easily observable points, in practice, it meant going up and down the peaks of the Andes, although the scientists didn’t have it as bad as the local people forced to carry heavy equipment for their white ‘employers’. To ensure the precision of measurements, they used an iron instrument called a quadrant, which was reliable but cumbersome, with a radius over one metre long. And getting up a mountain not only was difficult but also didn’t guarantee good visibility: often, the team had to wait for a clear moment for days, even weeks, in rain or snow. And there was lots of snow, which wasn’t what the surveyors had signed up for on a trip to the tropics!


Before the real triangulation even started, the team spent months measuring the approximately eleven-kilometre-long baseline, which, although conducted on flat terrain, may have been even more arduous than climbing the peaks. They would start by placing a two-metre-long iron rod called a toise at the beginning of the baseline and marking where the toise ended. Then, they moved this heavy object along the baseline, each time starting from the previous end point. They repeated the process thousands of times until they reached the end of the baseline. And then, as a last step of triangulation, they repeated the whole process. This second time, while measuring the baseline wasn’t strictly necessary, it allowed them to assess the accuracy of their triangulation.*


When the triangulation was complete and the physical labour over, the scientists regrouped in Cuenca for a long period of complicated mathematical calculations. As we’ve seen, to find the side lengths of a triangle given the length of the third side and two angles, one needs to apply trigonometry – and the process had to be repeated for every triangle in the long 300-kilometre-plus chain. To ensure greater accuracy, they applied a variety of corrections to compensate, for example, for the differences in altitudes of observation points as well as the Earth’s curvature,* which further complicated the calculations.


Finally, astronomical observations allowed them to figure out the latitudes of Quito and Cuenca. After over two years of measuring the position of stars in the sky and sophisticated mathematical calculations, they arrived at the angular distance between the southern and the northern end of the triangulation chain. By dividing the result of the triangulation by this value, they calculated the exact length of one degree of latitude at the Equator to be 110,612 metres, which is within 40 metres of the currently accepted value. Shorter than one degree of latitude in Paris, this result proved the Newtonian theory of the Earth flattened at the poles.


The implications of the Geodesic Mission to the Equator went beyond establishing the true size of the Earth. The mission’s success showed future generations of scientists that international collaboration was possible, and so were ambitious research projects in mostly unexplored lands, which inspired the groundbreaking expeditions of polymaths such as Alexander von Humboldt and Charles Darwin. Moreover, decades spent in the region taught Europeans about the rich local cultures, uninfluenced by the Spanish empire, inspiring the idea of independent South American nations. Indeed, the Venezuelan political leader Simón Bolivar described this mission as an inspiration for his liberation movement. Possibly nothing speaks more to the importance of the Geodesic Mission to the Equator than the etymology of Ecuador, the name of a country that in 1830 gained independence from the Spanish colonizer: República del Ecuador means simply ‘Republic of the Equator’.


Understanding the shape of the Earth has proved crucial in the development of mapmaking, from paper maps to today’s GPS. Knowing the precise measurements of our planet, however, didn’t automatically lead to perfectly accurate maps – not in the eighteenth century, and not at the time of writing. We can develop our geodetic knowledge all we want, but we will never make a flawless flat map, and the curved shape of the Earth itself is to blame.


Prince of Geodesy


The question of mapping the almost spheroidal surface of the Earth onto a flat plane was one of many research interests of Carl Friedrich Gauss. Born in 1777 in Brunswick (today’s Germany) to poor parents without much formal education,* he quickly revealed his exceptional talents. At seven, he entered the local elementary school, where the principal, J. G. Büttner, motivated about two hundred students with the liberal use of a whip.


Keen to occupy the misbehaving children, Büttner reportedly instructed them to add numbers from one to one hundred.* After less than a minute, nine-year-old Gauss handed his teacher a tablet with the correct answer. Instead of adding the numbers one by one, he had found fifty pairs with a sum of 101 each: 1 + 100, 2 + 99, 3 + 98, etc., which gave 50 × 101 = 5,050 in total. The teacher, recognizing his talent, encouraged Gauss’s father to let him study in the evenings instead of helping around the house. Then, understanding that he had taught the gifted child all he knew himself, Büttner ordered more advanced arithmetic textbooks, kickstarting the extraordinary career of the future ‘Prince of Mathematics’. But even this generous epithet doesn’t convey the range of Gauss’s achievements, not only in arithmetic, geometry, probability and algebra but also in magnetism, astronomy and cartography, to name just a few. He saw the value in applying mathematics to solve real-world problems and expressed the desire to become ‘the most refined geometer and the perfect astronomer’. It didn’t hurt that applied work, as opposed to theoretical studies, usually came with more generous funding.


Gauss realized that to make accurate astronomical observations, he had to know the precise position of the observatory and the correct shape of the Earth, which likely sparked his early interest in geodesy. A perfectionist in everything he dabbled in, he soon became a recognized expert in this field. A renowned historian of cartography, Matthew Edney, tells me that he considers Gauss ‘the geodetic god’, adding that he laid the foundations for modern geodesy. It’s not a coincidence that, despite his many achievements, it’s the diagram of his triangulation network together with a sextant – the navigational instrument he used – that made it onto the 1993 German ten-mark banknote celebrating his life and work.


After years of participating in various triangulations, in 1818 he was put in charge of a geodetic survey of the Kingdom of Hanover in today’s northern Germany. He took his job seriously and performed many of the observations himself, as enthusiastic about gathering valuable data as he was unprepared for the fieldwork. Gauss would ride a horse in elegant but impractical clothing, including a velvet cap, which once led to such overheating that his ill health necessitated a break in the project. On another occasion, he was thrown to the ground by a horse, though he didn’t suffer any injuries beyond some cuts and bruises. But Gauss was inspired rather than discouraged by such obstacles. Indeed, fellow German mathematician Friedrich Wilhelm Bessel tried to deter Gauss from wasting time and energy on the physical work of geodetic surveys. Aware of Gauss’s extraordinary mathematical talent, he worried that his hands-on approach would stop him from producing theoretical results. However, his worries weren’t warranted as, rather than stop him from pondering over theoretical questions, practical geodetic work inspired some of Gauss’s best mathematical ideas. In particular, he wanted to understand the geometry of projecting one surface onto another, for example, a surface of a sphere onto a flat plane – in other words, mapmaking.


In 1827, Gauss presented to the Royal Society of Sciences in Göttingen his Disquisitiones generales circa superficies curvas (General Investigations of Curved Surfaces), which included the results of his geometric research influenced by geodetic surveys. Among other results, he rigorously proved the impossibility of making a perfect map, the unintended consequence of which is the proper way of . . . eating pizza (although it’s unlikely that Gauss ever had a chance to try this delicious dish).


Pizzas and bananas


A picky Italian, my date felt the need to drag me across half of London to the one and only acceptable pizzeria. As soon as I picked up a slice of pizza, a delicious layer of tomato sauce and olives fell onto my lovely yellow shirt, which I had bought especially for the occasion. My face turned the colour of said tomato sauce, and I was sure that our first date would also be the last. My date was a mathematician, so why, I wondered, would he want to go out with someone who dared to eat pizza in such a non-mathematical way? What caused this literal flop wasn’t my clumsiness, however, but my ignorance of Gauss’s powerful theorem about curved surfaces – the same one that explains why all maps are distorted.


One of the simplest surfaces we deal with in everyday life is a flat sheet of paper. If we roll it into a cylinder – like a newly-bought poster, ready to be transported – this previously flat page remains flat in the vertical direction, but curves in the horizontal direction. So, is a sheet of paper flat or curved?


To reason about surfaces, mathematicians use curvature, which describes the behaviour of a surface at a specific point. After picking a point on a surface, we draw a line through it and quantify how much it curves. Let’s consider a banana, as in Figure 1.4, and look at a point at the top of its surface. The line along the banana’s ‘smile’ curves inwards, making the curvature negative. In the perpendicular direction, the line curves outwards, making the curvature positive.* A good example of a zero curvature is a flat sheet of paper, where all lines are flat. While the sign of curvature indicates the line’s general behaviour, its magnitude tells us how much it’s curved. For example, while both at the top and on the bottom of an egg, all lines curve outwards, the lines passing through the pointier top have larger curvature, as in Figure 1.5.


[image: Diagram of a banana with two intersecting lines drawn on its surface. One line, labelled with a minus sign, runs from the base to the stem of the banana, curving inwards. The second line, labelled with a plus sign, runs around the middle of the banana, curving outwards.]

FIGURE 1.4: A line that curves outwards has a positive curvature, while a line that curves inwards has a negative curvature.





If we pick a point on a cylinder, things get more complicated. Figure 1.6 shows that the horizontal line going around the cylinder curves outwards, which makes its curvature positive, while the vertical line is flat, so it has a curvature of zero. All other lines form helices with positive curvatures – the more horizontal, the higher the curvature’s magnitude. So, what is the curvature of the point on a cylinder – zero or positive, and if the latter, how big? This is a question that Gauss wanted to answer.


[image: Diagram of an egg with multiple lines drawn over its surface, crossing on the top and the bottom of the egg. All lines are marked with a plus sign, indicating positive curvature.]

FIGURE 1.5: Both at the top and on the bottom of an egg, all lines have positive curvatures, but the curvatures at the pointier top are larger.





[image: Diagram of a horizontal cylinder with two intersecting lines drawn on its surface. The first line is straight, running along the length of the cylinder, and has zero curvature. The second line is curved around the width of the cylinder and is marked with a plus sign, indicating positive curvature.]

FIGURE 1.6: On a cylinder, horizontal lines curve outwards, and vertical lines are straight.





The Remarkable Theorem


Gauss figured that because it doesn’t make sense for the same part of a surface to be convex, concave and flat at the same time, we shouldn’t be able to assign different curvatures to the same point. He devised a procedure to express the curvature of a point with a single number. Each possible line going through the point on our surface has curvature assigned to it, and we can choose the smallest and the largest of these numbers. To obtain the Gaussian curvature, we multiply the two numbers. This way, we reduce the curvatures of all the different lines passing through the point to a single value. Be careful not to confuse the curvatures of lines with the Gaussian curvature of a surface!


On the top of an egg, for example, all lines have the same, positive curvature. Their product is positive too, so the top of an egg – or any point on the egg, for that matter – has positive Gaussian curvature. At the point on the top of our banana, the largest curvature is positive, but the smallest curvature is negative, which gives a negative product. On the flat sheet of paper, all lines have zero curvature, and zero times zero gives a Gaussian curvature of zero. On the cylinder, the largest curvature – of the horizontal line – is positive, and the smallest – of the vertical line – is zero, which makes their product zero. And that makes sense, as the cylinder is formed by bending a flat sheet of paper.


Gauss understood that the Gaussian curvatures of a flat sheet of paper and the same sheet rolled into a cylinder weren’t equal by coincidence. He showed that the Gaussian curvature doesn’t change even if we bend the surface as long as we don’t stretch, shrink, rip or destroy it in any other way. The non-destruction requirement is essential, and soon we’ll discover its real-world consequences. Gauss was so proud of his result that he named it Theorema Egregium, which is Latin for ‘Remarkable Theorem’. Indeed, this theorem has deep consequences not only in theoretical mathematics but also in activities as mundane as eating pizza.


Traditional pizza is so thin that it resembles a two-dimensional surface. Because a slice of pizza is easier to bend than stretch, shrink or rip, we can look at it through the lens of Theorema Egregium. As Figure 1.7.a shows, when a slice of pizza lies flat on the plate, at all points curvatures in all directions are zero, which makes their product – the Gaussian curvature – zero. This corresponds to the flat sheet of paper. When I made the mistake of picking my slice up by the crust, gravity forced the tip of my slice – together with the toppings – to bend down, as in Figure 1.7.b. Although this changed the curvature of points in the direction from the tip to the crust, it didn’t violate Theorema Egregium since the perpendicular line stayed flat, keeping the product zero. Instead, I should have bent my pizza in half, as in Figure 1.7.c. Then, in one direction the curvature would have become negative, but since the Gaussian curvature of the slice must remain zero, the slice would have stayed flat in the direction pointing towards my mouth. This is because the only number that gives zero when multiplied by something negative is zero.


[image: Diagram of three pizza slices, each with two lines: one from the crust to the tip, and one parallel to the crust. Slice A is flat. Slice B curves down toward the tip while the crust line remains straight. Slice C folds inward along the crust while the line running to the tip remains straight.]

FIGURE 1.7: a) When the slice of pizza lies flat on the plate, the curvatures of the marked point are zero in all directions; b) If we pick up the slice of pizza by the crust, the smallest curvature stays zero, but the largest curvature becomes positive, forcing the slice to bend down; c) If we fold the slice of pizza, the smallest curvature becomes negative, but the largest curvature must stay zero to keep the Gaussian curvature zero. This prevents the slice from bending down.





A slice of pizza that curves in one direction becomes stiff in the other direction, to keep Gaussian curvature at zero. As I was bending my pizza slice (and my mind) to understand this idea, I realized that it has surrounded us from time immemorial. Take a tree leaf, for example, which tends to fold along the central vein, like a properly handled slice of pizza. By creating a non-zero curvature in the vertical direction, it stiffens in the horizontal direction, making it harder for the wind to change its shape. This also explains why leaves that grow faster on the sides than at the centre must wrinkle along the edges to keep the folded shape.


Changing Gaussian curvature requires force, which is what makes curved objects so strong. While a folded slice of pizza and a blade of grass are curved in one direction and protect the zero curvature in the other direction, objects curved in all directions are almost unbreakable. That’s one of the explanations behind the strength of the curvy egg shape. Eggs might seem fragile and, indeed, dropping one on the floor is a guaranteed mess. But try breaking an egg by squeezing it and you’ll see how its curvature protects the fragile shell. Otherwise, eggs would break under the weight of a bird sitting on them, which would be disastrous for the species. To break an egg, you need to dent the shell, which requires tools and intent (so make sure to remove any rings when you squeeze the egg to test the hypothesis).


Theorema Egregium explains the prevalence of curved surfaces not only in nature but also in engineering and architecture. My favourite example is the popular crisps Pringles. Packed in tubes, flat crisps would break under the weight of the crisps on top of them. The characteristic shape of Pringles, curved in two directions, gives them exceptional strength. The lack of a weak point not only makes them easy to store but also ensures that they break at random points when we bite them, increasing the sensation of crunchiness. If you’re still doubting the strength of Pringle-shaped objects, look at the saddle roofs of London’s VeloPark, Scandinavium in Gothenburg, or L’Oceanogràfic in Valencia. Thin, safe, and beautiful – that’s the power of curved structures.


Alas, the difficulty of changing the curvature of a surface also has negative consequences. To make a map, we translate a portion of an almost spherical surface of the Earth with positive curvature onto a flat sheet of paper with curvature zero. Theorema Egregium tells us that this is impossible without stretching or tearing the surface. That’s why sticking a Band-Aid on a knee or an elbow is so annoying, and why wrappers of spherical lollipops have wrinkles. Of course, this hasn’t prevented us from creating maps, but every single flat map is distorted in some way – either distances, shapes or areas are off. In the next chapter, we’ll investigate this problem in detail.


Fasten your seatbelt


The curved shape of the Earth not only prevents us from making perfect flat maps but also renders a big part of school geometry invalid. The facts about angles, lines and triangles that generations of students have been tested on quietly assume a flat surface. Geometry gets more complicated the moment the curvature of the surface changes from zero.


A popular brainteaser introducing issues around the Earth’s curvature tells the story of a hunter who leaves her tent, walks 10 kilometres south, then 10 kilometres west, and 10 kilometres north, where she spots a bear standing next to her tent. What colour is the bear, the puzzle asks. I encourage you to think about it for a minute before reading the solution in the next paragraph.


The hunter’s tent must stand at the North Pole, meaning she sees a white polar bear.* If she starts at the North Pole, then walks ten kilometres south, turns clockwise by ninety degrees and walks ten kilometres west, again turns clockwise by ninety degrees and walks ten kilometres north, she’ll return to her tent, as shown in Figure 1.8. This seemingly irrelevant puzzle about the colour of a bear’s fur illustrates the weird geometry of a sphere.* The hunter’s path is a triangle with two angles equal to 90 degrees. When we add the third angle, the total will be larger than 180 degrees, going against the maths teachers’ adage that ‘angles in all triangles add up to 180 degrees’. This rule works on a plane, but spherical triangles are more interesting creatures.


On a sphere, the larger the triangle, the larger the sum of its angles – always larger than 180 degrees. This is another explanation, beyond the Remarkable Theorem, of why we cannot make a perfect map. It would require translating spherical triangles to plane triangles, which is impossible without distortions since their angles add up to different values.


When we discuss triangulation we encounter trigonometry, which describes relationships between angles and lengths in triangles. After seeing the weird angles of spherical triangles, you won’t be surprised that the rules of spherical trigonometry differ from the traditional, flat trigonometry taught at school. This means that distances on a sphere behave differently from distances on a plane.


On a plane, the shortest distance between two points is a segment of a straight line, but all lines on a sphere are curved. So, ‘straight’ lines on a sphere are great circles, that is, arcs of imaginary circles whose radius is the sphere’s radius. In other words, these are the largest possible circles that can be drawn on the surface of a sphere, such as an equator. Keep in mind that on a plane we can draw only one straight line between two points, while on a sphere, every two points are connected by two arcs of the same circle – the shortest distance will be the length of the shorter arc.


[image: Diagram of a polar bear standing at the top of a globe. Arrows depict a triangular path. Beginning at the North Pole, the path runs due south, then due west, then due north, ending where it begins. Squares are drawn at the triangle’s vertices to indicate that its angles are each 90 degrees.]

FIGURE 1.8: If the hunter starts at the North Pole and walks 10 km south, 10 km west, and 10 km north, she’ll arrive back at her tent.





This fact often confuses passengers on long-haul flights. On a recent flight from Munich to San Francisco, my seat neighbour was surprised if not outright shocked when we had the opportunity to look down on the picturesque snowy mountaintops of Greenland. He stopped his movie and started poking the in-flight entertainment screen to find the flight tracker, which showed that we were following a rainbow-shaped path over Greenland instead of the expected straight line over the Atlantic.


My neighbour’s confusion was understandable. San Francisco has a similar latitude to Seville in southern Spain. Munich, while to the north of both, is still considerably south of snowy Greenland. While I don’t know much about aviation, I doubt the airline company is generous enough to invest in fuel to offer its customers a sightseeing tour. So, why did we make this weird circle above the Earth, instead of going as the crow, or rather an aeroplane, flies?


Because all flat maps are distorted, what looks like a straight line on a map isn’t the shortest route. The best way to see that is with a globe and a piece of string. Attach one end of a piece of string to Munich and, keeping the string as tight as possible, find San Francisco. By keeping the string tight, you ensure that the route is the shortest possible – and you’ll see that it’s exactly like a rainbow in Figure 1.9.


[image: Map of North America, Europe, and the North Atlantic Ocean, with two lines connecting Munich and San Francisco. The top line is curved, passing over Iceland, Greenland, and Canada. The bottom line is straight, passing over the midwestern and northeastern United States.]

FIGURE 1.9: The shortest path from Munich to San Francisco is an arc of a great circle.





Airlines schedule their flights as close to great circles as possible because these are the shortest routes joining two points on the Earth. While actual routes will deviate from great circles to take advantage of strong winds, avoid difficult weather conditions and stay out of no-fly zones, they still don’t resemble the straight lines we’re so tempted to draw on a flat map. This explains why airlines sometimes place their hubs in rather surprising places.


Flying through Alaska


For one day, on 25 April 2020, the international airport in Anchorage, Alaska, became the busiest in the world. It’s surprising for a city with a population of around only 300,000, and with just over 700,000 people living in the whole, vast state. When it comes to airports, however, it’s great circles that matter.


Anchorage benefitted from the rapid development of aviation in the twentieth century, the increasing economic power of Asia, and maybe unexpectedly, the Cold War. Bearing in mind great circles, the shortest flight between Europe, let’s say London, and East Asia, let’s say Tokyo, would go over Siberia. During the Cold War, however, the Soviet Union closed its airspace – almost the size of North America – for airlines from the West. All flights originating in Europe had to take the most efficient route avoiding the no-fly zone, and this took them over Greenland and Alaska. Back then, no plane would have been able to fly for so long without refuelling. Conveniently, Anchorage happened to lie about halfway along this route and it was the only city along the way. In 1951, an international airport was built in this small, remote city. It connected major destinations all over the world, from London, Paris and Amsterdam in Europe to Tokyo and Mumbai in Asia, and New York and São Paulo in the Americas. By the 1980s, this airport was nicknamed the ‘Crossroads of the World’.


After the fall of the Berlin Wall in November 1989, the USSR opened its massive airspace for most airlines. This, together with the development of modern, longer-range aeroplanes, diminished the role of Anchorage Airport for commercial flights. The rapid decrease in commercial flights notwithstanding, the importance of Alaska in international aviation has only grown since its heyday. While today’s commercial aeroplanes can fly non-stop for more than the 15,000 kilometres between Singapore and New York, long distances pose a challenge for cargo flights. For them, it’s a trade-off between taking more fuel, increasing the range, or taking more cargo, increasing the revenue per flight. To maximize the weight of cargo onboard, transport companies had to find a convenient refuelling stop as close to the route as possible, and Anchorage is the only airport in the world that lies close to great circles connecting dozens of major cities. Today, Anchorage is home to the hubs of giants such as FedEx, UPS and the United States Postal Service, where aeroplanes stop to refuel and sort the cargo, sending it on to correct destinations.* All that explains why, in April 2020, when commercial flights stopped almost entirely due to COVID-19 restrictions, and the shipping of goods bought online spiked, Anchorage became one of the world’s busiest airports – and, for one day, the busiest.


Most major airlines – both commercial and cargo – work in a hub-and-spoke system, which means that their flights start or end in one of the hub airports, where passengers change to the connecting flight to their destination. For example, at the time of writing, the world’s busiest international airport is in Dubai. The biggest city in the United Arab Emirates is conveniently located along the great circles connecting London and Perth in Australia. Similarly, passengers flying from London to Mumbai in India might want to change at the large airport in Istanbul. Finally, the location along great circles between major European destinations and China has led to the success of the airport in the relatively small city of Helsinki, the capital of Finland.


Size and shape matter


When, in 2016, an American rapper named Bobby Ray Simmons Jr, known as B.o.B, posted a series of over fifty tweets, some including photos, to prove that the Earth was flat, the astrophysicist Neil deGrasse Tyson was having none of it. In a few tweets, he pointed out errors in the musician’s line of thinking. Within hours, the discussion left Twitter, and B.o.B released a diss track, ‘Flatline’, about his theory, with the lyrics suggesting that Tyson is paid to indoctrinate people. The scientist gave as good as he got, responding with his rapping nephew’s song ‘Flat to Fact’.


Despite centuries of incontrovertible scientific research, some people are still compelled to engage in heated disputes about the shape and size of the Earth, which shows that this topic is as important today as it ever was. Get your calculations right, and your nation stands to gain political advantage; get it wrong, and you’ll perhaps end up on the wrong continent. Geodesy – and the mathematics behind it – allows us to find out where we are, how to get where we want to be, and how long the journey will take. But when we read flat maps of our curved planet, it’s important to remember the Remarkable Theorem. The inevitable distortions created by the Earth’s curvature impact our interpretation of the map, which makes understanding the mathematics of mapmaking crucial to forming a worldview that is as unbiased as possible.
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IN MARCH 2017, Boston Public Schools changed their pupils’ view of the world. Literally. The familiar world maps on the walls of the classrooms were replaced with new ones, on which everything looked different. Overnight, students saw Europe and North America shrink, giving place to a much larger Africa and South America than they had been used to seeing. The continents looked a bit funny, stretched horizontally close to the poles and vertically near the Equator. Africa became an elongated giant landmass, while Europe – usually presented as not much smaller than its southern neighbour – almost disappeared from the map. All these changes can be explained by maths.


Light-bulb moment


Cartographers face a mathematically impossible task. From Gauss’s Remarkable Theorem, we know that transferring our three-dimensional globe onto a two-dimensional map is doomed to failure. Despite that, we still haven’t given up on using maps, because even a distorted two-dimensional map tends to be of more practical use than a globe. Imagine a pilot in a cockpit drawing a flight route on a globe, or a hiker who has to leave her sleeping bag at home because the globe takes up too much space in a backpack, or a mini-globe rolling around your car after particularly harsh braking. We’re not ready to give up on maps and we’ve learned to accept that they always distort some of the globe’s features.


We can translate the same area of the world onto a flat sheet of paper in many different ways, known as projections. Cartographers spend a lot of time deciding what kind of projection would be most appropriate for a given application – in other words, what distortions are least relevant and what features must stay. It is our responsibility, as map users, to understand what attributes the map depicts truthfully and which it deforms, so that we don’t build false images in our minds. In general, we care about preserving three main characteristics: areas, shapes and distances. Which one will it hurt the most to lose? This is the first question we should ask ourselves before selecting the most appropriate map projection.


If preserving the area is what we want, then we should choose one of the equal-area projections (if you want a fancier name, they’re also called homolographic projections). These have an appealing property whereby if you put your thumb anywhere on a map, and then move it to another place, in both instances it will cover the same real-world area. But, as we know from Gauss, shapes and distances will be distorted in the process, in some parts of the world more than others, depending on how exactly we construct the map. The good news is that if a particular location is of most interest to us, we can design the map so that it approximately preserves shapes and distances around this place.


Sometimes, we might care more about the shape than the area, so we’ll accept a tiny Africa and a huge Europe as long as Africa looks like Africa and Europe looks like Europe – which wasn’t the case on the new map presented to Boston students. We call such projections conformal or orthomorphic. How can we recognize a conformal map? If the meridians intersect the Equator and other parallels at right angles, like on the globe, then there’s a good chance (although no certainty) that the map preserves the shapes. Unfortunately, you can’t have your cake and eat it too – maths prevents us from creating an equal-area and conformal map at the same time.


If distances are the crucial feature, we could consider an equidistant projection (no fancy Greek words here, as far as I know). Don’t get too excited, though – no projection keeps the same scale on the whole map (and we’ll talk more about map scales in the next chapter). Again, the Remarkable Theorem is to blame. The good news is that we can preserve distances between one (or even two) special points and any other point on the map. For example, if we centre our equidistant map on London, then distances between London and Paris as well as between London and Glasgow will be preserved, but I wouldn’t use it to plan a trip between Paris and Glasgow. A common choice is to keep constant the distances from one of the poles along all meridians. In this case, the other pole is stretched to a circle forming the map’s edge, as on the flag of the United Nations.


In practice, how do we go about flattening the Earth? Imagine you place a light bulb in the centre of a transparent globe with the latitude–longitude grid and country contours on its surface. If you wrap a sheet of paper around the globe, the light will project the grid and country contours onto it, so you can trace them with a pencil and unwrap the paper to get your map projection.


The question is, how should you wrap the paper around this globe? Cartographers face this dilemma when choosing which projection to use, and different choices will result in completely different presentations. We divide map projections into three main families, depending on how we place the paper around our transparent globe. One way is to fully wrap the sheet of paper around it, creating a cylinder touching the globe along a circle, as in Figure 2.1.a. We call the resulting projection cylindrical. Because you can choose the circle along which the paper touches the globe in any way you wish, the cylindrical family contains infinitely many map projections. As you can imagine, the most popular choice of a circle is the Equator, but this doesn’t mean that other circles create worse projections – just different. All resulting maps are rectangular and the right edge of the map is continued on its left.


Let’s say we decide to go mainstream and choose the Equator as the circle that touches the paper. What happens to the parallels and the meridians? Well, the Equator is already touching the paper, so it must become a straight line on the map. The other parallels will appear as straight lines parallel to the Equator, while meridians will appear as straight lines perpendicular to it. In particular, the projection will preserve all the angles in the latitude–longitude grid – right angles on the globe.


Another option is to roll the paper into a cone and place it like a party hat on top of the globe, touching the globe along the chosen parallel, as Figure 2.1.b shows.* The hat can, if we wish, intersect the globe by entering it along one circle and emerging from another circle below. No matter how we choose these circles, the resulting conic projection will resemble a cake – potentially one with a circle missing in the middle if the hat intersects the globe – with a few slices missing. Assuming that the tip of the hat is above the North Pole, meridians will become straight lines radiating from the centre of the cake, while the parallels will be marked as circular arcs centred in the middle of the cake. In this projection, the angles between meridians become smaller than the true angles.
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