

[image: images]

[image: image]

C o d e r s

< Who They Are, What They Think
 and How They Are Changing
 Our World >

C l i v e T h o m p s o n

[image: image]

[image: image]

To Emily, Gabriel, Zev, and my mother

< Chapter 1 >

The Software Update That Changed Reality

In the early hours of September 5, 2006, Ruchi Sanghvi rewrote the world with a single software update.

A round-faced, outspoken programmer, Sanghvi was 23 years old when she arrived to work at Facebook. Raised in India, she had long dreamed of growing up to work for her father’s company, which lent heavy machinery for the construction of ports, oil refineries, and windmills. But while studying at Carnegie Mellon University, she got intrigued by computer engineering, and then she fell in love with it. It was like constantly solving puzzles: trying to make an algorithm run faster, trying to debug a gnarly piece of code that wasn’t working right. The mental chess colonized her mind, and she found herself pondering coding problems all day long. “You’re at it for hours, you’re not eating, you’re not sleeping; it’s like you can’t stop thinking about it,” she tells me.

Sanghvi was, by programming standards, a late bloomer; she was studying alongside kids, nearly all male, who’d been coding since they were nine and playing video games, and they seemed to effortlessly get it. But she kept grinding away, got good grades, then graduated and got hired for her first job in Manhattan, doing math modeling for a derivatives trading desk.

When she arrived in New York, though, she was horrified by the sight of the gray cubicles at the workplace. She wouldn’t be having much of an impact on the world here. She didn’t want to be a cog in a machine, writing code to support finance work; she hungered to work for a company where the technology itself was the core product, where computer scientists were the main players. She wanted to actually make a product that people used—something tangible, useful. She wanted to do something like Facebook, a site that she’d joined in her last year of college. Now that was an addictive bit of software. She’d log in all the time to stay in touch with college friends who’d recently graduated, checking their pages to see if they’d updated anything.

So Sanghvi bailed on Manhattan, quitting the job even before her first day. She fled to San Francisco, where she got a job at Oracle, the database company. And then, one day a college friend invited her to come by the offices of Facebook itself.

It was a tiny firm, serving only college students; everyday folks weren’t yet allowed to use Facebook. When she walked up to the office on the second floor above a Chinese-food restaurant, she found a passel of mostly young white men, some who’d recently bailed on Harvard: a 21-year-old Mark Zuckerberg walking around in nearly wrecked sandals, Adam D’Angelo (the guy who’d taught a younger Zuckerberg some coding), and Dustin Moskovitz, Zuckerberg’s roommate at Harvard. They worked in a haze of intensity, laptops open on cluttered desks, while playing video games at their nearby dorm-like crash-pad houses, or even while sunning on the roof of the Facebook office. The graffiti artist David Choe was hired around that time to bedeck the walls with murals, one of which depicted “a huge buxom woman with enormous breasts wearing this Mad Max–style costume riding a bull dog” (as early employee Ezra Callahan described it).

They were aggressive about tweaking and changing Facebook, regularly “pushing” new code out to users that would create features like Facebook’s famous “Poke,” or a “Notes” app that let people write longer posts. They were daredevils; sometimes a new feature would have been written so eagerly and hastily that it produced unexpected side effects, which they wouldn’t discover until, whoops, the code was live on the site. So they’d push the code out at midnight and then hold their breath to see whether it crashed Facebook or not. If everything worked, they’d leave; if it caused a catastrophe, they’d frantically try to fix it, often toiling until the early morning, or sometimes just “reverting” back to the old code when they simply couldn’t get the new feature working. As Zuckerberg’s oft-quoted motto went, “Move fast and break things.”

Sanghvi loved it. “It was different, it was vibrant, it was alive,” she says. “People there were like humming along, everyone was really busy, everyone was really into what they were doing . . . the energy was just so tangible.” And as it turns out, Facebook was desperately seeking more coders. It’s hard to imagine now, with the company being such a globe-spanning behemoth, but back in 2005 they had trouble attracting anyone to work there. Most experienced software engineers in Silicon Valley thought Facebook was a fad, one of those bits of web ephemera that enjoys a brief and delirious vogue before becoming unspeakably passé. They had no interest in working there. So Sanghvi arrived in a lucky window of opportunity: young enough to have used Facebook and known how addictive it was, but old enough to have actually graduated college and be looking for a coding job. They hired her a week after her visit, as the company’s first female software engineer.

Soon, she was given a weighty task. Zuckerberg and the other founders had decided that Facebook was too slow and difficult to use. Back in those early days, the only way to know what your friend was doing was to go look at their Facebook page. It required a lot of active forethought. If someone posted a juicy bit of info—a newly ended relationship, a morsel of gossip, a racy profile photo—you might not see it if you forgot to check their page that day. Facebook was, in effect, like living in an apartment building where you had to keep poking your nose in people’s doors to see what was up.

Zuckerberg wanted to streamline things. He’d been carrying around a notebook in which he’d sketched a vision (in his tiny, precise handwriting) for a “News Feed.” When you logged in, the feed would be a single page that listed things friends had posted since you last logged in. It’d be like a form of ESP for your social life. As soon as someone posted an update—Ping!—it would arrive on the periphery of your vision. The News Feed wouldn’t be just a slight cosmetic tweak to Facebook, like a pretty new font or color. It would reconstruct how people paid attention to one another.

And now Sanghvi had to make the News Feed happen. She set to work with a small “pod” of collaborators, including Chris Cox, Matt Cahill, Kang-Xing Jin (known as “KX”), and Andrew “Boz” Bosworth, Zuckerberg’s former teaching assistant at Harvard. For nine months they worked intensely, batting ideas around and then clattering away writing code, while Cox blasted James Brown or Johnny Cash from his laptop. Like the other coders, Sanghvi began programming almost around the clock, staying at Facebook until dawn and then staggering home to San Francisco; after nearly crashing her car from lack of sleep, she moved to a house near Facebook’s office, from which she’d sometimes wander to work in her pajamas. Nobody minded. All the coders blended socializing and working, playing poker or video games at work; during a video interview in 2005, Zuckerberg chatted while toting a red-cupped beer, and an employee did a keg stand.

It was a boys’ club, though for Sanghvi, that wasn’t anything new: The world of computer science she’d known had always been a boys’ club. There were only a few women in her class of 150 at college. She’d learned to yell back when others started yelling, which, in a roomful of cocky young men, was often. Being loud, and a woman, brought repercussions: “Everyone called me super aggressive,” she says. “And that hurt. I don’t think of myself as aggressive.”

But she kept her head down, grinding on the code, because it was mostly what she cared about—and it was thrillingly fun, weird, and hard. Creating the News Feed required her and the other coders to grapple with philosophically hefty questions about friendship, such as What type of news do friends want to know about each other? The feed couldn’t show everything that every single one of your friends did, all day long. If you had 200 friends posting 10 things each, that was 2,000 items, way more than anyone had time to look at. So Sanghvi and the coders had to craft a set of rules to sift through each person’s feed, giving a “weight”—a number that ranked it as more or less important. How would you weight the relationship between two people? they’d ask each other, sitting around the Facebook office late at night. How would you weight the relationship between a person and a photo?

By mid-2006, they had a prototype working. One night Chris Cox sat at home and watched as the first-ever News Feed message blinked into existence: “Mark has added a photo.” (“It was like the Frankenstein moment when the finger moves,” he later joked.) By the end of the summer, the News Feed was working smoothly enough that they were ready to unleash it on the public. Sanghvi wrote a public post—entitled “Facebook Gets a Facelift”—to announce the product to the world. “It updates a personalized list of news stories throughout the day, so you’ll know when Mark adds Britney Spears to his Favorites or when your crush is single again. Now, whenever you log in, you’ll get the latest headlines generated by the activity of your friends and social groups,” Sanghvi explained. The changes, she wrote, would be “quite unlike anything you can find on the web.”

Not long after midnight, Sanghvi and the other coders pushed the update out to the world. News Feed was live; the team cracked open bottles of champagne and hugged each other. It was this type of moment that got her into computers: writing code that changes people’s everyday lives.

There was only one problem: People hated it.

When Sanghvi and the team pushed the code out in those early hours, they clustered around a laptop on her desk to watch the comments from users. She crouched on the ground as Zuckerberg peered down at the screen, clad in a red CBGB’s T-shirt, her colleague KX looming in up high behind Zuckerberg. Everyone was vibrating with excitement. “They were thinking,” Zuckerberg recalled later, “it was going to be good news.”

It was not good news. “This SUCKS” was a typical comment that came scrolling down the screen. Users were in full revolt; many were threatening to leave Facebook or boycott it. Groups had formed with names like “Ruchi Is the Devil.” One student, Ben Parr, had created a Facebook group called “Students against Facebook News Feed” that amassed over 250,000 members in barely a day.

What exactly did they loathe so much? “Very few of us want everyone automatically knowing what we update,” Parr explained. “News Feed is just too creepy, too stalker-esque.” Sure, Facebook had been slow and inefficient before, as Zuckerberg had noted. But Facebook’s users, it seems, had grown to rely on that inefficiency. It gave them a small, pleasant measure of secrecy. They could post a new profile photo, decide it was unattractive, and quickly change it back to the old one a few minutes later, knowing that it was unlikely many of their friends saw the change. But now News Feed was like a pushy, nosy robot that was taking your every post and shouting it to the heavens. Hey, Rita’s no longer going out with Jeff! She’s single again! Check it out!

The coders had been right: Their invention really had changed the way people learned about their social circle. But users weren’t sure they wanted the machinery of their attention upgraded so quickly, and so dramatically.

The uproar grew all day long, and the next day student protestors were camped out in front of the Facebook building, forcing Sanghvi and the other engineers to sneak in and out through the back door. Online, things were even worse. Fully 1 million Facebook users—10 percent of their entire user base—had joined Facebook groups demanding that the News Feed be turned off.

Staff members started arguing about what to do. Two factions emerged, one in favor of shutting down the News Feed, and the other arguing that it was just an adjustment period. Zuckerberg was part of the second camp. Once the initial shock wore off, he believed, the users would discover they liked it. Sanghvi strongly agreed, though she admits part of her insistence in keeping the News Feed was also fueled by engineering pride. “I’d just spent nine months of my life on this, and there was no damn way I was going to get rid of it,” she says.

Zuckerberg’s view won the day. But even so, he admitted they’d moved a bit too hastily and needed to meet their irate users halfway. So the Facebook coders hatched a plan to create some extra privacy settings so Facebook users could prevent sensitive updates from appearing on the News Feed. After 48 hours of pell-mell work, they pushed that privacy code out live. Zuckerberg published an apologetic note publicly on Facebook. “We really messed this one up,” he admitted. “[We] did a bad job of explaining what the new features were and an even worse job of giving you control of them.” But he was still confident that, in the long run, News Feed would be a hit.

He was right. The feed was unsettling and shocking, but it was also captivating. There was, it turns out, enormous value in seeing a little daily gazette of your friends’ doings. As you checked the feed and saw the status updates scroll by, you could begin to build up a nuanced picture of what was going on in your friends’ lives. Indeed, the day after News Feed emerged, Sanghvi and the team found that people were spending twice as much time on Facebook than before. They were also forming groups much more quickly. It made sense. If you could see that your friend joined a political cause or fan group for a band, you might think, Hey, maybe I should do that, too. Ironically, the whole reason “I Hate News Feed” groups were able to grow so quickly is that they tapped into the power of the feed. (And it wasn’t just silly groups that were forming. In the days after News Feed launched, the second-largest group was one focused on calling attention to genocide in Darfur, and the fourth-biggest was to advocate for breast-cancer research.)

Indeed, you could argue that News Feed eventually became one of the most consequential pieces of computer code written in the last twenty years. Its effects can be seen everywhere, fractally, up and down the patterns of our lives. Facebook users learn that their friends have had babies, see snapshots of their cubicles and vacations; they notice stray jokes and click on cat-meme links. Its massive, shared attention pool has made News Feed one of the surest vectors by which a piece of culture goes viral, from a tear-jerky video of a kind act to an outtake by Beyoncé, from the hopeful, pro-democratic beginnings of the Arab Spring to virulent ISIS recruitment videos. News Feed tied people together and propelled a host of acronymized pop-psychology ailments, from TMI to FOMO.

The feed got people to stare at Facebook a lot—on average, 35 minutes a day for each American. It’s not hard to see why. The feed’s sorting algorithm is designed to give you more of what you like; it pays close attention to everything you do on Facebook—your “likes,” your reposts, your comments—the better to find new items to show you, that, the programmers hope, match neatly with your preferences. Giving people mostly what they want to see makes for a terrific business, of course, which is why Facebook made about $40 billion a year in advertising in 2017. But it turned out that Facebook’s feed, by concentrating everyone’s attention into one funnel, also had some unsettling side effects. It created a central point of failure for civic discourse. If you wanted to seed misinformation, spread rumors, or proselytize hate, the News Feed was a wonderfully efficient tool. By the end of the 2016 US elections and President Trump’s first year in power, journalists discovered that all manner of toxic forces—from white supremacists to merchants of political disinfo clickbait—were gleefully gaming the feed, seeding it with stories designed to whip up political hysteria. Worse, it seemed quite likely that the feed was exacerbating America’s partisan divide, because it was designed to mostly filter out news that didn’t match what you already “liked.”

By February 2017, even Zuckerberg appeared to be wondering what sort of creature he’d electrified into existence. He wrote a 5,700-word note that felt like an oblique and defensive apology for Facebook’s role in today’s political schisms. “Our job at Facebook is to help people make the greatest positive impact while mitigating areas where technology and social media can contribute to divisiveness and isolation,” he wrote.

That’s a curiously cautious mission statement: While mitigating areas where technology and social media can contribute to divisiveness. It’s certainly a more measured rallying cry than “Move fast and break things.” You could read it, perhaps, as a quiet admission that some things ought to be left unbroken.

“Software,” as the venture capitalist Marc Andreessen has proclaimed, “is eating the world.”

It’s true. You use software nearly every instant you’re awake. There’s the obvious stuff, like your phone, your laptop, email and social networking and video games and Netflix, the way you order taxis and food. But there’s also less-obvious software lurking all around you. Nearly any paper book or pamphlet you touch was designed using software; code inside your car helps manage the braking system; “machine-learning” algorithms at your bank scrutinize your purchasing activity to help spy the moment when a criminal dupes your card and starts fraudulently buying things using your money.

And this may sound weirdly obvious, but every single one of those pieces of software was written by a programmer—someone precisely like Ruchi Sanghvi or Mark Zuckerberg. Odds are high the person who originally thought of the product was a coder: Programmers spend their days trying to get computers to do new things, so they’re often very good at understanding the crazy what-ifs that computers make possible. (What if you had a computer take every word you typed and, quietly and constantly and automatically in the background, checked it against a dictionary of common English words? Hello, spellcheck!) Sometimes it seems that the software we use just sort of sprang into existence, like grass growing on the lawn. But it didn’t. It was created by someone who wrote out—in code—a long, painstaking set of instructions telling the computer precisely what to do, step-by-step, to get a job done. There’s a sort of priestly class mystery cultivated around the word algorithm, but all they consist of are instructions: Do this, then do this, then do this. News Feed is now an extraordinarily complicated algorithm involving some trained machine learning; but it’s ultimately still just a list of rules. So the rule makers have power. Indeed, these days, the founders of high-tech companies—the ones who determine what products get created, what problems get solved, and what constitutes a “problem” in the first place—are increasingly technologists, the folks who cut their teeth writing endless lines of code and who cobbled together the prototype for their new firm themselves.

Programmers are thus among the most quietly influential people on the planet. As we live in a world made of software, they’re the architects. The decisions they make guide our behavior. When they make something newly easy to do, we do a lot more of it. If they make it hard or impossible to do something, we do less of it. When coders made the first blogging tools in the late ’90s and early ’00s, it produced an explosion of self-expression; when it’s suddenly easy to publish things, millions more people do it. And when programmers invented “file-sharing” tools around the same time, a shudder ran through the entertainment industries, as they watched their lock hold on distribution suddenly evaporate. In fact, they fought back by hiring their own programmers to invent “digital rights management” software, putting it in music and film releases, making those wares trickier for everyday folks to copy and hand out to their friends; they tried to create artificial scarcity. If wealthy interests don’t like what some code is doing, they’ll pay to create software that fights in the opposite direction. Code giveth, and code can taketh away.

If you look at the history of the world, there are points in time when different professions become suddenly crucial, and their practitioners suddenly powerful. The world abruptly needs and rewards their particular set of skills.

Back during the Revolutionary America of the late eighteenth century, the key profession was law. The American style of government is composed of nothing but laws, of course. So lawyers and legal writers—anyone who could construct legal systems in their head, who could argue persuasively and passionately for a particular framework—were powerful. They had a seat at the table. When you look at the careers of the founding fathers, the majority were trained lawyers (John Adams, Alexander Hamilton, John Jay, Thomas Jefferson), and those who weren’t (James Madison) were nonetheless masterful legalists. They were the ones who wrote the rule sets that made America America. They wrote the operating system of its democracy. And the tiniest of their design decisions have had massive, long-standing effects on how the republic evolves. For example, by creating the electoral college the founding fathers inadvertently created a system where—two hundred years later—presidential candidates would discover they really only needed to pay attention to a handful of “swing” states. Once a state votes reliably Democratic or Republican, it effectively vanishes off the political map. No presidential candidate visits it or tries to seduce its voters. A different design decision—say, electing the president by a popular vote across the entire country—would have produced a radically different style of modern election. But the founders created a system that Americans are, absent a rewriting of the Constitution, stuck with.

A hundred years after the American Revolution, a new professional class rose to importance. With the Industrial Revolution roaring onward, the country began urbanizing, and skyscrapers climbed in New York and Boston and Chicago. Suddenly it was crucial to figure out how, precisely, you could get millions of people to live in tight proximity without drowning in their own excrement and while providing them with reasonably clean water and air and some way of moving around. This required a ton of ingenious mechanics, so all of a sudden civil engineers, architects, and city planners were in the driver’s seat. Anyone who could work in those fields—subway builders, bridge-builders, park-planners—had an outsize role in determining how the city dwellers of the US would live. And once again, single design decisions would go on to have a huge impact on people’s lives. Robert Moses was a famous city planner in midcentury New York, who, in a flurry of regal activity, built dozens of highways and parks that define how today’s Gotham works. Some of his decisions ruined lives. In 1948, he began work on the Cross Bronx Expressway, arguing that it was necessary to help relieve traffic that was going from Long Island to New Jersey. It worked, but at a brutal cost to the mostly black neighborhoods that the expressway sliced through. The expressway quickly attracted so much loud, pollution-belching trucking traffic that it destroyed the property value of any houses nearby, making hundreds of mostly African American families abruptly less wealthy, and living in a much less pleasant neighborhood. (Moses, it seems, also liked to move fast and break things.)

If we want to understand how today’s world works, we ought to understand something about coders. Who exactly are the people who are building today’s world? What makes them tick? What type of personality is drawn to writing software? How does their work affect us? And perhaps most interestingly, what does it do to them?

Nearly every programmer has a similar story about the moment they became mesmerized by coding.

It’s often when they write their first, tiny bit of code, telling the computer to say “Hello, World!” Here’s what that looks like in Python, a popular language:

print (“Hello, World!”)

Hit Enter to run that code, and the computer prints what you’d expect:

Hello, World!

Not terribly complicated, is it? Yet the effect on the neophyte programmer is electric and Olympian. “It’s this feeling of control,” as a coder at Noisebridge, the famous San Francisco hacker space, told me. “I was 13, and I had this machine that came to life and would do whatever I said. And when you’re a kid, that feeling is wild. It’s like you have a little universe to control, that you create.”

The first recorded use of “Hello, World!” was in 1972, when a young computer scientist named Brian Kernighan was writing the manual explaining how to program in the coding language called B. He wanted to show the simplest thing you could get B to do, which was to print a message. As he told me, he’d seen a cartoon of a chick coming out of an egg, saying Hello, World!, and liked its funny, quirky ring. So he wrote a simple snippet of B code that displayed that little message. Coders quickly glommed on to Kernighan’s witty idea, and ever since then, virtually every guide to a programming language—and there are over 250—begins with that one incantation. “Hello, World!” neatly distilled the existential jolt of coding: the creation of a life-form that lurches into being.

Coding has always had that uncanny hint of thaumaturgy about it. It’s a form of engineering, sure. But unlike in every other type of engineering—mechanical, industrial, civil—the machines we make with software are woven from words. Code is speech; speech a human utters to silicon, which makes the machine come to life and do our will. This makes code oddly literary. Indeed, the law reflects this nature of code. While physical machines like car engines or can openers are governed by patent law, software is also governed by copyright, making it a weird sister of the poem or the novel. Yet software is also, obviously, quite different from a poem or a novel, because it wreaks such direct physical effects on how we live our lives. (This is part of why some coders think it’s been ruinous to regulate code with copyright.) Code straddles worlds, half metal and half idea.

 “The programmer, like the poet, works only slightly removed from pure thought-stuff,” wrote the software engineer Fred Brooks in 1975. “He builds his castles in the air, from air, creating by exertion of the imagination . . . Yet the program construct, unlike the poet’s words, is real in the sense that it moves and works, producing visible outputs separate from the construct itself. It prints results, draws pictures, produces sounds, moves arms. The magic of myth and legend has come true in our time. One types the correct incantation on a keyboard, and a display screen comes to life, showing things that never were nor could be.”

That’s why the phrase “Hello, World!” is so laden with metaphoric freight. It summons to mind all the religious traditions where a god utters creation into existence: “In the beginning was the Word.” (Christian programmers are particular fans of this connection: Robyn Miller, an evangelical who co-programmed the game world Myst, would occasionally pause in his coding after crafting something cool and think, “It is good.”) But “Hello, World!” also has a creepy side. It reminds you of the unexpected side effects that come from bringing something to life that might escape your control—like Dr. Frankenstein’s neglected and vengeful wretch who wound up killing his loved ones, or the uncontrollable, respawning brooms in The Sorcerer’s Apprentice. And so it is with code. Your News Feed helps friends organize care for a friend sick with cancer; it also helps dank memesters spread utterly bonkers conspiracy theories. This harmonic resonance between magic and code is why teenaged nerd programmers of the early ’80s hybridized so fluently with Dungeons & Dragons (a game that merged fantasy with probabilistic dice-rolling math), or the spell-uttering wizards of Tolkien’s epics. In the ’60s, when programmers invented a type of code that would constantly run in the background, they called it a “daemon.” When he created the computer language Perl, Larry Wall, the computer scientist, included a function called “Bless.” As the coder Danny Hillis once noted, “A few hundred years ago in my native New England, an accurate description of my occupation would have gotten me burned at the stake.”

This sense of magical control can be intoxicating and fun; it lends itself frequently to a sort of starry-eyed idealism. And it can also lead, particularly in younger coders—who’ve yet to be humbled by life and their own screw-ups—to some epic hubris. People who excel at programming, notes the coder and tech-culture critic Maciej Cegłowski, often “become convinced that they have a unique ability to understand any kind of system at all, from first principles, without prior training, thanks to their superior powers of analysis. Success in the artificially constructed world of software design promotes a dangerous confidence.” Or as the computer scientist Joseph Weizenbaum noted in 1976, “one would have to be astonished if Lord Acton’s observation that power corrupts were not to apply in an environment in which omnipotence is so easily achievable.”

Coding isn’t easy. It requires sitting alone for hours, trying to mentally inhabit the twisty nuances of a piece of software—how this loop over here is triggered by that input by the user, unless this other subroutine is currently running, in which case this function ought to fire up. I’ve had it variously described to me as “trying to build and memorize the structure of every street in London” and “mentally levitating a massive house of cards into place.” This is why it tends to attract introverts and puzzle-solving logical thinkers, the types of folks who are happy sitting at home on Saturday night at 11:00 p.m. creating drivers for decommissioned 1997 webcams just because, well, they found an old 1997 webcam in their drawer and want to get it working, and damn it’s an interesting problem, and it’s certainly more predictable than dealing with people. (This introversion isn’t total. In fact, building software these days is increasingly social; it requires teamwork and, frankly, often more time in meetings with colleagues talking about what to do than actually doing it.)

More than introversion or logic, though, coding selects for people who can handle endless frustration. Because while computers may do whatever you tell them, you need to give them inhumanly precise instructions. That “Hello, World!” line of code I showed you earlier? Let’s imagine you were typing it in a rush, and typed it this way accidentally . . .

print (Hello, World!)

. . . so, whoops, you left out the quotation marks. Try to run it, and boom—it crashes. The computer won’t run it. And the computer isn’t pleasant about it; there’s no “I’m really sorry, Clive, something went wrong.” There are no niceties. It just spits out an error message like SyntaxError: invalid syntax, and it’s up to you to figure out what you did wrong. Programming languages are languages, a method of speaking to machines; but to speak to a computer is to speak to the most literal-minded entity on the planet, a ruthlessly prissy grammarian. When we speak to humans, they put a lot of work into helping interpret what we say. Computers don’t. They will take every single last one of your smallest errors and grind them in your face, until you fix them. That works its way into your mind and personality, too. When you meet a coder, you’re meeting someone whose core daily experience is of unending failure and grinding frustration.

Because code is constantly broken, screwed up, an unholy mess, filled with bugs. Even the stuff you just wrote two minutes ago will probably crash the first time you try to run it. “When you learn to program a computer, you almost never get it right the first time,” noted the pioneering computer scientist and educator Seymour Papert, back in 1980. He regarded this experience as the pivot around which all coder psychology turns. You write some code, you try to run it; it fails; so most of your job is figuring out what the hell you just did wrong. Those who can handle that daily vexation thrive. Those who can’t, flee. In June 1949, the computer scientist Maurice Wilkes was about to ascend the stairs when he suddenly had the epiphany that “a good part of the remainder of my life was going to be spent in finding errors in my own programs.” Seventy years later, all coders live with that moment. Even more fun—and, these days, more common—is the task of detangling errors not in your own work but rather in that of a programmer who was employed by your firm four years ago and who wrote what programmers call “spaghetti code,” filled with haphazard formatting, baffling variable names, and a structure as Gordian as that of Finnegans Wake. And so you dive in, and slowly, slowly, fix it. Programmers are what I’ve come to think of as “near Sisypheans.” They toil for days in resigned failure, watching the boulder roll back down the hill . . . until one day it abruptly and unexpectedly tips over the crest. And what do they behold on the other side? Another hill.

For decades, TV and film directors always depicted coding as an act of frenetic, mad typing—the software pouring out of the programmer in an ecstatic flow. The truth is far more mundane. If you watch coders at work (and I’ve watched them for hours), they’re most often just sitting there, frowning at the screen, running their hands through their hair in frustration, fidgeting a bit, and then breaking into a tight smile when they make some small, tiny, incremental progress. “Dude, I have no idea how you’re going to write this book, because coding is the most boring thing in the world to behold,” as one programmer told me. Or as Scott Hanselman, a programmer for Microsoft, told me: “There’s no glamour. There’s no glamour. You just sit and type.”

Interrupt them at your peril. Visit the marketing wing of a high-tech firm, and it’s filled with extroverts glad-handing one another and talking nonstop. Saunter over to the coding wing, though, and it is monastically silent, a forest of headphone-clad workers, everyone trying to remain deep in their flow, to hold dozens or scores or thousands of lines of structure in their brain. Once they’re in that zone they hate leaving it, because it’s so hard to get there in the first place. Clap your hand on their shoulder to ask, Hey, how are things going? and you may well provoke a sputtering, simmering rage—because you’ve broken the magic spell, and it will take them an hour to rebuild that castle in their mind. Goodbye, world.

Let’s use some code to automate things a bit. What if we wanted our “Hello, World!” program to say hello to a bunch of different people? We could do this:

names = [“Cynthia”, “Arjun”, “Derek”, “Alondra”]

for x in names:

print (“Hello there, ” + x + “!”)

What we did was to create a “list” of four names, and then we stored that list inside a variable called names. Then we wrote a for loop, which goes through the list name by name, sticking each one inside the sentence “Hello there, ____!” and printing it. Run that little Python program, and you see . . .

Hello there, Cynthia!

Hello there, Arjun!

Hello there, Derek!

Hello there, Alondra!

. . . which is more fun. Hey, now the machine is doing some scut work for us. You could give this program a list of 10 names, and that loop will run 10 times; give it 10,000 names, and it’ll just as happily print out the greetings 10,000 times. Or 10 million. Or 10 trillion.

Code, in other words, is really good at making things scale. Computers may require utterly precise instructions, but if you get the instructions right, the machine will tirelessly do what you command over and over and over again, for users around the world. It is an exhilarating sensation, watching a dutiful robot you’ve created suddenly being used by millions of people. Many software engineers are thus drawn like moths to the flame of scale. They love to create code that runs not just for themselves, not just for a couple of local friends, but for the whole damn planet, right now. Solve a problem once, and you’ve solved it for everyone.

When Sanghvi and the Facebook engineers were pondering how to make the News Feed, they initially conceptualized it as a sort of personal news service. It would be a modern version of the gazette of eighteenth-century European gentry. An in-the-know servant would deliver a report on the shenanigans of the various society folk you knew. Or, as Sanghvi put it, it would be like a personalized newspaper. “It seems crazy to think that three engineers who had just graduated from college were able to build a personalized newspaper for 10 million users,” she says. Such is the deep, vertiginous joy of scale.

It is accompanied by its close cousin, a fierce devotion to efficiency. Since they have, at their beck and call, machines that can repeat instructions with robotic perfection, coders take a dim view of doing things repetitively themselves. They have a dislike of inefficiency that is almost aesthetic—they recoil from it as if from a disgusting smell. Any opportunity they have to automate a process, to do something more efficiently, they will. (Sanghvi even extended this to her nuptials. Her mother wanted to arrange Sanghvi’s marriage in India, and Sanghvi agreed, because it struck her as far more efficient than dating—which you could regard, from a purely computer-scientific point of view, as a woefully resource-intensive sorting algorithm. “I was a big fan of arranged marriages,” as she said once in a speech. “It appealed to the engineer in me. They’re practical, and they had a higher probability of succeeding.”)

This instinctive desire to optimize—and scale—is what has led to many collisions between software firms and civic life. Facebook looked at our lives as a problem of inefficient transmission of information. Before Facebook, all day long I was doing (and thinking and reading) things my friends might find intriguing. But I had no way to easily broadcast my life, and they had no way to listen; we had to rely on irregular phone calls, drinks at a bar, conversations on the sidewalk. News Feed was, in essence, a massive optimization of our peripheral vision, on a planetary scale. The same thing goes for Uber, which optimized the experience of hailing cars, or Amazon, which did the same thing for shopping, or the many firms creating just-in-time services with “gig” employees. In each case, though, tech firms that are driven maniacally by a zeal for optimization wreak china-shop havoc with any person or government or community that prizes continuity: drivers and employees who’d rather have reliable jobs than piecemeal gigs, neighbors who lose local stores and jobs when they can’t compete with lower-friction online sales. Or a culture that suddenly realizes News Feed, so invaluable in many ways, can also sometimes expose us to each other too much.

Code makes efficiency and scale easy, seductive, almost inevitable. That is also why programmers fit so easily into business building and part of why some slide so frequently into libertarian thinking. Their talents are torqued perfectly for capitalism’s central trick, which is, basically, “do something marginally more efficiently than before and then skim off the profit.” Mind you, software also, by its very nature, weird-ifies a lot of the assumptions of capitalism. A piece of software is a thing, a machine that does something, so you can own it; but because it’s also a form of speech, it can be easily shared. And so it is shared, almost incessantly. Coders are remarkably chatty and open about their everyday work, regularly posting their software problems to online forums and spending hours helping other people solve theirs. (A study in the ’80s concluded that coders were “less loyal to their employers than to their profession.”) Even in the bowels of the most rapaciously capitalistic Silicon Valley firm are coders who spend a lot of time—at their desk, at work—helping solve the bugs of other randos. And there’s often a communitarian spirit in the worlds of free and open source software, where coders often contribute work freely, to software that anyone can also use themselves, freely.

The wealthy libertarians of Silicon Valley tend to get a lot of press attention. That’s understandable. Because they control a lot of the purse strings and decide what to fund, their obsession with “disruption” dictates a lot of what gets funded in technology. But the politics of rank-and-file coders is rather more diverse than one might imagine: There are arriviste brogrammers who’ll admit on the third drink that they voted for Trump while working next to property-is-theft anarchists who live in communal lofts, and traditional California liberal lefties attending JavaScript conferences cheek by jowl with coders who spend their evenings energetically shitposting about feminism on Reddit.

Feminism and diversity are, indeed, sore points in the industry. When it comes to the participation rates for women in the US, software is the rare prestigious, high-income industry that has actually regressed. Women were some of the first-ever coders in the ’50s, and they comprised some of the field’s first towering figures, such as Grace Hopper, who created the first “compiler,” or Adele Goldberg, cocreator of the enormously influential Smalltalk language. In 1983, women were 37.1 percent of computer science majors, but by the 2010s the rate had declined to less than half that, around 17 percent. (On the real-world job market the numbers are the same; in 2015, a tally found that the percentage of women in technical jobs at high-profile places like Google or Microsoft ranges from perhaps the high teens to around twenty.) The racial makeup is not any more diverse. Walk into any start-up, and you’ll instantly glimpse what the large-scale data show: Programmers at work are primarily white and Asian men. The percentages of black and Latino coders are in the single-digit range across the country and as low as 1 or 2 percent at top Silicon Valley firms.

This is surpassingly ironic because the software industry has long cherished its self-image as a pure meritocracy. The only thing that matters, in theory, is whether you’re good. This reverie can be somewhat understandable, because there’s a level at which it is inspired by the hard realities of software. At the level of the machine, code truly does feel meritocratic: Crappily written software crashes, and better-written stuff doesn’t. Indeed, that binary clarity is what software engineers love about it; like long-distance running, succeeding at a fiendish coding problem feels like a true measure of yourself. The field of software can also appear more democratically accessible than many other fields, because it’s one where self-taught amateurs work alongside people with PhDs. (That certainly isn’t true of surgery, law, or aerospace engineering.) And many coders will admiringly tell you of colleagues who seem not just more skilled than themselves, but vertiginously so—elite hackers, Neos in the Matrix who can pour out code and solve puzzles an order of magnitude faster than their mortal peers. So the roots of the mythology go deep. Steeped in a field with these do-or-die specs, it isn’t surprising that so many young white men, inexperienced in feeling the daily subtle discrimination faced by underrepresented people of all backgrounds, fall under the sway of the myth; that they believe, genuinely—sometimes with almost a sort of doe-eyed naivete, even when they’re being pissy or enraged about it—that the field is a straightforward meritocracy; that if women and minorities aren’t thriving, it’s because they haven’t worked as hard or aren’t genetically endowed with the talents.

It’s also clear this isn’t remotely true. There’s plenty of evidence, of course, including studies that use Silicon Valley’s much-favored A/B testing. To pick just one revealing experiment, a tech recruiting firm submitted 5,000 résumés to employers, once without names, and once with. When the résumés had no names—and thus employers couldn’t know the gender—fully 54 percent of résumés from women were selected for interviews. When the résumés were submitted with names, the number plummeted to 5 percent. And when I interviewed women and minorities at tech firms, many told of every shade and flavor of discrimination, from subtle slurs to outright harassment. The tale of how the software industry narrowed and tightened is a modern cautionary tale about opportunity—and how we might better vouchsafe it.

And the stakes here are surprisingly high. When it comes to product design, culture matters. If a tool is built by a team that’s essentially a monoculture, it’s going to have serious blind spots, as any first-year MBA student learns. Thus it has been with the code that shapes our lives. Some of the most influential software in recent years has been made by groups of mostly young, mostly white, mostly men who didn’t foresee ways their code will affect people who aren’t like them. This is, just to pick one example, some part of why Twitter has been the site of so much abuse and harassment. The team of young guys who made it were, demographically, far less likely to have experienced online abuse. They didn’t prioritize it early on as an inevitable, looming problem that they would need to address. On the contrary, one staff member dubbed their company “the free-speech wing of the free-speech party.” They designed few early safeguards against harassment, and years later, trolls and white supremacists discovered that Twitter was a fabulous way to harass targets.

Broadening the world of coders, as it turns out, is part of what Ruchi Sanghvi is now trying to do.

When I first met her, she was only 35, but in the hummingbird metabolism of software, that made her an éminence grise. After five years at Facebook, she’d founded her own company, sold it to Dropbox, and worked there as a vice president. After she left Dropbox, she started a venture aimed at inspiring the next generation of coders: South Park Commons. A renovated office building in San Francisco’s South of Market neighborhood, it is a hub for young technologists pondering their future.

“It’s like a salon,” Sanghvi said when I showed up for lunch on a hot summer day. Small clusters of engineers, researchers, and entrepreneurs sat at long tables, plowing through email and reading white papers, beneath a sprawling piece of art on the wall, a series of jagged wooden arches. Sanghvi takes in 30 to 40 members at a time, attracting them via word of mouth, then encourages them to talk, organize lectures, and bat around ideas at the edge of reasonable. It’s not really an “accelerator,” one of those hothouses where young people kill themselves for three months bootstrapping a firm, in a desperate attempt to attract venture capital. It’s more speculative, aimed at convincing members to pick a truly new, weird area to examine. Lately the talk has been heavily about artificial intelligence (AI), and the dark magic of writing algorithms that can learn on their own; at least six of Sanghvi’s members have wound up working at Google Brain or the nonprofit OpenAI initiative.

Six start-ups that have come out of the Commons were founded by women. That’s an achievement too: Getting more women into critical founder roles means they can deeply influence the trajectory of their firm, and benefit from its success. Sanghvi remembers having to argue over getting a fair share of Facebook’s value. When she talked to Mark Zuckerberg, she laid down a demand: “I said, either you bring me up to par on equity or you increase the cash compensation,” she tells me. She put it to Zuckerberg in nerd terms: “All I really care about is building stuff,” she told him, “and I don’t want to have this in the back of my mind while I’m working. I want to be only thinking about building stuff! And you don’t want me to have that in the back of my mind.” (She wasn’t complaining specifically about getting less than men, she notes; at the time, she didn’t know individually what anyone else was getting.) But it was, in classic coder style, an argument based on efficiency, the mind analogized as a CPU: You wouldn’t want me wasting my scarce brain-processing cycles, would you? Zuckerberg was convinced. These were terms he could understand.

When I visited South Park Commons, it looked like the next generation of nerds hunting for the same open, greenfield areas that Sanghvi found years ago with Facebook. As she sees it, despite all its systemic problems, the world of software is still (as the author Douglas Rushkoff neatly puts it) a “high leverage point”—a fulcrum where one can shift the world. You just need an opening, a place to get in.

That turns out to be true of software, going all the way back to the beginning of the industry. When you look at the history of code—and who becomes a coder—it’s a history of doors that swung open, allowing a new generation to wander in. Each group that showed up changed the fabric of software and left their mark on how we live our lives. It happened in the early ’90s and ’00s with the web; before that, it happened in the ’80s with personal computers; and before then, in the curious, room-sized mystery machines of the ’70s and ’60s. It’s been a story of people who discovered they liked the combination of logic and art that lets you talk to machines.

It’s the story of people like Mary Allen Wilkes.

< Chapter 2 >

The Four Waves of Coders

Mary Allen Wilkes did not plan to become a software engineer. Back in the 1950s, she was a Maryland teenager who dreamed of becoming a trial lawyer; she was known for her systematic, probing intelligence. But one day in junior high in 1951, her Geography teacher surprised her with a comment: “Mary Allen, when you grow up you should be a computer programmer!”

Huh? Wilkes had no idea what her teacher was talking about. She had no idea what a programmer was; she wasn’t even clear what a computer was. To be fair, relatively few Americans knew what one of these newfangled “digital brains” looked like or how they worked. The first digital computers had been built barely a decade earlier at universities and government labs, and they were a pale shadow of today’s computers. They were mostly just high-powered calculators, used by scientists and the military to crack encoded messages from the enemy or to calculate bomb trajectories. Still, Wilkes mentally filed away that comment from her teacher as she went off to Wellesley to earn a BA in philosophy.

As she prepared to graduate four years later, she realized her legal dream would be a hard road. It was 1959, and the field of law was still too sexist to let very many women become trial lawyers. Academic mentors all told her the same thing: Don’t even bother applying to law school. “They said, ‘Don’t do it. You may not get in. Or if you get in, you may not get out. And if you get out, you won’t get a job,’” she recalls. Or if she lucked out and got a job, it wouldn’t be doing trials: More likely it’d be as a law librarian, a legal secretary, someone processing trust and estates. “And I wanted to be a trial lawyer. But in the 1960s, this was just not going to happen.”

Wilkes remembered her junior high school teacher’s comment about programming, though. In college she’d heard a bit more about computers and how they were supposedly the machines that held the keys to the future. She knew MIT had some. So on the day of her graduation, she asked her parents to drive her to the MIT campus, where she marched into the employment office. “Do you have any jobs for computer programmers?” she asked.

They did. And as it turns out, they hired her. They were happy to take on an applicant who wandered in with absolutely no experience in computer programming.

That’s because in 1959, almost nobody had experience in computer programming. The discipline did not yet really exist; there were vanishingly few college courses in it, no majors to take. (Stanford wouldn’t create a computer science department until 1965.) Writing software had only recently begun to move toward the style of coding we know today. At its heart, a computer is really just a massive collection of binary switches, each one representing a single bit, a “1” or a “0”: on or off. Bits can do some very fun tricks, though. Putting a bunch of bits in a row lets you represent a number in binary format; the sequence 1101, for example, represents the number 13. You can also build logic statements that help a computer make decisions. For example, there’s an “AND” gate: If switch one and switch two are both “on,” they activate a third switch. Or there’s an “OR” gate: If switch one or the other is “on,” it triggers a third switch. By connecting a lot of logic gates, you could get a computer to add and subtract numbers very quickly, and perform feats of complicated reasoning upon them. To make it easier to manipulate these binary machines, computer scientists in the late ’50s had begun to invent languages like Fortran or COBOL, which let programmers write commands that more slightly resembled English. Wilkes was arriving at the beginnings of this revolution.

As it turns out, Wilkes had an edge: her degree in philosophy. She’d studied symbolic logic, in which you craft arguments and inferences by chaining together AND and OR statements in a similar fashion. It was a style of thinking that dated back to Aristotle, and had risen to prominence in the work of logicians like George Boole and Gottfried Leibniz.

Wilkes quickly became a whiz at writing programs. She worked at first on the IBM 704, one of MIT’s massive computers. It required her to write in an “assembly language,” which could be pretty abstruse: A typical command would be something like “LXA A,K”—it tells the computer to take the number located in location A of the computer’s memory and load it into the “index register” K. Entering the program into the IBM 704 was itself a painstaking affair. There were no keyboards, no screens, as with today’s computers. Wilkes wrote the program on paper, handed it to a typist who would punch each command onto punch cards, then an “operator” would feed the stack of cards into a reader. The computer would execute the program and send the results back later as a printed message, typed on a printer.

Worse, there were logjams. There was only one IBM 704 at MIT’s Lincoln Lab where she worked, and each computer could run only one program at a time. So programmers had to stand in line, taking turns running their programs or waiting around while others ran theirs. Programming, Wilkes discovered, required monk-like patience. She’d hand off her code, then cool her heels for hours until the result came back. The massive IBM 704 machine would pulse away, hidden in another room. Programmers were rarely allowed into the inner sanctum to touch the machine itself; the hardware was attended to by a priesthood of technicians who’d scurry around replacing burned-out components. What’s more, the computer needed to be sealed in a separate room to mitigate the volcanic heat it produced. The computer rooms were some of the only places in all of MIT that had air-conditioning, without which the computers would quickly melt down.

So Wilkes would wait. Then finally her program would attempt to execute, the printer would clatter to life, and she’d examine the result. Very often her code wouldn’t produce the result she wanted. She’d have made a mistake, created a bug that would cause the whole calculation to be thrown amok. Then Wilkes would pore over her lines of code, trying to deduce her mistake, stepping through each line of code in her head and envisioning how the IBM 704 would execute it—turning her mind, as it were, into the computer. Then she’d rewrite the program, have it keyed in on a new batch of punch cards to be fed in again, and then wait, for hours more; then repeat. She learned to be not only precise in her code but parsimonious. Most computers’ capacity back then was quite limited; the IBM 704 could handle only about 4,000 “words” of code in its memory. Writing a program was like writing a haiku or a sonnet. A good programmer was concise, elegant, and never wasted a word. They were poets of bits.

“It was like working logic puzzles—big, complicated logic puzzles,” Wilkes recalls. She also loved the precision it required; she had a meticulous side that coding satisfied. “I still have a very picky, precise mind, to a fault. I notice pictures that are crooked on the wall . . . I think there’s a certain kind of mind that works that way.”

Who possessed minds like that? Back in the 1960s, it was frequently women. It’s often a surprise to people today, but at MIT’s Lincoln Labs in the 1960s, when Wilkes worked there, most of the “career programmers” were female. Indeed, it was often assumed back then that women were naturals at programming. There was also a recent female pedigree; during World War II, some of the first experimental computational machines used for code-breaking at Bletchley Park in the UK were staffed by women, and in the US, the first programmers for the ENIAC computer, calculating ballistics trajectories, were women.

Still, Wilkes noticed gender divides. Part of the reason men weren’t full-time programmers is because in the ’60s, the sexy, high-glory part of the job was regarded as building the hardware. That, engineers felt, was where the devilish challenges lay, as well as the money, with defense contracts pouring in. How do you craft a computer that can read data from its memory faster and faster? How do you fit a computer into a smaller space or get it to use less energy? Solving problems like that got an engineer hired as “research staff” at MIT, with better pay and more vacation time. The actual act of programming the machines—telling the hardware what to do—was, if not exactly an afterthought, seen as a subordinate activity. So at Lincoln Labs, the men gravitated to crafting the circuits for bold new computers. They certainly could do programming; they needed to. But they didn’t make it their life’s goal. Career programmers weren’t on the research staff; they served the research staff.

Nonetheless, Wilkes enjoyed the relative comity, the sense of being among intellectual peers, that reigned between the men and women at Lincoln Lab. “We were a bunch of nerds,” Wilkes says. “We were a bunch of geeks. We dressed like geeks.” (Being the ’60s, this still meant Wilkes had to wear heels and a skirt—but she could at least wear a simple blouse; no suit jacket was required.) “I was completely accepted by the men in my group. And it was more interesting than being a secretary.”

In 1961, Lincoln Lab heads assigned her to a prominent new project—helping to design and build the LINC, an audacious bid to develop one of the world’s first truly personal computers. It was the brainchild of Wesley Clark, a young computer designer known equally for his vision and his penchant for disobedience; MIT had already fired him twice for insubordination. (He was hired back both times to new positions.) He was intrigued by the emergence of transistors, which could do the same work as vacuum tubes—they could form logic circuits and be the guts of a computer—but they were tiny and low power, so they wouldn’t heat up, and they’d be faster to boot. He wanted to make the world’s first “personal computer,” one that could fit in a single office or laboratory room. No more waiting in line; one scientist would have it all to himself (or, more rarely, herself). Clark wanted specifically to target biologists, since he knew they often needed to crunch data in the middle of an experiment. At that time, if they were using a huge IBM machine, they’d need to stop and wait their turn. If they had a personal computer in their own lab? They could do calculations on the fly, rejiggering their experiment as they went. It would even have its own keyboard and screen, so you could program more quickly: no clumsy punch cards or printouts. It would be a symbiosis of human and machine intelligence. Or, as Wilkes put it, you’d have “conversational access” to the LINC: You type some code, you see the result quickly.

Clark knew he and his team could design the hardware. But he needed Wilkes to help create the computers’ operating system that would let the user control the hardware in real time. And it would have to be simple enough that biologists could pick it up with a day or so of training.

Over the next two years, she and a team toiled away, staring at flowcharts, pondering how the circuitry worked, how to let people talk to it. “We worked all these crazy hours, we ate all kinds of terrible food,” she recalls. When they had a rough first prototype working, Clark tested it on a real-life problem of biological research. He and his colleague Charles Molnar dragged a LINC out to the lab of neurologist Arnold Starr, who had been trying and failing to record the neuroelectric signals cats produced in their brains when they heard a sound. Starr had put an electrode implant into a cat’s cortex, but he couldn’t distinguish the precise neuroelectric signal he was looking for. In a few hours, Molnar wrote a program for the LINC that would play a clicking noise out of a speaker, record precisely when the electrode fired, and map on the LINC’s screen the average response of the cat to noises. It worked: As the data scrolled across the screen, the scientists “danced a jig right around the equipment.”

In early 1964, Wilkes took a break, traveling around Europe for a year. Upon her return, Clark asked her to come back to write the operating system for the LINC, but the lab had moved to St. Louis, and she had no desire to move there. So they agreed to let her work remotely and shipped a LINC across the country to her parents’ house in Baltimore, where she was living. They set it up in the living room next to the staircase to the second floor, where it looked like a glimpse of a very weird future: HAL from 2001, arrived in suburban America. The computer was composed of several big units, including one tall cabinet that stood on a table at the bottom of the stairs, on which magnetic tapes whirred and data glowed on the computer’s screen, not much bigger than a piece of white bread; and nearby, a fridge-sized box full of transistorized circuits. Wilkes would sit at a desk wedged between the hardware, writing out the code, working into the wee hours. Like many coders, she was a night owl. Wilkes had become one of the first people on the planet to have a personal computer in her home.

Soon Wilkes had completed the LINC’s operating system and written a manual explaining, for complete newcomers, how to program it. (Another pioneering moment: Few people had written a how-to program guide for complete neophytes, because there were few computers aimed at neophytes.)

Wilkes was now deeply embedded in the world of coding. She was known as a skilled veteran in this curious new field, and she’d been offered jobs at some of the now-growing number of computer manufacturers around the country.

But Wilkes’s original dream of a legal career still gently haunted her. “I also really finally got to the point where I said, ‘I don’t think I want to do this for the rest of my life,’ ” she tells me. Computers were intellectually stimulating but socially isolating. “I said, ‘I think I need something that’s more human interactive. I don’t want to spend the rest of my life staring at flowcharts.’”

She applied to Harvard Law School, where her CV stood out as a curiosity: Who was this 30-year-old woman who programmed these odd, newfangled computers? She was accepted, graduated, and went on to spend the next forty years working, as she’d initially craved, in law, including taking cases to trial, teaching at Harvard, and working with the Middlesex DA. She doggedly prepared for each court appearance, walking through possibilities in the lines of questioning the way she’d walked through lines of code. “And I loved it. I absolutely loved it.” One of her specialties was, rather appropriately, technology law.

These days, the stereotype of a coder is what you’d see on a show like Silicon Valley or Mr. Robot: young men, enhoodied. In the US, mostly white, though with some Indian and Asian programmers mixed in; all pretty nerdy. Some of them with vaguely antiestablishment points of view, others out to make a quick million.

The truth is that the question of who becomes a coder has changed over the years. As the industry has developed—as the types of computers that are available have evolved—it has produced several discrete generations of programmers. Mary Allen Wilkes was among the first generation of them, the ones who didn’t yet necessarily think of coding as a career and who were part of enormous teams. Computers were the province of institutions, and the ones who were allowed to touch them were institutional.

The next wave of coders, though, were the “hackers” of the ’60s and early ’70s. They regarded themselves as renegades—the ones who wrested computing away from dour, restrictive institutions.

Much of that culture was born at MIT, when the artificial-intelligence lab acquired some of the early real-time machines of the sort that Wilkes had designed. Equipped with output screens and keyboards, these computers—such as the PDP-1—were often busy during the day with work by grad students in the AI program. But in the evening, they were frequently free, open for interested sorts to find these “conversational” machines.

Quickly, a group of obsessives began to cluster around the lab. One was Bill Gosper, a skinny math prodigy who’d spend hours on the machine creating algorithms to solve problems of math or geometry. (In one of his early achievements, he wrote a routine to solve the “Hi-Q” peg-jumping puzzle game.) Two others were Ricky Greenblatt, an unkempt student who became prolific at pouring out code, and Slug Russell, a boy mesmerized by the possibilities of drawing interactive games on a computer screen. Surrounded by a growing crew of young men—and they were all men—the students would spend all night in the lab, often with the lights turned out, lit by the eerie cathode rays.

They were enthralled by the feeling of being in a direct, intellectual loop with the computer—“the rush of having this live keyboard under you and having this machine respond in milliseconds to what you were doing,” as Gosper later told the journalist Steven Levy in Levy’s book Hackers. They’d have an idea, code it, and instantly see the results; then tweak more and more, watching each idea come alive on-screen. When they started pursuing a new coding challenge, time stood still. “I was really proud of being able to hack around the clock and not really care what phase of the sun or moon it was,” Gosper said. Greenblatt would program in 30-hour shifts, eventually so destroying his classroom schedule that he flunked out of MIT. (He took a coding job in a nearby town and kept coming to the AI lab at night.)

But crucially, nobody was telling them what to program or what not to program. They were the first group of coders who used the machines to do things that were simply whimsical or creative. They’d get the machines to play music by writing code that turned the vibrating speaker on and off at different frequencies. They’d write programs to calculate chess moves, one of which eventually beat an actual human. Russell wrote Spacewar!, one of the world’s first graphical computer games, in which two players each piloted a ship around a black hole, trying to shoot the other. Using a $120,000 machine to play a video game would likely have seemed, to computer-makers at the time, a madly frivolous thing to do. But the MIT hackers regarded themselves as liberating programming from its mundane history of mere bean counting and scientific problem-solving. Coding itself, they felt, was a playful, artistic act.

They were establishing, as Levy described it, a “hacker ethic.” They believed that there was a hands-on imperative, that everyone in the world ought to be allowed to interact directly with a computer. They also believed in radical openness with code: If you wrote something useful, you should freely share it with others. (This spirit of openness extended to the physical world: When MIT authorities locked cabinets with equipment they needed to fix the computer, they studied lock picking and liberated the equipment.) And they deeply distrusted authority and bureaucratic pecking orders. The white-shirted, buzz-cut IBM types who had kept computers locked behind doors enraged them.

In contrast, they admired great code even if it came from someone with no rank at all: Kids as young as 12 showed up at the AI lab and wound up part of the group. One, David Silver, dropped out of school at age 14 to begin hacking with the group, and he became an expert at programming the AI lab’s robots. That wound up annoying the graduate students in AI, who were more philosophically inclined; they thought the most important thing was to have a good theory of how intelligence worked, and they didn’t find the coding part as interesting. Silver was precisely the opposite. Like the other hackers, he cared more about actually getting code running—a good “hack,” a program that really did something, was all that mattered. At one point, he got a robot to push a wallet across the room into a goal. “It sort of drove them crazy,” he told Levy. “Because [I] would just sort of screw around for a few weeks and the computer would start doing the thing that they were working on that was really hard. . . . They’re theorizing all these things and I’m rolling up my sleeves and doing it. You find a lot of that in hacking in general.”

It was often a fiercely anticommercial world. Code was a form of artistic expression, they felt—but it wasn’t one they wanted to copyright and make money off of. On the contrary, they believed in freely giving it away and showing it to everyone who wondered, Hey, how’d you do that? That’s how people were going to learn, right? And that’s how these inventions and miracles they were crafting were going to spread to the outside world. This was the ethic that later morphed into “free and open source software”—the act of openly publishing your code and letting anyone repurpose and use it. Famous MIT hackers like Richard Stallman were incensed at corporations that kept their source code secret; he was livid when a group of MIT hackers left to found a firm that produced LISP computers, sold them to MIT, yet wouldn’t openly share the code. Stallman responded by launching the free-software movement and beginning work on a full operating system and legal apparatus that enshrined everyone’s right to inspect and tinker with the code. The hackers weren’t political in the partisan sense of the word; most were only dimly engaged with the raging debates over the Vietnam War. But the emerging politics of software? Now that compelled them—at least the ones like Stallman.

But they were also the first generation that began to push women out of the field. Unlike Wilkes’s earlier cohort, the core scene of hackers in the MIT lab were exclusively men—often stilted in conversation and living in “bachelor mode,” as they put it, with no interest in dealing with anyone except those like themselves. They saw themselves as a priestly class, devoted to their craft above all else: “Hacking,” Levy observed, “had replaced sex in their lives.” Greenblatt was so famously unshowered and messy that the YMCA kicked him out of its residence. With male hackers sleeping in the lab at night, the environment trended toward that of an all-guy dorm.

The tinkering culture of the hackers, too, could collide with that of MIT’s computer scientists, who were trying to use the machines to get important research work done. One of the latter was Margaret Hamilton, a young MIT coder who would later become a famous programmer engineering mission-critical NASA systems, helping to land Apollo missions safely on the moon. Back in those early MIT days, she was trying to run a weather-simulation model, but it kept on crashing. Why? Eventually Hamilton learned it was because the hackers had rejiggered the computer’s assembler to suit their desires and hadn’t switched it back. They wanted to muck around with pretty cellular automata; she was trying to do weather science. But the hackers simply hadn’t appeared to think about the repercussions their tinkering had for other people.

These guys were companionable with each other but mostly uninterested in talking about their own or others’ inner lives. “I spent my lifetime walking around talking like a robot, talking to a bunch of other robots,” as one of them later said with a sigh.

By the ’80s, the nature of computers changed again. The devices were becoming cheaper and cheaper, as a new breed of manufacturer decided it was time to truly bring computers to the masses. Over in Silicon Valley in 1976, Steve Wozniak created the Apple I, one of the first computers that had a radical design element: It could plug into a regular TV. Turn it on, and you could immediately start coding, just like the MIT hackers. Soon plenty of other manufacturers began following Apple’s lead, driving the price of computers down to something a middle-class family could afford. In 1981, Commodore released the VIC-20, a plug-and-play machine for $300. The revolution begun by Wilkes had now spread to the wood-paneled basements of America.

Suddenly, teenagers with enough money could essentially stumble into the world of programming. That’s basically what happened to James Everingham.

Everingham grew up in a Pennsylvania town called Dubois, which was near Punxsutawney, famous for its appearance in the film Groundhog Day. In 1981, at age 15, a friend dragged him into a local department store called Montgomery Ward. His friend wanted to see a VIC-20, which had just come out; Everingham couldn’t figure out the allure of this nerdy crap. “I don’t get these computers,” Everingham complained, as his friend cooed over the chunky beige computer. “Why would anybody want those? Like, what do you do with it?”

“Watch this,” his friend said, and he typed in this program:

10 PRINT “JIM”

20 GOTO 10

When his friend set the program running, the screen filled up with “JIM” over and over again. Everingham was agog. “I thought it was magic,” he tells me. “I just wanted to know what evil is this. I was like, ‘I must know!’ ”

It was the language BASIC. I’d posit that BASIC is, historically, the most consequential computer language in history because it dramatically threw open the floodgates to amateurs. Back when Wilkes was hacking away, the Assembly language was pretty cryptic to read and write. It’s what’s known as a lower-level language, which takes a lot of work to learn to read and master. By the time the MIT hackers arrived, higher-level languages that looked a lot more like Standard English were commonly in use, such as Fortran, aimed at helping everyday scientists and mathematicians use computers to do calculations, or COBOL, designed for businesses. But BASIC was one of the easiest yet. Invented in 1964 at Dartmouth College, it stood for a Beginner’s All-purpose Symbolic Instruction Code, and used fairly simple commands that a newbie could readily grasp and wield.

That little program of Everingham’s friend shown previously? That was the “Hello, World!” of the VIC-20 generation, the first incantation that most kids tried when they got their mitts on the machine. It’s pretty easy to read even if you’ve never programmed: The first line in the program is numbered “10,” and it tells the computer to PRINT the name “JIM.” The second line of code, numbered “20,” tells the computer to go back to line 10 again. Together, they create a tiny infinite loop that will print and reprint your name until the computer is turned off. This simple little two-line program neatly illustrated the awesome, alien power of computers: Like a robotic genie, it would do what you commanded, precisely and ceaselessly.

There aren’t many ways for teenagers to grasp, in such visceral and palpable ways, the fabric of infinity. But typing that two-line program gave them a taste of that power. Watching his name scroll by gave Everingham a jolt of the emotion Keats describes so beautifully in his poem “On First Looking into Chapman’s Homer”: Like stout Cortez, he’d climbed a peak and suddenly beheld an entirely new ocean of possibility, upon which one could sail, seemingly, forever.

And it was an ocean that teenagers found easy to navigate. The computer companies very much encouraged it. Indeed, most of those early ’80s computers arrived with a manual explaining, step-by-step, how to write BASIC programs. (I’m Everingham’s age, and this is precisely how I first learned to program, too.) The computers also had a decent ability to display graphics and play musical notes, which made them particularly suited for crafting simple computer games—a particularly narcotic allure for 1980s teenagers, who invariably set about trying to remake their own versions of arcade hits like Space Invaders or Pac-Man or text-adventure games like Zork. (It was the fan fiction of the arcade world.) All told, these plug-into-your-TV computers gave birth to a Cambrian explosion of hackers around the world. When you take cheap machines that can do nearly anything you tell them to and hand them over to teenagers with essentially no adult supervision—because their parents had no idea what computers were—you create the infinite-monkeys experiment of software. Soon, teenage coders were cobbling together everything and anything: chatbots that would curse and swear, spellbinding forms of artificial life known as “cellular automata,” casino games, little databases and accounting programs, computer music, and endless varieties of games.

Everingham was desperate to join this scene. He was from a lower-middle-class family whose parents couldn’t afford to buy him a computer. So he began frantically picking up every spare job he could—mowing lawns, then shoveling snow when winter came—until he’d saved enough, with a contribution from his mother, to get his own VIC-20.

Now he had the machine; how to get games? “I was poor so I really couldn’t afford any,” he says. He needed free ones. So he began buying computer magazines, like Commodore’s own Run, that contained the entire code for simple games. As he’d type them out, he began to understand bits of how they’d work. He’d change a few variables and presto: He’d have hundreds of lives in a game of Space Invaders! Slowly, through trial and error, he began figuring out how BASIC worked, then writing his own software.

Then, through those computer magazines, Everingham heard of something even cooler: Bulletin Board Systems. On BBSes, you could use a modem to dial into someone else’s computer across the country, chat with them, and—best of all—download copies of free software and games. “Free” sounded good to a broke teenager, so again he scrounged and worked odd jobs so he could buy a modem. Everingham began spending hours dialing into BBSes around the country, downloading software and using the downloads to learn more and more BASIC. After a month of this frenetic dialing, though, the telephone bill arrived. His mother came downstairs with it in hand, weeping; he had racked up $500 in charges. Everingham was mortified: “It was more than her mortgage,” he says.

So now he had a new challenge: how to scam free long-distance phone calls. He started researching, and he discovered how calling-card companies worked. You’d dial into their main 1-800 number and input your account number, which was a six-digit number. So all he needed to do was call the 1-800 number over and over again, iterating through every possible six-digit number, until he stumbled across some that actually worked. That’d be a painful and boring task for a human—but perfect for a computer. (Matthew Broderick’s character uses his computer to do this in WarGames; so hackers started calling the trick “war dialing.”) Everingham quickly wrote a Commodore 64 program that dialed up the 1-800 number for a long-distance firm called “LDX” over and over again, all night long while he slept. When he woke up, it had created a neat list of working long-distance codes he could use. It wasn’t legal, and he knew it—but stealing something as intangible as long-distance time didn’t feel like a big crime.

Indeed, he even got help from inside the bowels of LDX. One day after talking to a hacker friend in Texas long-distance, he got a call from someone who called himself “Mr. Clean.” Mr. Clean worked for LDX and had noticed the illicit activity on the lines, so he traced Everingham’s number and rang him. But Mr. Clean, it turned out, wasn’t angry. In fact, he wanted to help; he coached Everingham and his friends on how the deep secrets of the LDX phone system worked. Generate the right sound tones, Mr. Clean told them, then play them through a speaker, and you could commandeer any part of the system. Armed with that knowledge, Everingham wrote a Commodore 64 program that could play the right tones. Soon he was not only scamming free long-distance numbers but also writing code that would generate Mastercard and Visa numbers, which he and his friends used once as a prank to call a phone-sex line.

“We were teenagers; you take a stolen credit card, we’d call a porn line, and they had to call you back,” he remembers. “So we would conference out to a loop line . . . and there were like eight teenage delinquent kids using a stolen credit card to call back into a loop line. We’d start trying to get ’em to talk dirty and then we’d all laugh and hang up. I mean that’s as far as it ever got.” He laughs. “Of course this is complete juvenile delinquency.” But as he argues: “Juvenile delinquency applied to technology will lead you to success.”

Mind you, there still wasn’t a clear sense, at this point in coder history, that being a programmer was a particularly lucrative field—or, indeed, even a field at all. Many of these kids tinkering around with BASIC had no clue that software engineering, as a job, existed. As a fortysomething Uber engineer, a contemporary of Everingham’s, puts it: “I saw computers as this fascinating thing that I wanted to understand—although I didn’t know why. To me, it truly seemed as practical as art history.”

This was a big shift in the culture of who became a coder, and why. For the first time, programmers were emerging in living rooms, as teenagers, propelled by the culture of making, acquiring, and sharing software. But given that the video-game scene was primarily one of boys, it began to make coding culture—in this new, more-grassroots phase—ever more male. The same goes for the world of BBSes, where illicit contact with far-flung people on boards was something parents might tolerate or ignore in their sons but more likely forbid in their daughters. If you were one of the kids allowed into that BBS scene, though, then—as Everingham discovered—it was heavily tinged with the antiauthoritarian, open-sharing ethic of the MIT hacker generation. And it was a culture where teenagers learned the value of being connected: Long before the internet, they discovered that powerful knowledge could come from text chats with strangers they’d talk to halfway around the world. Like many boy-coder teens of his cohort, Everingham was spending so much time coding he was flunking his high school classes.

 “I was hooked,” he says. “I learned that this computer was the ultimate medium of expression and I could create anything that I could think of just out of sheer will. It’s a multidimensional paintbrush. I could instruct it to do whatever I wanted.”

By age 18, Everingham adroitly realized he’d need to stop his phone- and credit-card-hacking exploits or risk going to adult prison. He doubled down on coding, and began writing and releasing open source software that helped people create interfaces (text boxes, buttons, and the like) for their own programs. Everingham enrolled in Penn State to study computer science but found, as with high school, he’d rather be hacking than sitting in classes. He flunked out. Ironically, though, tech staff at the university discovered Everingham’s open source software, and were avid users. When they realized this kid who’d just flunked out was the author, they hired him as a full staff computer scientist. Normally that position required a degree; his superiors had to apply for a waiver. “I was fortunate enough to be there at a time where my skill was rare. It was more out of not brilliance but out of rareness,” he notes. They paid him $23,000, and, he said, “I thought I was a king.”

By the early ’90s, Everingham had built a career in software; he was particularly known for his work on interfaces. Then in 1995, in his early 30s, he was hired to work on the Windows interface for a newfangled product that would transform the world: Netscape, the first popular web browser. The team was led by Marc Andreessen, then a 24-year-old coder; it was a mix of just-out-of-college kids who’d built an experimental browser for their university and more experienced ones like Everingham, who’d been hired to help add structure to the project. The workload was insane. Andreessen knew that several competitors were trying to make a browser and was convinced—correctly—that Netscape needed to be first to market. The team worked nearly around the clock, sleeping on the floor of their offices; they’d shout insults across the room about each other’s code. One programmer, vibrating with stress from overwork, once hurled a chair across the room after his computer suddenly rebooted and erased his work.

It was the birth of a new style of software creation. Before, a big software project followed a “waterfall” design: First, you’d figure out what the product was supposed to do, and write a design document laying out each feature in painstaking detail; then coders would spend months, or years, trying to create every last feature. It was a top-down approach: the design spilling from up high down onto the coders. Back then, you had to work extra hard to get rid of any bugs, because once you shipped your software out to customers—on floppy disks—you couldn’t easily update or change it. Any bugs in your product were there for a long time, possibly forever. But Netscape was distributed mostly online; many, or most, users got it by downloading it. This changed the entire calculus around how you designed something, and whether bugs were bad. Since it cost almost nothing to distribute the product, the Netscape team could get the product just barely working and then release it—knowing that they could add new features and rerelease it later. Bugs? Sure, your customers would find lots of bugs. But they’d email you about them, transforming your customers, effectively, into free testers; better yet, since you had thousands or millions of customers, odds were high they’d find every significant bug.

This was the beginning of the “Move fast and break things” ethos that Mark Zuckerberg, a decade later, would post on the wall of Facebook’s office. Or, as Andreessen’s mantra went, “Worse is better.” Software that is released quickly—and lets people do something new, however imperfectly and buggily—beats software that takes years to see birth or, worse, never gets released because the engineers spend too long dithering over perfection. “Our code was a mess,” Everingham admits. But at Netscape, being messy was a point of pride. If a coder pushed out an update that “broke the build”—ground the browser to a halt—the other Netscape engineers would hang a huge yellow lemon over his chair, as Everingham recalls. It was both a mark of shame (you wrecked the browser because your code was sloppy) and something to which you aspired (you wrecked the browser because you were being daring and trying something new). Everingham says, “If you never had the lemon, that was bad. If you had the lemon all the time, that was bad. So it became this interesting part of the culture of appreciating the right amount of breakage.”

Driven by that hummingbird metabolism, Netscape released four versions of its browser in a single year. The engineers transformed software production into something that was almost like a live performance, a band playing a series of songs and seeing how the audience reacted. The engineers were electrified to watch as everyday people began searching for information online or building their own websites. They’d add a new feature—email in the browser!—and watch it propagate online.

“It was my first time being in a loop with such impact,” Everingham says. “I would write a feature, I could see myself in the product, and I could see it changing the world. And that was a drug like no drug I had ever had.”

But the crash was to come. After four years, Netscape wound down, hobbled by competition from Microsoft and a corporate acquisition that led to a bungled attempt to rewrite the browser from scratch. Everingham left, convinced he would never experience that sort of success again. For four years, he sank into a depression; Netscape had made him wealthy, but as with young pop stars and lottery winners, sudden riches destroyed his relationships. Coders are no better than the rest of us at coping with life-deforming amounts of money.

“My family acted different, my friends were coming at me different, I had new friends, longtime friends were leaving me. I was like, what the fuck? Everybody wants something,” he recalls. Women were coming on to him, which was fun but unsettling; he’s a handsome enough guy, but this was new. (With his riches, “suddenly I was Brad Pitt.”) Over the next five years he became so jittery about the social problems of his money that he gave a good chunk of it away to family members and charities. But he stayed in software and cofounded a firm that made online–phone call software. It was used heavily by stay-at-home workers in phone-support jobs.

He began to see a new way to alter lives with code. You could do it flashily, with a browser. Or you could do it quietly, with a product that drew no public plaudits but was equally life-changing. “Changing one person, or changing a small group—and having an impact like that—is just as much of a rush as what I had,” he realized.

“I was reprogramming myself.”

It would take some years for Everingham to get another job where he’d work on software that was famous, a name on the tip of everyone’s tongue. But eventually he’d be hired by the fourth wave of coders—the one that still reigns today. These are the programmers who grew up during the age of the web and mobile phones and used that as their on-ramp to programming.

When the web took off in the mid-’90s, it offered one of the most democratized ways to start coding—because a curious young person could peel back the hood of the web and see how it worked. When you point your browser at a website, the site sends back a long page of code—the HTML, the CSS, the JavaScript—to your browser. The browser runs that code, turning it into the things you see: a list, a picture, a video, a button you click. Back in the ’90s, Everingham and the folks at Netscape realized that it would be fun to let people surfing the web see this code, if they wanted to. So they put in a feature that let you view the “source” of a page. If you clicked on it, Netscape would open up a window showing you the raw HTML of the page you were currently browsing.

Pretty soon, people around the world were clicking “view source” and getting a glimpse into how this crazy new world, the web, really worked. It was much like the BASIC revolution on the Commodore 64, except even faster and more widespread. Everingham and his peers in the ’80s found it pretty slow going to get their hands on BASIC code to study and learn from; they had to download it from a BBS or buy a tech magazine or book that had printed some programs. There was a long gap between each opportunity to learn something new.

The web collapsed that time frame to zero. Every single web page you visited contained the code showing how it was created. The entire internet became a library of how-to guides on programming. If you wanted, you could cut and paste that code into a new file, change a few elements, and see what happened. If you liked what you’d done, you could put it online using the crude new services for hosting your own websites, like GeoCities. BASIC took programming out from the ivory towers and into teenagers’ basements—but the web planted it firmly into the mainstream. Soon, teenagers worldwide were making websites for their favorite bands or video games, bedecked with hallucinogenically weird typography and graphics.

One of those teenagers making sites was Mike Krieger. As a middle schooler living in São Paulo, Brazil, he loved video games and had learned a bit of BASIC. “I’d spend my entire summers planted in front of the computer,” he tells me. By age 11, he was so entranced by the web that he and a friend spent all their time tinkering with HTML. At school, they would hand in their book reports as custom websites. “We were, like, of course, super nerdy. It was like, ‘Why didn’t this guy just write a book report like everyone else?’ ”

Krieger didn’t think of himself as a programmer; he dreamed of being a journalist or documentary filmmaker, roaming around São Paulo and reporting on its corrupt politics. He’d met Kátia Lund, the codirector of City of God, and she’d given him career advice. “Don’t study journalism,” Lund told Krieger, “study a subject you want to make a film about.”

But in 2004, the summer before he went to college, Krieger became increasingly fascinated by the world of open source software, where hundreds or even thousands of coders would collaborate on building apps that anyone could use or modify. One popular tool was the email app Thunderbird. One night, while blasting his favorite band, Weezer, and reading the Thunderbird discussion boards, Krieger discovered that an American corporate executive had a complaint. The executive used Thunderbird to read several different email accounts—personal and work—and sometimes he’d get the two mixed up, accidentally sending a work email from his personal account, and vice versa. He wished Thunderbird had a color-coding system to show which emails belonged to which accounts.

Krieger was intrigued. “This wasn’t like curing cancer or anything, but this guy has a problem,” he told me. Could he figure it out and create some new Thunderbird code—a plug-in that created color coding? Krieger began “spelunking,” as he put it, hunting around online for any Thunderbird plug-ins he could find. He figured he could use the same approach he took to learning HTML: See how other people did things, and learn from that. Gradually he began to piece his plug-in together. It took weeks to get one tiny part working, something as small as, say, getting his code to display the number of email accounts a user possessed. But when he did, it was a burst of adrenaline, an air-pumping moment of success so fun it made him willing to tolerate the next 30 hours of head-scratching bafflement. He discovered that coding was like playing a video game, where you’d beat a series of “mini-bosses”—small achievements—along the way to beating the “final boss.” He explained, “Like, your goal is to open the Temple—Indiana Jones–style—and you need to get the right four symbols in the right place. And even getting one is like, woo, I’m on the right track!”

After three weeks, the whole plug-in was done. He posted it online and emailed the executive who’d originally complained about his problem. It turned out to be Greg Brandeau, an executive vice president at Pixar. Brandeau was so happy with Krieger’s plug-in that he invited Krieger to a film premiere, “if you ever come to the States,” as Krieger recalls. For a teenage kid in Brazil to be solving corporate problems for a major US executive was intoxicating. (And four years later, he joined Brandeau for the launch of Wall-E.)

OEBPS/xhtml/toc.xhtml

 		Cover

 		Title page

 		Dedication page

 		Contents

 		Chapter 1. The Software Update That Changed Reality

 		Chapter 2. The Four Waves of Coders

 		Chapter 3. Constant Frustration and Bursts of Joy

 		Chapter 4. Among the INTJs

 		Chapter 5. The Cult of Efficiency

 		Chapter 6. 10X, Rock Stars, and the Myth of Meritocracy

 		Chapter 7. The ENIAC Girls Vanish

 		Chapter 8. Hackers, Crackers, and Freedom Fighters

 		Chapter 9. Cucumbers, Skynet, and Rise of AI

 		Chapter 10. Scale, Trolls, and Big Tech

 		Chapter 11. Blue-collar Coding

 		Acknowledgments

 		Notes

 		Index

 		About the Author

 		Also by Clive Thompson

 		Copyright page

Guide

 		Cover

 		Title page

 		Dedication page

 		Contents

 		Chapter 1. The Software Update That Changed Reality

OEBPS/images/cover.jpg

OEBPS/images/logo.jpg

OEBPS/images/rule.jpg

