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Para mis abuelos, los grandes admiradores de mis escritos.

Mówiłam, że jak dorosnę, zostanę pisarką!





INTRODUCCIÓN

​

​

CÓMO ENAMORARSE DE LOS MAPAS Y LAS MATEMÁTICAS

Tenía tres o cuatro años cuando mis padres apagaron todas las luces de nuestro pequeño pero acogedor piso. Intrigada y nerviosa, vi como mi padre encendía la lamparita que tenía en el escritorio y orientó su luz hacia un modesto globo terráqueo de plástico, esforzándose para iluminar la costa este de Estados Unidos. «Fíjate —me dijo—, aquí en Varsovia está oscuro, pero tu tía en Nueva York debe de estar preparándose para comer.» Me explicó que la Tierra es redonda y que nunca deja de girar, a diferencia de las peonzas con las que a mí me gustaba jugar. Y que, siempre, en algún lugar es de día y en algún lugar es de noche.

Después de esta velada tan especial, el globo terráqueo pasó a ser mi juguete favorito. No paraba de darle vueltas, señalando con el dedo los lugares que quería visitar, cautivada por sus nombres: desde Asjabad hasta Zanzíbar. De preadolescente, expresé mi creciente pasión por la geografía llenando las paredes de mi habitación de mapas, reservando solo un pequeño espacio para la foto del famoso que más me gustaba entonces. Fue mucho más tarde cuando me di cuenta de que el mapamundi de mi pared y el globo terráqueo, que supuestamente eran una representación del mismo planeta, contaban dos historias diferentes.

En el mapa plano, Groenlandia era tan grande como toda África, pero en el globo terráqueo, la isla blanca era menor que el continente. En el fondo sabía que algo no encajaba, pero tuve que esperar a ir a la universidad para averiguar cuál era la razón de esa discrepancia. Me lo explicaron durante una clase de geometría diferencial.1 Incluso una tarea tan sencilla como comparar las áreas de los países requiere ciertos conocimientos sobre los principios matemáticos en los que se ha basado la elaboración del mapa que estamos utilizando.

El cartógrafo flamenco Gerardus Mercator creó en el siglo XVI el conocido actualmente como mapa de Mercator, en el que la latitud y la longitud se muestran en ángulo recto a lo largo de una cuadrícula. Aunque se sigue utilizando hoy en día, sabemos que es engañoso.2La distorsión del área del mapa es una consecuencia de la visión norte-centrista. En él, el norte es más grande y por lo tanto más poderoso. Casi medio milenio después, este mapa sigue siendo la representación más utilizada de nuestro planeta. Desde la escuela primaria nos inculcan esta visión del mundo y sus implicaciones intrínsecas de la superioridad de la región septentrional, algo que repercute en la forma en la que vemos nuestros países de origen. Los mapas no solo educan nuestro sentido del espacio, sino que también influyen en nuestra percepción del resto de naciones.

En la actualidad, el mapa de Mercator no tiene muy buena fama. A pesar de eso, siempre llevamos en nuestro bolsillo una versión en línea del mismo.3El hecho de que conserve los ángulos entre las líneas de la Tierra nos permite identificar fácilmente el norte, lo que lo convierte en una herramienta tan útil para la navegación en el presente como lo fue durante sus primeros años. Sin embargo, cada una de sus representaciones debería ir acompañada de una advertencia: este mapa distorsiona algunas áreas. Sería algo parecido al aviso que aparece en los retrovisores que dice que: «Los objetos que ves en el espejo están más cerca de lo que parecen».

[image: Diagrama en blanco y negro de un globo terráqueo mostrando los conceptos de latitud y longitud, con etiquetas de ecuador, meridianos y polo norte.]

Los meridianos, o líneas de longitud, son líneas imaginarias sobre la superficie de la Tierra que conectan los polos. La longitud especifica la posición de un punto con respecto al meridiano cero. Los paralelos, o círculos de latitud, son círculos imaginarios sobre la superficie de la Tierra paralelos al ecuador. La latitud indica la posición de un punto con respecto al ecuador.

Mercator no distorsionó su mapa por maldad o ineptitud. En 1827, Carl Friedrich Gauss, un polímata tan gruñón y excéntrico como ingenioso, demostró matemáticamente que era imposible convertir sin errores un globo terráqueo tridimensional en un mapa bidimensional. Su teorema egregio —no es una broma, es la traducción del nombre latino del teorema—, aunque farragoso y lleno de suposiciones técnicas, se puede resumir así: reducir sin errores tres dimensiones a dos es imposible. No podemos hacer un mapa perfecto del globo terráqueo en una superficie plana.

En este libro exploraremos el teorema egregio de Gauss y otros desarrollos matemáticos que nos mostrarán cómo hacemos mapas y, en consecuencia, cómo vemos el mundo. Los mapas representan la realidad, pero solo podemos sacar el máximo partido de estas ayudas visuales cuando comprendemos las matemáticas subyacentes. Si no lo hacemos, corremos el riesgo de sacar conclusiones erróneas y heredar los prejuicios que condicionaron la confección de esos mapas, ya sean intencionados o no. Por ejemplo, en el capítulo dos analizaremos las distorsiones resultantes de las distintas formas de representar el globo terráqueo en una hoja de papel, y te mostraré algunas herramientas matemáticas para que no te dejes engañar por esas deformaciones.

Además de para interpretar un mapa, podemos utilizar las matemáticas para convertirlo en una solución a un problema de la vida real. Por ejemplo, en el capítulo siete abordaremos situaciones en las que los mapas y las matemáticas, juntos, pueden proteger a las personas de un peligro, ya sea una enfermedad o un asesino en serie. Si utilizamos herramientas y conocimientos matemáticos, podemos extraer mucha más información de un mapa que solo con nuestros ojos y nuestra intuición. Con la mejora de la tecnología y de la potencia de cálculo, todas estas aplicaciones de los mapas basadas en las matemáticas son cada vez más importantes.

En este libro encontrarás muchos ejemplos de cómo las matemáticas y la cartografía se apoyan mutuamente, una relación que ha inspirado el título del libro. Aunque diferentes en apariencia, los trabajos de un matemático y un cartógrafo son sorprendentemente similares. Para crear modelos útiles de cualquier fenómeno del mundo real, tanto los matemáticos como los cartógrafos deben elegir la información que conservan y la que omiten. Elecciones diferentes darán lugar a conclusiones diferentes. Por eso, cuando nos muestran un mapa o un modelo matemático, tenemos que entender no solo lo que vemos, sino también lo que no vemos. Te demostraré que, si no lo hacemos, puede ocurrir cualquier cosa, desde que un viajero dé más pasos de los necesarios hasta que se desate un conflicto internacional.

Examinaremos mapas de todas las escalas y temas, desde mapamundis hasta planos de nuestras calles locales, desde mezquitas con orientaciones contraintuitivas hasta mapas subterráneos engañosos. Visitaremos la antigua Grecia para calcular el radio de la Tierra, con una precisión increíble, sin satélites ni fotografías. Nos adentraremos en la Königsberg del siglo XVIII, una ciudad prusiana cuyos siete puentes inspiraron un nuevo campo de las matemáticas llamado teoría de grafos. También haremos una incursión en el mundo de las dimensiones fractales y, mientras nos maravillamos ante la sorprendente complejidad de una coliflor, comprenderemos por qué es casi imposible medir las fronteras de un país y qué consecuencias geopolíticas tiene.

No podemos funcionar sin mapas. Dependemos de ellos cuando nos desplazamos, viajamos e interpretamos las noticias, pero también cuando combatimos enfermedades, capturamos delincuentes y buscamos aviones desaparecidos. Los mapas han mejorado gracias a las matemáticas, pero también han inspirado numerosos avances matemáticos. Cuando somos conscientes de la existencia de esta conexión entre matemáticas y cartografía, no podemos dejar de verla, y eso nos ayudará a entender cómo funciona nuestro mundo.





CAPÍTULO 1

CURVADA

CÓMO DESCRIBIR LA TIERRA

Al igual que muchas personas, crecí creyendo que hasta que el valiente Cristóbal Colón descubrió América, la gente estaba convencida de que la tierra era plana. En las clases de historia nos enseñaban que, en 1492, Colón zarpó hacia el oeste desde Palos de la Frontera, en España, y llegó a lo que él pensó que eran las «Indias» (Asia Oriental). Este hecho marcó el final de la Edad Media y el inicio del Renacimiento o, como decían esos libros de texto, el final de la Edad Media y el comienzo de la Era de los Descubrimientos. Sin el gran Colón, nuestros profesores de geografía nos habrían enseñado que los continentes y los océanos estaban aposentados sobre un globo terráqueo en forma de tortita.

El mito de que Colón quería navegar hasta Asia Oriental para demostrar que la Tierra era esférica parece proceder de la biografía ficticia escrita por Washington Irving en 1828 titulada Vida y viajes de CristóbalColón.1La verdad es que la gente culta ha sabido que la Tierra no es plana desde tiempos muy antiguos. Casi dos milenios antes de los viajes de Colón, el filósofo griego Aristóteles publicó Sobre el cielo, un tratado en el que mencionaba que durante un eclipse se puede observar una sombra esférica de la Tierra sobre la Luna.2 / 3Esto, por sí solo, no excluye la posibilidad de que la Tierra tenga forma de disco, pero sí cuando lo combinamos con el hecho de que, cuando cambia su orientación, la sombra que proyecta la Tierra sigue siendo circular. Después de darse cuenta de que las estrellas que se podían ver en Egipto y Grecia eran diferentes, Aristóteles llegó a la conclusión de que, dado que Egipto y Grecia son países cercanos, la Tierra debía ser pequeña.4Colón escribió lo siguiente: «Aristóteles dice que entre el fin de España y el principio de la India hay un pequeño mar que se puede atravesar en pocos días».5La posibilidad de que ese fructífero viaje fuera fácil debió de despertar la curiosidad de este experimentado (y codicioso) explorador.

Cuando Colón llegó a tierra firme tras salir desde España en dirección oeste hacia las Indias, y confiando siempre en sus habilidades de navegación, anunció que había logrado lo que otros creían imposible: había encontrado una ruta más rápida a la India, una tierra rica en sedas y especias que podían explotar y con la que podían comerciar. Pero, como todos aprendemos en la escuela primaria, en lugar de a Asia, Colón había llegado a las actuales Bahamas, frente a las costas de Norteamérica, «descubriendo» así este continente para los europeos. Nunca me pregunté cómo un navegante tan hábil pudo cometer un error tan grande. Sabía que la Tierra no era plana y seguramente calculó cuánto duraría el viaje. Al principio pensé que había confundido América con Asia porque había calculado mal la distancia que separa España de las Indias. Luego descubrí que no se trataba de un error matemático, sino de cómo se habían obtenido los datos en los que basó sus cálculos. Colón tenía a su disposición cálculos precisos del tamaño de la Tierra, pero decidió ignorarlos. Y lo que es más importante, no se trataba de cifras nuevas procedentes de una investigación puntera sobre la medición de la Tierra. Esos cálculos tenían casi dos mil años de antigüedad.


UN RAYO DE SOL


Nacido en el año 276 a. C. en Cirene, una ciudad de la antigua Grecia situada en la actual Libia, Eratóstenes fue un matemático, geógrafo, poeta, astrónomo y teórico musical de éxito. Se trasladó a Egipto para convertirse en bibliotecario jefe de la Biblioteca de Alejandría, una de las más famosas de la historia. Se cree que fue la primera persona que calculó científicamente la circunferencia de la Tierra, y lo hizo con una precisión sorprendente. Aunque su libro Sobre la medida de la Tierra, en el que incluía este resultado, no ha sobrevivido hasta nuestros días, fue descrito unos siglos más tarde (no estamos seguros de la época exacta) por el astrónomo griego Cleómedes.

Eratóstenes creía que la Tierra era una esfera. Sabía que en el solsticio de verano, el día más largo del año en el hemisferio norte, el sol brillaba directamente sobre el Trópico de Cáncer, iluminando incluso el fondo de los pozos más profundos.6 Tras descubrir que a mediodía local (es decir, el momento del día en que el sol está en su punto más alto en el cielo) un pozo profundo en Syene (la actual Asuán, en Egipto) estaba iluminado por la luz solar directa, Eratóstenes quiso averiguar en qué posición se hallaba el sol a la misma hora en Alejandría. Fue una afortunada coincidencia que las dos ciudades se encontraran en el mismo meridiano, por lo que el mediodía local se alcanzaba en el mismo momento en ambos lugares.7 Para averiguar cuál era el ángulo existente entre los rayos solares y la Tierra en Alejandría, Eratóstenes midió el ángulo que había entre una varilla vertical llamada gnomon y su sombra, que resultó ser la quincuagésima parte del círculo completo (360 grados), es decir, 7,2 grados. Un gnomon similar colocado en Syene no proyectaría ninguna sombra, por lo que este ángulo sería igual a cero grados.

Imagina ahora que estás a punto de cortarte un trozo de pizza. Todo el mundo sabe que la mejor parte son los bordes (¿o acaso hay alguien que no lo piensa?), y que cuanto mayor sea el ángulo central del trozo, mayor será la parte de la circunferencia de la pizza, por tanto, más borde obtendrás. En otras palabras, la relación entre la sección de la circunferencia situada entre dos radios y toda la circunferencia es igual a la relación entre el ángulo que forman estos dos radios y el círculo completo, de 360 grados.

[image: Diagrama en blanco y negro que muestra la posición del sol, los rayos solares, la Tierra y las ciudades de Alejandría y Syene, indicando el ángulo θ de incidencia solar.]

Figura 1.1: Al mediodía local del solsticio de verano, los rayos solares caen perpendiculares al suelo en Syene y proyectan una sombra en Alejandría. El ángulo central entre Syene y Alejandría y el ángulo que hay entre los rayos del sol y el gnomon en Alejandría son idénticos.

Eratóstenes tuvo la suerte de que la distancia entre Alejandría y Syene ya se había medido con anterioridad: 5000 estadios, una antigua unidad de medida, las separaban. Para calcular la circunferencia de la Tierra, solo le faltaba averiguar cuál era el ángulo central entre ambas ciudades.

Eratóstenes dio por sentado que los rayos solares son paralelos entre sí, lo cual, aunque no es técnicamente cierto, a efectos prácticos es una suposición razonable. El Sol está tan lejos de la Tierra y tiene un tamaño tan inmensamente mayor que el de nuestro planeta que solo una ínfima parte de sus rayos nos llegan, razón por la cual no es muy descabellado decir que son casi paralelos. Esto significa que el ángulo central entre Syene y Alejandría y el ángulo entre el gnomon y los rayos solares en Alejandría fueron creados por una línea recta (el radio extendido de la Tierra en Alejandría) que cruza dos líneas paralelas (los rayos solares que llegan a Alejandría y Syene). Gracias a un antiguo teorema que todavía se enseña en las clases de geometría, Eratóstenes pudo calcular que se trataba de una pareja de ángulos iguales.8 Eso significaba que el ángulo central entre las dos ciudades era igual a la quincuagésima parte de un círculo completo, lo que le permitió averiguar que la distancia entre Alejandría y Syene era la quincuagésima parte de la circunferencia de la Tierra. De esta forma hizo el primer cálculo científico de la circunferencia de la Tierra: 50 × 5000 = 250 000 estadios.

Los historiadores no se ponen de acuerdo a la hora de decidir la equivalencia de la medida del estadio, lo que hace imposible evaluar la exactitud de la estimación de Eratóstenes. Aparte de eso, la mayoría de los investigadores coinciden en que Eratóstenes se acercó asombrosamente al valor real, que es de unos 40 000 kilómetros. Tuvo bastante suerte, ya que cometió varios errores que se compensaron entre sí. Por ejemplo, Syene no se encontraba exactamente en el Trópico de Cáncer, sino ligeramente más al norte. Además, su suposición de que Syene y Alejandría se encontraban en el mismo meridiano era errónea, ya que esta última estaba situada más al oeste. Sin embargo, los modelos matemáticos nunca reflejan perfectamente la realidad. Lo más importante es que el método de Eratóstenes era científicamente sólido y, si hubiera tenido acceso a instrumentos de medición más precisos, su cálculo se habría aproximado mucho a los actuales. Por todo esto se le suele considerar el fundador de la geodesia científica, que es la ciencia que mide la forma de la Tierra, su orientación en el espacio y su campo gravitatorio. 9,10


MENTIRAS, MALDITAS MENTIRAS Y COLÓN


Habíamos dejado a Cristóbal Colón reflexionando sobre su viaje a las Indias. Según el erudito Hernando (o Fernando) Colón, que resultó ser hijo de Cristóbal, el explorador estaba familiarizado con la obra de geógrafos antiguos y medievales, entre ellos Eratóstenes.11Utilizó esos conocimientos para convencer a otros de su idea de llegar a las Indias dirigiéndose hacia el oeste. Sin embargo, sabedor de que cualquier financiador potencial razonable consideraría este viaje una locura, Colón eligió cuidadosamente hechos y cifras convenientes que respaldaran su argumento.

Para calcular la distancia que recorrería en su viaje hacia Asia Oriental (dirigiéndose al oeste), Colón tan solo necesitaba dos datos: la circunferencia de la Tierra y la anchura de Asia. El recorrido de su viaje se aproximaría a la diferencia entre estos dos valores, de modo que cuanto menor fuera la circunferencia de la Tierra y mayor la anchura de Asia, más corta sería la ruta hacia las Indias.

Una de las mayores inspiraciones de Colón fue Marco Polo, un mercader veneciano que a finales del siglo XIII viajó a Asia. Colón conoció ese viaje gracias a un contemporáneo, un matemático y astrónomo florentino llamado Paolo dal Pozzo Toscanelli, conocido como Pablo el físico. Tan respetados eran sus conocimientos de geografía que Alfonso V, rey de Portugal, le preguntó por la ruta más rápida hasta «donde nace la especiería», es decir, la India.12En aquella época, las especias eran tan preciadas como el papel higiénico a principios de 2020, por lo que el rey consideró que explorar vías más fáciles para llegar a Asia era una inversión más que interesante. Quería saber si debía enviar gente a navegar alrededor de África o si era mejor ir hacia el oeste.13Toscanelli sugirió dirigirse hacia el oeste, respaldando su opinión con una carta náutica que había confeccionado. Aunque este mapa no sobrevivió, en los siglos siguientes numerosos investigadores lo recrearon basándose en mapas posteriores que se habían basado en él, así como en la detallada descripción que Toscanelli hacía de la ruta que conducía hacia el oeste en la carta original.

Cuando la idea de Toscanelli sobre navegar hacia el oeste llegó a oídos de Colón, este le escribió preguntándole por los detalles. El médico florentino le respondió adjuntando una copia de su carta al rey, junto con la carta náutica que explicaba los detalles de la ruta.14 Colón, que confiaba —tal vez en exceso— en sus habilidades como navegante, no buscaba información, sino que un erudito respetado respaldase su plan. Y, de esa forma, obtuvo lo que quería. Colón y Toscanelli creían en la exactitud de los viajes de Marco Polo. En sus mapas, Asia era unos 30 grados de longitud más ancha que lo que mostraban los cálculos de los eruditos contemporáneos. Para que las cosas fueran aún más sencillas, Marco Polo había situado la legendaria y rica isla de Cipango (actual Japón) a más de 2000 kilómetros al este de la costa asiática, aunque se encuentra a tan solo unos 200 del continente.15A pesar de estos atajos inventados, Toscanelli calculó que el viaje sería de unos 9000 kilómetros, mucho más de lo que cualquier navegante del siglo XV era capaz de resistir. El talento de Colón para falsear datos no defraudó.

Antes de Colón, muchos eruditos habían intentado medir la circunferencia de la Tierra. Eratóstenes hizo un gran trabajo con las herramientas que tenía a su disposición, pero ni siquiera los mejores métodos garantizaban una estimación perfecta. Uno de los principales problemas era que los distintos eruditos utilizaban unidades diferentes. De todos los datos que tenía a su disposición, Colón escogió aquellos que hacían que la Tierra fuera lo más pequeña posible y las Indias estuvieran lo más cerca posible. Al final, optó por el cálculo de los geógrafos árabes del siglo IX, según el cual la circunferencia de la Tierra era igual a 20 400 millas árabes. Cada milla equivalía a unos 2164 metros de largo.16 Esto equivaldría a unos 44 146 kilómetros, un valor cercano al actual, pero demasiado grande para el gusto de Colón. Así que se quedó con la cifra de 20 400, pero afirmó que la unidad no era la milla árabe, sino la romana, que equivalía a 1480 metros, lo que hacía que la circunferencia de la Tierra fuera solo de unos 30 192 kilómetros. Con estos dudosos cálculos, Colón redujo la circunferencia de la Tierra en una cuarta parte.17Incluso en este planeta encogido, el viaje sin escalas entre el punto de partida en las islas Canarias y Cipango sería demasiado largo para los barcos más avanzados de la época. Así que Colón «añadió» algunas islas, todas ellas en lugares perfectos para hacer un alto en el camino que les conduciría hacia su destino, reduciendo así drásticamente el tramo más largo de navegación continua. Todos estos errores de cálculo colocaron Cipango aproximadamente en el mismo meridiano que las islas Vírgenes en el Caribe, lo que probablemente influyó en la famosa confusión de continentes de Colón.18

Satisfecho por fin con sus cálculos, Colón solicitó financiación para la expedición a Juan II, el nuevo rey de Portugal. Los matemáticos reales no tardaron en darse cuenta de que su plan era irrealizable. Sin sucumbir al desánimo, probó suerte en España, donde fue rechazado al menos dos veces. Pero, tras años escuchando los argumentos de Colón, los reyes Fernando II e Isabel I acabaron aprobando su propuesta, sobre todo gracias al entusiasmo de Luis de Santángel, asesor en los asuntos financieros de la corona.19

Colón les mintió a todos, pero ¿por qué se mentía a sí mismo? A fin de cuentas, era él quien pagaría un alto precio si el viaje fracasaba. Como señaló el historiador estadounidense Samuel Eliot Morison, autor de la biografía de Colón titulada El almirante de la Mar Océano, ganadora del Premio Pulitzer, «la mente de Colón no era lógica. Sabía que podía lograrlo, y las cifras tenían que encajar». Murió creyendo — al menos oficialmente— que había descubierto la ruta hacia el oeste que llegaba a las Indias,20tras haber cruzado las Bahamas en treinta y tres días, más o menos el mismo tiempo que habría necesitado para llegar a Cipango.21Según Morison, si no hubiera habido tierra entre España y las Indias, Colón probablemente no habría llegado a Asia porque sus barcos no eran lo bastante avanzados para un viaje tan largo. Tuvo suerte, lo que no puede decirse de los nativos americanos, diezmados por los «exploradores» europeos.

Si un navegante tan hábil como Colón no pudo distinguir América de Asia, ¿cómo podíamos siquiera soñar con hacer mapas precisos? Unas décadas más tarde, se produjo un gran avance en las técnicas de medición, oculto en un apéndice de un libro inicialmente poco exitoso que acabó siendo un superventas.


LA MAGIA DE LOS TRIÁNGULOS


En 1524, tan solo unas décadas después de los viajes de Colón, Petrus Apianus, un joven matemático y editor científico alemán, escribió y publicó Cosmographia, un libro de texto que abarcaba temas que iban desde la astronomía a la cartografía y los instrumentos matemáticos. A pesar de su impresionante alcance, no fue un gran éxito.22Sin embargo, cinco años más tarde, un matemático holandés llamado Regnier Gemma Frisius editó una versión resumida del libro de Apianus que, en esta segunda edición, se convirtió en una popular introducción a temas científicos como la astronomía y las matemáticas. El éxito de Cosmographia animó a Frisius a publicar nuevas ediciones, en las que coló algunos de sus propios trabajos como apéndices. El que añadió en la tercera edición contenía una descripción detallada de la triangulación, una técnica que cambió la cartografía para siempre.

En la actualidad, y gracias al GPS, damos por sentado que es fácil medir grandes distancias, pero en el siglo XVI era mucho más fácil calcular ángulos que distancias, y fue precisamente ese detalle el que inspiró la idea de Frisius.23 Puesto que medir distancias es difícil, pensó, ¿no estaría bien tener que hacerlo solo una vez y luego calcular otras matemáticamente?

En el primer paso, la persona que realiza la triangulación (un topógrafo) mide la distancia entre dos puntos conocidos, lo que se conoce como línea de base. Era una tarea físicamente exigente que requería mover una cinta métrica larga y a menudo pesada en línea recta, sin tener en cuenta los obstáculos que se encontraban por el camino. Frisius se dio cuenta de que, incluso cuando se trataba de medir un área extensa, bastaba con medir una sola distancia y el resto se obtenía por trigonometría.

La trigonometría consiste en estudiar las relaciones entre los ángulos y las longitudes de los lados de los triángulos. El topógrafo crea un triángulo, utilizando la línea de base como uno de los lados y sitúa el tercer vértice en un punto visible desde los otros dos, por ejemplo, una torre o la cima de una montaña. A continuación, mide los ángulos en los dos puntos de observación situados en ambos extremos de la línea de base. Gracias a la trigonometría, esta es toda la información necesaria para calcular las distancias entre los puntos de observación y el punto de interés, un procedimiento que ha ahorrado a generaciones de topógrafos dos arduos viajes a través de espesos bosques, barro o lagos entre los puntos de observación y el tercer vértice del triángulo. El topógrafo puede usar el poder de la trigonometría para calcular dos distancias sin alejarse de la cuidadosamente elegida línea de base.

Este proceso por sí solo reduciría considerablemente el trabajo del topógrafo, pero Frisius fue aún más lejos. Sugirió construir una red de triangulación, en la que cada lado calculado de un triángulo se convertiría en la línea de base de un nuevo triángulo. En teoría, esto permitiría al topógrafo elaborar un mapa preciso de todo un país sin medir una sola distancia más allá de la línea de base.

[image: Diagrama en blanco y negro de un triángulo formado por una torre y dos puntos de observación con prismáticos, mostrando ángulos medidos y distancias calculadas sobre una línea de base.]

Figura 1.2: La triangulación se utiliza para calcular las distancias desde dos puntos de observación a un punto de interés, conociendo la distancia que separa los puntos de observación y los ángulos medidos desde ellos.

En la práctica, se solían medir distancias adicionales para corregir los inevitables errores de medición que se irían acumulando rápidamente durante el proceso, pero no era estrictamente necesario.

[image: Diagrama en blanco y negro de tres polígonos con lados marcados y ángulos indicados, unido por flechas y símbolos de prismáticos en diferentes vértices.]

Figura 1.3: En una red de triangulación, una distancia calculada se convierte en la línea de base de un nuevo triángulo.

Gracias a la popularidad que alcanzó el libro Cosmographia, potenciada por sus traducciones del latín (el idioma original de la obra) al francés, holandés y español, la idea de la triangulación se propagó rápidamente por toda Europa.24Los cartógrafos empezaron a utilizarla para crear mapas precisos. Uno de ellos fue Mercator, el hoy famoso estudiante de Frisius, que estaba cartografiando el ducado de Lorena (en la actualidad en el noreste de Francia). Hablaremos nuevamente de él en el siguiente capítulo.25

A principios del siglo XVII, Willebrord Snell van Royen, otro matemático holandés, llevó la triangulación a otro nivel al utilizarla para medir el tamaño de la Tierra.26 Aunque describió su proyecto en un libro titulado acertadamente Eratosthenes Batavus (que se traduce como ElEratóstenes holandés), su método difería del creado por el sabio griego.27Snell utilizó la triangulación para calcular la distancia exacta que separaba Alkmaar de otra ciudad holandesa, Bergen op Zoom, situada a unos 130 kilómetros en dirección sur.28Para su siguiente paso recurrió a las observaciones astronómicas, gracias a las cuales pudo determinar qué fracción de la circunferencia de la Tierra comprendía el tramo entre Alkmaar y Bergen op Zoom. Con estos dos valores, calculó la circunferencia de la Tierra con una diferencia del 4 % respecto a la estimación actual,29lo que, una vez más, resulta impresionante, teniendo en cuenta la limitada precisión de las herramientas matemáticas y de medición que utilizó.30

Al ser una técnica sencilla y poderosa, la triangulación no solo nos permitió hacer mapas precisos, sino que también nos ayudó a saber cuál era la verdadera forma de la Tierra. Que la Tierra no sea plana no significa que sea esférica, pero para averiguarlo se tuvo que organizar la primera expedición internacional de la historia.


MUCHO RUIDO CON LA FORMA DE LA TIERRA


El mundialmente famoso arquitecto naval, historiador de la ciencia y finalista del Premio Pulitzer Larrie D. Ferreiro estaba deseando hablar de geodesia, especialmente —admite— con una graduada del Imperial College como él. El trabajo de Ferreiro requiere un profundo conocimiento de la política y la actualidad, así que no me sorprende que, en cuanto se enteró de que yo estaba en Varsovia, me hiciera muchas preguntas sobre el impacto de la guerra de Ucrania en la situación de la vecina Polonia. Esto derivó en una conversación fascinante sobre la importancia de aportar un contexto político y social a los debates sobre ciencia, algo que ha hecho con éxito en su libro La medida de la Tierra.31

En el siglo XVII, los europeos sospechaban que la Tierra no era una esfera perfecta, pero no se ponían de acuerdo sobre cuál era su forma exacta. El filósofo francés René Descartes afirmaba que nuestro planeta era alargado en los polos, lo que le daría forma de huevo.32 Al otro lado del Canal de la Mancha, el científico británico Isaac Newton explicaba que las fuerzas que actúan cuando la Tierra gira la aplastan en los polos y la abultan a lo largo del ecuador, de modo que el planeta se asemeja a un pomelo. En 1687, en su innovadora obra titulada Philosophiæ Naturalis Principia Mathematica (Principios matemáticos de lafilosofía natural), Newton expuso la teoría de la gravedad, una fuerza de atracción casi mágica. Newton creía que era la diferencia de gravedad la que hacía que los relojes de péndulo marcharan más despacio en el ecuador que en Europa. Cuanto más cerca estaba un reloj del centro de la Tierra, mayor era la fuerza gravitatoria que actuaba sobre el péndulo y más rápido oscilaba. Esta diferencia solo podía explicarse si la Tierra era achatada.

Aquel no era un debate únicamente de pura ciencia. Decidir si la Tierra tenía forma de huevo o de pomelo era de una gran importancia estratégica. La nación que mejor navegara construiría un imperio más fuerte, por lo que ni británicos ni franceses podían permitirse que sus barcos se desviaran cientos de millas, algo que podría ocurrir si los navegantes marinos suponían que la Tierra tenía una forma que no era la real. Salir victorioso de una discusión científica también tenía un significado simbólico: cada una de las dos superpotencias quería demostrar la teoría de su científico: Francia apoyaba la forma cartesiana del huevo, mientras que Gran Bretaña se inclinaba por la newtoniana del pomelo.

Durante nuestra conversación, Ferreiro comparó este debate con la carrera a la Luna que se produjo durante la Guerra Fría, que «no tuvo nada que ver con la ciencia». Estados Unidos y la URSS creían que quien llegara primero demostraría al mundo qué país y, por extensión, qué sistema (capitalismo o comunismo) merecía la pena apoyar. Algo parecido ocurrió con la batalla sobre la forma de la Tierra, que fue tanto política como científica. Parafraseando a un general prusiano, Carl von Clausewitz, Ferreiro me dijo que «la ciencia es la continuación de la política por otros medios». Explicó que «la ciencia en sí misma es, sin duda, la búsqueda de hechos, pero si das un paso atrás y observas los aspectos importantes, por ejemplo, quién paga por ella, quién la financia o cuál es la intención de ese apoyo, te das cuenta rápidamente de que siempre siempre, ha tenido una dimensión política».

Jean-Frédéric Philippe Phélypeaux, conde de Maurepas, un joven, aunque talentoso, ministro de la corte de Luis XV, comprendía cuál era la dimensión política de la ciencia. De ese modo, cuando en 1734 la Academia Francesa de Ciencias recibió una propuesta que zanjaría de una vez por todas el debate sobre la forma de la Tierra, el conde de Maurepas se convirtió en su mayor defensor. Este ambicioso proyecto consistía en enviar una misión hasta el ecuador para medir un grado de latitud.

Tanto el hemisferio norte como el hemisferio sur están divididos en 90 grados de latitud: de cero grados en el ecuador a noventa en los polos. Si la Tierra fuera una esfera perfecta, la longitud de un grado de latitud sería la misma en todas partes e igual a la circunferencia de la Tierra dividida por 360, es decir, unos 111 kilómetros. Pero como la Tierra no es esférica, un grado de latitud cubre una distancia diferente dependiendo de dónde se mida. Esto significa que, comparando un grado de latitud en el ecuador con un grado de latitud medido en Francia, los científicos franceses podrían averiguar cuál era la forma del mundo, si la cartesiana o la newtoniana. En un planeta con forma de huevo, un grado de latitud en Francia cubriría una distancia mayor que un grado de latitud medido cerca del ecuador, mientras que en un planeta con forma de pomelo ocurriría lo contrario.

Cuando el proyecto fue aprobado, el conde de Maurepas tuvo que decidir cuál sería el destino óptimo para la misión científica. Rechazó sin dudar la hostil costa ecuatorial africana y las remotas islas tropicales asiáticas, y se decantó por una colonia española de Sudamérica: Perú. El rey de España, que era tío de Luis XV de Francia, les concedió un permiso para que se llevaran a cabo esas mediciones en territorio español. Para asegurarse de que España tendría acceso a todos los conocimientos científicos que se pudieran adquirir durante la expedición y reducir al mismo tiempo la posibilidad de que los franceses sacaran mercancías de contrabando de Perú, el rey insistió en que «dos inteligentes españoles acompañasen a dichos científicos».33Finalizados todos los preparativos, en la primavera de 1735, un equipo formado por miembros franceses y españoles partió hacia Sudamérica. Así empezaba una expedición científica internacional sin precedentes.

El grupo de académicos, acostumbrados a realizar investigaciones teóricas desde sus cómodos sillones, no estaba preparado para los retos que les aguardaban en Perú. No esperaban el frío extremo de las altas cumbres de los Andes, ni la comprensible hostilidad de los peruanos hacia los invasores europeos, ni siquiera la política local. Además, habían calculado que la misión duraría dos años. Quién les iba a decir que el primer miembro del grupo tardaría más de una década en volver a casa, y que algunos ni siquiera regresarían. Dada la falta de preparación de los participantes, fue un milagro que la misión tuviera éxito.34

Mediante el método de triangulación, la expedición pretendía averiguar la distancia que separaba Quito, en el norte, de Cuenca, en el sur. Las exigencias físicas del trabajo sorprendieron a los topógrafos. La distancia entre las dos ciudades, ambas en el actual Ecuador, era de más de 300 kilómetros, aproximadamente la misma que de Londres a París o de Boston a Nueva York. Pero eso no fue lo peor. Dado que para realizar una triangulación es necesario contar con una red de puntos fácilmente observables, en la práctica significaba subir y bajar las cumbres de los Andes, aunque los científicos no lo pasaban tan mal como la población local, obligada a transportar equipos pesados para sus «jefes» blancos. Para asegurarse de que las mediciones eran precisas, utilizaban un instrumento de hierro llamado cuadrante, fiable pero engorroso, con un radio de más de un metro. Subir a una montaña no solo era difícil, sino que además no garantizaba una buena visibilidad: a menudo, el equipo tenía que esperar durante días o incluso semanas a que se despejara el cielo, aguantando la lluvia o la nieve. Y había mucha nieve. No era precisamente lo que esperaban encontrar los topógrafos cuando se apuntaron a una expedición a los trópicos.

Antes de empezar el proceso de triangulación, el equipo pasó meses midiendo la línea de base, de unos 11 kilómetros de longitud. Aunque el terreno era llano, podía resultar incluso más pesado que escalar las cumbres. Empezaban colocando una barra de hierro de dos metros de largo, llamada toesa, al principio de la línea de base y marcaban dónde terminaba esta. A continuación, desplazaban este pesado objeto a lo largo de la línea de base, partiendo cada vez del punto final anterior. Lo hicieron miles de veces hasta llegar al final de la línea de base. Y luego, como último paso de la triangulación, repitieron todo el proceso. Esta segunda vez, aunque no era necesario medir la línea de base, hacerlo les permitió evaluar la precisión de su triangulación.35

Cuando finalizaron la triangulación, y ya no les quedaba ningún trabajo físico por hacer, los científicos se reagruparon en Cuenca para pasar un largo periodo realizando complicados cálculos matemáticos. Como hemos visto, para hallar las longitudes de los lados de un triángulo, si contamos con la longitud del tercer lado y dos ángulos, hay que aplicar la trigonometría. El proceso tuvo que repetirse para cada triángulo de la larga cadena de más de 300 kilómetros. Para asegurarse de que sus medidas eran precisas, aplicaron diversas correcciones para compensar, por ejemplo, las diferencias de altitud de los puntos de observación, así como la curvatura de la Tierra, lo que complicó aún más los cálculos.36 Finalmente, las observaciones astronómicas les permitieron averiguar cuáles eran las latitudes de Quito y Cuenca. Después de pasar más de dos años midiendo la posición de las estrellas en el cielo y de realizar sofisticados cálculos matemáticos, obtuvieron la distancia angular que había entre el extremo sur y el extremo norte de la cadena de triangulación. Después de dividir el resultado de la triangulación por este valor, calcularon que la longitud exacta de un grado de latitud en el ecuador era de 110 612 metros, es decir, su cálculo se separó solo 40 metros del valor actualmente aceptado.37Dado que era más corto que el grado medido en París, este resultado demostraba que Newton tenía razón y la Tierra estaba achatada en los polos.

La Misión Geodésica al ecuador no solo sirvió para determinar cuál era la verdadera forma de la Tierra. El éxito de la misión demostró a las futuras generaciones de científicos que la colaboración internacional era posible, al igual que los ambiciosos proyectos de investigación en tierras que en su mayor parte estaban inexploradas. Esta misión inspiró las revolucionarias expediciones de polímatas como Alexander von Humboldt y Charles Darwin. Además, las décadas que pasaron en la región enseñaron a los europeos las ricas culturas locales, no influenciadas por el Imperio español, inspirando la idea de naciones sudamericanas independientes. De hecho, el líder político venezolano Simón Bolívar dijo que esta misión fue toda una inspiración para su movimiento de liberación.38Puede que nada ejemplifique mejor la importancia de la Misión Geodésica al ecuador que la etimología de Ecuador, nombre del país que en 1830 se independizó de España.

Saber cuál es la forma real de la Tierra ha sido fundamental para todos los trabajos cartográficos, desde los mapas de papel hasta los GPS actuales.39Sin embargo, el hecho de conocer las medidas exactas de nuestro planeta no era suficiente para poder confeccionar mapas absolutamente precisos, ni en el siglo XVIII ni en el momento de escribir estas líneas. 

Podemos mejorar nuestros conocimientos geodésicos todo lo que queramos, pero nunca haremos un mapa plano impecable, y la culpa la tiene la propia forma curva de la Tierra.


PRÍNCIPE DE LA GEODESIA


Poder cartografiar la superficie casi esferoidal de la Tierra en un plano era uno de los muchos objetivos de Carl Friedrich Gauss. Nacido en 1777 en Brunswick (en la actual Alemania), de padres pobres y sin demasiados estudios,40 / 41pronto demostró su excepcional talento.42Cuando tenía siete años empezó a estudiar en la escuela primaria local, donde el director, J. G. Büttner, «motivaba» a unos doscientos alumnos con el uso liberal del látigo.

Para mantener ocupados a los niños que se comportaban mal, Büttner les pidió que sumaran los números del uno al cien.43 / 44Al cabo de menos de un minuto, Gauss, de nueve años, entregó a su profesor una hoja con la respuesta correcta. En lugar de sumar los números de uno en uno, había encontrado 50 pares cuya suma daba 101: 1 + 100, 2 + 99, 3 + 98, etc., que sumaban 101 cada uno; y a partir de esos pares, calculó el total: 50 × 101= 5050. El profesor, reconociendo su talento, animó al padre de Gauss a que le dejara estudiar por las tardes en lugar de ayudar en casa. Siendo consciente de que había enseñado al niño superdotado todo lo que sabía, Büttner encargó libros de aritmética más avanzados, dando el pistoletazo de salida a la extraordinaria carrera del futuro «príncipe de los matemáticos».45La verdad es que ni siquiera este generoso epíteto hace honor al alcance de los logros de Gauss, no solo en aritmética, geometría, probabilidad y álgebra, sino también en magnetismo, astronomía y cartografía, por nombrar únicamente algunos. Gauss vio que las matemáticas podían ser de gran ayuda a la hora de resolver problemas del mundo real,46y expresó su deseo de convertirse en «el más refinado geómetra y el perfecto astrónomo».47Además, a diferencia de los estudios teóricos, el trabajo aplicado solía recibir una financiación más generosa.

Gauss se dio cuenta de que, para hacer observaciones astronómicas precisas, tenía que conocer la posición exacta del observatorio y la forma correcta de la Tierra, lo que probablemente despertó su temprano interés por la geodesia.48Dado que era muy perfeccionista en todas las tareas que se proponía, pronto se convirtió en un experto reconocido en este campo. Un reputado historiador de la cartografía, Matthew Edney, me comentó que, para él, Gauss era «el dios geodésico», y añadió que sentó las bases de la geodesia moderna. No es una coincidencia que, a pesar de sus muchos logros, sea el diagrama de su red de triangulación junto con un sextante (el instrumento de navegación que utilizaba) lo que aparecía en el billete alemán de 10 marcos que en 1993 celebraba su vida y obra.49

Tras años participando en diversas triangulaciones, en 1818 le encargaron un estudio geodésico del Reino de Hannover, en el norte de la actual Alemania. Se tomó muy en serio su trabajo y una gran parte de las observaciones las llevó a cabo él mismo. Tenía muchas ganas de obtener datos valiosos, pero estaba poco preparado para el trabajo de campo. Gauss montaba a caballo con ropa elegante pero poco práctica, incluido un gorro de terciopelo que en una ocasión le provocó tal sobrecalentamiento que su mala salud le obligó a abandonar momentáneamente el proyecto. En otra ocasión, su caballo lo tiró al suelo, aunque no sufrió ninguna herida más allá de algunos cortes y magulladuras. Lejos de desanimarlo, todos estos obstáculos le sirvieron de motivación. De hecho, su colega alemán Friedrich Wilhelm Bessel intentó disuadirle para que dejara de perder tiempo y energía en el trabajo físico de los estudios geodésicos. Consciente del extraordinario talento matemático de Gauss, le preocupaba el hecho de que al encargarse de tomar las medidas él mismo se pudiera resentir su trabajo teórico. Sin embargo, su inquietud no estaba justificada, ya que, en lugar de impedirle reflexionar sobre cuestiones teóricas, el trabajo geodésico práctico le inspiró algunas de sus mejores ideas matemáticas. En concreto, uno de sus objetivos era comprender la geometría de la proyección de una superficie sobre otra, por ejemplo, una superficie de una esfera en un plano; es decir, la confección de un mapa.

En 1827, Gauss presentó a la Real Sociedad de Ciencias de Gotinga sus Disquisitiones generales circa superficies curvas (Investigaciones generales sobre superficies curvas), obra en la que incluía los resultados de sus investigaciones sobre geometría con una clara influencia de los estudios geodésicos. Entre otros resultados, demostró que era imposible crear un mapa perfecto. Y de esa imposibilidad surgió una aplicación involuntaria, la forma correcta de... comer pizza (aunque es poco probable que Gauss tuviera alguna vez la oportunidad de probar este delicioso plato).


PIZZAS Y PLÁTANOS


Mi cita, un italiano quisquilloso, sintió la necesidad de arrastrarme por medio Londres hasta la única pizzería aceptable según su criterio. En cuanto cogí un trozo de pizza, una deliciosa capa de salsa de tomate y aceitunas cayó sobre la preciosa camisa amarilla que había comprado especialmente para la ocasión. Mi cara se tiñó del color de la salsa de tomate y tuve la certeza de que nuestra primera cita sería también la última. Él era matemático, así que me pregunté por qué querría salir con alguien que se atrevía a comer pizza de una forma tan poco «matemática». Sin embargo, lo que causó este fracaso literal no fue mi torpeza, sino mi ignorancia del poderoso teorema de Gauss sobre las superficies curvas, el mismo que explica por qué todos los mapas están distorsionados.

Una de las superficies más sencillas con las que tratamos en la vida cotidiana es la de una hoja de papel plana. Si la enrollamos formando un cilindro (como un póster recién comprado, listo para ser transportado), esta hoja antes plana lo sigue siendo en un eje, pero se curva en el eje perpendicular. Entonces, ¿una hoja de papel es plana o curva?

[image: Dibujo en blanco y negro de un plátano curvado con flechas y signos más y menos indicando diferentes direcciones sobre su superficie.]

Figura 1.4: Una línea que se curva hacia fuera tiene una curvatura positiva, mientras que una línea que se curva hacia adentro tiene una curvatura negativa.

Cuando quieren hablar de superficies, los matemáticos recurren a las curvaturas, las cuales describen el comportamiento de una superficie en un punto específico. Primero elegimos un punto de una superficie, trazamos una línea a través de él y cuantificamos cuánto se curva. Imaginemos un plátano, como el que aparece en la figura 1.4, y fijémonos en un punto de la parte superior de su superficie. La línea que recorre la «sonrisa» del plátano se curva hacia dentro, por lo que decimos que su curvatura es negativa. En la dirección perpendicular, la línea se curva hacia fuera, y decimos que su curvatura es positiva.50 Un buen ejemplo de curvatura cero es una hoja de papel, en la que todas las líneas son planas. Mientras que el signo de la curvatura indica el comportamiento general de la línea, su magnitud nos dice cuánto se ha curvado. Por ejemplo, mientras que tanto en la parte superior como en la inferior de un huevo todas las líneas se curvan hacia fuera, las líneas que pasan por la parte superior más puntiaguda tienen mayor curvatura, como en la figura 1.5.

[image: Diagrama en blanco y negro de una forma ovalada con flechas curvas en el borde y símbolos de suma en dos extremos.]

Figura 1.5: Tanto en la parte superior como en la inferior de un huevo, todas las líneas tienen curvaturas positivas, pero las de la parte superior, más puntiaguda, son mayores.

Si elegimos un punto de un cilindro, las cosas se complican. En la figura 1.6 verás que la línea horizontal que rodea el cilindro se curva hacia fuera, lo que hace que su curvatura sea positiva, mientras que la línea vertical es plana, por lo que tiene una curvatura cero. Todas las demás líneas forman hélices con curvaturas positivas: cuanto más horizontal, mayor es la magnitud de la curvatura. Entonces, ¿cuál es la curvatura de un punto concreto de un cilindro? ¿Cero o positiva? Y si es positiva, ¿cuál es su magnitud? Esta es una de las preguntas que Gauss quería responder.

[image: Diagrama en blanco y negro de un cilindro con flechas indicándose en direcciones vertical y horizontal, con los símbolos + y 0 en el centro.]

Figura 1.6: En un cilindro, las líneas horizontales se curvan hacia fuera y las verticales son rectas.

Gauss pensó que, puesto que no tiene sentido que la misma parte de una superficie sea convexa, cóncava y plana al mismo tiempo, no deberíamos poder asignar curvaturas diferentes a un mismo punto. Así que ideó un procedimiento para expresar la curvatura de un punto con un solo número. Cada línea posible que pasa por el punto de nuestra superficie tiene una curvatura asignada, y podemos elegir el menor y el mayor de estos números. Para obtener la curvatura gaussiana, multiplicamos los dos números. De este modo, reducimos las curvaturas de todas las líneas que pasan por el punto a un único valor. ¡Ten cuidado y no confundas las curvaturas de las rectas con la curvatura de Gauss de una superficie!

Por ejemplo, en la parte superior de un huevo, todas las líneas tienen la misma curvatura positiva. Por lo tanto, su producto también es positivo, y podemos decir que la parte superior de un huevo (o de cualquier punto de su superficie) tiene una curvatura gaussiana positiva. En el punto de la parte superior de nuestro plátano, la mayor curvatura es positiva, pero la menor es negativa, lo que da un producto negativo. En la hoja de papel plana, todas las líneas tienen curvatura cero, y cero por cero nos da una curvatura gaussiana de cero. En el cilindro, la mayor curvatura (la de la línea horizontal) es positiva, y la menor (la de la línea vertical) es cero, lo que hace que su producto sea cero. Y eso tiene sentido, ya que el cilindro se forma doblando una hoja de papel.

[image: Diagrama en blanco y negro de tres porciones de pizza con flechas que indican direcciones y anotaciones de curvatura positiva, negativa y nula en cada caso.]

Figura 1.7: a) Cuando la porción de pizza está plana en el plato, las curvaturas del punto marcado son cero en todas las direcciones; b) Si cogemos la porción de pizza por el borde, la curvatura más pequeña sigue siendo cero, pero la curvatura más grande se vuelve positiva, forzando a la porción a doblarse hacia abajo; c) Si doblamos la porción de pizza, la curvatura más pequeña se vuelve negativa, pero la curvatura más grande debe seguir siendo cero para mantener la curvatura gaussiana en cero. Esto evita que la porción se doble hacia abajo.

Gauss comprendió que las curvaturas gaussianas de una hoja de papel plana y la de la misma hoja enrollada en un cilindro no eran iguales por casualidad. Demostró que la curvatura de Gauss no cambia, aunque doblemos la superficie, siempre que no la estiremos, encojamos, rasguemos o rompamos de cualquier otra forma. Este requisito de no destrucción es esencial, y pronto descubriremos sus consecuencias en el mundo real. Gauss estaba tan orgulloso de su resultado que lo llamó theorema egregium, que en latín significa «teorema egregio». De hecho, las consecuencias de este teorema son profundas y afectan no solo a las matemáticas teóricas, sino también a actividades tan mundanas como comer pizza.

La pizza tradicional es tan fina que parece una superficie bidimensional. Como una porción de pizza es más fácil de doblar que de estirar, encoger o romper, podemos mirarla a través de la lente del teorema egregio. Como muestra la figura 1.7.a, cuando una porción de pizza tiene una forma plana sobre el plato, en todos sus puntos las curvaturas en todas las direcciones son cero, lo que hace que su producto (la curvatura gaussiana) sea cero. Sería lo mismo que ocurre con una hoja de papel. Cuando cometí el error de coger mi porción por el borde, la gravedad obligó a la punta de esa porción (junto con los ingredientes) a doblarse hacia abajo, como muestra la figura 1.7.b. Aunque esto cambiaba la curvatura de los puntos en la dirección que va de la punta al borde, no violaba el teorema egregio, ya que la línea perpendicular permanecía plana, lo que hacía que el producto siguiera siendo cero.

En lugar de eso, debería haber doblado la pizza por la mitad, como muestra la figura 1.7.c. Entonces, en una dirección, la curvatura se habría vuelto negativa, pero como la curvatura gaussiana de la porción debe seguir siendo cero, esta habría seguido siendo plana en la dirección que apuntaba hacia mi boca. Esto se debe a que el único número que da cero cuando se multiplica por algo negativo es cero.

Una porción de pizza que se curva en una dirección se vuelve rígida en la otra para que la curvatura de Gauss siga siendo cero. Mientras doblaba la mía (y mi mente) para comprender esta idea, me di cuenta de que lleva influyendo en nuestras vidas desde tiempos inmemoriales. Por ejemplo, cojamos una hoja de cualquier árbol. Verás que tiende a doblarse a lo largo de la vena central, como una porción de pizza que cogemos correctamente. Al crear una curvatura distinta de cero en sentido vertical, se vuelve más rígida en sentido horizontal, lo que dificulta que el viento cambie su forma.51Esto también explica por qué las hojas que crecen más rápido en los lados que en el centro deben arrugarse a lo largo de los bordes para mantener la forma plegada.52

Modificar la curvatura gaussiana requiere fuerza, que es lo que hace que los objetos curvados sean tan resistentes. Mientras que una porción de pizza doblada y una brizna de hierba se curvan en una dirección y protegen la curvatura cero en otra, los objetos curvados en todas las direcciones son casi irrompibles. Esa es una de las explicaciones de la resistencia de la forma curvada del huevo.53Los huevos pueden parecer frágiles y dejar caer uno al suelo es un estropicio garantizado. Pero intenta romper un huevo apretándolo y verás cómo su curvatura protege la frágil cáscara. De lo contrario, los huevos se romperían bajo el peso del ave que los empolla, lo que sería desastroso para la especie. Para romper un huevo, hay que abollar la cáscara, lo que requiere el uso de herramientas e intención.

El teorema egregio explica por qué predominan las superficies curvas no solo en la naturaleza, sino también en la ingeniería y la arquitectura. Mi ejemplo favorito son las populares patatas fritas Pringles. Envasadas en tubos de cartón, las patatas fritas planas se romperían bajo el peso de las que tienen encima. La forma característica de las Pringles, curvada en dos direcciones, les confiere una resistencia excepcional. La falta de un punto débil no solo facilita su almacenamiento, sino que también garantiza que se rompan en puntos aleatorios cuando los mordemos, lo que hace que nos parezcan más crujientes.54Si todavía dudas de la resistencia de los objetos con forma de Pringle, fíjate en los tejados con forma de silla de montar del VeloPark de Londres, el Scandinavium de Gotemburgo o el Oceanogràfic de Valencia. Delgadas, seguras y bellas; ese es el poder de las estructuras curvas.

Por desgracia, el hecho de que sea muy difícil modificar la curvatura de una superficie también tiene consecuencias negativas. Cuando queremos hacer un mapa, trasladamos una porción de una superficie casi esférica de la Tierra, con curvatura positiva, a una hoja de papel plana, con curvatura cero. El teorema egregio nos dice que esto es imposible sin estirar o rasgar la superficie. Por eso es difícil poner una tirita en una rodilla o un codo, y por eso los envoltorios de los chupachups tienen arrugas. Evidentemente, esto no nos ha impedido crear mapas, pero todos y cada uno de los mapas planos están distorsionados de algún modo: las distancias, las formas o las áreas no son un reflejo de la realidad. En el próximo capítulo investigaremos este problema con más profundidad.


ABRÓCHATE EL CINTURÓN


La forma curva de la Tierra no solo nos impide diseñar mapas planos perfectos, sino que también invalida gran parte de la geometría que aprendemos en la escuela. Las explicaciones sobre ángulos, rectas y triángulos con las que se han examinado generaciones de estudiantes se basan en superficies planas. La geometría se complica en el momento en que la curvatura de la superficie ya no es cero.

Un popular rompecabezas basado en la curvatura de la Tierra cuenta la historia de una cazadora que sale de su tienda de campaña, camina 10 kilómetros hacia el sur, luego 10 kilómetros hacia el oeste y 10 kilómetros hacia el norte, y allí ve que hay un oso junto a su tienda.55¿De qué color es el oso? Te animo a que lo pienses un minuto antes de leer la solución en el párrafo siguiente.

La tienda de la cazadora debe estar en el Polo Norte, lo que significa que ve un oso polar, es decir, un oso de color blanco.56 Si parte del Polo Norte, camina 10 kilómetros hacia el sur, gira 90 grados en el sentido de las agujas del reloj y camina 10 kilómetros hacia el oeste, gira de nuevo 90 grados en el sentido de las agujas del reloj y camina 10 kilómetros hacia el norte, volverá a su tienda. 

La ilustración de la figura 1.8 te ayudará a visualizarlo. Este enigma aparentemente irrelevante sobre el color del pelaje de un oso nos demuestra cuán extraña es la geometría de una esfera.57 El camino que sigue la cazadora es un triángulo con dos ángulos iguales a 90 grados. Cuando añadimos el tercer ángulo, el total será mayor de 180 grados, lo que va en contra de lo que nos enseñaron en matemáticas: «los ángulos de todos los triángulos suman 180 grados». Esta regla es válida si estamos hablando de un plano, pero los triángulos esféricos son criaturas más interesantes.

En una esfera, cuanto mayor sea el triángulo, mayor será la suma de sus ángulos, y siempre será superior a 180 grados. Esta es otra de las razones (que se añade a la del teorema egregio) que explican por qué no podemos hacer un mapa perfecto. Para ello habría que convertir los triángulos esféricos en triángulos planos, lo cual es imposible sin realizar modificaciones, ya que las sumas de sus ángulos dan resultados diferentes.

Cuando hablamos de triangulación, tenemos que hablar de trigonometría, la rama de las matemáticas que estudia las relaciones entre los ángulos y las longitudes de los triángulos. Después de ver los extraños ángulos de los triángulos esféricos no te sorprenderá que las reglas de la trigonometría esférica difieran de la trigonometría plana tradicional que se enseña en la escuela. Esto significa que las distancias en una esfera no se comportan de la misma forma que las distancias en un plano.

[image: Dibujo en blanco y negro de una esfera con líneas de longitud y latitud, un oso y una tienda en la cima, y un triángulo con flechas y ángulos rectos sobre la superficie.]

Figura 1.8: Si la cazadora de nuestra historia sale del Polo Norte y camina 10 km en dirección sur, luego 10 km en dirección oeste y finalmente 10 km en dirección norte, habrá regresado a su tienda de campaña.

En un plano, la distancia más corta entre dos puntos es una línea recta, pero todas las líneas de una esfera son curvas. Por lo tanto, las líneas «rectas» de una esfera son en realidad los conocidos como círculos máximos, es decir, arcos de círculos imaginarios cuyo radio es el de la esfera. En otras palabras, son los círculos más grandes posibles que podemos trazar en la superficie de una esfera, como un ecuador. Hay que tener en cuenta que en un plano solo podemos trazar una línea recta entre dos puntos, mientras que, en una esfera, cada par de puntos está conectado por dos arcos del mismo círculo y la distancia más corta será la longitud del arco más corto.

Este hecho confunde a menudo a los pasajeros de vuelos de larga distancia. En un vuelo reciente de Múnich a San Francisco, mi vecino de asiento se sorprendió cuando tuvimos la oportunidad de contemplar las pintorescas cumbres nevadas de Groenlandia. Detuvo la película que estaba viendo y empezó a toquetear la pantalla que tenía frente a él en busca del rastreador de vuelo. Allí pudo comprobar que seguíamos una trayectoria en forma de arcoíris sobre Groenlandia en lugar de la esperada línea recta sobre el Atlántico.

La confusión de mi vecino era comprensible. San Francisco tiene una latitud parecida a la de Sevilla, en el sur de España. Múnich, aunque al norte de ambas, sigue estando considerablemente al sur de la nevada Groenlandia. Aunque no sé mucho de aviación, dudo que la compañía aérea sea tan generosa como para gastar combustible de más para ofrecer a sus clientes un recorrido turístico. Entonces, ¿por qué trazamos este extraño círculo sobre la Tierra, en lugar de ir como vuela cualquier ave?

Dado que todos los mapas planos están distorsionados, lo que parece una línea recta en un mapa no es la ruta más corta. La mejor manera de comprobarlo es con un globo terráqueo y un trozo de cuerda. Ata un extremo del cordel en el punto en el que se encuentra Múnich y, manteniendo el cordel lo más tenso posible, busca San Francisco. Al mantener la cuerda tensa, te aseguras de que la ruta es la más corta posible, y verás que es exactamente como el arco de la figura 1.9.

[image: Mapa en blanco y negro que muestra una línea curva y otra recta conectando San Francisco y Múnich a través del Atlántico Norte.]

Figura 1.9: La ruta más corta entre Múnich y San Francisco es un arco de un círculo máximo.

Las compañías aéreas programan sus vuelos intentando que pasen lo más cerca posible de los círculos máximos porque son las rutas más cortas que unen dos puntos de la Tierra. Aunque las rutas reales se desvían de esos círculos máximos para aprovechar los vientos fuertes, evitar condiciones meteorológicas difíciles y mantenerse fuera de las zonas de exclusión aérea, siguen sin parecerse a las líneas rectas que tan tentados estamos de dibujar en un mapa plano. Esto explica por qué las compañías aéreas a veces sitúan sus centros de operaciones en lugares sorprendentes.


VOLANDO SOBRE ALASKA


El 25 de abril de 2020, el aeropuerto internacional de Anchorage (Alaska) se convirtió en el más transitado del mundo. Solo ese día. Era algo sorprendente para una ciudad de apenas 300 000 habitantes, y con poco más de 700 000 en todo el Estado. Sin embargo, cuando se trata de aeropuertos, lo que importa son los círculos máximos.

Anchorage se benefició del rápido desarrollo de la aviación durante el siglo XX, del creciente poder económico de Asia y, quizá inesperadamente, de la Guerra Fría.58Teniendo en cuenta los círculos máximos, el vuelo más corto entre Europa, pongamos Londres, y Asia Oriental, por ejemplo Tokio, pasaría por Siberia. Sin embargo, durante la Guerra Fría, la Unión Soviética cerró su espacio aéreo (casi del tamaño de Norteamérica) a las compañías aéreas de Occidente. Todos los vuelos con origen en Europa tenían que tomar la ruta más eficiente para evitar la zona de exclusión aérea, y esto los obligaba a pasar sobre Groenlandia y Alaska. En aquella época, ningún avión habría podido volar tanto tiempo sin repostar. Anchorage se encontraba a mitad de camino y era la única ciudad situada en ese trayecto. En 1951 se construyó un aeropuerto internacional en esta pequeña y remota ciudad. Conectaba grandes destinos de todo el mundo, desde Londres, París y Ámsterdam en Europa hasta Tokio y Bombay en Asia, y Nueva York y São Paulo en América. En la década de 1980, este aeropuerto recibió el sobrenombre de «Encrucijada del Mundo».

Tras la caída del muro de Berlín, en noviembre de 1989, la URSS abrió su enorme espacio aéreo a la mayoría de las compañías comerciales. Esto, junto con el desarrollo de aviones modernos que podía recorrer distancias más largas sin repostar, redujo el protagonismo del aeropuerto de Anchorage en los vuelos comerciales. A pesar de la rápida disminución en el número de este tipo de vuelos, la importancia de Alaska en la aviación internacional no ha hecho más que crecer desde su apogeo. Aunque los aviones comerciales actuales pueden volar sin escalas más de los 15 000 kilómetros que separan Singapur de Nueva York, las largas distancias suponen un reto para los vuelos de transporte de mercancías.59Las compañías aéreas tienen que elegir entre llevar más combustible, aumentando la autonomía, o transportar más carga, aumentando los ingresos por vuelo. Para maximizar el peso de la carga a bordo, las compañías de transporte tenían que encontrar una parada situada lo más cerca posible de la ruta en la que poder repostar, y en Anchorage es donde se encuentra el único aeropuerto del mundo que está cerca de círculos máximos que conectan docenas de grandes ciudades. En la actualidad, en Anchorage se han instalado los centros de operaciones de gigantes como FedEx, UPS y el Servicio Postal de Estados Unidos, donde los aviones se detienen para repostar y clasificar la carga, y desde allí se envía a los destinos correctos.60 Todo ello explica por qué, en abril de 2020, cuando los vuelos comerciales cesaron casi por completo debido a las restricciones de la COVID-19 y se disparó el envío de mercancías compradas por internet, Anchorage se convirtió en uno de los aeropuertos más transitados del mundo, y, por un día, en el más transitado de todos.

La mayoría de las grandes aerolíneas (tanto comerciales como de mercancias) funcionan con lo que se conoce como sistema de «hub and spoke», lo que significa que sus vuelos empiezan o terminan en uno de los aeropuertos centrales, donde los pasajeros cambian al vuelo de conexión que los llevará a su destino.61Por ejemplo, en el momento de escribir estas líneas, el aeropuerto internacional más transitado del mundo está en Dubái.62La mayor ciudad de los Emiratos Árabes Unidos está convenientemente situada junto a los círculos máximos que conectan Londres y Perth, en Australia. Del mismo modo, los pasajeros que vuelen de Londres a Bombay (India) pueden hacer transbordo en el gran aeropuerto de Estambul. Por último, la ubicación del aeropuerto de la relativamente pequeña ciudad de Helsinki, capital de Finlandia, junto a los círculos máximos que unen los principales destinos europeos con China, ha propiciado su éxito.63


EL TAMAÑO Y LA FORMA IMPORTAN


Cuando, en 2016, un rapero estadounidense llamado Bobby Ray Simmons Jr., conocido como B.o.B, publicó una serie de más de cincuenta tuits, algunos con fotos, para demostrar que la Tierra es plana, el astrofísico Neil deGrasse Tyson no pudo dejarlo pasar. En otros tantos tuits, señaló los errores que contenía el argumento del músico. En cuestión de horas, la discusión abandonó Twitter y B.o.B lanzó una canción titulada Flatline, sobre su teoría, en la que sugería que a Tyson le pagan para adoctrinar a la gente. El científico respondió con la canción de su sobrino titulada Flat to Fact.64

A pesar de que durante siglos se han llevado a cabo investigaciones científicas incontrovertibles, algunas personas sienten el impulso de enzarzarse en acaloradas disputas sobre la forma y el tamaño de la Tierra, lo que demuestra que este tema sigue siendo tan importante hoy como lo ha sido siempre. Haz bien los cálculos, y tu país obtendrá ventajas políticas; hazlos mal, y quizás tu viaje de conquista acabe en el continente equivocado. La geodesia, y las matemáticas que la sustentan, nos permite saber dónde estamos, cómo llegar adonde queremos ir y cuánto durará el viaje. Pero cuando leemos mapas planos de nuestro curvado planeta, es importante recordar el teorema egregio. Las inevitables distorsiones creadas por la curvatura de la Tierra condicionan nuestra interpretación del mapa. Eso hace que comprender las matemáticas que utiliza la cartografía sea fundamental para poder formarse una visión del mundo lo más objetiva posible.





CAPÍTULO 2

PLANA

CÓMO CREAR UN MAPA

En marzo de 2017, los alumnos de las escuelas públicas de Boston vieron el mundo de una nueva forma. Literalmente. Los conocidos mapamundis de las paredes de las aulas fueron sustituidos por otros nuevos, en los que todo tenía un aspecto diferente.1De la noche a la mañana, los alumnos vieron cómo Europa y Norteamérica se encogían, dando lugar a una África y una Sudamérica mucho más grandes de lo que estaban acostumbrados a ver. Los continentes tenían un aspecto extraño, estirados horizontalmente cerca de los polos y verticalmente cerca del ecuador. África se convirtió en una gigantesca masa de tierra alargada, mientras que Europa (que hasta entonces no era mucho más pequeña que su vecino del sur) casi desapareció del mapa. Todos estos cambios se pueden explicar utilizando las matemáticas.


MOMENTO DE INSPIRACIÓN


Los cartógrafos se enfrentan a una tarea matemáticamente imposible. Gracias al teorema egregio de Gauss, sabemos que transferir nuestro globo terráqueo tridimensional a un mapa bidimensional es una tarea condenada al fracaso. A pesar de ello, seguimos utilizando mapas, porque incluso un mapa bidimensional distorsionado suele tener más utilidad práctica que un globo terráqueo. Imagínate a un piloto de avión en su cabina, trazando una ruta de vuelo sobre un globo terráqueo, o a una excursionista que tiene que dejar su saco de dormir en casa porque el globo ocupa demasiado espacio en la mochila, o un miniglobo rodando por tu coche tras una frenada especialmente brusca. No estamos dispuestos a renunciar a los mapas y hemos aprendido a aceptar que siempre distorsionan algunas de las características del globo terráqueo.

En una hoja de papel podemos representar la misma zona del mundo de muchas formas diferentes a las que llamamos «proyecciones». Los cartógrafos pasamos mucho tiempo decidiendo qué tipo de proyección sería la más adecuada para una representación concreta, es decir, qué distorsiones son menos relevantes y qué características deben ser conservadas. Es nuestra responsabilidad, como usuarios de mapas, entender qué atributos se representan con veracidad y cuáles están deformados. De esa forma no nos construiremos una imagen falsa de la realidad representada. En general, nos interesa conservar tres características principales: áreas, formas y distancias. ¿Cuál nos dolerá más perder? Esta es la primera pregunta que debemos hacernos antes de decidir cuál será la proyección cartográfica más adecuada.

Si lo que más nos interesa es conservar el área, debemos elegir una de las proyecciones de áreas iguales (u homolográficas, si prefieres un nombre mucho más elaborado). Tienen una propiedad muy atractiva: Si colocamos el pulgar en cualquier lugar del mapa y luego lo movemos a otro sitio, en ambos casos cubrirá la misma área del mundo real. Pero, como sabemos por Gauss, las formas y distancias se distorsionarán en el proceso, en algunas partes del mundo más que en otras, dependiendo de cómo construyamos el mapa. La buena noticia es que, si nos interesa un lugar concreto, podemos diseñar el mapa de modo que conserve aproximadamente las formas y distancias cercanas a ese lugar.

En otras ocasiones, nos importa más la forma que la superficie, por lo que, por ejemplo, aceptaremos una África diminuta y una Europa enorme siempre que África parezca África y Europa parezca Europa, lo que no ocurría en el nuevo mapa presentado a los alumnos de Boston. A estas proyecciones las llamamos conformes u ortomórficas. ¿Cómo podemos reconocer un mapa conforme? Si los meridianos se cruzan con el ecuador y otros paralelos en ángulo recto, como en el globo terráqueo, hay muchas posibilidades (aunque no una certeza absoluta) de que el mapa conserve las formas. Desgraciadamente, no se puede tener todo: las matemáticas nos impiden crear un mapa de áreas iguales y que también sea conforme.

Si, en cambio, lo que más nos interesa conservar son las distancias, nos deberíamos decantar por una proyección equidistante (que yo sepa, aquí no hay otra opción que recurra a palabras griegas rebuscadas). Pero, cuidado, no te emociones demasiado. Ninguna proyección mantiene la misma escala en todo el mapa (hablaremos más sobre las escalas de los mapas en el próximo capítulo). Una vez más, la culpa la tiene el teorema egregio. La buena noticia es que podemos conservar las distancias entre uno (o incluso dos) puntos especiales y cualquier otro punto del mapa. Por ejemplo, si centramos nuestro mapa equidistante en Londres, se conservarán las distancias que separan Londres y París, y Londres y Glasgow, pero yo no lo utilizaría para planificar un viaje entre París y Glasgow. Una opción habitual es mantener constantes las distancias desde uno de los polos a lo largo de todos los meridianos. En este caso, el otro polo se estira hasta formar un círculo en el borde del mapa, como en la bandera de las Naciones Unidas.

Pero, en la práctica, ¿cómo podemos aplanar la Tierra? Imagina que colocas una bombilla en el centro de un globo transparente en el que se ha dibujado la cuadrícula de latitud-longitud y los contornos de los países en su superficie. Si envuelves el globo con una hoja de papel, la luz proyectará sobre ella la cuadrícula y los contornos de los países, de modo que podrás calcarlos con un lápiz y desenvolver luego el papel para obtener tu proyección cartográfica.2

La cuestión es cómo envolver el globo terráqueo con papel. Los cartógrafos se enfrentan a este dilema a la hora de elegir qué proyección utilizar, ya que las diferentes opciones darán lugar a representaciones completamente distintas. Dividimos las proyecciones cartográficas en tres familias principales, dependiendo de cómo coloquemos el papel alrededor de nuestro globo transparente. Una forma es envolverlo completamente con la hoja de papel, creando un cilindro que toque el globo siguiendo un círculo, como en la figura 2.1.a. A la proyección resultante la llamamos cilíndrica. Dado que el círculo elegido para que el papel toque el globo terráqueo puede ser cualquiera, la familia cilíndrica está compuesta por infinitas proyecciones cartográficas. Como puedes imaginar, el círculo que se elige más a menudo es el que corresponde al ecuador, pero esto no significa que las proyecciones basadas en otros círculos sean peores; simplemente, son diferentes. Todos los mapas resultantes son rectangulares y el borde derecho del mapa conecta con el izquierdo.

Supongamos que nos decantamos por la corriente principal y decidimos que el papel tocará el globo en el círculo del ecuador. ¿Qué ocurre entonces con los paralelos y los meridianos? Bueno, el ecuador ya está tocando el papel, así que en el mapa se convertirá en una línea recta. Los otros paralelos aparecerán como líneas rectas paralelas al ecuador, mientras que los meridianos se representarán como líneas rectas perpendiculares a él. Es decir, esta proyección conservará todos los ángulos de la cuadrícula latitud-longitud (ángulos rectos en el globo terráqueo).

Otra opción es enrollar el papel creando un cono y colocarlo como un sombrero de fiesta encima del globo, de manera que lo toque siguiendo el paralelo elegido, como muestra la figura 2.1.b.3 Si queremos, el sombrero puede intersecar el globo entrando en él siguiendo un círculo y saliendo por otro círculo situado debajo. No importa qué círculos elijamos, la proyección cónica resultante se parecerá a una tarta, posiblemente con un círculo ausente en el centro, y a la que le faltan unas porciones. Suponiendo que la punta del sombrero está por encima del Polo Norte, los meridianos se convertirán en líneas rectas que parten del centro de la tarta, mientras que los paralelos serán arcos circulares cuyo centro se encuentra en medio de la tarta. En esta proyección, los ángulos entre meridianos son más pequeños que los ángulos verdaderos.

Por último, podemos limitarnos a mantener la hoja de papel plana de modo que toque el globo terráqueo en un solo punto, normalmente uno de los polos (figura 2.1.c). La proyección acimutal resultante será circular, con meridianos que se extienden desde el centro, espaciados en ángulos reales. Por otro lado, los paralelos se convertirán en círculos cuyos radios son diferentes y cuyo centro se encuentra en el polo. La palabra «acimutal» procede de la palabra árabe que significa «dirección», y pronto te explicaré por qué.

Estos tres tipos de proyecciones son los que solemos estudiar en el instituto. Pero existen cientos más, y el método de imaginar una bombilla en el centro del globo, que nos ha proporcionado solo tres tipos diferentes con algunas ligeras variaciones, es únicamente uno de los muchos posibles. Una vez proyectada la superficie del globo en una hoja de papel (mediante el desarrollo de un sistema de ecuaciones que describen tal proyección), el cartógrafo ajusta esas ecuaciones para obtener un mapa que tenga las propiedades deseadas. Y ahí es donde empieza la diversión.

[image: Diagrama en blanco y negro que muestra tres proyecciones cartográficas: cilíndrica, cónica y azimutal, con sus correspondientes redes de líneas trasladadas a formas planas.]

Figura 2.1: Estos son los tres tipos principales de proyecciones: 
a) cilíndrica, b) cónica y c) acimutal.


HECHO PARA NAVEGAR


Geert de Kremer nació en 1512 en Flandes, una región de la actual Bélgica. Gracias a las conexiones de su tío, Kremer, hijo de un pobre zapatero pudo asistir a una prestigiosa escuela monástica. Pasó mucho tiempo estudiando latín y las escrituras cristianas, pero lo que cambió el curso de su carrera fue el hecho de que gran parte de su tiempo lo pasara copiando textos sagrados. Desarrolló una escritura en cursiva especialmente elegante y se convirtió en un experto de tal nivel que, cuando todavía no había cumplido treinta años, publicó un manual cuyo título era muy ingenioso: Literarum latinarum, quas italicas cursoriasque vocant, scribendarumratio (Método de escritura de las letras latinas que se llaman itálicas ocursivas).4En el siglo XVI, los chicos guais querían un nombre en latín, así que Geert, de dieciocho años, se matriculó en la Universidad de Lovaina como Gerardus Mercator,5 donde asistió a las clases de Gemma Frisius,6 el científico holandés que conocimos al hablar de la triangulación. Después de graduarse, Mercator no quería abandonar esa encantadora ciudad, así que convenció a Frisius para que lo contratara como aprendiz. Junto con el orfebre Gaspar van der Heyden, crearon objetos que iban desde globos terráqueos hasta equipos quirúrgicos. Mercator también pudo presumir de su excelente letra cursiva grabando etiquetas en sus creaciones.7

Aunque empezó como calígrafo, Mercator aprendió rápidamente a fabricar globos terráqueos, una tarea tan ardua como tediosa. Tenía que elaborar meticulosamente 12 nesgas de papel (segmentos triangulares del globo), recortarlos cuidadosamente y pegarlos en una esfera. Un solo error (por ejemplo, una nesga mal colocada) podía arruinar todo el proyecto. Siempre ansioso por aprender, Mercator pronto empezó a pensar en el problema opuesto: en lugar de ensamblar un globo terráqueo a partir de trozos planos de papel, quería hacer un mapa plano a partir del globo terráqueo. Esta tarea resultó ser más difícil de lo que pensó en un principio.

Mercator vivió en una época de constantes «descubrimientos». Había muchas tierras lejanas desconocidas para los europeos. Nació solo quince años después de que Cristóbal Colón llegara a América, iniciando la vergonzosa era de la colonización. Puede que la única consecuencia positiva de esa terrible época fuera que los mapas europeos se tenían que actualizar cada vez que se descubría un nuevo territorio. Mientras los colonizadores diezmaban los pueblos indígenas, los cartógrafos se enfrentaban a una tarea titánica. Trabajaban minuciosamente en un mapa durante meses, solo para darse cuenta de que el descubrimiento geográfico más reciente los obligaba a actualizar su reciente creación.

Llegaba continuamente nueva información sobre tierras hasta entonces desconocidas. Sin embargo, la calidad de los datos dejaba mucho que desear. Cada viajero parecía informar de un tamaño, una forma y una ubicación diferentes de la tierra que había visitado (y casi siempre era un hombre). 

Una cosa es actualizar constantemente los mapas y otra muy distinta decidir en qué datos confiar. Mercator formuló una hipótesis sobre la procedencia de todos estos informes contradictorios. Los marineros navegaban por el mar orientando su brújula hacia una dirección concreta: «si mantengo una dirección constante en la brújula», pensaban, «seguiré la ruta más corta». Los datos geográficos que recibía Mercator estaban basados en esta suposición intuitiva pero incorrecta. Tras leer los trabajos de un matemático portugués, Pedro Nunes, se dio cuenta del error que cometían los marineros.

Nunes había oído hablar de las dudas que le surgieron a su compatriota Martim Afonso de Sousa, que se adentró en Brasil para ser el primer europeo en hacerse con el control de ese territorio.8

Para regresar a Lisboa desde el Río de la Plata, De Sousa necesitaba dirigirse hacia el noreste, pero le costaba decidir cuál era la dirección exacta. Nunes llegó a la conclusión de que un marinero puede seguir una de las dos trayectorias razonables siguientes: puede tomar la ruta más corta, que es un arco de un círculo máximo, o una ruta que siga siempre la misma dirección de la brújula. 

Demostró que, a pesar de la creencia común de los marineros, estas dos opciones no son iguales, a menos que quieran navegar a lo largo del ecuador o de cualquier meridiano. A la ruta de dirección constante de la brújula la llamó línea de rumbo (hoy conocida como loxódromo), del griego antiguo loxós («oblicuo») y drómos («correr»). En el globo terráqueo, las líneas de rumbo no suelen ser grandes círculos, sino espirales. Esto se debe a que, si un barco sigue una dirección de brújula constante, cruza cada meridiano con el mismo ángulo, como se puede apreciar en la figura 2.2.

[image: Diagrama en blanco y negro de una esfera con líneas de latitud y longitud, trayectoria curva discontinua y tres ángulos marcados con el símbolo θ a lo largo del recorrido.]

Figura 2.2: En el globo terráqueo, una línea de rumbo cruza todos los meridianos con el mismo ángulo, creando una espiral.

Mercator, exasperado porque los marineros cometían los mismos errores una y otra vez y le traían datos poco fiables, decidió hacer un mapa en el que las líneas de rumbo correspondieran a líneas rectas en lugar de espirales. Así nació la famosa proyección de Mercator.

Empezó con una proyección cilíndrica (que podríamos hacer colocando una bombilla imaginaria en el centro de un globo terráqueo imaginario envuelto en una hoja de papel rectangular imaginaria) y acabó creando un mapa rectangular con paralelos proyectados como rectas horizontales y meridianos proyectados como rectas verticales, similar al de la figura 2.3. Es un poco raro. En el globo terráqueo, los meridianos se unen en los polos, lo que es imposible si las líneas son paralelas. De hecho, en las proyecciones cilíndricas, de los polos (puntos únicos del globo) salen líneas rectas horizontales, como ocurre con los paralelos. Esto significa que las distancias entre meridianos son constantes en el mapa, mientras que, en realidad, son cada vez más pequeñas a medida que nos desplazamos desde el ecuador hacia los polos. Por otro lado, en el mapa se representan las distancias que hay entre los paralelos como si aumentaran para las latitudes más cercanas a los polos, mientras que en el globo estas distancias permanecen constantes. A medida que nos acercamos a los polos, las distancias en el mapa se hacen tan grandes (infinitamente grandes, para ser precisos) que un copo de nieve ártico debería representarse con un tamaño superior al de Asia o África, por lo que en la práctica tenemos que recortar las latitudes más altas. Además, en el mapa, cada paralelo tiene la misma longitud, lo que, por supuesto, no es cierto para los círculos de radio decreciente.

[image: Diagrama en blanco y negro que muestra la proyección de una esfera sobre un cilindro, comparando las proyecciones cilíndrica simple y Mercator con sus respectivas cuadrículas.]

Figura 2.3: La proyección de Mercator está basada en una proyección cilíndrica simple.

Con esta proyección cilíndrica simple Mercator logró uno de sus objetivos: los paralelos y meridianos formaban una cuadrícula de líneas rectas perpendiculares. Pero no se detuvo ahí. Quería que las formas de los países y continentes reflejaran la realidad, es decir, que las distorsiones en las direcciones norte-sur y este-oeste fueran iguales. Para conseguirlo, amplió las distancias entre paralelos en el mapa tanto como las distancias entre meridianos. Dado que la proyección aumentaba las distancias entre meridianos más cercanos a los polos que entre los meridianos más cercanos al ecuador, el aumento de las distancias entre paralelos también tenía que ser mayor para las latitudes más cercanas a los polos que al ecuador. Pero Mercator desconocía cuál debía ser la medida exacta de ese aumento, ya que para resolver la fórmula matemática implicada era necesario utilizar logaritmos, derivadas e integrales que no habían sido inventados todavía. Por desgracia, desconocemos cómo realizó este ajuste sin las herramientas necesarias; lo que sí sabemos es que Mercator tenía una gran intuición matemática y era plenamente consciente de lo que hacía. En la extensa leyenda del mapa, escribió lo siguiente:9

Al hacer esta representación del mundo hemos tenido que [...] extender sobre un plano la superficie de la esfera de tal manera que las posiciones de los lugares se correspondan en todos sus lados tanto en lo que se refiere a la dirección y distancia verdaderas como lo que se refiere a las longitudes y latitudes correctas [...] Con esta intención hemos tenido que utilizar una nueva proporción y una nueva disposición de los meridianos con referencia a los paralelos [...] Por estas razones hemos aumentado progresivamente los grados de latitud hacia cada polo en proporción al alargamiento de los paralelos con respecto al ecuador.10

Hiciera lo que hiciera, debió de funcionar, porque en 1569 se presentó al mundo el primer mapa que conservaba los ángulos con el siguiente título: Nova et Aucta Orbis Terrae Descriptio ad Usum NavigantiumEmendate Accommodata (Una descripción nueva y ampliada de la Tierra con correcciones para su uso en navegación).11No es el título más pegadizo, pero describe muy bien lo que consiguió hacer. El mapa constaba de 18 hojas de 33 cm × 40 cm que, junto con el borde, sumaban una considerable superficie de 202 cm × 124 cm.12Con estas medidas, el mapa quedaba muy bonito en la pared, pero no era práctico como herramienta de navegación. Incluso las copias más pequeñas no servían de mucho a los marineros, ya que aún faltaban algunas tecnologías cruciales. En primer lugar, no sabían cómo determinar con precisión la longitud en el mar. En segundo lugar, las brújulas indicaban las direcciones magnéticas, no las direcciones geográficas necesarias para interpretar el mapa.13 En el siglo XVIII, estos dos problemas se solucionaron con la invención del cronómetro marino y con los nuevos conocimientos sobre el campo magnético terrestre. Sin embargo, lo que ayudó a que la creación de Mercator se hiciera enormemente popular fueron las matemáticas.


MATEMÁTICAS PARA LA GEOGRAFÍA, GEOGRAFÍA PARA LAS MATEMÁTICAS


Después de haber leído los principios en los que se basa la proyección de Mercator, es posible que creas que serías capaz de dibujar uno de esos mapas. 

Ojalá fuera tan sencillo. Sabemos cómo proyectar el globo terráqueo sobre un cilindro, pero el segundo paso de la proyección de Mercator (el alargamiento de los espacios que hay entre los paralelos) no está del todo claro. Mercator no dijo exactamente cómo lo hizo, lo que hace casi imposible reproducir su resultado. Tal vez eso sea bueno, ya que la búsqueda de una descripción matemática de la proyección de Mercator proporcionó un resultado sorprendente.14

En 1599, treinta años después de la publicación del mapa de Mercator y cinco años después de su muerte, el matemático inglés Edward Wright publicó una descripción detallada de los principios matemáticos de la proyección de Mercator. En su libro titulado Certaine Errors inNavigation, explicó cuáles eran los errores que cometían los marineros al navegar por el mar.15Dado que Mercator había diseñado su proyección para evitar estos errores, es natural que Wright centrara su investigación en la comprensión de los principios matemáticos sobre los que se construyó este mapa. Wright era consciente del potencial que tenía la proyección de Mercator para ayudar a los navegantes, razón por la cual se propuso desarrollar fórmulas exactas que explicaran su estiramiento, tanto vertical como horizontal.

Para comprender el estiramiento horizontal deberían bastarnos los conocimientos de trigonometría que aprendemos en bachillerato. Al menos tal como aparece descrito en el artículo de V. Frederick Rickey y Philip Tuchinsky publicado en 1980 y titulado «An Application of Geography to Mathematics: History of the Integral of the Secant».16

[image: Diagrama geométrico de un segmento de esfera con el Polo Norte, el ecuador, el centro de la Tierra y varios puntos y ángulos etiquetados.]

Figura 2.4: Una porción de la Tierra en forma de media cuña tal y como la describen Rickey y Tuchinsky.

Imagina la Tierra como una naranja pelada en la que un gajo corresponde a una porción del planeta. Si cortamos este gajo horizontalmente por la mitad, como aparece representado en la figura 2.4, obtendremos una forma vagamente triangular ABC con dos lados iguales cuya longitud es el radio de la Tierra (AC y BC) y un arco del ecuador (AB).

Si cortamos el gajo una segunda vez, pero ahora por encima del primer corte horizontal, obtendremos la misma forma, pero más pequeña, correspondiente en este caso a algún paralelo distinto del ecuador (MNP). En el mapa de Mercator, los arcos proyectados AB y MN tienen longitudes iguales, lo que significa que, para hallar el estiramiento horizontal, hay que calcular la proporción, en el mundo real, entre AB y MN. Marcando algunos ángulos y aplicando trigonometría simple, podemos encontrar que esta proporción es la secante de la latitud θ, o sec(θ), que no es más que el nombre elegante que se utiliza para definir la longitud de NC dividida por la longitud de NP en la figura 2.4.17 De esta forma, una proyección de un arco de latitud θ, cuya longitud en el mundo real es L, tendrá una longitud de L × sec(θ).

Para hallar la longitud de un arco proyectado de un meridiano se necesitaban herramientas de cálculo que aún no se habían inventado, pero eso no asustó a Wright (y no nos asustará a nosotros). En primer lugar, debemos comprender cómo dependen los ángulos de las longitudes. Por ejemplo, si nos fijamos en un triángulo, vemos que al duplicar uno de los lados cambian los ángulos; para mantener los ángulos constantes, debemos duplicar también los otros lados. En general, si estiramos una figura, sea cual sea, por el mismo factor tanto horizontal como verticalmente, sus ángulos no cambiarán.
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