
 [image: cover_macros_google_sheets.jpg]

 REMY LENTZNER

 PROGRAMMING MACROS WITH GOOGLE SHEETS

 French original title : Les macros avec Google Sheets

 EDITIONS REMYLENT, Paris, 1ère édition, 2020

 R.C.S. 399 397 892 Paris

 25 rue de la Tour d’Auvergne - 75009 Paris

 REMYLENT@GMAIL.COM

 www.REMYLENT.FR

 [image:]

 Google Sheets is a registered trademark of Google Inc.

 ISBN EPUB : 978-2-490275-35-9

 The Intellectual Property Code prohibits copies or reproductions intended for collective use. Any representation or reproduction in whole or in part by any means whatsoever, without the consent of the author or his successors in title or cause, is unlawful and constitutes an infringement, pursuant to articles L.335-2 and following of Intellectual Property Code.

 This book is dedicated to Anna, Hélène, Isabelle and Tama.

 I could not have written it without their support, advice, encouragements and proofreading.

 Graphic illlustration : BRUNO CONQUET

 INTRODUCTION

 Welcome to macros programming with JavaScript in the Google Sheets environment. This book is for anyone who wants to find out how to create and modify macros with custom functions. As in any other spreadsheet, macros enable you to make manual actions automatic and avoids having to repeat tasks, for example printing parts of a table in a horizontal layout each month. The system creates codes (functions) you can modify if you need to.

 After recording, you can execute macro instructions at any time.

 A macro is a JavaScript function created in a specific programming environment. You will discover how to manage spreadsheet objects, such as worksheets, cells, properties, files stored in the Drive, variables, control structures and other features.

 The Javascript language adapted for spreadsheets has many advantages that can improve the information processing.

 This book is divided into 5 chapters.

 Chapter 1 shows how to create, run and modify a macro in the programming environment.

 Chapter 2 focuses on Javascript language fundamentals. You will discover the project, the code writing techniques, the functions, the variables, the control structures, the debugging tips, the programming sheet objects, the importing data as well as the creation of a personalized menu.

 Chapter 3 deals with triggers, which are devices used to execute code according to an event such as opening a file or changing a value in the spreadsheet.

 Chapter 4 describes the methods and properties of three important object classes : Sheet, SpreadSheet and Range. For example, some instructions of the Range class allow you to find the end of a variable length array. These object classes are part of a larger package, called Google Apps, which includes the programming instructions for Google applications such as Docs, Slides or Gmail.

 Chapter 5 shows how to send data from Sheets to Gmail using GmailApp class objects. You will study how to transfer information to one or more recipients.

 I hope this book will enable you to better understand Javascript programming macros in the spreadsheet environment.

 Do not hesitate to contact me at remylent@gmail.com if you have any remarks or questions.

 I will not fail to answer you.

 Enjoy your reading.

 The author.

 In the same collection

 Improve your PivotTables with Excel

 Improve your skills with Google Sheets

 Table of contents

 Chapter 1

 Recording a macro

 1.1 Creating a macro

 1.2 Performing and modifying a macro

 1.2.1 A macro used to format a text

 1.2.2 A macro to empty cells

 1.2.3 A macro to filter

 1.2.4 An object-oriented language

 1.2.5 The program structure

 Chapter 2

 Fundamentals

 2.1 How to write the code

 2.2 Debugging the code

 2.2.1 Inserting a breakpoint

 2.2.2 Catching error with try and catch

 2.3 The code history

 2.4 The project

 2.5 Training

 2.5.1 Formatting text

 2.5.2 Calculation

 2.5.3 Linking a macro to a button

 2.5.4 Date functions

 2.5.5 Other date functions

 2.5.6 Looping with FOR to copy formulas

 2.5.7 Looping with WHILE to copy formulas

 2.5.8 Operators

 2.5.9 Testing with IF condition

 2.5.10 Finding the last row

 2.5.11 A new address list

 2.6 Browser class with msgBox and inputBox

 2.6.1 Browser.msgBox

 2.6.2 Browser.inputBox

 2.7 Opening a file in Google Drive

 2.7.1 Opening a file by an Internet address

 2.7.2 Opening a file by its identifier

 2.7.3 Opening a file by its name

 2.8 Downloading and Importing a CSV file

 2.9 Adding a personalized menu

 2.9.1 Searching a value in a data list

 2.9.2 Deleting a record

 2.9.3 Creating a new record

 2.10 Managing variables

 2.10.1 Simple variables

 2.10.2 Passing parameters into a function

 2.10.3 Returning values

 2.10.4 Variables scope and global variables

 2.11 Some control structures

 2.11.1 for, while, do-while, for-in loops

 2.11.2 Conditional operators if and switch

 Chapter 3

 Triggers

 3.1 Running triggers

 3.1.1 A trigger that empties cells

 3.1.2 Modify a trigger

 3.1.3 Different Triggers

 3.1.4 Triggers and restrictions

 3.1.5 A trigger that controls the entry of a date

 3.1.6 Time triggers

 Chapter 4

 Object classes

 4.1 The sheet class

 4.1.1 Sheet information

 4.1.2 The For In loop

 4.1.3 Creating a table of contents

 4.2 The spreadsheet class

 4.2.1 Displaying a quick message

 4.2.2 Hiding and displaying columns

 4.3 The range class

 4.3.1 Finding the end of an array

 4.3.2 The offset method

 4.4 Other classes

 Chapter 5

 From Sheets to Gmail

 5.1 Copying information to Gmail

 5.1.1 GmailApp class objects

 5.1.2 Sending a mail without opening Gmail

 5.1.3 Sending to several recipients

 5.1.4 Sending a mail with an attachment

 5.1.5 Adding a recipient to Cc or Cci

 5.1.6 Limitations of Gmail free version

 Chapter 1

 Recording a macro

 This chapter details how to use macros in Google Sheets. As in any other spreadsheet, macros enable you to make manual actions automatically without having to repeat tasks. The system creates code in a Javascript function you can modify if you need to. The macro orders are performed either starting from the menu or starting from the programming environment.

 Usually, you create a macro to avoid repeating tasks.

 For example, if you must print parts of a sheet at the end of the month, in a horizontal format, you can record the actions which make a good page layout. You could also carry out a macro to copy a group of e-mail addresses from a Gmail application to the recipient A:, Cc: or Cci:.

 Programming with Google Sheets requires a knowledge of Javascript language instructions. You will have to handle the Sheet Class objects, like worksheets, workbooks, tabs, columns, lines, cells or properties.

 Let's see how to manage the macros.

 1.1 Creating a macro

 Before creating your first macro, open the spreadsheet you need (figure 1.1).

 [image:]

 Figure 1.1 : A spreadsheet

 The following procedure shows how to create a macro :

 	Tools / Macros

 	Record macro

 	Perform your macro. For example, by changing the size or the font of a group of cells. You will see the name of the action at the bottom of the window.

 Figure 1.2 shows menu options.

 [image:]

 Figure 1.2 : Menu options.

 While doing the key or mouse sequence, you will see a dialog box (figure 1.3) allowing you to stop the macro and record it with a specific name.

 [image:]

 Figure 1.3 : Recording the new macro.

 You can define Use absolute references or Use relative references.

 	
Use absolute references. The exact location is recorded. For example, if you start a cell selection from A1 to A9, the macro will exclusively take into account the A1:A9 field.

 	
Use relative references. The active selection is recorded. For example, if you start a selection, the macro will take four parameters into account : the vertical shift, the horizontal shift, the number of lines and the number of columns corresponding to the selection.

 Here are two examples with an A1:A9 selection :

 With absolute references:

 function test_absolute ()

 {

 //I define the active spreadsheet

 var spreadsheet = SpreadsheetApp.getActive ()

 // I activate the field A1:A9

 spreadsheet.getRange ("A1: A9") .activate ()

 }

 With relative references :

 function test_relative(){

 //I define the active spredsheet

 var spreadsheet = SpreadsheetApp.getActive ()

 // cells selection

 spreadsheet.getCurrentCell().offset(0, 0, 11, 1).activate() }

 This offset function (shift) allows you to define a cell block according to four parameters. See the following syntaxe :

 offset(rowOffset, columnOffset, numRows, numColumns)

 rowOffset is the row shift. columnOffset is the column shift. numRows is the number of rows you want to define. numColumns is the number of columns you want to set.

 When clicking the Save button, (figure 1.3), Google Sheets asks you for a macro name (Figure 1.4).

 [image:]

 Figure 1.4 : Saving your macro

 You can define a Shortcut that is optional.

 1.2 Performing and modifying a macro

 You carry out a recorded macro by the following :

 	
Tools / Macros

 	Click on the macro name.

 The first time you perform the macro, Google Sheets asks you to confirm some security issues. You can use shortcut keys you have chosen.

 Modifiy the macro script by the following :

 	
Tools / Macros

 	Manage macros

 	Click on the three vertical dots on the right (figure 1.5). You will see a menu directing you to edit or remove the macro.

 	Edit script

 [image:]

 Figure 1.5 : Manage macros

 With Edit script, you will see the JavaScript macro development environment. The figure 1.6 shows the work window in which you may be able to modify the JavaScript function, automatically created by the recording device.

 [image:]

 Figure 1.6 : The macro development environment

 To return to the spreadsheet, close the programming window.

 The macro recording outcome is always stored into a macro project (file.gs), inside the Drive and completely linked with the spreadsheet, from which the macro has been created.

 Each time you record a macro, the outcome will be stored in this file. You can access this project by the following : Tools / Macros / Manage Macros. You create macros not only to make manual actions automatic, but also to learn spreadsheet JavaScript instructions.

 1.2.1 A macro used to format a text

 The following code shows the format of cells grouped from A1 to A9. The font and the size have been changed. Comments have been added. A comment is preceded by // sign.

 function format_cells()

 {

 // I define an object variable to the spreadsheet

 var spreadsheet = SpreadsheetApp.getActive()

 // I activate the cells field

 spreadsheet.getRange('A1:A9').activate()

 // I define a font

 spreadsheet.getActiveRangeList().setFontFamily('Lato')

 // I define a size

 spreadsheet.getActiveRangeList().setFontSize(12)

 // I set the pointer in A11 cell

 spreadsheet.getRange('A11').activate()

 }

 Inside the function, the code begins by an opening bracket "{" and ends by a closing bracket "}". Sometimes, recorded macros have a semicolon at the end of the line. This is not obligatory.

 If you record several macros, the functions will be placed one under the other.

 Most people who use Google Sheets do not program.

 They simply use macros to automate their work. If you want to go further, you will have to familiarize yourself with the JavaScript language.

 1.2.2 A macro to empty cells

 This is a macro example that empties some cells inside a sheet.

 Figure 1.7 shows the data.

 [image:]

 Figure 1.7 : Data to empty

 The following function shows a code automatically created by Google Sheets when you empty the cells B2, B4, B6, B8 and B10.

 function myFunction() {

 var spreadsheet = SpreadsheetApp.getActive();

 spreadsheet.getRange('B2').activate();

 spreadsheet.getActiveRangeList().clear({contentsOnly: true, skipFilteredRows: true});

 spreadsheet.getRange('B4').activate();

 spreadsheet.getActiveRangeList().clear({contentsOnly: true, skipFilteredRows: true});

 spreadsheet.getRange('B6').activate();

 spreadsheet.getActiveRangeList().clear({contentsOnly: true, skipFilteredRows: true});

 spreadsheet.getRange('B8').activate();

 spreadsheet.getActiveRangeList().clear({contentsOnly: true, skipFilteredRows: true});

 spreadsheet.getRange('B10').activate();

 spreadsheet.getActiveRangeList().clear({contentsOnly: true, skipFilteredRows: true});

 };

 This code is rather heavy and not very clear. We can write another code with a few instructions to do the same thing.

 function empty2()

 {

 //I activate the spreadsheet

 var W = SpreadsheetApp.getActive()

 // I define a variable to défine the DATA tab

 var mySheet = W.getSheetByName("DATA")

 //I select the cells then I empty the cells cellules

 var R = mySheet.getRangeList(["B2","B4","B6","B8","B10"]). clearContent()

 }//End of the function

 	To select a cell B7, write getRange("B7").

 	To select several cells from A5 to C9, write getRangeList(["A5","C9"]). Be careful, don't forget the brackets in this instruction.

 	To select an entire column A, write getRangeList(["A:A"]).

 	To select a group of columns from A to X, write getRangeList(["A:A","X:X"]).

 Programming macros with Google Sheets is based on JavaScript with spreadsheet specific orders and instructions. Writing programs is within everyone's reach but takes a little time.

 1.2.3 A macro to filter

 Figure 1.8 shows a turnover table.

 [image:]

 Figure 1.8 : A turnover table

 The aim is to filter the information of south area with a macro.

 	
Tools / Macros

 	Record macro

 	Select Absolute reference

 	Carry out the filter for the south area.

 	Click on the Save button to end the macro and give it a name.

 The following code shows the function

 function south() {

 var spreadsheet = SpreadsheetApp.getActive();

 spreadsheet.getRange('A1:C5').activate();

 spreadsheet.setCurrentCell(spreadsheet.getRange('B2'));

 spreadsheet.getRange('A1:C5').createFilter();

 spreadsheet.getRange('A1').activate();

 var criteria = SpreadsheetApp.newFilterCriteria()

 .setHiddenValues(['NORTH', 'WEST'])

 .build();

 spreadsheet.getActiveSheet().getFilter().setColumnFilterCriteria(1, criteria);

 };

 1.2.4 An object-oriented language

 JavaScript for Google Sheets is an object-oriented language. It uses object classes with instructions organized into three parts :

 	methods or action verbs

 	properties

 	constants

 Most commands are written in an hierarchy that begins with the object.

 	Object.method

 	Objet.property = constant

 For example, the expression SpreadsheetApp.getActive() indicates the active workbook. getActive() is a method. The two keywords are linked by a point.

 The instructions and commands that allow you to work in the spreadsheet come from an object class called Class Sheet. You can discover the instructions at :

 https://developers.google.com/apps-script/reference/spreadsheet/sheet

 Figure 1.9 shows the Internet page.

 [image:]

 Figure 1.9 : Information about the Class Sheet

 1.2.5 The program structure

 The code is always placed into a function with a specific name. Sometimes the code ends with a semicolon but it is not obligatory. A comment is preceded by //. The body of the program begins with an opening bracket and ends with a closing bracket. A function can call another function by giving a name without forgetting to open and close parentheses. A function can accept parameters.

 Here is a sample code that declares variables pointing to objects in the spreadsheet.

 function test_writing()

 {

 //I define a variable to all sheets

 var allsheets = SpreadsheetApp.getActiveSpreadsheet()

 // I define a variable to a specific sheet DATA

 var mysheet = allsheets.getSheetByName("DATA")

 // I store some information inside the DATA sheet

 mysheet.getRange("C1").setValue('January')

 mysheet.getRange("C2").setValue('February')

 mysheet.getRange("C3").setValue('March')

 }

 When writing a new function, you have to save the project before carrying out the function. Once it is done, you can execute the function by clicking on the run button.

 If you want to launch a macro from the sheet, although the name does not appear, import the macro with the macro manager :

 	Tools

 	Macros

 	Import

 	
Add function

 Then, carry out the macro.

 In brief

 Macros allow you to make manual actions automatic and avoids the user having to repeat tasks. The code is automatically created by Google Sheets and you can modify it in a programming development environment. You write custom functions with the JavaScript language.

 Chapter 2 covers the JavaScript fundamentals in the Google Sheets context.

OEBPS/Images/cover_macros_google_sheets.jpg
Rémy LENTZNER

Programming macros
with Google Sheets m

PROFESSIONAL TRAINING
EDITIONS REMYLENT

OEBPS/Images/FIGURE1_7.jpg
first name.

last name

activity

field

location

peter

laner

teacher

computing

France

OEBPS/Images/FIGURE1_3.jpg
@ Recording the new macro. Cancel save

@ Use absolute references Use relative references.

When applying macro, use exact When applying macro, use active
location as recorded selection

OEBPS/Images/FIGURE1_6.jpg
Recorded macros (PROGRAMMING MACROS WITH GOOGLE SHEETS)
File Edit View Run Publish Resources Help

B[O > & wom

B macrosgs macros.gs

/%% sonlyCurrentboc +/

1
3 function months() {

4 var spreadshect = Spreadsheethpp.getactive();
5 spreadshect.getRange('A1:A9') .activate();

6

it

OEBPS/Images/FIGURE1_2.jpg
PROGRAMMING MACROS WITH GOOGLE SHEETS #r & &
File Edit View Insert Format Data Tools Add-ons Help Lastedit was 13 minutes aco

RS SO [- BIsA S
- 5] o sorpteditor G 5

Months | Numerous areas © Macros G (O

2 January i West

——) wex Speling .

ey 2 souh

G- 1 Noths v Enable autocomplete

i February 2 South Notification rules

L3 March 3 East

) 2 Protect he sheet

o

T Accessibility settings.

e R I S S S— S

OEBPS/Images/FIGURE1_5.jpg
Manage macros

months

3 + Option + Shift +
Edit script

Remove

Cancel

OEBPS/Images/FIGURE1_9.jpg
¥ Google Apps Script

Class Sheet

[

OEBPS/Images/LOGO_REMYLENT.png
editions
remylent

OEBPS/Images/FIGURE1_1.jpg
Months Numerous Areas Quantity Products
Januan, 1 West s Apple
Januan, 1 West s Peach
Januan, 1 South 10 Apple
Januan 1 South 2 Apricot
Februan 2 Noth a Zucchinis
Februan 2 South 3 Garlic
March 3 East 10 Peach
March 3 North 3 Orange

OEBPS/Images/FIGURE1_8.jpg
100% ~

~ & £ % .o 00123
A o c
AREAS SELLER | TURNOVER
SOUTH MARY 3000
SOUTH RENEE 2000
NORTH PAUL 900
WEST JEAN 500

OEBPS/Images/FIGURE1_4.jpg
Save new macro

Name

macro]

Shortcut (optional)

5 +Option + Shift + Number

Discard

