

inside front cover

 [image:]

 The Elastic Stack: Beats, Logstash, Elasticsearch, and Kibana

Praise for the First Edition

 Elasticsearch in Action has excellent in-depth coverage of using Elasticsearch to its full potential.

 —Paul Stadig

 Elasticsearch is a complex topic, and this book is the best resource. I highly recommend it!

 —Daniel Beck, juris GmbH

 A great book to have when one starts working with Elasticsearch.

 —Tanguy Leroux, software engineer, Elastic

 The best Elasticsearch book. I do not need to search any further.

 —Koray Güclü

 This book will become your indispensable guide for tackling the challenges of semi-structured data.

 —Artur Nowak, CTO, Evidence Prime

 An accessible beginner’s guide for a modern large-scale search system.

 —Sen Xu, Sr. Software Engineer, Twitter

 Took me from confused to confident in a week.

 —Alan McCann, CTO, Givsum.com

 [image:]

 Elasticsearch in Action

 Second Edition

 Madhusudhan Konda

 Foreword by Shay Banon

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Ian Hough

 	
 Technical development editor:

 	
 Al Krinker

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Simon Hewitt

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617299858

 dedication

 In loving memory of my Dad.

 We miss you!

 Love,

 Kondas

 contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Overview

 1.1 What makes a good search engine?

 1.2 Search is the new normal

 Structured vs. unstructured (full-text) data

 Search supported by a database

 Databases vs. search engines

 1.3 Modern search engines

 Functionality

 Popular search engines

 1.4 Elasticsearch overview

 Core areas

 Elastic Stack

 Elasticsearch use cases

 Unsuitable Elasticsearch uses

 Misconceptions

 1.5 Popular adoption

 1.6 Generative AI and modern search

 2 Getting started

 2.1 Priming Elasticsearch with data

 An online bookstore

 Indexing documents

 Indexing our first document

 Indexing more documents

 2.2 Retrieving data

 Counting documents

 Retrieving documents

 2.3 Full-text search

 Match query: Books by an author

 Match query with the AND operator

 Indexing documents using the _bulk API

 Searching across multiple fields

 Boosting results

 Search phrases

 Phrases with missing words

 Handling spelling mistakes

 2.4 Term-level queries

 The term query

 The range query

 2.5 Compound queries

 Boolean (bool) query

 The must clause

 The must_not clause

 The should clause

 The filter clause

 2.6 Aggregations

 Metrics

 Bucket aggregations

 3 Architecture

 3.1 A high-level overview

 Data in

 Processing data

 Data out

 3.2 The building blocks

 Documents

 Indexes

 Data streams

 Shards and replicas

 Nodes and clusters

 3.3 Inverted indexes

 3.4 Relevancy

 Relevancy scores

 Relevancy (similarity) algorithms

 3.5 Routing algorithm

 3.6 Scaling

 Scaling up (vertical scaling)

 Scaling out (horizontal scaling)

 4 Mapping

 4.1 Overview of mapping

 Mapping definition

 Indexing a document for the first time

 4.2 Dynamic mapping

 The mechanism for deducing types

 Limitations of dynamic mapping

 4.3 Explicit mapping

 Mapping using the indexing API

 Updating schema using the mapping API

 Modifying existing fields is not allowed

 Type coercion

 4.4 Data types

 4.5 Core data types

 The text data type

 The keyword data types

 The date data type

 Numeric data types

 The boolean data type

 The range data types

 The IP address (ip) data type

 4.6 Advanced data types

 The geo_point data type

 The object data type

 The nested data type

 The flattened data type

 The join data type

 The search_as_you_type data type

 4.7 Fields with multiple data types

 5 Working with documents

 5.1 Indexing documents

 Document APIs

 Mechanics of indexing

 Customizing the refresh process

 5.2 Retrieving documents

 Using the single-document API

 Retrieving multiple documents

 The ids query

 5.3 Manipulating responses

 Removing metadata from the response

 Suppressing the source document

 Including and excluding fields

 5.4 Updating documents

 Document update mechanics

 The _update API

 Scripted updates

 Replacing documents

 Upserts

 Updates as upserts

 Updating with a query

 5.5 Deleting documents

 Deleting with an ID

 Deleting by query (_delete_by_query)

 Deleting with a range query

 Deleting all documents

 5.6 Working with documents in bulk

 Format of the _bulk API

 Bulk indexing documents

 Independent entities and multiple actions

 Bulk requests using cURL

 5.7 Reindexing documents

 6 Indexing operations

 6.1 Indexing operations

 6.2 Creating indexes

 Creating indexes implicitly (automatic creation)

 Creating indexes explicitly

 Indexes with custom settings

 Indexes with mappings

 Index with aliases

 6.3 Reading indexes

 Reading public indexes

 Reading hidden indexes

 6.4 Deleting indexes

 6.5 Closing and opening indexes

 Closing indexes

 Opening indexes

 6.6 Index templates

 Creating composable (index) templates

 Creating component templates

 6.7 Monitoring and managing indexes

 Index statistics

 Multiple indexes and statistics

 6.8 Advanced operations

 Splitting an index

 Shrinking an index

 Rolling over an index alias

 6.9 Index lifecycle management (ILM)

 Index lifecycle

 Managing the index lifecycle manually

 Lifecycle with rollover

 7 Text analysis

 7.1 Overview

 Querying unstructured data

 Analyzers to the rescue

 7.2 Analyzer modules

 Tokenization

 Normalization

 Anatomy of an analyzer

 Testing analyzers

 7.3 Built-in analyzers

 The standard analyzer

 The simple analyzer

 The whitespace analyzer

 The keyword analyzer

 The fingerprint analyzer

 The pattern analyzer

 Language analyzers

 7.4 Custom analyzers

 Advanced customization

 7.5 Specifying analyzers

 Analyzers for indexing

 Analyzers for searching

 7.6 Character filters

 HTML strip (hmtl_strip) filter

 The mapping character filter

 Mappings via a file

 The pattern_replace character filter

 7.7 Tokenizers

 The standard tokenizer

 The ngram and edge_ngram tokenizers

 Other tokenizers

 7.8 Token filters

 The stemmer filter

 The shingle filter

 The synonym filter

 8 Introducing search

 8.1 Overview

 8.2 How does search work?

 8.3 Movie sample data

 8.4 Search fundamentals

 The _search endpoint

 Query vs. filter context

 8.6 Anatomy of a request and a response

 Search requests

 Search responses

 8.6 URI request searches

 Searching for movies by title

 Searching for a specific movie

 Additional parameters

 Supporting URI requests with Query DSL

 8.7 Query DSL

 Sample query

 Query DSL for cURL

 Query DSL for aggregations

 Leaf and compound queries

 8.8 Search features

 Pagination

 Highlighting

 Explaining relevancy scores

 Sorting

 Manipulating results

 Searching across indexes and data streams

 9 Term-level search

 9.1 Overview of term-level search

 Term-level queries are not analyzed

 Term-level query example

 9.2 The term query

 The term query on text fields

 Example term query

 Shortened term-level queries

 9.3 The terms query

 Example terms query

 The terms lookup query

 9.4 The ids query

 9.5 The exists query

 9.6 The range query

 9.7 The wildcard query

 9.8 The prefix query

 Shortened queries

 Speeding up prefix queries

 9.9 Fuzzy queries

 10 Full-text searches

 10.1 Overview

 Precision

 Recall

 10.2 Sample data

 10.3 The match_all query

 Building the match_all query

 Short form of a match_all query

 10.4 The match_none query

 10.5 The match query

 Format of a match query

 Searching using a match query

 Analyzing match queries

 Searching for multiple words

 Matching at least a few words

 Fixing typos using the fuzziness keyword

 10.6 The match_phrase query

 10.7 The match_phrase_prefix query

 10.8 The multi_match query

 Best fields

 The dis_max query

 Tiebreakers

 Boosting individual fields

 10.9 The query_string query

 Fields in a query_string query

 Default operators

 The query_string query with a phrase

 10.10 Fuzzy queries

 10.11 Simple string queries

 10.12 The simple_query_string query

 11 Compound queries

 11.1 Sample product data

 The products schema

 Indexing products

 11.2 Compound queries

 11.3 The Boolean (bool) query

 The bool query structure

 The must clause

 Enhancing the must clause

 The must_not clause

 Enhancing the must_not clause

 The should clause

 The filter clause

 Combining all the clauses

 Named queries

 11.4 Constant scores

 11.5 The boosting query

 11.6 The disjunction max (dis_max) query

 11.7 The function_score query

 The random_score function

 The script_score function

 The field_value_factor function

 Combining function scores

 12 Advanced search

 12.1 Introducing location search

 The bounding_box query

 The geo_distance query

 The geo_shape query

 12.2 Geospatial data types

 The geo_point data type

 The geo_shape data type

 12.3 Geospatial queries

 12.4 The geo_bounding_box query

 12.5 The geo_distance query

 12.6 The geo_shape query

 12.7 The shape query

 12.8 The span query

 Sample data

 The span_first query

 The span_near query

 The span_within query

 The span_or query

 12.9 Specialized queries

 The distance_feature query

 The pinned query

 The more_like_this query

 The percolate query

 13 Aggregations

 13.1 Overview

 The endpoint and syntax

 Combining searches and aggregations

 Multiple and nested aggregations

 Ignoring results

 13.2 Metric aggregations

 Sample data

 The value_count metric

 The avg metric

 The sum metric

 The min and max metrics

 The stats metric

 The extended_stats metric

 The cardinality metric

 13.3 Bucket aggregations

 Histograms

 Child-level aggregations

 Custom range aggregations

 The terms aggregation

 The multi-terms aggregation

 13.4 Parent and sibling aggregations

 Parent aggregations

 Sibling aggregations

 13.5 Pipeline aggregations

 Pipeline aggregation types

 Sample data

 Syntax for pipeline aggregations

 Available pipeline aggregations

 The cumulative_sum parent aggregation

 The max_bucket and min_bucket sibling pipeline aggregations

 14 Administration

 14.1 Scaling the cluster

 Adding nodes to the cluster

 Cluster health

 Increasing read throughput

 14.2 Node communication

 14.3 Shard sizing

 Setting up a single index

 Setting up multiple indexes

 14.4 Snapshots

 Getting started

 Registering a snapshot repository

 Creating snapshots

 Restoring snapshots

 Deleting snapshots

 Automating snapshots

 14.5 Advanced configurations

 The main configuration file

 Logging options

 Java virtual machine options

 14.6 Cluster masters

 Master nodes

 Master elections

 Cluster state

 A quorum

 The split-brain problem

 Dedicated master nodes

 15 Performance and troubleshooting

 15.1 Search and speed problems

 Modern hardware

 Document modeling

 Choosing keyword types over text types

 15.2 Index speed problems

 System-generated identifiers

 Bulk requests

 Adjusting the refresh rate

 15.3 Unstable clusters

 Cluster is not GREEN

 Unassigned shards

 Disk-usage thresholds

 15.4 Circuit breakers

 15.5 Final words

 Appendix A. Installation

 Appendix B. Ingest pipelines

 Appendix C. Clients

 index

 front matter

foreword

 I have been a big fan of Manning In Action books over the years, and they have been a significant part of my professional career. I love how the books focus on practical, useful, hands-on advice about the various technologies I use, both for work and in open source.

 It was in that same spirit that I sat down to write Elasticsearch many years ago. I got into search while trying to build a recipe application for my wife as she was studying to be a chef. I open-sourced the code I wrote to implement it, thus taking my first step into the open source world. And a few years later, I sat down to write Elasticsearch, trying to create a useful, practical, easy-to-use search engine—search in action, if you will.

 Fast-forward to 2023, and I’m delighted to see that Elasticsearch has gained traction and has its own addition to the In Action series, which you are now holding in your hands or looking at in digital form. I am sure you will enjoy reading the book and learning about Elasticsearch. Madhu is passionate about both search and Elasticsearch, and it comes across in the depth and breadth of this book, the enthusiastic tone, and the hands-on examples.

 I hope that after learning about Elasticsearch, you will take what you have read and put it “in action.” After all, search is everywhere, in everything we do, which is why I fell in love with it so many years ago.

 —Shay Banon, founder of Elasticsearch

preface

 The late 1990s found me at IIT Kharagpur in India, where I was pursuing my master’s degree and simultaneously immersing myself in the fascinating realm of the Java language (version 1, to be precise!). It was a solitary journey, although I enjoyed using an object-oriented language for the first time, each code compilation failure signifying a duel between my terminal and me. There were no fancy IDEs in those days; we typed in a vi editor and then compiled. (There was a rudimentary IDE called Java WorkShop from Sun Microsystems, but it was not without wrinkles and bugs.) And unlike in the present era, which is replete with resources like Google, Stack Overflow, and GitHub, there were no digital avenues to probe for solutions or discover if other programmers were encountering similar challenges. Then my best friend Amar, who was studying at IISc, Bangalore, introduced me to a new entity in the search arena: Google.

 To a naïve young student, the concept of reaching out to a virtual community of coders grappling with similar issues was a novelty. So, I decided to explore this new avenue. I remember being intrigued by the simplicity of Google’s design, its non-eyesore white background dotted with primary colors, as I navigated pages in search of answers. The early version of the search engine was far from the sophisticated tool we know today, but it was an encouraging beacon during those challenging times. (Anyone who has experienced Java 1.x can understand the trials involved.) That moment marked a significant turning point in my journey.

 While Google’s search capabilities were revolutionary for many of us, its adoption within client settings and organizations was somewhat slower. Projects I was involved in at that time had databases serving as the backbone for search applications. While functional, these setups fell considerably short of what we now recognize as the capabilities of modern search engines. The search mechanisms were clunky and unwieldy, lacked performance, and posed maintenance challenges. However, my affinity for streamlined architecture never wavered, remaining a guiding light in my quest for efficient and effective solutions.

 My journey into the world of Elasticsearch began in 2015, around the same time big data became mainstream. I was working on Enterprise Java Beans (EJBs), using application server beasts like JBoss and WebLogic that favored monolith architectures, and I was instantly drawn to Elasticsearch’s simplified architecture—especially its programming-language-agnostic support, out-of-the-box functionality, performance, and excellent documentation. It took me a couple of years to embrace Elasticsearch’s full potential and adopt it in its entirety.

 Despite Elasticsearch’s simplicity and robust capabilities, I realized that the learning curve was steep, and its intricate internal mechanisms warranted guided navigation through the myriad features and inherent challenges. Understanding the countless features and labyrinth of documentation required hand-holding. This realization led me to approach Andy Waldron at Manning.

 Creating a book is an endeavor that often requires late nights, sacrificed weekends, and holidays spent at the writing desk. It’s a colossal task that could never see fruition without the unwavering support of family. And in this case, it was a two-year journey marked by relentless focus and determination to bring this book into your hands.

 While I am typically reserved about my achievements, I can’t help but acknowledge the hard work that went into this particular project. It deserves a self-issued pat on the back. Over the course of these two years, not a single day was clouded by self-doubt, and that’s a feat worth celebrating.

 Now, as you read Elasticsearch in Action, Second Edition I feel a profound sense of gratitude and delight. I appreciate your purchase and am excited for you to embark on this journey into the world of Elasticsearch.

 As big data and cloud computing have grown with unprecedented momentum over the last decade, so have the depth and breadth of Elasticsearch’s capabilities. Its relevance has continued to expand, reflecting the evolving demands and opportunities of these dynamic technological landscapes. Its advanced features, including multi-language analyzers, geospatial and time-series storage, anomaly detection using machine learning algorithms, graph analytics, auto-complete and fuzzy searching, root cause analysis using log stores, rich visualizations of data, complex aggregations, and many more, make Elasticsearch a must-have tool for most organizations and businesses.

 I sincerely hope you enjoy reading this book as much as I’ve enjoyed writing it!

acknowledgments

 A book is never born from thin air! It is an embodiment of dedication, the outcome of endless hours spent in meticulous planning, steadfast dedication, and tireless effort. This process has been a joint endeavor involving the unending and loving support of my family, the teamwork and expertise of the Manning staff, the encouragement of friends and colleagues, and, of course, the continued interest and support of readers like you. We all stuck together for two years, dedicated and determined, focused and fervent, with one aim: to produce Elasticsearch in Action. And we did it!

 I must give my sincere and heartfelt thanks to my wife, Jeannette D’Souza, who has been a rock of support throughout this journey. Her endless patience, understanding, and encouragement have been an unwavering beacon during the long nights and demanding moments. She has been not just a partner but also a pillar of strength and resilience, transforming this arduous process into a journey of love and determination. For this, and for everything else that she is, I am eternally grateful.

 Equally, I extend heartfelt gratitude to my son, Josh, whose love and unconditional, unquestioning support have been a wellspring of strength during these challenging times. His understanding (when I missed out on summers and holidays) and encouragement brought this book to life.

 My profound gratitude to my mom, who resided with me for half a year during this process. Her caring presence manifested in loving gestures, from serving early morning coffee to preparing hearty breakfasts, mouthwatering savories, and delightful snacks. Her support has truly been a source of comfort and strength.

 My heartfelt appreciation goes to my two brothers, niece, and immediate family. Their understanding and support have given me strength even when my writing obligations resulted in less frequent communication. Their consistent encouragement serves as the fuel that propels my endeavors, keeping the engine of my creativity running smoothly.

 I must express my deepest gratitude to Venkat Subramaniam. His esteemed stature as an author is only outmatched by his willingness to help me and others. He lent his wisdom to my earlier chapters, providing invaluable advice that truly helped to connect with the reader. Regardless of how packed his schedule was, Venkat always found the time to assist me. His support has been instrumental, and for this, I can’t thank him enough.

 Without the invaluable guidance and unyielding support of Andy Waldron, my editor at Manning, this book would never have made it from concept to reality. His expertise and encouragement have been instrumental in the journey of this book toward the light of publication.

 A special note of appreciation is due to Ian Hough, my developmental editor, whose patience and editorial acumen were nothing short of extraordinary. His ability to strategically oversee the planning of each chapter, ensuring that I remained on course, was instrumental in shaping this book. Even when timelines slipped, his understanding was commendable. His contributions have truly been invaluable.

 My developmental copy editor, Frances Buran, worked magic in every part of the book. She relentlessly improved the writing quality, making sure my non-native language sounded good on the page.

 Sincere and special thanks to copy editor Tiffany Taylor, whose linguistic expertise has been invaluable in ensuring grammatical precision and coherence throughout the book. Her meticulous efforts have significantly enhanced the clarity and readability of this work. She caught my silly and embarrassing mistakes instantly. Tiffany managed to complete the final editing efficiently and effectively.

 I would like to sincerely thank Melena Selic, Marina Matesic, Rebecca Rinehart, Aria Ducic, and Susan Honeywell at Manning for making this book such a high-quality product. Without your unending help and guidance, the book would not have been possible. Huge thanks as well to the production staff at Manning for their hard work in creating this book.

 My thanks to Al Krinker, my technical development editor, who reviewed each chapter with fresh eyes and a fresh perspective. Al jumped into each chapter almost the minute it reached him, so I was able to review his feedback while the chapters were fresh in my mind.

 I also want to thank Simon Hewitt and Simone Cafiero for their timely technical feedback and for checking and testing the code. Their input was invaluable.

 My appreciation, as well, to a few of my friends and colleagues: Herodotos Koukkides, Semi, Jason Dynes, and George Theofanous. There are a few others that I cannot name, but they have been instrumental in my journey! Thank you from the bottom of my heart!

 If there’s a group to whom I feel most indebted, it’s undoubtedly my reviewers and readers. They played a critical role in refining the quality of this book. I extend my most sincere appreciation to the following reviewers: Adam Wan, Alan Moffet, Alessandro Campeis, Andrei Mihai, Andres Sacco, Bruno Sonnino, Dainius Jocas, Dan Kacenjar, Edward Ribeiro, Fernando Bernardino, Frans Oilinki, George Onofrei, Giampiero Granatella, Giovanni Costagliola, Hugo Figueiredo, Jaume López, Jim Amrhein, Kent Spillner, Manuel R. Ciosici, Milorad Imbra, Dale S. Francis, Muneeb Shaikh, Paul Grebenc, Raymond Cheung, Richard Vaughan, Sai Gummaluri, Sayeef Rahim, Sergio Fernandez Gonzalez, Simone Cafiero, Simone Sguazza, Srihari Sridharan, Sumit K Singh, Vittorio Marino, and William Jamir Silva. Their invaluable feedback has greatly contributed to shaping this book into the resource it is today. Their insights and perspectives have been absolutely indispensable.

about this book

Who should read this book

 This book will be an invaluable resource for anyone looking to gain an in-depth understanding of Elasticsearch and its practical applications. In particular, the following will benefit from reading Elasticsearch in Action:

 	
 Developers, architects, analysts, managers, or product owners who are beginners in the realm of Elasticsearch and wish to understand its basic workings

 	
 Data scientists who wish to implement Elasticsearch in their data pipelines for real-time analysis and processing of data

 	
 System administrators who maintain large databases and would like to use Elasticsearch to enhance data retrieval efficiency and overall system performance

 	
 IT consultants or technical advisors who need to understand Elasticsearch so they can recommend it in client projects and make strategic IT decisions

 	
 Tech-savvy business owners who want to understand how Elasticsearch can enhance their operational efficiency or provide additional value to their customers

 	
 Students and academic researchers in computer science, data science, or related fields who are studying big data technologies and are interested in learning about search technologies

 	
 Individuals who handle large sets of data and are keen on using Elasticsearch to enhance their search capabilities, including full-text, fuzzy, term-level searches, and other complex search features

 	
 Aspiring Elasticsearch architects, developers, or analysts aiming to design and develop microservices communicating with Elasticsearch clusters

How this book is organized: A road map

 Although this book is not divided into parts, the chapters follow a clear linear progression, beginning with an introduction to Elasticsearch from a feature and architecture perspective:

 	
 Chapter 1 embarks on a journey through the world of search, retracing the steps from rudimentary database-backed systems to the sophisticated search engines that are the norm today. We shine a spotlight on Elasticsearch, a powerful, versatile modern search engine that has redefined the capabilities of search functions, bringing to the forefront its distinct features, real-world applications, and widespread adoption.

 We also look ahead to the transformative potential of general artificial intelligence tools. We examine the exciting possibilities of technologies like ChatGPT, exploring how they could reshape the search space and redefine our interactions with information in the future.

 	
 Chapter 2 dives headfirst into Elasticsearch, providing hands-on experience with indexing and retrieving documents using the document APIs. We also execute search queries using the search APIs. The chapter takes you through essential search criteria, from pattern matching to phrase searches, spelling corrections, range results, multi-field searches, and more. A glimpse at advanced queries further enriches the learning experience. The chapter concludes with a look at data sorting, result pagination, highlighting, and other impressive functionalities that elevate the user’s search capabilities.

 	
 Chapter 3 demystifies the architecture of Elasticsearch, guiding you through its foundational components and the intricate processes that enable searching and indexing. This exploration covers fundamental concepts that power the search engine, including the inverted index, relevancy, and text analysis. We also explore clustering and the distributed nature of the Elasticsearch server.

 	
 Chapter 4 explores mapping schemas, data types, and mapping APIs, providing a detailed overview of data handling in Elasticsearch. The chapter looks at how mapping schemas enhance search accuracy and efficiency, thoroughly examining dynamic and explicit mapping. The exploration extends to core data types, including text, keyword, date, and integer. The chapter concludes with advanced data types such as geo_point, geo_shape, object, join, flattened, and more.

 	
 Chapter 5 offers a comprehensive discussion of single- and multi-document APIs and their associated operations. This chapter provides a practical understanding of indexing, retrieving, updating, and deleting documents using these APIs. It also explores the reindexing feature.

 	
 Chapter 6 zooms in on indexing operations using the indexing APIs. It also guides you through the foundational configurations of an index, including settings, mapping, and aliases. This exploration provides an understanding of creating customized indexes tailored for production scenarios. The chapter also looks at working with index templates, discussing the mechanics of index and composable templates. The final section investigates index lifecycle management.

 	
 Chapter 7 immerses us in text analysis, examining how full text is tokenized and normalized using Elasticsearch’s analyzer modules. We look at the mechanics of text analysis, exploring built-in analyzers like the standard, simple, keyword, and language analyzers. This chapter will empower you with the knowledge to create custom analyzers.

 Chapters 8 through 13 are dedicated to search:

 	
 Chapter 8 lays the groundwork for understanding the fundamentals of search, explaining the mechanics of how search requests are processed and responses generated. We introduce two primary types of search: URL request and Query DSL. We also examine cross-cutting features like highlighting, sorting, pagination, and others, providing a comprehensive introduction to Elasticsearch’s search functionality.

 	
 Chapter 9 explores the realm of term-level queries, which are specifically designed for structured data. The chapter offers a detailed examination of various types of term-level queries, including range, prefix, wildcard, and fuzzy queries.

 	
 Chapter 10 looks at full-text queries designed specifically for searching unstructured data. The chapter examines the mechanics of using full-text search APIs, employing a variety of queries including match family queries, query strings, fuzzy queries, and simple string queries, among others.

 	
 Chapter 11 navigates the intricate world of compound queries, highlighting the Boolean query as a versatile tool for crafting advanced search queries. We look at the use of conditional clauses like must, must_not, should, and filter to structure leaf queries into more complex, compound queries. The chapter concludes with a detailed examination of boosting and constant_score queries.

 	
 Chapter 12 introduces specialized queries, including distance_feature, percolator, more_like_this, and pinned. The chapter examines the unique benefits of each type of query, such as the distance_feature query’s ability to prioritize results closer to a given location and the more_like_this query’s function of finding similar-looking documents. The percolator query, which alerts users to newly available results, is also examined in detail.

 	
 Chapter 13 offers a detailed examination of aggregations. We explore metrics aggregations, generating statistics like sum, average, minimum, maximum, top hits, and mode. The chapter also highlights the use of bucket aggregations in collecting aggregated data into sets of buckets. We also look at pipeline aggregations, which provide advanced statistical analytics like derivatives and moving averages.

 The last two chapters round out the book with a focus on administration and performance:

 	
 Chapter 14 examines the administrative side of productionizing Elasticsearch. This includes understanding how to scale the cluster under various loads, communication between nodes, and shard sizing. The chapter also explores the crucial concept of snapshotting, providing practical examples of taking a snapshot and retrieving data from it when needed. Advanced configurations and the cluster master concept are also thoroughly examined.

 	
 Chapter 15 dives into troubleshooting a poorly performing or issue-ridden Elasticsearch cluster. The chapter examines common causes, such as search and speed bottlenecks, unstable and unhealthy clusters, and circuit breakers, among others. This chapter will equip you with the knowledge to diagnose and address performance issues, ensuring that your Elasticsearch cluster runs smoothly and efficiently.

 The book also has three appendixes:

 	
 Appendix A is a practical guide to installing Elasticsearch and Kibana in your local environment.

 	
 Appendix B examines ingest pipelines, a key component of data preprocessing in Elasticsearch, and how to configure and use them in various scenarios.

 	
 Appendix C covers Elasticsearch’s interoperability with various programming languages through clients such as Java, Python, JavaScript, C#, and others, offering examples and best practices.

About the code

 One of the primary goals of this book is to provide a seamless hands-on experience by including easily executable code. After several iterations, a decision was made to host all the queries, written and executed on Kibana, in a text file on GitHub. These queries are captured as Query DSL-based JSON code. The aim is to provide a straightforward process where you can copy the text file from GitHub and paste it into your Kibana Dev Tools application for immediate execution.

 To further aid in your learning journey, sample data files and, when necessary, mappings for these indexes are provided in a dedicated datasets folder. This approach ensures a practical, learner-friendly experience that allows you to engage directly with the material and apply your newfound knowledge.

 The source code is available on GitHub (https://github.com/madhusudhankonda/elasticsearch-in-action) and the book’s website (https://www.manning.com/books/elasticsearch-in-action-second-edition). The folders are as follows:

 	
 kibana_scripts—Query DSL scripts for each chapter.

 	
 datasets—Mappings and sample data sets required for the book chapters.

 	
 code—Java and Python code.

 	
 docker—Docker files to run the services on the local environment. For example, elasticsearch-docker-8-6-2.yml hosts two services: Elasticsearch and Kibana. So when you execute the docker-compose up command, it starts both Elasticsearch and Kibana in the Docker container.

 	
 appendices—Given the pace of Elasticsearch development, this book will need to be updated. New features will be provided as appendixes to the book on GitHub. I will add and modify content as new releases surface.

 Elasticsearch releases occur pretty frequently—we were on version 7.x when I started writing this book, and the version was 8.7 as the book was preparing to go to print. And I expect a few more major and minor releases from Elastic by the time you read this! It would be a huge task to update the code base whenever a new release comes out. I will try to keep the code updated, but I will also be more than happy for contributors to maintain the codebase. So, please reach out to me if you’d like to be a contributor to this project.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

liveBook discussion forum

 Purchase of Elasticsearch in Action, Second Edition includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/elasticsearch-in-action-second-edition. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 [image:]

 Madhusudhan Konda is a seasoned technologist with an unwavering commitment to simplifying the intricate, steering the big picture, and diving into the new frontiers of programming languages and advanced frameworks. His passion for technology is not just a profession, but also a lifelong journey of exploration and learning. He thrives on the art of translating complex issues into simpler, more manageable solutions, providing a clear compass in the ever-evolving tech landscape.

 Throughout his 25-year career, Madhu has donned many hats, including those of a solution architect, lead/principal engineer, and others. However, his roles have always been underscored by a fervent desire to share knowledge and nurture his colleagues in their understanding of programming languages, frameworks, and emerging technologies.

 Madhu’s expertise has been instrumental in architecting and delivering high-caliber solutions for a host of clients ranging from banks like Credit Suisse, UBS, Mizuho, Deutsche Bank, and Halifax to energy and aviation leaders British Petroleum and British Airways, among others.

 His proficiency extends beyond leading and delivering software projects from inception to completion and architecting solutions for complex business issues. Madhu is a strategist and visionary, known for his adeptness in crafting strategic roadmaps, cost-efficient architectures, and product designs. His leadership style combines mentorship with thought leadership, always pushing boundaries and inspiring teams to reach their potential. He takes pride in teaching and training professionals ranging from beginners to seniors as well as mentoring and guiding juniors.

 In addition to his impressive career, Madhu is a celebrated author. His books and video courses on Java, Spring, and the Hibernate ecosystem have been warmly received, further highlighting his commitment to fostering a culture of learning and exploration in the world of technology. He is an enthusiastic blogger, always trying to pen insightful pieces that go beyond technology, delving into the crucial realm of engineers’ soft skills.

 In his pursuit of clarity and conciseness, Madhu persistently strives to distill complex technological concepts into digestible content. His philosophy centers on simplifying intricate ideas to a level that even a 10-year-old could comprehend, thereby making advanced technology accessible and understandable to all.

about the cover illustration

 The figure on the cover of Elasticsearch in Action, Second Edition is “A Man from Croatia,” taken from an album of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 1 Overview

 This chapter covers

 	
Setting the scene for modern search engines

 	
Introducing Elasticsearch

 	
Understanding Elasticsearch’s core areas, use cases, and prominent features

 	
The Elastic Stack: Beats, Logstash, Elasticsearch, and Kibana

 The explosion of data in recent years has led to a new normal in terms of the standards expected of search and analytics functionality. As organizations amass data, the ability to find the “needle in the haystack” is a paramount necessity. In addition to search, being able to zoom out and aggregate data using analytical functionality has become a mandatory requirement for organizations. The last decade has seen exponential adoption of modern search and analytics engines. One such modern search engine is Elasticsearch.

 Elasticsearch is a powerful and popular open source distributed search and analytics engine. It is built on top of the Apache Lucene library and can perform near-real-time search and analytics on structured and unstructured data. It is designed to handle large amounts of data efficiently.

 Elasticsearch has come a long way in enabling organizations to utilize its powerful features in the search and analytics space. In addition to search and analytics use cases, it is used for application and infrastructure log analytics, enterprise security and threat detection, application performance and monitoring, distributed datastores, and more.

 In this chapter, we examine the search space in general and skim over the evolution of search, from a traditional database-backed search to current modern search engines and their many convenient features. Along the way, we introduce Elasticsearch, the ultra-fast open source search engine, and examine its features, use cases, and customer adoption.

 We also take a quick look at how generative artificial intelligence (AI) tools are beginning to unravel and disrupt the search space. With the advent of ChatGPT, a race to embrace AI and become the leader in the search space has begun. We dedicate a section to introducing the current players and exploring the future of AI-led search engines.

1.1 What makes a good search engine?

 Let’s take a moment to consider what makes a search engine “good” in terms of everyday experience. To help picture this, let’s consider an experience I had with a bad search engine.

 [image:]

 Recently my family adopted a puppy, Milly (that’s her, pictured!). As we are first-time owners of a pup, we started searching online for dog food. I browsed my preferred grocer’s website, but to my disappointment, the search results were not what I was looking for. The list of results included “poop bags” (the last thing you expect when searching for dog food) and other non-relevant products. The website also didn’t have filters, dropdowns, or price-range selectors; it was just a plain page showing the search results, with clunky pagination enabled.

 Not happy with my current grocer’s search (curiosity overtook me—I was eager to find out how other search engines were implemented), I took my search to other grocers. One website presented a pet harness, while others were more hit and miss, including a search that showed me a baby’s lunch box!

 Not only did I get poor results from my search, but the search engines behind these supermarkets also didn’t provide suggestions while I typed; nor did they correct my input when I misspelled dog food as dig fod (we are spoiled by Google when it comes to suggestions and corrections—we expect every search engine to have features similar to Google’s). Most didn’t bother suggesting alternatives or similar items. Some of the results weren’t relevant (i.e., based on relevancy—although this can be forgiven, as not all search engines are expected to produce relevant results). One grocer returned 2,400 results for a simple search!

 Not pleased with the results from the various supermarkets, I headed to Amazon, the popular online shop, where I encountered a good search engine. The second I started typing dog, a dropdown showed me suggestions (see the figure next to this paragraph). By default, an initial search on Amazon returns relevant (pretty close to what we’re searching for) results. Using the Sort by Featured option, we can change the sort order (low to high prices or vice versa, etc.) if need be. Once the initial search is carried out, we can also drill down into other categories by selecting the department, average customer review, price range, and so on. I even tried a wrong spelling: dig food. Amazon asked me if I meant dog food. Clever, eh?

 [image:]

 In the current digital world, search is in the spotlight. Organizations are adopting search without a second thought because they understand the business value a search engine offers and the varied use cases it can address. In the next section, we explore the exponential growth of search engines and how technology has enabled the creation of cutting-edge search solutions.

1.2 Search is the new normal

 With the exponential growth of data (terabytes to petabytes to exabytes), the need for a tool that enables successful searches in needle-in-a-haystack situations is imperative. What was once touted as a simple search is now necessary functionality for most organizations’ survival toolkits. Organizations are expected to provide a search function by default so customers can type in a search bar or navigate search drilldowns to locate what they need in a jiffy.

 It is increasingly difficult to find websites and applications that don’t have a humble search bar with a little magnifying glass. Providing full-fledged search is a competitive advantage.

 Today, modern search engines strive for speed and relevancy as well as providing advanced functionality packaged in a rich set of business and technical features. Elasticsearch is one such modern search engine, embracing search and analytics with speed and performance at its heart. When dealing with search engines such as Elasticsearch, you’ll come across data and search variants: structured and unstructured data and their respective searches. It is important to be familiar with these types of data in order to understand the search landscape. We look at them briefly in the next section.

1.2.1 Structured vs. unstructured (full-text) data

 Data predominantly comes in two flavors: structured and unstructured. The fundamental differentiator between these two categories is the way the data is stored and analyzed. Structured data follows a predefined schema/model, while unstructured data is free-form, unorganized, and schema-free.

 Structured data

 Structured data is very organized, has a definite shape and format, and fits predefined data type patterns. It follows a defined schema and is easily searchable because it is well organized. The data in a database is considered structured data because before it is stored in the database, it is expected to follow a strict schema. For example, data representing dates, numbers, or Booleans must be in a specific format.

 Queries against structured data return results in exact matches. That is, we are concerned with finding documents that match the search criteria—but not how well they match. Such search results are binary: we either have a result or have no result—there’s no “maybe” result. For example, it doesn’t make sense to expect “maybe” canceled flights when searching for “canceled flights in the last month.” There may be zero or more, but the search should not return “close match to canceled flights” results.

 We do not worry about how well documents match—just that they match at all. Hence, no relevancy score (a positive number given to each result that indicates how closely the result matches the query) is attached to the results. A traditional database search is this sort: fetch all the flights that were canceled in the last month, weekly bestseller books, the activity of a logged-in user, and so on.

 DEFINITION Relevancy refers to the degree to which a search engine’s results match a user’s query. It’s a mechanism for indicating how closely the results match the original query. The search engine uses relevance algorithms to determine which documents are closely related to the user’s query (that is, how relevant they are) and produces a positive number called a relevancy score for each result based on how closely the result matches the query. The next time you search on Google, look closely at the search results: the top results are very closely related to what you are looking for, and hence we can say they are more relevant than the bottom entries in the list of results. Google internally assigns a relevancy score to each result and most likely sorts them by this score: the higher the score, the more relevant the result, and hence the more likely it is to be at the top of the page.

 Unstructured data

 Unstructured data, on the other hand, is unorganized and follows no schema or format. It has no predefined structure. Unstructured data is the bread and butter of most modern search engines. Examples include blog posts, research articles, emails, PDFs, audio and video files, and so on.

 Note In addition to structured and unstructured data, there’s another category: semi-structured data. This data falls pretty much in between structured and unstructured data. It is nothing but unstructured data with some metadata describing it.

 For unstructured data, Elasticsearch offers full-text search capabilities that allow us to search for specific terms or phrases within large amounts of unstructured text. Full-text (unstructured) queries try to find results that are relevant to the query. That is, Elasticsearch searches all the documents that are most suited for the query. For example, if a user searches for the keyword vaccine, the search engine not only retrieves documents related to vaccination but also throws in relevant documents about inoculations, jabs, and other vaccine-related terms.

 Elasticsearch employs a similarity algorithm to generate a relevance score for full-text queries. The score is a positive floating-point number attached to the results, with the highest-scored document indicating more relevance to the query criteria.

 Elasticsearch handles both structured and unstructured data efficiently. One of its key features is its ability to index and search both structured and unstructured data in the same index. This allows us to search and analyze both types of data together and gain insights that would be difficult to obtain otherwise.

1.2.2 Search supported by a database

 Old-fashioned search was mostly based on traditional relational databases. Older search engines were based on layered architectures implemented in multi-tiered applications, as shown in figure 1.1.

 [image:]

 Figure 1.1 Search based on a traditional database

 Queries written in SQL using clauses like where and like provided the foundation for search. These solutions are not necessarily performant and efficient for searching full-text data to provide modern search functionality.

 Having said that, some modern databases (Oracle and MySQL, for example) support full-text searching (queries against free text like a blog post, movie review, research article, etc.), but they may struggle to provide efficient searches in near-real time on heavy loads. See the sidebar “Full-text searching with databases” for more details.

 The distributed nature of a search engine like Elasticsearch provides instant scalability that most databases are not designed for. A search engine developed with a backing database (with no full-text search capabilities) may not be able to provide relevant search results for queries, let alone cope with volumetric growth and serve results in real time.

 Full-text searching with databases

 Relational databases like Oracle and MySQL support full-text search functionality, albeit with less functionality than a modern full-text search engine like Elasticsearch. They are fundamentally different when it comes to storing and retrieving data, so you must be sure to prototype your requirements before choosing one of them. Usually, if the schemas are not going to change or data loads are low, and you already have a database engine with full-text search capabilities, beginning with full-text search on a database may make sense.

1.2.3 Databases vs. search engines

 When building a search service on a traditional database, we need to consider and understand whether our requirements can be satisfied by the database efficiently and effectively. Most databases are designed to store large amounts of data but, unfortunately, are not well-suited for use as full-text search engines, for several reasons:

 	
 Indexing and search performance —Full-text search requires efficient indexing and performant search and analytical capabilities, which traditional databases are not optimized for. Databases may struggle with indexing large volumes of data and, as a result, may exhibit poor query performance. Search engines like Elasticsearch and Solr are specifically designed to handle large amounts of text data and provide search results in near-real time. Search engines can handle large-scale data, indexing it and searching it much faster than traditional databases, as they are pretty much designed from the ground up for optimized search operations. Unfortunately, relational databases lack advanced search features such as fuzzy logic, stemming, synonyms, and so on.

 	
 Search —Searching with traditional databases is more or less based on the exact matching of data values. While this is suitable for non-search-related find operations on structured data, it is a definite no-no for natural language queries, which are often complex. User queries are often misspelled, misconstructed grammatically, or incomplete and may contain synonyms and other language structures that databases fail to understand

 In natural language queries, users may not use the exact terms they are searching for (spelling mistakes), and unfortunately, traditional databases are not designed to support misspelled user input. This feature is supported by the fuzzy matching search function (words that are similar but not exactly the same) in modern search engines

 In traditional databases, data is often normalized, meaning it is spread across multiple tables and columns. This can make it difficult to search for data across multiple fields in a single query. Traditional databases are not designed to handle the types of unstructured and semi-structured data that are common in full-text search scenarios.

 	
 Text analysis and processing —Search engines must often handle multiple languages and character sets, which traditional databases may not support. Search engines perform text analysis and processing to extract meaning from text, but traditional databases are not designed or optimized for this purpose.

 	
 Scalability and flexibility—Full-text search engines are designed to handle large amounts of data and high query loads. Traditional databases can have scalability problems when dealing with large amounts of text data.

 Search engines are designed from scratch to handle unstructured data, while databases are optimized for handling structured data. These limitations make traditional databases less suitable for use as full-text search engines; specialized search engine technologies such as Elasticsearch, Solr, Lucene, etc., are often used to provide advanced search functionality for text data.

 NOTE Many databases have added text search capabilities to their feature sets. However, they still may not be able to deliver performance, scalability, and functionality on par with specialized full-text search engines.

 Nothing is stopping us from embracing both worlds: in some use cases, a combination of traditional databases and search engines can be employed. For example, a database can be used for transactional purposes and a search engine for search and analytics. But our focus in this book is search engines—and Elasticsearch in particular. In the next section, we review the era of modern search engines before we introduce Elasticsearch.

1.3 Modern search engines

 Modern search engines are trying hard to meet ever-growing business requirements by embracing new and exciting features every day. Cheap hardware combined with the explosion of data is leading to the emergence of these modern search beasts. Let’s consider present-day search engines and the features and functionality they offer. We can summarize what a good modern search engine should provide as follows:

 	
 First-class support for full-text (unstructured) and structured data

 	
 Type-ahead suggestions, auto-correction, and “did-you-mean” recommendations

 	
 Forgiveness for users’ spelling mistakes

 	
 Search capabilities on geolocations

 	
 Easy scalability, either up or down, based on fluctuating demand

 	
 Blazing performance: speedy indexing and search capabilities

 	
 Architecture that provides a high-availability, fault-tolerant distributed system

 	
 Support for machine learning functionalities

 In this section, we briefly discuss the high-level features of a modern search engine. Then the following section introduces a couple of search engines available in the market, including Elasticsearch.

1.3.1 Functionality

 Modern search engines were developed to satisfy full-text search requirements while also providing other advanced functions. They are designed to provide fast and relevant search results to users by indexing and searching large volumes of text data (going forward, we will drop the word modern when mentioning search engines).

 Search engines can quickly index large amounts of text data and make it searchable. This process typically involves breaking the text data into tokens and building an inverted index, which maps each token to the documents that contain it.

 Search engines are also expected to perform advanced text analysis and processing, such as synonyms, stemming, stop words, and other natural language processing techniques, to extract meaning from text and improve search results. They can process user queries and rank search results based on various factors such as relevance and popularity. They can also handle high query loads and large amounts of data and can scale horizontally by adding more nodes to a cluster.

 Finally, search engines provide advanced analytics capabilities, looking at the data to provide summaries, conclusions, and intelligence for businesses. They also support rich visualizations, near-real-time search, performance monitoring, and machine learning-based insights.

1.3.2 Popular search engines

 While a handful of search engines are available in the market, I’ll mention just three of them, all of which are built on top of Apache Lucene. The following sections look at Elasticsearch, Solr, and OpenSearch.

 Elasticsearch

 Shay Banon, founder of Elastic, developed a search product called Compass in early 2000. It was based on an open source search engine library called Apache Lucene (https://lucene.apache.org). Lucene is Doug Cutting’s full-text search library, written in Java. Because it’s a library, we must import it and integrate it with an application using its APIs. Compass and other search engines use Lucene to provide a generalized search engine service so we don’t have to integrate Lucene from scratch into applications. Shay eventually decided to abandon Compass and focus on Elasticsearch because it had more potential.

 Apache Solr

 Apache Solr is an open source search engine that was built on Apache Lucene in 2004. Solr is a strong competitor to Elasticsearch and has a thriving user community, and it is closer to open source than Elasticsearch (Elastic moved from Apache to Elastic License and Server Side Public License ([SSPL] in early 2021). Both Solr and Elasticsearch excel at full-text searching; however, Elasticsearch may have an edge when it comes to analytics.

 While both products compete in almost all functionality, Solr is a favorite for large, static datasets working in big data ecosystems. Obviously, we have to run through prototypes and analysis to pick a product; the general trend is for projects that are integrating with a search engine for the first time to consider Elasticsearch due to its top-class documentation, community, and nearly no-hurdle startup. You must make a detailed comparison of your intended use cases for the search engine before adopting and embracing one.

 Amazon OpenSearch

 Elastic changed its licensing policy in 2021. The licensing, which applies to Elasticsearch release versions 7.11 and above, has been moved from open source to a dual license under an Elastic License and SSPL. This license allows the community to use the product for free, as expected, but managed service providers can no longer provide the products as services. There was a spat between Elastic and Amazon Web Services (AWS) when AWS created a forked version of Elasticsearch—called Open Distro for Elasticsearch—and offered it as a managed service. This spat led to the change in the license, which eventually led to OpenSearch’s birth.

 As Elastic moved from the open source licensing model to the SSPL model, a new product called OpenSearch (https://opensearch.org) was developed to fill the gaping hole left by the new licensing agreement. The base code for OpenSearch was created from the open source Elasticsearch and Kibana version 7.10.2. The product’s first General Availability version 1.0 was released in July 2021. Watch out for OpenSearch becoming a competitor to Elasticsearch in the search engine space.

 Now that we have a fair understanding of what a modern search engine is and the shape of the search landscape, let’s jump into an overview of Elasticsearch.

1.4 Elasticsearch overview

 Elasticsearch is an open source search and analytics engine. Developed in Java, it is an ultra-fast, highly available search engine built on the popular full-text library Apache Lucene (https://lucene.apache.org). Elasticsearch wraps around the powerful functionality of Lucene by providing a distributed system with RESTful interfaces. Lucene is the powerhouse of Elasticsearch, and Kibana is the administrative UI to manage and work with Elasticsearch. We work with Kibana’s code editor (Dev Tools) throughout this book.

 Full-text searching is where Elasticsearch excels as a modern search engine. It can retrieve relevant documents in response to a user’s search criteria at an awesome speed. We can search for exact terms, too, like keywords, dates, or a range of numbers or dates. Elasticsearch is packed with top-notch features such as relevancy, “did-you-mean” suggestions, auto-completion, fuzzy and geospatial searching, highlighting, and more.

 In addition to being a frontrunner in providing near-real-time search capabilities, Elasticsearch stands tall in statistical aggregations on big data. Of course, we must consider the use case before embracing the product, as Elasticsearch may not be the best fit for every use case (refer to section 1.4.3 to learn about the use cases). Out of the box, Elasticsearch also boasts commendable features such as application performance monitoring, predictive analytics and outlier detection, and security threat monitoring and detection.

 Elasticsearch focuses on finding a deeper meaning in the data that’s been collected. It can aggregate data, perform statistical calculations, and find intelligence within the data. We can create rich visualizations and dashboards and share them with others using Kibana tooling. Elasticsearch can find averages, sums, means, and modes as well as undertaking complex analytics such as bucketing data in histograms and other analytical functions.

 Furthermore, Elasticsearch runs supervised and unsupervised machine learning algorithms on our data. Models help to detect anomalies, find outliers, and forecast events. In supervised learning mode, we can provide training sets so the model learns and makes predictions.

 Elasticsearch also comes with the capability to observe applications and their health by monitoring performance metrics such as the memory and CPU cycles of the web servers in a network. It lets us sift through millions of web server logs to find or debug application issues. Elasticsearch also invests time and resources in building security solutions: for example, alerting us to security threats, IP filtering, endpoint prevention, and more.

1.4.1 Core areas

 Elastic, the company behind Elasticsearch, has been positioning itself predominantly in three core areas: search, observability, and security, as shown in figure 1.2. Let’s look at each of these areas in turn.

 [image:]

 Figure 1.2 Core application areas of Elastic, the company behind Elasticsearch

 Elastic Enterprise Search

 Whether letting users search across varied content providers (like Slack, Confluence, Google Drive, and others) or enabling search capabilities for our applications, apps, and websites, the Elastic Enterprise Search suite helps build models and a customized search engine.

 Search can be integrated deep into a multitude of applications in various domains—business, infrastructure, applications, and so on. Users can create a web application backed by Elasticsearch, a mobile app supported by Elasticsearch, or a server-side search service with Elasticsearch as the spine for search capabilities. Later in this book, we work on examples of integrating with Elasticsearch as a search server for applications.

 Elastic observability

 Applications running on infrastructure produce a lot of metrics that are usually used for application observability and monitoring. We can use Elasticsearch in the observability space: the state of applications, servers, racks, and modules can all be monitored, logged, tracked, and alerted. We can also use the Elastic tools to perform application management and monitoring on a large scale.

 Elastic security

 Elastic enters the realm of security by enabling threat detection and prevention and providing advanced features such as the capability of removing malware at the source, encryption at rest, and more. As a security information and event management (SIEM) tool, Elastic is positioning itself to protect organizations with its advanced security toolkits.

1.4.2 Elastic Stack

 Elasticsearch is the core of the search engine, and a handful of Elastic products complement it. The suite of products is called the Elastic Stack and includes Kibana, Logstash, Beats, and Elasticsearch. (It was formally called ELK Stack but was renamed Elastic Stack after Beats was introduced into the product suite.)

 The combination of these four products helps build an enterprise application by integrating, consuming, processing, analyzing, searching, and storing various data sets from disparate sources. As demonstrated in figure 1.3, Beats and Logstash bring the data into Elasticsearch, while Kibana is the visual UI that works on that data.

 [image:]

 Figure 1.3 The Elastic Stack: Beats, Logstash, Elasticsearch, and Kibana

 Before we move on to look at use cases for Elasticsearch, let’s briefly go over these essential moving parts at a high level. Other than Elasticsearch, we do not discuss this stack of products in this book.

 Beats

 Beats are single purpose data shippers; they load data from out various external systems and pump it into Elasticsearch. Various types of beats are available out of the box. These include Filebeat, Metricbeat, Heartbeat, etc., and each performs a specific data consumption task. These are single-purpose components: for example, Filebeats are designed for file-based transports and Metricbeats for vital machine and operating system memory and CPU information. The beats’ agents are installed on the servers so they can consume data from their source and send it to their destination.

 Logstash

 Logstash is an open source data-processing engine. It extracts data originating from multiple sources, processes it, and sends it to a variety of target destinations. During the processing of the data, Logstash transforms and enriches the data. It supports a myriad of sources and destinations including files, HTTP, JMS, Kafka, Amazon S3, Twitter, and dozens of others. It promotes a pipeline architecture, and every event that goes through the pipeline is parsed as per the preconfigured rules, thus creating a real-time pipeline for data ingestion.

 Kibana

 Kibana is a multipurpose web console that provides a host of options such as executing queries; developing dashboards, graphs, and chart visualizations; and creating dropdowns and aggregations. However, we can use any REST client to talk to Elasticsearch to invoke the APIs, not just Kibana. For example, we can invoke APIs using cURL, Postman, or native language clients.

1.4.3 Elasticsearch use cases

 Pinpointing Elasticsearch for a particular use case or domain is difficult. It is omnipresent in many areas from search to analytics to machine learning jobs. It is widely used across a multitude of industries, including finance, defense, transport, government, retail, cloud, entertainment, space, and more. Let’s take a high-level glance at how Elasticsearch can be used in an organization.

 Search engine

 Elasticsearch has become the go-to technology for its full-text search capabilities. The product is not limited to full-text searching but can also be used for structured data and geolocation-based searches. Broadly speaking, customers use Elasticsearch in three domains: App Search, Enterprise Search, and Site Search.

 In App Search, Elasticsearch serves as a backbone, providing search and analytical capabilities for applications. A search service backed up by Elasticsearch can be designed as a microservice that serves the application’s search requirements, such as searching for customers, orders, invoices, emails, and so on.

 In most organizations, data is scattered across many data stores, applications, and databases. For example, organizations are often integrated with Confluence, intranet spaces, Slack, email, databases, cloud drives (iCloud drive, Google Drive, etc.), and others. Collating and searching through vast amounts of data with integrations to varied sources is a challenge for these organizations. This is where Elasticsearch can be employed for Enterprise Search and data organization.

 If we have an online business website amassing data, providing search is something of a bare necessity for attracting customers and keeping them happy. Site Search is a software-as-a-service (SaaS) offering from Elastic that, once enabled, crawls through the given site pages, fetching data and building indices backed by Elasticsearch. Once the crawling and indexing are complete, the site can be integrated easily with the search facility. The Site Search module also helps create a search bar and the code snippet related to it. The website administrator can copy the snippet of generated code onto their homepage to enable a search bar instantly, thus making the website fully functional with integrated search.

 Business analytics

 Organizations capture tons of data from various sources, and that data often holds the key to survival and success. Elasticsearch can help extract trends, statistics, and metrics from data, giving organizations knowledge about their operations, sales, turnover, profits, and many other features for timely management.

 Security analytics and threat and fraud detection

 Data security and potential breaches of it are nightmares for organizations. Elasticsearch’s security analytics help organizations analyze every bit of information—be it from applications, a network, endpoints, or the cloud. This analysis can provide insights into threats and vulnerabilities and let the organization hunt for malware and ransomware, thus alleviating the risk of falling prey to hackers.

 Logging and application monitoring

 Applications spit out a lot of data in the form of application logs and metrics. These logs provide insights into the health of the application. With the advent of the cloud and the microservices world, logs are scattered across services, and meaningful analysis is a cumbersome affair. Elasticsearch is our friend here. One of the popular use cases for Elasticsearch is indexing logs and analyzing them for application errors and debugging purposes.

 Elasticsearch is a powerful and flexible search and analytics engine, but it’s not suitable for every use case. Let’s briefly go over the issues we may encounter and use cases for which Elasticsearch is the wrong choice.

1.4.4 Unsuitable Elasticsearch uses

 Not every use case can be satisfied by Elasticsearch. It is a powerful and flexible search and analytics engine, but unfortunately, this tool has limitations that we must consider before choosing it for our requirements. Here are a few scenarios where Elasticsearch may be an incorrect or inefficient solution:

 	
 Relational data—Elasticsearch is not the right tool to accommodate search over data that has relationships and needs to perform complex database joins. Elasticsearch is not designed to handle complex relational data structures. If your data is relationship-heavy, a relational database like MySQL or PostgreSQL may be a better fit. Most modern databases (MySQL, PostgreSQL, etc.) also offer full-text search capabilities, although the features are not as advanced as in a modern search engine like Elasticsearch.

 	
 Transactional data—Elasticsearch is an “eventually consistent” search engine, which makes it unsuitable for applications that require immediate consistency, such as financial transactions. For these types of use cases, consider using a traditional relational database or a NoSQL database like MongoDB.

 	
 Geospatial data—While Elasticsearch has built-in support for geospatial data, it may not be the most efficient solution for large-scale geospatial analytics. For these use cases, consider using a dedicated geospatial database like PostGIS or a geospatial analytics platform like ArcGIS.

 	
 High-write workloads—Elasticsearch can handle high-read workloads, but it is not optimized for high-write workloads. If you need to index large amounts of data in real time, consider using a dedicated indexing engine like Apache Flume or Apache Kafka.

 	
 Online analytical processing (OLAP) data—If you need to perform complex multidimensional analysis on large data sets, a traditional OLAP database like Microsoft Analysis Services or IBM Cognos may be a better fit than Elasticsearch.

 	
 Large binary data—While Elasticsearch can handle large amounts of text data, it may not be the best solution for indexing and searching large binary data like videos or images. For these use cases, consider using a dedicated binary data store like Hadoop Distributed File System (HDFS), Amazon S3, or Azure Files.

 	
 Real-time analytics—Elasticsearch is great for performing real-time search and analytics on large data sets, but it may not be the most efficient solution for real-time data processing and analytics. Instead, consider a specialized real-time analytics platform like Apache Spark or Apache Flink.

 	
 Latency-sensitive applications—Although Elasticsearch is designed to handle high-volume search and analytical queries, it can still have latency issues when dealing with large amounts of data. For applications that require sub-millisecond response times, a specialized search engine like Apache Solr or a columnar database like Apache Cassandra may be a better fit.

 	
 Other types—Elasticsearch is not a preferred solution for time-series data, graph data, in-memory data, and various other types of data. If you need to store and analyze time-series data, a specialized time-series database like InfluxDB or TimescaleDB may be a better fit. Similarly, a graph database such as Neo4j may help you tackle graph data.

 It’s important to evaluate your specific use case and requirements before choosing Elasticsearch as your technology and tool. In the next section, we discuss common misconceptions about Elasticsearch as a tool, a technology, and a search solution.

1.4.5 Misconceptions

 A major misconception about Elasticsearch is mistaking it for a traditional relational database. It’s also a common misunderstanding that setting up Elasticsearch is easy, while in reality, many tweaks are required to set up a decent-sized cluster. In addition, Elasticsearch is often thought of as a technology used for text search, when in fact it can be used for a wide range of search and analytics use cases. The following list summarizes some common misconceptions about Elasticsearch:

 	
 Elasticsearch is easy to set up and manage. While Elasticsearch is relatively straightforward to set up and get started with, it can be challenging to manage and scale as data grows and use cases increase. Although everything works out of the box, making an engineer’s life easy, taking Elasticsearch into the production environment requires effort. We may need to tweak the configuration and fine-tune the memory, manage node failures, or even scale the cluster to handle petabytes of data as our data grows.

 	
 Elasticsearch is a relational database. Elasticsearch is not a relational database and does not support traditional relational database features like transactions, foreign keys, and complex join operations. For example, we can’t enforce referential integrity or perform complex join operations in Elasticsearch. If you need these features, a proven relational database like MySQL or PostgreSQL is definitely your solution.

 	
 Elasticsearch can handle all types of data. Elasticsearch is versatile and can handle a wide range of data types, but it is not designed to handle every type of data with equal ease. For example, it may not be the best solution for real-time data processing and analytics or for handling large binary data. If you need to store and process large binary data like videos or images, consider using a dedicated binary data store like HDFS or Amazon S3.

 	
 Elasticsearch is only for text search. While Elasticsearch is great for text search, it can also perform complex analytics on structured and unstructured data. For example, we can use Elasticsearch to perform aggregations, analyze log data, and visualize data using Kibana.

 	
 Elasticsearch can replace all other technologies. Elasticsearch is a powerful and flexible technology, but it is not a one-size-fits-all solution and or the best choice for every use case. It can never replace a traditional relational database, for example.

 	
 Elasticsearch is always faster than other technologies. Elasticsearch is designed for high performance and is expected to perform well under heavy loads. However, there’s only so much Elasticsearch can do, and its performance primarily depends on how well the platform engineers fine-tune it.

 	
 Elasticsearch deals with big data only. Elasticsearch can handle petabytes of data in large data sets, but it is equally performant when dealing with small data sets on the order of a few gigabytes. For example, we can use Elasticsearch to search and analyze data for an organization’s small email database or a startup company without much effort.

 These are just a few examples of misconceptions about Elasticsearch. As mentioned earlier, you must carefully evaluate your specific requirements and use case before choosing Elasticsearch or any other technology.

1.5 Popular adoption

 A long list of organizations use Elasticsearch for everything from searching to business analysis, log analytics, security alert monitoring, and application management, as well as using it as a document store. Let’s consider some of these organizations and how they put Elasticsearch to use in their operations.

 Uber powers its rider and event prediction using Elasticsearch. It does so by storing millions of events, searching through them, and analyzing the data at a near-real-time rate. Uber predicts demand based on location, time, day, and other variables, including taking past data into consideration. This helps Uber deliver rides pretty.

 Netflix adopted the Elastic Stack to provide customer insights to its internal teams. It also uses Elasticsearch for log event analysis to support debugging, alerting, and managing its internal services. Email campaigns and customer operations are all backed by the Elasticsearch engine. The next time you receive an email from Netflix mentioning a newly added movie or TV series, keep in mind that the campaign analytics behind that simple email were all supported by Elasticsearch.

 PayPal embraced Elasticsearch as a search engine to allow customers to store and search through their transactions. The company has implemented transaction search features along with analytics for use by merchants, end customers, and developers.

 Similarly, the online e-commerce company eBay adopted Elasticsearch to support full-text searching by end users. As users, we are using Elasticsearch directly when searching through eBay’s inventory. The company also uses the Elastic Stack for analytics, log monitoring, and storing transactional data in a document store.

 GitHub, a popular code repository for developers, indexes its 8 million (and counting) code repositories—consisting of over 2 billion documents—with Elasticsearch to enable a powerful search experience for its users. Similarly, Stack Overflow uses Elasticsearch to provide developers with quick and relevant answers, and Medium (a popular blog platform) uses the Elastic Stack to serve reader queries in a near-real-time mode.

 Before we wind up this chapter, it’s only fair to touch on a recent trending topic: generative artificial intelligence (AI) tools such as OpenAI’s ChatGPT and Google’s Bard. The introduction of these tools will change the search space dramatically, in my opinion. Let’s discuss their effects on modern search, including search engines like Elasticsearch.

1.6 Generative AI and modern search

 Unless you are living in a cave, you have undoubtedly heard about a recent internet revolution: ChatGPT. ChatGPT is a generative AI tool that was developed and released by the OpenAI team in November 2022. In my 25 years of IT experience, I’ve never seen a tech tool light up the internet like ChatGPT. Is isn’t often that a technically superior tool lands in the hands of the general public that can help them in unimaginable ways, such as creating a travel itinerary for a summer trip to Athens, summarizing a legal document in layman’s terms, developing a self-help plan for losing weight, analyzing code for security and performance bugs, designing an application’s data models, comparing and contrasting technologies for a specific use case, writing complaint letters to the Twitter CEO and much more.

 ChatGPT (https://chat.openai.com) is a conversational agent (chatbot) built on a GPT (generative pretrained transformer) architecture, and it is capable of generating human-like text based on user prompts. It is an instance of a large language model (LLM) designed for conversation with a specific goal of generating safe, relevant content while engaging in a meaningful dialogue. The model is fed vast amounts of text data and learns to predict the next word in a sentence. It is trained using a diverse range of internet text, but it can also be fine-tuned with specific datasets for various tasks. Through this process, the model learns parts and parcels of human language text: grammar, punctuation, syntax, facts about the world, and some degree of reasoning ability.

 NOTE LLM is a broad term that refers to any large-scale model trained to understand or generate human-like text. These models are characterized by their vast number of parameters and their ability to handle a wide range of natural language processing tasks. LLMs can be based on various architectures and training methods.

 With the release of ChatGPT to the public, a sudden race in the space of search using AI emerged overnight. ChatGPT has become a disruptor to many industries and is no less a threat to Google search. AI-backed tools similar to ChatGPT will disrupt many industries in the coming years. Under tremendous pressure—and possibly to save its search leader status—Google decided to unleash its version of conversational generative AI: its agent called Bard (https://bard.google.com) was made publicly available in May 2023.

 In the meantime, Microsoft committed to investing $10 billion in ChatGPT, over and above its initial investment of $3 billion since 2019. Microsoft’s Edge browser is integrated with ChatGPT via the Bing search engine, which also was made publicly available in May 2023. In addition, Microsoft rolled out AI-powered Microsoft 365 apps, so the AI agent is available in Microsoft Word, Excel, email, and other tools. Meta’s LLaMA is another tool that has begun competing in the generative AI race.

 The GPT-3 and -4 models were trained on billions of digital copies of books, articles, papers, blogs, and so on. The GPT-4 model was fed with data until September 2021 (it can’t retrieve data after that date). Although there is no internet access for GPT-4 to fetch real-time information, as I write this, OpenAI just released a beta version of a web browser version for its Plus subscribers. So, I expect an internet-enabled generative AI assistant from OpenAI to be available to the general public soon.

 Search engineers are being asked fundamental questions, including how generative AI agents will change the course of search. Let’s answer this question by asking ChatGPT how AI agents can complement or help modern search or change its direction. These are the areas where tools like generative AI will reshape the search space:

 	
 Intuitive Search—Search queries will become more conversational and intuitive. Generative AI models like GPT-4 have an advanced understanding of natural language, enabling them to interpret complex queries more effectively. Users will no longer need to rely on specific keywords or phrases; they can simply ask questions as they would in a conversation with another person. This will allow for more accurate and relevant search results, as AI can better comprehend the context and intent of the query. With the introduction and release of highly capable generative AI agents and models, there is a greater scope to significantly reshape full-text search capabilities provided by modern search engines like Elasticsearch. We can expect to see several key changes that will redefine the search experience for both users and developers as this technology is increasingly integrated into search platforms.

 	
 Personalized search —With the incorporation of generative AI, search results can become more personalized and adaptive. Search engines will be able to learn many valuable data points from users’ preferences, behavior, and search history, which in turn will help engines tailor results to meet individual users’ needs. As the AI gathers more data, it will continually refine its understanding of what users are looking for, leading to an increasingly customized search experience.

 	
 Predictive search —Generative AI has the potential to make search engines more proactive in anticipating user needs. Instead of merely responding to queries, AI-driven search engines may be able to predict what information users are interested in, based on their previous interactions or current context. This will allow search platforms to proactively offer relevant suggestions, increasing the value of the search experience and reducing the need for users to perform additional queries.

 	
 Advanced search —Generative AI will enable search engines to provide more diverse and rich search results. By understanding the context and semantics of a query, AI-driven search engines can generate content summaries and relevant visualizations and even synthesize new information to help answer a user’s question. This will lead to a more comprehensive and informative search experience that goes beyond merely linking to existing content.

 In my mind, the introduction of generative AI will revolutionize full-text search capabilities, making search engines more conversational, personalized, adaptive, and proactive. This will not only enhance the user experience but also offer new opportunities for businesses and developers to create innovative search applications and services. Teams are working hard to adopt the upcoming changes in the search space with the advent of AI. So, expect a search space revolution!

 This chapter laid the groundwork for using Elasticsearch by introducing its search capabilities and looking at how searching has become an integral part of numerous applications. In the next chapter, we install, configure, and run Elasticsearch and Kibana, and we play with Elasticsearch by indexing a few documents and running search queries and analytics. Stay tuned!

Summary

 	
 Search is the new normal and the most sought-after functionality for organizations, enabling competitive advantage.

 	
 Search engines built using relational databases as the backend used to serve our search purposes but can’t fulfill the full-fledged search functionality found in modern search engines.

 	
 Modern search engines provide multifaceted, full-text search capabilities and multifold benefits from basic search to advanced search and analytical functions, all with split-second performance. They are also expected to handle terabytes to petabytes of data and scale if needed.

 	
 Elasticsearch is an open source search and analytics engine built over Apache Lucene. It is a highly available server-side application developed in Java.

 	
 Because Elasticsearch was designed as a programming-language-agnostic product, communication with the server takes place over HTTP using rich RESTful APIs. These APIs receive and send data in JSON format.

 	
 The Elastic Stack is a suite of products composed of Beats, Logstash, Elasticsearch, and Kibana. Beats are single-purpose data shippers, Logstash is a data-processing ETL (extract, transform, load) engine, Kibana is the administrative UI tool, and Elasticsearch is the heart and soul of the stack.

 	
 The Elastic Stack enables an organization to position itself in three core areas: search, observability, and security.

 	
 Elasticsearch has become popular over the last few years due to its structured/unstructured search and analytics capabilities; rich set of RESTful APIs; its schema-free nature; and performance, high-availability, and scalability characteristics.

 	
 AI-powered search is here. With the advent of generative AI and ChatGPT, the search space will be explored further, and search will become more intuitive and predictive.

 2 Getting started

 This chapter covers

 	
Indexing sample documents with Elasticsearch

 	
Retrieving, deleting, and updating documents

 	
Searching with basic to advanced queries

 	
Running aggregations on data

 This chapter is all about experiencing a taste of Elasticsearch. Elasticsearch is a Java binary that is available to download from the Elastic company’s website. Once the server is installed and up and running, we can load in our business data, which is analyzed and persisted by Elasticsearch. After priming Elasticsearch with the data, we can execute search queries as well as aggregations on that data.

 Although any client capable of invoking REST calls (cURL, Postman, programming SDKs, etc.) can talk to Elasticsearch, we use Kibana as our preferred client throughout this book. Kibana is a rich UI web application from Elastic. It is a visual editor that comes with all the bells and whistles to help discover, analyze, manage, and maintain our cluster and data. With Kibana, we get abundant capabilities such as advanced analytical and statistical functions, rich visualizations and dashboards, machine learning models, and more. As Elasticsearch exposes all its functionality via RESTful APIs, we can construct queries using these APIs in the Kibana editor and communicate with the server over HTTP.

 To execute the samples in this chapter, you need a running environment with Elasticsearch and Kibana. If you haven’t set up that environment yet, follow the instructions in Appendix A to download and install your software and bring up the Elasticsearch server and Kibana UI.

 NOTE Installing Elasticsearch and Kibana can come in multiple flavors, from downloading the binaries and uncompressing and installing them onto your local machine in a traditional way to using a package manager, Docker, or even the cloud. Choose the appropriate flavor of installation for development to get started.

 Copy the full code to your Kibana editor

 To make the coding exercises easy, I’ve created a ch02_getting_started.txt file under the kibana_scripts folder at the root of the repository. Copy the contents of this file as is to your installation of Kibana. You can work through the examples by executing the individual code snippets while alongside following along with the chapter’s contents.

 Finally, we zoom out and analyze the data by executing two types of aggregations: metric and bucket. With these aggregation types, we use queries to fetch metrics such as average, sum, minimum and maximum values, and so on. Once you have the applications running, let’s get started with Elasticsearch.

2.1 Priming Elasticsearch with data

 A search engine can’t work on thin air! It needs data as its input so it can produce results as output when queried. We need to dump our data into Elasticsearch, which is the first step in priming the engine. But before we start storing data in Elasticsearch, let’s get to know the sample application we work with in this chapter.

 For our examples, we need a basic understanding of the problem domain and the data model. Let’s assume we are building an online bookstore; obviously, we are not architecting the whole application—we are only interested in the data model part for our discussion. We go over the details of this fictitious bookstore in the next section as a prerequisite for our objective of working with Elasticsearch.

2.1.1 An online bookstore

 To demonstrate Elasticsearch’s features, let’s use a fictional bookstore that sells technical books online. All we want to do is to create an inventory of books and write some queries to search through them.

 NOTE The code presented in this chapter is available in the book’s GitHub repository (http://mng.bz/2Dyw) and on the book’s website (www.manning.com/books/elasticsearch-in-action-second-edition). Follow the instructions listed in the repository to index the data.

 The data model for our bookstore application is simple. We have a book as our entity, with a few properties such as title, author, and so on as described in table 2.1. We do not need to complicate things by creating elaborate entities; instead, we’ll focus on the goal of getting hands-on experience with Elasticsearch.

 Table 2.1 Data model for a book entity

 	
 Field

 	
 Explanation

 	
 Example

 	
 title

 	
 Title of a book

 	
 "Effective Java"

 	
 author

 	
 Author of the book

 	
 "Joshua Bloch"

 	
 release_date

 	
 Data of release

 	
 01-06-2001

 	
 amazon_rating

 	
 Average rating on Amazon

 	
 4.7

 	
 best_seller

 	
 Flag that qualifies the book as a best seller

 	
 true

 	
 prices

 	
 Inner object with individual prices in three currencies

 	
 "prices":{

 "usd":9.95,

 "gbp":7.95,

 "eur":8.95

 }

 Elasticsearch is a document data store, and it expects documents to be presented in JSON format. Because we need to store our books in Elasticsearch, we must model our entities as JSON-based documents. We can represent a book in a JSON document as shown in figure 2.1.

 [image:]

 Figure 2.1 A JSON representation of a book entity

 The JSON format represents data in simple name-value pairs. For our example, the book’s title (name) is Effective Java, and its author (as a value) is Joshua Bloch. We can add additional fields (including nested objects) to the document: for example, we’ve added prices as a nested object.

 Now that we have an idea of our bookstore and its data model, it is time to start populating Elasticsearch with a set of books to create an inventory. We do this in the next section.

2.1.2 Indexing documents

 To work with the server, we need to get the client’s data indexed into Elasticsearch. There are a few ways we can bring the data into Elasticsearch in the real world: creating an adapter to pipe the data from a relational database, extracting the data from a file system, streaming events from a real-time source, and so on. Whichever choice we make for our data source, we invoke Elasticsearch’s RESTful APIs from the client application to load the data into Elasticsearch.

 Any REST-based client (cURL, Postman, advanced REST client, HTTP module for JavaScript/NodeJS, programming language SDKs, etc.) can help us talk to Elasticsearch via the API. Fortunately, Elastic has a product that does exactly this (and more): Kibana. Kibana is a web application with a rich user interface, allowing users to index, query, visualize, and work with data. This is our preferred option, and we use Kibana extensively in this book.

 RESTful access

 Communication with Elasticsearch takes place via JSON-based RESTful APIs. In the current digital world, you are highly unlikely to find a programming language that doesn’t support accessing RESTful services. In fact, designing Elasticsearch with APIs exposed as JSON-based RESTful endpoints was a smart choice, because it enables programming-language-agnostic adoption.

 Document APIs

 Elasticsearch’s document APIs help with creating, deleting, updating, and retrieving documents. The APIs are accessible via HTTP transport using RESTful actions. That is, to index a document, we need to use an HTTP PUT or POST (more on POST later) on an endpoint. Figure 2.2 shows the syntax of the full URL format for an HTTP PUT method.

 As you can see, the URL is composed of several elements:

 	
 An HTTP action such as PUT, GET, or POST

 	
 Server’s hostname and port

 	
 Index name

 	
 Document API’s endpoint (_doc)

 	
 Document ID

 	
 Request body

 [image:]

 Figure 2.2 Elasticsearch URL invocation endpoint using an HTTP method

 The Elasticsearch API accepts a JSON document as the request body, so the book we want to index should accompany this request. For example, the following code block indexes a book document with ID 1 to a books index.

