

 [image:]

Math for Programmers

 3D graphics, machine learning and simulations with Python

 Paul Orland

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Jenny Stout

 	
 Technical development editor:

 	
 Kris Athi

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Lori Weidert

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreader:

 	
 Mike Shepard

 	
 Typesetter and Cover designer:

 	
 Marija Tudor

 ISBN: 9781617295355

 dedication

 To my first math teacher and my first programming teacher—Dad.

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Learning math with code

 1.1 Solving lucrative problems with math and software

 Predicting financial market movements

 Finding a good deal

 Building 3D graphics and animations

 Modeling the physical world

 1.2 How not to learn math

 Jane wants to learn some math

 Slogging through math textbooks

 1.3 Using your well-trained left brain

 Using a formal language

 Build your own calculator

 Building abstractions with functions

 Part 1. Vectors and graphics

 2 Drawing with 2D vectors

 2.1 Picturing 2D vectors

 Representing 2D vectors

 2D drawing in Python

 Exercises

 2.2 Plane vector arithmetic

 Vector components and lengths

 Multiplying vectors by numbers

 Subtraction, displacement, and distance

 Exercises

 2.3 Angles and trigonometry in the plane

 From angles to components

 Radians and trigonometry in Python

 From components back to angles

 Exercises

 2.4 Transforming collections of vectors

 Combining vector transformations

 Exercises

 2.5 Drawing with Matplotlib

 3 Ascending to the 3D world

 3.1 Picturing vectors in 3D space

 Representing 3D vectors with coordinates

 3D drawing with Python

 Exercises

 3.2 Vector arithmetic in 3D

 Adding 3D vectors

 Scalar multiplication in 3D

 Subtracting 3D vectors

 Computing lengths and distances

 Computing angles and directions

 Exercises

 3.3 The dot product: Measuring vector alignment

 Picturing the dot product

 Computing the dot product

 Dot products by example

 Measuring angles with the dot product

 Exercises

 3.4 The cross product: Measuring oriented area

 Orienting ourselves in 3D

 Finding the direction of the cross product

 Finding the length of the cross product

 Computing the cross product of 3D vectors

 Exercises

 3.5 Rendering a 3D object in 2D

 Defining a 3D object with vectors

 Projecting to 2D

 Orienting faces and shading

 Exercises

 4 Transforming vectors and graphics

 4.1 Transforming 3D objects

 Drawing a transformed object

 Composing vector transformations

 Rotating an object about an axis

 Inventing your own geometric transformations

 Exercises

 4.2 Linear transformations

 Preserving vector arithmetic

 Picturing linear transformations

 Why linear transformations?

 Computing linear transformations

 Exercises

 5 Computing transformations with matrices

 5.1 Representing linear transformations with matrices

 Writing vectors and linear transformations as matrices

 Multiplying a matrix with a vector

 Composing linear transformations by matrix multiplication

 Implementing matrix multiplication

 3D animation with matrix transformations

 Exercises

 5.2 Interpreting matrices of different shapes

 Column vectors as matrices

 What pairs of matrices can be multiplied?

 Viewing square and non-square matrices as vector functions

 Projection as a linear map from 3D to 2D

 Composing linear maps

 Exercises

 5.3 Translating vectors with matrices

 Making plane translations linear

 Finding a 3D matrix for a 2D translation

 Combining translation with other linear transformations

 Translating 3D objects in a 4D world

 Exercises

 6 Generalizing to higher dimensions

 6.1 Generalizing our definition of vectors

 Creating a class for 2D coordinate vectors

 Improving the Vec2 class

 Repeating the process with 3D vectors

 Building a vector base class

 Defining vector spaces

 Unit testing vector space classes

 Exercises

 6.2 Exploring different vector spaces

 Enumerating all coordinate vector spaces

 Identifying vector spaces in the wild

 Treating functions as vectors

 Treating matrices as vectors

 Manipulating images with vector operations

 Exercises

 6.3 Looking for smaller vector spaces

 Identifying subspaces

 Starting with a single vector

 Spanning a bigger space

 Defining the word dimension

 Finding subspaces of the vector space of functions

 Subspaces of images

 Exercises

 7 Solving systems of linear equations

 7.1 Designing an arcade game

 Modeling the game

 Rendering the game

 Shooting the laser

 Exercises

 7.2 Finding intersection points of lines

 Choosing the right formula for a line

 Finding the standard form equation for a line

 Linear equations in matrix notation

 Solving linear equations with NumPy

 Deciding whether the laser hits an asteroid

 Identifying unsolvable systems

 Exercises

 7.3 Generalizing linear equations to higher dimensions

 Representing planes in 3D

 Solving linear equations in 3D

 Studying hyperplanes algebraically

 Counting dimensions, equations, and solutions

 Exercises

 7.4 Changing basis by solving linear equations

 Solving a 3D example

 Exercises

 Part 2. Calculus and physical simulation

 8 Understanding rates of change

 8.1 Calculating average flow rate from volume

 Implementing an average_flow_rate function

 Picturing the average flow rate with a secant line

 Negative rates of change

 Exercises

 8.2 Plotting the average flow rate over time

 Finding the average flow rate in different time intervals

 Plotting the interval flow rates

 Exercises

 8.3 Approximating instantaneous flow rates

 Finding the slope of small secant lines

 Building the instantaneous flow rate function

 Currying and plotting the instantaneous flow rate function

 Exercises

 8.4 Approximating the change in volume

 Finding the change in volume for a short time interval

 Breaking up time into smaller intervals

 Picturing the volume change on the flow rate graph

 Exercises

 8.5 Plotting the volume over time

 Finding the volume over time

 Picturing Riemann sums for the volume function

 Improving the approximation

 Definite and indefinite integrals

 9 Simulating moving objects

 9.1 Simulating a constant velocity motion

 Adding velocities to the asteroids

 Updating the game engine to move the asteroids

 Keeping the asteroids on the screen

 Exercises

 9.2 Simulating acceleration

 Accelerating the spaceship

 9.3 Digging deeper into Euler’s method

 Carrying out Euler’s method by hand

 Implementing the algorithm in Python

 9.4 Running Euler’s method with smaller time steps

 Exercises

 10 Working with symbolic expressions

 10.1 Finding an exact derivative with a computer algebra system

 Doing symbolic algebra in Python

 10.2 Modeling algebraic expressions

 Breaking an expression into pieces

 Building an expression tree

 Translating the expression tree to Python

 Exercises

 10.3 Putting a symbolic expression to work

 Finding all the variables in an expression

 Evaluating an expression

 Expanding an expression

 Exercises

 10.4 Finding the derivative of a function

 Derivatives of powers

 Derivatives of transformed functions

 Derivatives of some special functions

 Derivatives of products and compositions

 Exercises

 10.5 Taking derivatives automatically

 Implementing a derivative method for expressions

 Implementing the product rule and chain rule

 Implementing the power rule

 Exercises

 10.6 Integrating functions symbolically

 Integrals as antiderivatives

 Introducing the SymPy library

 Exercises

 11 Simulating force fields

 11.1 Modeling gravity with a vector field

 Modeling gravity with a potential energy function

 11.2 Modeling gravitational fields

 Defining a vector field

 Defining a simple force field

 11.3 Adding gravity to the asteroid game

 Making game objects feel gravity

 Exercises

 11.4 Introducing potential energy

 Defining a potential energy scalar field

 Plotting a scalar field as a heatmap

 Plotting a scalar field as a contour map

 11.5 Connecting energy and forces with the gradient

 Measuring steepness with cross sections

 Calculating partial derivatives

 Finding the steepness of a graph with the gradient

 Calculating force fields from potential energy with the gradient

 Exercises

 12 Optimizing a physical system

 12.1 Testing a projectile simulation

 Building a simulation with Euler’s method

 Measuring properties of the trajectory

 Exploring different launch angles

 Exercises

 12.2 Calculating the optimal range

 Finding the projectile range as a function of the launch angle

 Solving for the maximum range

 Identifying maxima and minima

 Exercises

 12.3 Enhancing our simulation

 Adding another dimension

 Modeling terrain around the cannon

 Solving for the range of the projectile in 3D

 Exercises

 12.4 Optimizing range using gradient ascent

 Plotting range versus launch parameters

 The gradient of the range function

 Finding the uphill direction with the gradient

 Implementing gradient ascent

 Exercises

 13 Analyzing sound waves with a Fourier series

 13.1 Combining sound waves and decomposing them

 13.2 Playing sound waves in Python

 Producing our first sound

 Playing a musical note

 Exercises

 13.3 Turning a sinusoidal wave into a sound

 Making audio from sinusoidal functions

 Changing the frequency of a sinusoid

 Sampling and playing the sound wave

 Exercises

 13.4 Combining sound waves to make new ones

 Adding sampled sound waves to build a chord

 Picturing the sum of two sound waves

 Building a linear combination of sinusoids

 Building a familiar function with sinusoids

 Exercises

 13.5 Decomposing a sound wave into its Fourier series

 Finding vector components with an inner product

 Defining an inner product for periodic functions

 Writing a function to find Fourier coefficients

 Finding the Fourier coefficients for the square wave

 Fourier coefficients for other waveforms

 Exercises

 Part 3. Machine learning applications

 14 Fitting functions to data

 14.1 Measuring the quality of fit for a function

 Measuring distance from a function

 Summing the squares of the errors

 Calculating cost for car price functions

 Exercises

 14.2 Exploring spaces of functions

 Picturing cost for lines through the origin

 The space of all linear functions

 Exercises

 14.3 Finding the line of best fit using gradient descent

 Rescaling the data

 Finding and plotting the line of best fit

 Exercises

 14.4 Fitting a nonlinear function

 Understanding the behavior of exponential functions

 Finding the exponential function of best fit

 Exercises

 15 Classifying data with logistic regression

 15.1 Testing a classification function on real data

 Loading the car data

 Testing the classification function

 Exercises

 15.2 Picturing a decision boundary

 Picturing the space of cars

 Drawing a better decision boundary

 Implementing the classification function

 Exercises

 15.3 Framing classification as a regression problem

 Scaling the raw car data

 Measuring the “BMWness” of a car

 Introducing the sigmoid function

 Composing the sigmoid function with other functions

 Exercises

 15.4 Exploring possible logistic functions

 Parameterizing logistic functions

 Measuring the quality of fit for a logistic function

 Testing different logistic functions

 Exercises

 15.5 Finding the best logistic function

 Gradient descent in three dimensions

 Using gradient descent to find the best fit

 Testing and understanding the best logistic classifier

 Exercises

 16 Training neural networks

 16.1 Classifying data with neural networks

 16.2 Classifying images of handwritten digits

 Building the 64-dimensional image vectors

 Building a random digit classifier

 Measuring performance of the digit classifier

 Exercises

 16.3 Designing a neural network

 Organizing neurons and connections

 Data flow through a neural network

 Calculating activations

 Calculating activations in matrix notation

 Exercises

 16.4 Building a neural network in Python

 Implementing an MLP class in Python

 Evaluating the MLP

 Testing the classification performance of an MLP

 Exercises

 16.5 Training a neural network using gradient descent

 Framing training as a minimization problem

 Calculating gradients with backpropagation

 Automatic training with scikit-learn

 Exercises

 16.6 Calculating gradients with backpropagation

 Finding the cost in terms of the last layer weights

 Calculating the partial derivatives for the last layer weights using the chain rule

 Exercises

 Appendix A. Getting set up with Python

 Appendix B. Python tips and tricks

 Appendix C. Loading and rendering 3D Models with OpenGL and PyGame

 index

 front matter

preface

 I started working on this book in 2017, when I was CTO of Tachyus, a company I founded that builds predictive analytics software for oil and gas companies. By that time, we had finished building our core product: a fluid-flow simulator powered by physics and machine learning, along with an optimization engine. These tools let our customers look into the future of their oil reservoirs and helped them to discover hundreds of millions of dollars of optimization opportunities.

 My task as CTO was to productize and scale-out this software as some of the biggest companies in the world began to use it. The challenge was that this was not only a complex software project, but the code was very mathematical. Around that time, we started hiring for a position called “scientific software engineer,” with the idea that we needed skilled professional software engineers who also had solid backgrounds in math, physics, and machine learning. In the process of searching for and hiring scientific software engineers, I realized that this combination was both rare and in high demand. Our software engineers realized this as well and were eager to hone their math skills to contribute to our specialized back-end components of our stack. With eager math learners on our team already, as well as in our hiring pipeline, I started to think about the best way to train a strong software engineer to become a formidable math user.

 I realized there were no books with the right math content, presented at the right level. While there are probably hundreds of books and thousands of free online articles on topics like linear algebra and calculus, I’m not aware of any I could hand to a typical professional software engineer, and expect them to come back in a few months having mastered the material. I don’t say this to disparage software engineers, I just mean that reading and understanding math books is a difficult skill to learn on its own. To do so, you often need to figure out what specific topics you need to learn (which is hard if you don’t know anything about the material yet!), read them, and then choose some high quality exercises to practice applying those topics. If you were less discerning, you could read every word of a textbook and solve all of its exercises, but it could take months of full-time study to do that!

 With Math for Programmers, I hope to offer an alternative. I believe it’s possible to read this book cover-to-cover in a reasonable amount of time, including completing all the exercises, and then to walk away having mastered some key math concepts.

How this book was designed

 In the fall of 2017, I got in touch with Manning and learned that they were interested in publishing this book. That started a long process of converting my vision for this book into a concrete plan, which was much more difficult than I imagined, being a first-time author. Manning asked some hard questions of my original table of contents, like

 	
 Will anyone be interested in this topic?

 	
 Will this be too abstract?

 	
 Can you really teach a semester of calculus in one chapter?

 All of these questions forced me to think a lot more carefully about what was achievable. I’ll share some of the ways we answered these questions because they’ll help you understand exactly how this book works.

 First, I decided to focus this book around one core skill--expressing mathematical ideas in code. I think this is a great way to learn math, even if you aren’t a programmer by trade. When I was in high school, I learned to program on my TI-84 graphing calculator. I had the grand idea that I could write programs to do my math and science homework for me, giving me the right answer and outputting the steps along the way. As you might expect, this was more difficult than just doing my homework in the first place, but it gave me some useful perspective. For any kind of problem I wanted to program, I had to clearly understand the inputs and outputs, and what happened in each of the steps of the solution. By the end, I was sure I knew the material, and I had a working program to prove it.

 That’s the experience I’ll try to share with you in this book. Each chapter is organized around a tangible example program, and to get it working, you need to put all the mathematical pieces together correctly. Once you’re done, you’ll have confidence that you’ve understood the concept and can apply it again in the future. I’ve included plenty of exercises to help you check your understanding on the math and code I’ve included, as well as mini-projects which invite you to experiment with new variations on the material.

 Another question I discussed with Manning was what programming language I should use for the examples. Originally, I wanted to write the book in a functional programming language because math is a functional language itself. After all, the concept of a “function” originated in math, long before computers even existed. In various parts of math, you have functions that return other functions like integrals and derivatives in calculus. However, asking readers to learn an unfamiliar language like LISP, Haskell, or F# while learning new math concepts would make the book more difficult and less accessible. Instead, we settled on Python, a popular, easy-to-learn language with great mathematical libraries. Python also happens to be a favorite for “real world” users of math in academia and in industry.

 The last major question that I had to answer with Manning was what specific math topics I would include and which ones wouldn’t make the cut. This was a difficult decision, but at least we agreed on the title Math for Programmers, the broadness of which gave us some flexibility for what to include. My main criterion became the following: this was going to be “Math for Programmers,” not “Math for Computer Scientists.” With that in mind, I could leave out topics like discrete math, combinatorics, graphs, logic, Big O notation, and so on, that are covered in computer science classes and mostly used to study programs.

 Even with that decision made, there was still plenty of math to choose from. Ultimately, I chose to focus on linear algebra and calculus. I have some strong pedagogical views on these subjects, and there are plenty of good example applications in both that can be visual and interactive. You can write a big textbook on either linear algebra or calculus alone, so I had to get even more specific. To do that, I decided the book would build up to some applications in the trendy field of machine learning. With those decisions made, the contents of the book became clearer.

Mathematical ideas we cover

 This book covers a lot of mathematical topics, but there are a few major themes. Here are a few that you can keep an eye out for as you start reading:

 	
 Multi-dimensional spaces--Intuitively, you probably have a sense what the words two-dimensional (2D) and three-dimensional (3D) mean. We live in a 3D world, while a 2D world is flat like a piece of paper or a computer screen. A location in 2D can be described by two numbers (often called x and y-coordinates), while you need three numbers to identify a location in 3D. We can’t picture a 17-dimensional space, but we can describe its points by lists of 17 numbers. Lists of numbers like these are called vectors, and vector math helps illuminate the notion of “dimension.”

 	
 Spaces of functions--Sometimes a list of numbers can specify a function. With two numbers like a = 5 and B = 13, you can create a (linear) function of the form f(x) = ax + B, and in this case, the function would be f(x) = 5x + 13. For every point in 2D space, labeled by coordinates (a, b), there’s a linear function that goes with it. So we can think of the set of all linear functions as a 2D space.

 	
 Derivatives and gradients--These are calculus operations that measure the rates of change of functions. The derivative tells you how rapidly a function f(x) is increasing or decreasing as you increase the input value x. A function in 3D might look like f(x, y) and can increase or decrease as you change the values of either x or y. Thinking of (x, y) pairs as points in a 2D space, you could ask what direction you could go in this 2D space to make f increase most rapidly. The gradient answers this question.

 	
 Optimizing a function--For a function of the form f(x) or f(x, y), you could ask an even broader version of the previous question: what inputs to the function yield the biggest output? For f(x), the answer would be some value x, and for f(x, y), it would be a point in 2D. In the 2D case, the gradient can help us. If the gradient tells us f(x, y) is increasing in some direction, we can find a maximum value of f(x, y) if we explore in that direction. A similar strategy applies if you want to find a minimum value of a function.

 	
 Predicting data with functions--Say you want to predict a number, like the price of a stock at a given time. You could create a function P(t) that takes a time t and outputs a price p. The measure of predictive quality of your function is how close it comes to actual data. In that sense, finding a predictive function means minimizing the error between your function and real data. To do that, you need to explore a space of functions and find a minimum value. This is called regression.

 I think this is a useful collection of mathematical concepts for anyone to have in their toolbelt. Even if you’re not interested in machine learning, these concepts--and others in this book--have plenty of other applications.

 The subjects I’m saddest to leave out of the book are probability and statistics. Probability and the concept of quantifying uncertainty in general is important in machine learning as well. This is a big book already, so there just wasn’t time or room to squeeze a meaningful introduction for these topics. Stay tuned for a sequel to this book. There’s a lot more fun and useful math out there, beyond what I’ve been able to cover in these pages, and I hope to be able to share it with you in the future.

acknowledgments

 From start to finish, this book has taken about three years to create. I have gotten a lot of help in that time, and so I have quite a few people to thank and acknowledge.

 First and foremost, I want to thank Manning for making this book happen. I’m grateful they bet on me to write a big, challenging book as a first-time author and had a lot of patience with me as the book fell behind schedule a few times. In particular, I want to thank Marjan Bace and Michael Stephens for pushing the project forward and for helping define what exactly it would be. My original development editor, Richard Wattenbarger, was also critical to keeping the book alive as we iterated on the content. I think he reviewed six total drafts of chapters 1 and 2 before we settled on how the book would be structured.

 I wrote most of the book in 2019 under the expert guidance of my second editor, Jennifer Stout, who both got the project over the finish line and taught me a lot about technical writing. My technical editor, Kris Athi, and technical reviewer, Mike Shepard, also made it to the end with us, and thanks to them reading every word and line of code, we’ve caught and fixed countless errors. Outside of Manning, I got a lot of editing help from Michaela Leung, who also reviewed the whole book for grammatical and technical accuracy. I’d also like to thank the marketing team at Manning. With the MEAP program, we’ve been able to validate that this is a book people are interested in. It’s been a great motivator to know a book will be at least a modest commercial success while working on the intensive final steps to get it published.

 My current and former coworkers at Tachyus have taught me a lot about programming, and many of those lessons have made their way into this book. I credit Jack Fox for first getting me to think about the connections between functional programming and math, which comes up in chapters 4 and 5. Will Smith taught me about video game design, and we have had many good discussions about vector geometry for 3D rendering. Most notably, Stelios Kyriacou taught me most of what I know about optimization algorithms and helped me get some of the code in this book to work. He also introduced me to the philosophy that “everything is an optimization problem,” a theme that you should pick up on in the latter half of the book.

 To all the reviewers: Adhir Ramjiawan, Anto Aravinth, Christopher Haupt, Clive Harber, Dan Sheikh, David Ong, David Trimm, Emanuele Piccinelli, Federico Bertolucci, Frances Buontempo, German Gonzalez-Morris, James Nyika, Jens Christian B. Madsen, Johannes Van Nimwegen, Johnny Hopkins, Joshua Horwitz, Juan Rufes, Kenneth Fricklas, Laurence Giglio, Nathan Mische, Philip Best, Reka Horvath, Robert Walsh, Sébastien Portebois, Stefano Paluello, and Vincent Zhu, your suggestions helped make this a better book.

 I’m by no means a machine learning expert, so I consulted a number of resources to make sure I introduced it correctly and effectively. I was most influenced by Andrew Ng’s “Machine Learning” course on Coursera and the “Deep Learning” series by 3Blue1Brown on YouTube. These are great resources, and if you’ve seen them, you’ll notice that part 3 of this book is influenced by the way they introduce the subject. I also need to thank Dan Rathbone, whose handy website CarGraph.com was the source of the data for many of my examples.

 I also want to thank my wife Margaret, an astronomer, for introducing me to Jupyter notebooks. Switching the code for this book to Jupyter has made it much easier to follow. My parents have also been very supportive as I’ve written this book; on a few occasions, I’ve scrambled to get a chapter finished during a holiday visit with them. They also personally guaranteed that I would sell at least one copy (thanks, Mom!).

 Finally, this book is dedicated to my Dad, who first showed me how to do math in code when he taught me how to program in APL when I was in fifth grade. If there’s a second edition of this book, I might enlist his help to rewrite all of the Python in a single line of APL code!

about this book

 Math for Programmers teaches you how to solve mathematical problems with code using the Python programming language. Math skills are more and more important for professional software developers, especially as companies are staffing up teams for data science and machine learning. Math also plays an integral role in other modern applications like game development, computer graphics and animation, image and signal processing, pricing engines, and stock market analysis.

 The book starts by introducing 2D and 3D vector geometry, vector spaces, linear transformations, and matrices; these are the bread and butter of the subject of linear algebra. In part 2, it introduces calculus with a focus on a few particularly useful subjects for programmers: derivatives, gradients, Euler’s method, and symbolic evaluation. Finally, in part 3, all the pieces come together to show you how some important machine learning algorithms work. By the last chapter of the book, you’ll have learned enough math to code-up your own neural network from scratch.

 This isn’t a textbook! It’s designed to be a friendly introduction to material that can often seem intimidating, esoteric, or boring. Each chapter features a complete, real-world application of a mathematical concept, complemented by exercises to help you check your understanding as well as mini-projects to help you continue your exploration.

Who should read this book?

 This book is for anyone with a solid programming background who wants to refresh their math skills or to learn more about applications of math in software. It doesn’t require any previous exposure to calculus or linear algebra, just high-school level algebra and geometry (even if that feels long ago!). This book is designed to be read at your keyboard. You’ll get the most out of it if you follow along with the examples and try all the exercises.

How this book is organized

 Chapter 1 invites you into the world of math. It covers some of the important applications of mathematics in computer programming, introduces some of the topics that appear in the book, and explains how programming can be a valuable tool to a math learner. After that, this book is divided into three parts:

 	
 Part 1 focuses on vectors and linear algebra.

 	
Chapter 2 covers vector math in 2D with an emphasis on using coordinates to define 2D graphics. It also contains a review of some basic trigonometry.

 	
Chapter 3 extends the material of the previous chapter to 3D, where points are labeled by three coordinates instead of two. It introduces the dot product and cross product, which are helpful to measure angles and render 3D models.

 	
Chapter 4 introduces linear transformations, functions that take vectors as inputs and return vectors as outputs and that have specific geometric effects like rotation or reflection.

 	
Chapter 5 introduces matrices, which are arrays of numbers that can encode a linear vector transformation.

 	
Chapter 6 extends the ideas from 2D and 3D so you can work with collections of vectors of any dimension. These are called vector spaces. As a main example, it covers how to process images using vector math.

 	
Chapter 7 focuses on the most important computational problem in linear algebra: solving systems of linear equations. It applies this to a collision-detection system in a simple video game.

 	
 Part 2 introduces calculus and applications to physics.

 	
Chapter 8 introduces the concept of the rate of change of a function. It covers derivatives, which calculate a functions rate of change, and integrals, which recover a function from its rate of change.

 	
Chapter 9 covers an important technique for approximate integration called Euler’s method. It expands the game from chapter 7 to include moving and accelerating objects.

 	
Chapter 10 shows how to manipulate algebraic expressions in code, including automatically finding the formula for the derivative of a function. It introduces symbolic programming, a different approach to doing math in code than used elsewhere in the book.

 	
Chapter 11 extends the calculus topics to two-dimensions, defining the gradient operation and showing how it can be used to define a force field.

 	
Chapter 12 shows how to use derivatives to find the maximum or minimum values of functions.

 	
Chapter 13 shows how to think of sound waves as functions, and how to decompose them into sums of other simpler functions, called Fourier series. It covers how to write Python code to play musical notes and chords.

 	
 Part 3 combines the ideas from the first two parts to introduce some important ideas in machine learning.

 	
Chapter 14 covers how to fit a line to 2D data, a process referred to as linear regression. The example we explore is finding a function to best predict the price of a used car based on its mileage.

 	
Chapter 15 addresses a different machine learning problem: figuring out what model a car is based on some data about it. Figuring out what kind of object is represented by a data point is called classification.

 	
Chapter 16 shows how to design and implement a neural network, a special kind of mathematical function, and use it to classify images. This chapter combines ideas from almost every preceding chapter.

 Each chapter should be accessible if you’ve read and understand the previous ones. The cost of keeping all of the concepts in order is that the applications may seem eclectic. Hopefully the variety of examples make it an entertaining read, and show you the broad range of applications of the math we cover.

About the code

 This book presents ideas in (hopefully) logical order. The ideas you learn in chapter 2 apply to chapter 3, then ideas in chapters 2 and 3 appear in chapter 4, and so on. Computer code is not always written “in order” like this. That is, the simplest ideas in a finished computer program are not always in the first lines of the first file of the source code. This difference makes it challenging to present source code for a book in an intelligible way.

 My solution to this is to include a “walkthrough” code file in the form of a Jupyter notebook for each chapter. A Jupyter notebook is something like a recorded Python interactive session, with visuals like graphs and images built in. In a Jupyter notebook, you enter some code, run it, and then perhaps overwrite it later in your session as you develop your ideas. The notebook for each chapter has code for each section and subsection, run in the same order as it appears in the book. Most importantly, this means you can run the code for the book as you read. You don’t need to get to the end of a chapter before your code is complete enough to work. Appendix A shows you how to set up Python and Jupyter, and appendix B includes some handy Python features if you’re new to the language.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts. If errata or bugs are fixed in the source code online, I’ll include notes there to reconcile any differences from the code printed in the text.

 In a few cases, the code for an example consists of a standalone Python script, rather than cells of the walkthrough Jupyter notebook for the chapter. You can either run it on its own as, for instance, python script.py or run it from within Jupyter notebook cell as !python script.py. I’ve included references to standalone scripts in some Jupyter notebooks, so you can follow along section-by-section and find the relevant source files.

 One convention I’ve used throughout the book is to represent evaluation of individual Python commands with the >>> prompt symbol you’d see in a Python interactive session. I suggest you use Jupyter instead of Python interactive, but in any case, lines with >>> represent inputs and lines without represent outputs. Here’s an example of a code block representing an interactive evaluation of a piece of Python code, “2 + 2”:

 >>> 2 + 2 4

 By contrast, this next code block doesn’t have any >>> symbols, so it’s ordinary Python code rather than a sequence of inputs and outputs:

 def square(x): return x * x

 This book has hundreds of exercises, which are intended to be straightforward applications of material already covered, as well as mini-projects, which either are more involved, require more creativity, or introduce new concepts. Most exercises and mini-projects in this book invite you to solve some math problem with working Python code. I’ve included solutions to almost all of them, excluding some of the more open-ended mini-projects. You can find the solution code in the corresponding chapter’s walkthrough Jupyter notebook.

 The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/math-for-programmers and from GitHub at https://github.com/orlandpm/math-for-programmers.

liveBook discussion forum

 Purchase of Math for Programmers includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/math-for-programmers/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Paul Orland is an entrepreneur, programmer, and math enthusiast. After a stint as a software engineer at Microsoft, he co-founded Tachyus, a start-up company building predictive analytics to optimize energy production in the oil and gas industry. As founding CTO of Tachyus, Paul led the productization of machine learning and physics-based modeling software, and later as CEO, he expanded the company to serve customers on five continents. Paul has a B.S. in math from Yale and an M.S. in physics from the University of Washington. His spirit animal is the lobster.

about the cover illustration

 The figure on the cover of Math for Progammers is captioned “Femme Laponne,” or a woman from Lapp, now Sapmi, which includes parts of northern Norway, Sweden, Finland, and Russia. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

1 Learning math with code

 This chapter covers

 	
Solving lucrative problems with math and software

 	
Avoiding common pitfalls in learning math

 	
Building on intuition from programming to understand math

 	
Using Python as a powerful and extensible calculator

 Math is like baseball, or poetry, or fine wine. Some people are so fascinated by math that they devote their whole lives to it, while others feel like they just don’t get it. You’ve probably already been forced into one camp or another by twelve years of compulsory math education in school.

 What if we learned about fine wine in school like we learned math? I don’t think I’d like wine at all if I got lectured on grape varietals and fermentation techniques for an hour a day, five days a week. Maybe in such a world, I’d need to consume three or four glasses for homework as assigned by the teacher. Sometimes this would be a delicious educational experience, but sometimes I might not feel like getting loaded on a school night. My experience in math class went something like that, and it turned me off of the subject for a while. Like wine, mathematics is an acquired taste, and a daily grind of lectures and assignments is no way to refine one’s palate.

 It’s easy to think you’re either cut out for math or you aren’t. If you already believe in yourself, and you’re excited to start learning, that’s great! Otherwise, this chapter is designed for those less optimistic. Feeling intimidated by math is so common, it has a name: math anxiety. I hope to dispel any anxiety you might have and show you that math can be a stimulating experience rather than a frightening one. All you need are the right tools and the right mindset.

 The main tool for learning in this book is the Python programming language. I’m guessing that when you learned math in high school, you saw it written on the blackboard and not in computer code. That’s a shame, because a high-level programming language is far more powerful than a blackboard and far more versatile than whatever overpriced calculator you may have used. An advantage of meeting math in code is that the ideas have to be precise enough for a computer to understand, and there’s never any hand-waving about what new symbols mean.

 As with learning any new subject, the best way to set yourself up for success is to want to learn. There are plenty of good reasons for this. You could be intrigued by the beauty of mathematical concepts or enjoy the “brain-teaser” feel of math problems. Maybe there’s an app or game that you dream of building, and you need to write some mathematical code to make it work. For now, I’ll focus on a more pragmatic kind of motivation−solving mathematical problems with software can make you a lot of money.

1.1 Solving lucrative problems with math and software

 A classic criticism you hear in high school math class is, “When am I ever going to use this stuff in real life?” Our teachers told us that math would help us succeed professionally and make money. I think they were right about this, even though their examples were off. For instance, I don’t calculate my compounding bank interest by hand (and neither does my bank). Maybe if I became a construction site surveyor as my trigonometry teacher suggested, I’d be using sines and cosines every day to earn my paycheck.

 It turns out the “real world” applications from high school textbooks aren’t that useful. Still, there are real applications of math out there, and some of them are mind-bogglingly lucrative. Many are solved by translating the right mathematical idea into usable software. I’ll share some of my favorite examples.

1.1.1 Predicting financial market movements

 We’ve all heard legends of stock traders making millions of dollars by buying and selling the right stocks at the right time. Based on the movies I’ve seen, I always picture a trader as a middle-aged man in a suit yelling at his broker over a cell phone while driving around in a sports car. Maybe this stereotype was spot-on at one point, but the situation is different today.

 Holed up in back offices of skyscrapers all over Manhattan are thousands of people called quants. Quants, otherwise known as quantitative analysts, design mathematical algorithms to automatically trade stocks and earn a profit. They don’t wear suits and they don’t spend time yelling on their cell phones, but I’m sure many of them own very nice sports cars.

 So how does a quant write a program that automatically makes money? The best answers to that question are closely-guarded trade secrets, but you can be sure they involve a lot of math. We can look at a brief example to get a sense of how an automated trading strategy might work.

 Stocks are types of financial assets that represent ownership stakes in companies. When the market perceives a company is doing well, its stock price goes up−buying the stock becomes more costly and selling it becomes more rewarding. Stock prices change erratically and in real time. Figure 1.1 shows how a graph of a stock price over a day of trading might look.

 [image:]

 Figure 1.1 Typical graph of a stock price over time

 If you bought a thousand shares of this stock for $24 around minute 100 and sold them for $38 at minute 400, you would make $14,000 for the day. Not bad! The challenge is that you’d have to know in advance that the stock was going up, and that minutes 100 and 400 were the best times to buy and sell, respectively. It may not be possible to predict the exact lowest or highest price points, but maybe you can find relatively good times to buy and sell throughout the day. Let’s look at a way to do this mathematically.

 We could measure whether the stock is going up or down by finding a line of “best fit” that approximately follows the direction the price is moving. This process is called linear regression, and we cover it in part 3 of this book. Based on the variability of data, we can calculate two more lines above and below the “best fit” line that show the region in which the price is wobbling up and down. Overlaid on the price graph, figure 1.2 shows that the lines follow the trend nicely.

 [image:]

 Figure 1.2 Using linear regression to identify a trend in changing stock prices

 With a mathematical understanding of the price movement, we can then write code to automatically buy when the price is going through a low fluctuation relative to its trend and to sell when the price goes back up. Specifically, our program could connect to the stock exchange over the network and buy 100 shares when the price crosses the bottom line and sell 100 shares when the price crosses the top line. Figure 1.3 illustrates one such profitable trade: buying at around $27.80 and selling at around $32.60 makes you $480 in an hour.

 [image:]

 Figure 1.3 Buying and selling according to our rules-based software to make a profit

 I don’t claim I’ve shown you a complete or viable strategy here, but the point is that with the right mathematical model, you can make a profit automatically. At this moment, some unknown number of programs are building and updating models measuring the predicted trend of stocks and other financial instruments. If you write such a program, you can enjoy some leisure time while it makes money for you!

1.1.2 Finding a good deal

 Maybe you don’t have deep enough pockets to consider risky stock trading. Math can still help you make and save money in other transactions like buying a used car, for example. New cars are easy-to-understand commodities. If two dealers are selling the same car, you obviously want to buy from the dealer that has the lowest cost. But used cars have more numbers associated with them: an asking price, as well as mileage and model year. You can even use the duration that a particular used car has been on the market to assess its quality: the longer the duration, the more suspicious you might be.

 In mathematics, objects you can describe with ordered lists of numbers are called vectors, and there is a whole field (called linear algebra) dedicated to studying them. For example, a used car might correspond to a four-dimensional vector, meaning a four-tuple of numbers:

 (2015, 41429, 22.27, 16980)

 These numbers represent the model year, mileage, days on the market, and asking price, respectively. A friend of mine runs a site called CarGraph.com that aggregates data on used cars for sale. At the time of writing, it shows 101 Toyota Priuses for sale, and it gives some or all of these four pieces of data for each one. The site also lives up to its name and visually presents the data in a graph (figure 1.4). It’s hard to visualize four-dimensional objects, but if you choose two of the dimensions like price and mileage, you can graph them as points on a scatter plot.

 [image:]

 Figure 1.4 A graph of price vs. mileage for used Priuses from CarGraph.com

 [image:]

 Figure 1.5 Fitting an exponential decline curve to price vs. mileage data for used Toyota Priuses

 We might be interested in drawing a trend line here too. Every point on this graph represents someone’s opinion of a fair price, so the trend line would aggregate these opinions together into a more reliable price at any mileage. In figure 1.5, I decided to fit to an exponential decline curve rather than a line, and I omitted some of the nearly new cars selling for below retail price.

 To make the numbers more manageable, I converted the mileage values to tens of thousands of miles, so a mileage of 5 represents 50,000 miles. Calling p the price and M the mileage, the eq uation for the curve of best fit is as follows:

 p = $26,500 · (0.905)m

 Equation 1.1

 Equation 1.1 shows that the best fit price is $26,500 times 0.905 raised to the power of the mileage. Plugging the values into the equation, I find that if my budget is $10,000, then I should buy a Prius with about 97,000 miles on it (figure 1.6). If I believe the curve indicates a fair price, then cars below the line should typically be good deals.

 [image:]

 Figure 1.6 Finding the mileage I should expect on a used Prius for my $10,000 budget

 But we can learn more from equation 1.1 than just how to find a good deal. It tells a story about how cars depreciate. The first number in the equation is $26,500, which is the exponential function’s understanding of the price at zero mileage. This is an impressively close match to the retail price of a new Prius. If we use a line of best fit, it implies a Prius loses a fixed amount of value with each mile driven. This exponential function says, instead, that it loses a fixed percentage of its value with each mile driven. After driving 10,000 miles, a Prius is only worth 0.905 or 90.5% of its original price according to this equation. After 50,000 miles, we multiply its price by a factor of (0.905)5 = 0.607. That tells us that it’s worth about 61% of what it was originally.

 To make the graph in figure 1.6, I implemented a price(mileage) function in Python, which takes a mileage as an input (measured in 10,000s of miles) and returns the best-fit price as an output. Calculating price(0) − price(5) and price(5) − price(10) tells me that the first and second 50,000 miles driven cost about $10,000 and $6,300, respectively.

 If we use a line of best fit instead of an exponential curve, it implies that the car depreciated at a fixed rate of $0.10 per mile. This suggests that every 50,000 miles of driving leads to the same depreciation of $5,000. Conventional wisdom says that the first miles you drive a new car are the most expensive, so the exponential function (equation 1.1) agrees with this, while a linear model does not.

 Remember, this is only a two-dimensional analysis. We only built a mathematical model to relate two of the four numerical dimensions describing each car. In part 1, you learn more about vectors of various dimensions and how to manipulate higher-dimensional data. In p art 2, we cover different kinds of functions like linear functions and exponential functions, and we compare them by analyzing their rates of change. Finally, in part 3, we look at how to build mathematical models that incorporate all the dimensions of a data set to give us a more accurate picture.

1.1.3 Building 3D graphics and animations

 Many of the most famous and financially successful software projects deal with multi-dimensional data, specifically three-dimensional or 3D data. Here I’m thinking of 3D animated movies and 3D video games that gross in the billions of dollars. For example, Pixar’s 3D animation software has helped them rake in over $13 billion at box offices. Activision’s Call of Duty franchise of 3D action games has earned over $16 billion, and Rockstar’s Grand Theft Auto V alone has brought in $6 billion.

 Every one of these acclaimed projects is based on an understanding of how to do computations with 3D vectors, or triples of numbers of the form v = (x, y, z). A triple of

 numbers is sufficient to locate a point in 3D space relative to a reference point called the origin. Figure 1.7 shows how each of the three numbers tells you how far to go in one of three perpendicular directions.

 [image:]

 Figure 1.7 Labeling a point in 3D with a vector of three numbers, x, y, and z

 Any 3D object from a clownfish in Finding Nemo to an aircraft carrier in Call of Duty can be defined for a computer as a collection of 3D vectors. In code, each of these objects looks like a list of triples of float values. With three triples of floats, we have three points in space that can define a triangle (figure 1.8). For instance,

 triangle = [(2.3,1.1,0.9), (4.5,3.3,2.0), (1.0,3.5,3.9)]

 [image:]

 Figure 1.8 Building a 3D triangle using a triple of float values for each of its corners

 Combining many triangles, you can define the surface of a 3D object. Using more, smaller triangles, you can even make the result look smooth. Figure 1.9 shows six renderings of a 3D sphere using an increasing number of smaller and smaller triangles.

 [image:]

 Figure 1.9 Three-dimensional (3D) spheres built out of the specified number of triangles.

 In chapters 3 and 4, you learn how to use 3D vector math to turn 3D models into shaded 2D images like the ones in figure 1.9. You also need to make your 3D models smooth to make them realistic in a game or movie, and you need them to move and change in realistic ways. This means that your objects should obey the laws of physics, which are also expressed in terms of 3D vectors.

 Suppose you’re a programmer for Grand Theft Auto V and want to enable a basic use case like shooting a bazooka at a helicopter. A projectile coming out of a bazooka starts at the protagonist’s location and then its position changes over time. You can use numeric subscripts to label the various positions it has over its flight, starting with v0 = (x0, y0, u0). As time elapses, the projectile arrives at new positions labeled by vectors v1 = (x1, y1, u1), v2 = (x2, y2, u2), and so on. The rates of change for the x, y, and z values are decided by the direction and speed of the bazooka. Moreover, the rates can change over time−the projectile increases its u position at a decreasing rate because of the continuous downward pull of gravity (figure 1.10).

 [image:]

 Figure 1.10 The position vector of the projectile changes over time due to its initial speed and the pull of gravity.

 As any experienced action gamer will tell you, you need to aim slightly above the helicopter to hit it! To simulate physics, you have to know how forces affect objects and cause continuous change over time. The math of continuous change is called calculus, and the laws of physics are usually expressed in terms of objects from calculus called differential equations. You learn how to animate 3D objects in chapters 4 and 5, and then how to simulate physics using ideas from calculus in part 2.

1.1.4 Modeling the physical world

 My claim that mathematical software produces real financial value isn’t just speculation; I’ve seen the value in my own career. In 2013, I founded a company called Tachyus that builds software to optimize oil and gas production. Our software uses mathematical models to understand the flow of oil and gas underground to help producers extract it more efficiently and profitably. Using the insight it generates, our customers have achieved millions of dollars a year in cost savings and production increases.

 To explain how our software works, you need to know a few pieces of oil terminology. Holes called wells are drilled into the ground until they reach the target layer of porous (sponge-like) rock containing oil. This layer of oil-rich rock underground is called a reservoir. Oil is pumped to the surface and is then sold to refiners who convert it into the products we use every day. A schematic of an oilfield (not to scale!) is shown in figure 1.11.

 Over the past few years, the price of oil has varied significantly, but for our purposes, let’s say it’s worth $50 a barrel, where a barrel is a unit of volume equal to 42 gallons or about 159 liters. If by drilling wells and pumping effectively, a company is able to extract 1,000 barrels of oil per day (the volume of a few backyard swimming pools), it will have annual revenues in the tens of millions of dollars. Even a few percentage points of increased efficiency can mean a sizable amount of money.

 [image:]

 Figure 1.11 A schematic diagram of an oilfield

 The underlying question is what’s going on underground: where is the oil now and how is it moving? This is a complicated question, but it can also be answered by solving differential equations. The changing quantities here are not positions of a projectile, but rather locations, pressures, and flow rates of fluids underground. Fluid flow rate is a special kind of function that returns a vector, called a vector field. This means that fluid can flow at any rate in any three-dimensional direction, and that direction and rate can vary across different locations within the reservoir.

 With our best guess for some of these parameters, we can use a differential equation called Darcy’s law to predict flow rate of liquid through a porous rock medium like sandstone. Figure 1.12 shows Darcy’s law, but don’t worry if some symbols are unfamiliar! The function named q representing flow rate is bold to indicate it returns a vector value.

 [image:]

 Figure 1.12 Darcy’s law annotated for a physics equation, governing how fluid flows within a porous rock.

 The most important part of this equation is the symbol that looks like an upside-down triangle, which represents the gradient operator in vector calculus. The gradient of the pressure function P(x, y, z) at a given spatial point (x, y, z) is the 3D vector q(x, y, z), indicating the direction of increasing pressure and the rate of increase in pressure at that point. The negative sign tells us that the 3D vector of flow rate is in the opposite direction. This equation states, in mathematical terms, that fluid flows from areas of high pressure to areas of low pressure.

 Negative gradients are common in the laws of physics. One way to think of this is that nature is always seeking to move toward lower potential energy states. The potential energy of a ball on a hill depends on the altitude h of the hill at any lateral point x. If the height of a hill is given by a function h(x), the gradient points uphill while the ball rolls in the exact opposite direction (figure 1.13).

 [image:]

 Figure 1.13 The positive gradient points uphill, while the negative gradient points downhill.

 In chapter 11, you learn how to calculate gradients. There, I show you how to apply gradients to simulate physics and also to solve other mathematical problems. The gradient happens to be one of the most important mathematical concepts in machine learning as well.

 I hope these examples have been more compelling and realistic than the real-world applications you heard in high school math class. Maybe, at this point, you’re convinced these math concepts are worth learning, but you’re worried that they might be too difficult. It’s true that learning math can be hard, especially on your own. To make it as smooth as possible, let’s talk about some of the pitfalls you can face as a math student and how I’ll help you avoid them in this book.

1.2 How not to learn math

 There are plenty of math books out there, but not all of them are equally useful. I have quite a few programmer friends who tried to learn mathematical concepts like the ones in the previous section, either motivated by intellectual curiosity or by career ambitions. When they use traditional math textbooks as their main resource, they often get stuck and give up. Here’s what a typical unsuccessful math-learning story looks like.

1.2.1 Jane wants to learn some math

 My (fictional) friend Jane is a full-stack web developer working at a medium-sized tech company in San Francisco. In college, Jane didn’t study computer science or any mathematical subjects in depth, and she started her career as a product manager. Over the last ten years, she picked up coding in Python and JavaScript and was able to transition into software engineering. Now, at her new job, she is one of the most capable programmers on the team, able to build the databases, web services, and user interfaces required to deliver important new features to customers. Clearly, she’s pretty smart!

 Jane realizes that learning data science could help her design and implement better features at work, using data to improve the experience for her customers. Most days on the train to work, Jane reads blogs and articles about new technologies, and recently, she’s been amazed by a few about a topic called “deep learning.” One article talks about Google’s AlphaGo, powered by deep learning, which beat the top-ranked human players in the world in a board game. Another article showed stunning impressionist paintings generated from ordinary images, again using a deep learning system.

 After reading these articles, Jane overheard that her friend-of-a-friend Marcus got a deep learning research job at a big tech company. Marcus supposedly gets paid over $400,000 a year in salary and stock. Thinking about the next step in her career, what more could Jane want than to work on a fascinating and lucrative problem?

 Jane did some research and found an authoritative (and free!) resource online: the book Deep Learning by Goodfellow, et al., (MIT Press, 2016). The introduction read much like the technical blog posts she was used to and got her even more excited about learning the topic. But as she kept reading, the content of the book got harder. The first chapter covered the required math concepts and introduced a lot of terminology and notation that Jane had never seen. She skimmed it and tried to get on to the meat of the book, but it continued to get more difficult.

 Jane decided she needed to pause her study of AI and deep learning until she learned some math. Fortunately, the math chapter of Deep Learning listed a reference on linear algebra for students who had never seen the topic before. She tracked down this textbook, Linear Algebra by Georgi Shilov (Dover, 1977), and discovered that it was 400 pages long and equally as dense as Deep Learning.

 After spending an afternoon reading abstruse theorems about concepts like number fields, determinants, and cofactors, she called it quits. She had no idea how these concepts were going to help her write a program to win a board game or to generate artwork, and she no longer cared to spend dozens of hours with this dry material to find out.

 Jane and I met to catch up over a cup of coffee. She told me about her struggles reading real AI literature because she didn’t know linear algebra. Recently, I’m hearing a lot of the same form of lamentation:

 I’m trying to read about [new technology] but it seems like I need to learn [math topic] first.

 Her approach was admirable: she tracked down the best resource for the subject she wanted to learn and sought out resources for prerequisites she was missing. But in taking that approach to its logical conclusion, she found herself in a nauseating “depth-first” search of technical literature.

1.2.2 Slogging through math textbooks

 College-level math books like the linear algebra book Jane picked up tend to be very formulaic. Every section follows the same format: it defines some new terminology, states some facts (called theorems) using that terminology, and then proves that those theorems are true.

 This sounds like a good, logical order: you introduce the concept you’re talking about, state some conclusions that can be drawn, and then justify them. Then why is it so hard to read advanced mathematical textbooks?

 The problem is that this is not how math is actually created. When you’re coming up with new mathematical ideas, there can be a long period of experimentation before you even find the right definitions. I think most professional mathematicians would describe their steps like this:

 	
 Invent a game. For example, start playing with some mathematical objects by trying to list all of them, find patterns among them, or find one with a particular property.

 	
 Form some conjectures. Speculate about some general facts you can state about your game and, at least, convince yourself these must be true.

 	
 Develop some precise language to describe your game and your conjectures. After all, your conjectures won’t mean anything until you can communicate them.

 	
 Finally, with some determination and luck, find a proof for your conjecture, showing why it needs to be true.

 The main lesson to learn from this process is that you should start by thinking about big ideas, and the formalism can wait. Once you have a rough idea of how the math works, the vocabulary and notation become an asset for you rather than a distraction. Math textbooks usually work in the opposite order, so I recommend using textbooks as references rather than as introductions to new subjects.

 Instead of reading traditional textbooks, the best way to learn math is to explore ideas and draw your own conclusions. However, you don’t have enough hours in the day to reinvent everything yourself. What is the right balance to strike? I’ll give you my humble opinion, which guides how I’ve written this non-traditional book about math.

1.3 Using your well-trained left brain

 This book is designed for people who are either experienced programmers or for those who are excited to learn programming as they work through it. It’s great to write about math for an audience of programmers, because if you can write code, you’ve already trained your analytical left brain. I think the best way to learn math is with the help of a high-level programming language, and I predict that in the not-so-distant future, this will be the norm in math classrooms.

 There are several specific ways programmers like you are well equipped to learn math. I list those here, not only to flatter you, but also to remind you what skills you already have that you can lean on in your mathematical studies.

1.3.1 Using a formal language

 One of the first hard lessons you learn in programming is that you can’t write your code like you write simple English. If your spelling or grammar is slightly off when writing a note to a friend, they can probably still understand what you’re trying to say. But any syntactic error or misspelled identifier in code causes your program to fail. In some languages, even forgetting a semicolon at the end of an otherwise correct statement prevents the program from running. As another example, consider the two statements:

 x = 5
5 = x

 I could read either of these to mean that the symbol x has the value 5. But that’s not exactly what either of these means in Python, and in fact, only the first one is correct. The Python statement x = 5 is an instruction to set the variable x to have the value 5. On the other hand, you can’t set the number 5 to have the value x. This may seem pedantic, but you need to know it to write a correct program.

 Another example that trips up novice programmers (and experienced ones as well!) is reference equality. If you define a new Python class and create two identical instances of it, they are not equal!

 >>> class A(): pass
...
>>> A() == A()
False

 You might expect two identical expressions to be equal, but that’s evidently not a rule in Python. Because these are different instances of the A class, they are not considered equal.

 Be on the lookout for new mathematical objects that look like ones you know but don’t behave the same way. For instance, if the letters A and B represent numbers, then A · B = B · A. But, as you’ll learn in chapter 5, this is not necessarily the case if A and B are not numbers. If, instead, A and B are matrices, then the products A · B and B · A are different. In fact, it’s possible that only one of the products is even doable or that neither product is correct.

 When you’re writing code, it’s not enough to write statements with correct syntax. The ideas that your statements represent need to make sense to be valid. If you apply the same care when you’re writing mathematical statements, you’ll catch your mistakes faster. Even better, if you write your mathematical statements in code, you’ll have the computer to help check your work.

1.3.2 Build your own calculator

 Calculators are prevalent in math classes because it’s useful to check your work. You need to know how to multiply 6 by 7 without using your calculator, but it’s good to confirm that your answer of 42 is correct by consulting your calculator. The calculator also helps you save time once you’ve mastered mathematical concepts. If you’re doing trigonometry, and you need to know the answer to 3.14159 / 6, the calculator is there to handle it so you can instead think about what the answer means. The more a calculator can do out-of-the-box, the more useful it should theoretically be.

 But sometimes our calculators are too complicated for our own good. When I started high school, I was required to get a graphing calculator and I got a TI-84. It had about 40 buttons, each with 2 to 3 different modes. I only knew how to use maybe 20 of them, so it was a cumbersome tool to learn how to use. The story was the same when I got my first ever calculator in first grade. There were only 15 buttons or so, but I didn’t know what some of them did. If I had to invent a first calculator for students, I would make it look something like the one in figure 1.14.

 [image:]

 Figure 1.14 A calculator for students learning to count

 This calculator only has two buttons. One of them resets the value to 1, and the other advances to the next number. Something like this would be the right “no-frills” tool for children learning to count. (My example may seem silly, but you can actually buy calculators like this! They are usually mechanical and sold as tally counters.)

 Soon after you master counting, you want to practice writing numbers and adding them. The perfect calculator at that stage of learning might have a few more buttons (figure 1.15).

 [image:]

 Figure 1.15 A calculator capable of writing whole numbers and adding them

 There’s no need for buttons like − , *, or ÷ to get in your way at this phase. As you solve subtraction problems like 5 − 2, you can still check your answer of 3 with this calculator by confirming the sum 3 + 2 = 5. Likewise, you can solve multiplication problems by adding numbers repeatedly. You could upgrade to a calculator that does all of the operations of arithmetic when you’re done exploring with this one.

 I think an ideal calculator would be extensible, meaning that you could add more functionality to it as needed. For instance, you could add a button to your calculator for every new mathematical operation you learn. Once you got to algebra, maybe you could enable it to understand symbols like x or y in addition to numbers. When you learned calculus, you could further enable it to understand and manipulate mathematical functions.

 Extensible calculators that can hold many types of data seem far-fetched, but that’s exactly what you get when you use a high-level programming language. Python comes with arithmetic operations, a math module, and numerous third-party mathematical libraries you can pull in to make your programming environment more powerful whenever you want. Because Python is Turing complete, you can (in principle) compute anything that can be computed. You only need a powerful enough computer, a clever enough implementation, or both.

 In this book, we implement each new mathematical concept in reusable Python code. Working through the implementation yourself can be a great way of cementing your understanding of a new concept, and by the end, you’ve added a new tool to your toolbelt. After trying it yourself, you can always swap in a polished, mainstream library if you like. Either way, the new tools you build or import lay the groundwork to explore even bigger ideas.

1.3.3 Building abstractions with functions

 In programming, the process I just described is called abstraction. For example, when you get tired of repeated counting, you create the abstraction of addition. When you get tired of doing repeated addition, you create the abstraction of multiplication, and so on.

 Of all the ways that you can make abstractions in programming, the most important one to carry over to math is the function. A function in Python is a way of repeating some task that can take one or more inputs or that can produce an output. For example,

 def greet(name):
 print("Hello %s!" % name)

 allows me to issue multiple greetings with short, expressive code like this:

 >>> for name in ["John","Paul","George","Ringo"]:
... greet(name)
...
Hello John!
Hello Paul!
Hello George!
Hello Ringo!

 This function can be useful, but it’s not like a mathematical function. Mathematical functions always take input values, and they always return output values with no side effects.

 In programming, we call the functions that behave like mathematical functions pure functions. For example, the square function f(x) = x2 takes a number and returns the product of the number with itself. When you evaluate f(3), the result is 9. That doesn’t mean that the number 3 has now changed and becomes 9. Rather, it means 9 is the corresponding output for the input 3 for the function f. You can picture this squaring function as a machine that takes numbers in an input slot and produces results (numbers) in its output slot (figure 1.16).

 [image:]

 Figure 1.16 A function as a machine with an input slot and an output slot

 This is a simple and useful mental model, and I’ll return to it throughout the book. One of the things I like most about it is that you can picture a function as an object in and of itself. In math, as in Python, functions are data that you can manipulate independently and even pass to other functions.

 Math can be intimidating because it is abstract. Remember, as in any well-written software, the abstraction is introduced for a reason: it helps you organize and communicate bigger and more powerful ideas. When you grasp these ideas and translate them into code, you’ll open up some exciting possibilities.

 If you didn’t already, I hope you now believe there are many exciting applications of math in software development. As a programmer, you already have the right mindset and tools to learn some new mathematical ideas. The ideas in this book provided me with professional and personal enrichment, and I hope they will for you as well. Let’s get started!

Summary

 	
 There are interesting and lucrative applications of math in many software engineering domains.

 	
 Math can help you quantify a trend for data that changes over time, for instance, to predict the movement of a stock price.

 	
 Different types of functions convey different kinds of qualitative behavior. For instance, an exponential depreciation function means that a car loses a percentage of its resale value with each mile driven rather than a fixed amount.

 	
 Tuples of numbers (called vectors) represent multidimensional data. Specifically, 3D vectors are triples of numbers and can represent points in space. You can build complex 3D graphics by assembling triangles specified by vectors.

 	
 Calculus is the mathematical study of continuous change, and many of the laws of physics are written in terms of calculus equations that are called differential equations.

 	
 It’s hard to learn math from traditional textbooks! You learn math by exploration, not as a straightforward march through definitions and theorems.

 	
 As a programmer, you’ve already trained yourself to think and communicate precisely; this skill will help you learn math as well.

Part 1. Vectors and graphics

 In the first part of this book, we dig into the branch of math called linear algebra. At a very high level, linear algebra is the branch of math dealing with computations on multi-dimensional data. The concept of “dimension” is a geometric one; you probably intuitively know what I mean when I say “a square is 2-dimensional” while “a cube is 3-dimensional.” Among other things, linear algebra lets us turn geometric ideas about dimension into things we can compute concretely.

 The most basic concept in linear algebra is that of a vector, which you can think of as a data point in some multi-dimensional space. For instance, you’ve probably heard of the 2-dimensional (2D) coordinate plane in high school geometry and algebra. As we’ll cover in chapter 2, vectors in 2D correspond to points in the plane, which can be labeled by ordered pairs of numbers of the form (x, y). In chapter 3, we’ll consider 3-dimensional (3D) space, whose vectors (points) can be labeled by triples of numbers in the form (x, y, z). In both cases, we see we can use collections of vectors to define geometric shapes, which can, in turn, be converted into interesting graphics.

 Another key concept in linear algebra is that of a linear transformation, which we introduce in chapter 4. A linear transformation is a kind of function that takes a vector as input and returns a vector as output, while preserving the geometry (in a special sense) of the vectors involved. For instance, if a collection of vectors (points) lie on a straight line in 2D, after applying a linear transformation, they will still lie on a straight line. In chapter 5, we introduce matrices, which are rectangular arrays of numbers that can represent linear transformations. Our culminating application of linear transformations is to apply them sequentially over time to graphics in a Python program, resulting in some animated graphics in 3D.

 While we can only picture vectors and linear transformations in 2D and 3D, it’s possible to define vectors with any number of dimensions. In n dimensions, a vector can be identified as an ordered n-tuple of numbers of the form (x1, x2, ..., xn). In chapter 6, we reverse-engineer the concepts of 2D and 3D space to define the general concept of a vector space and to define the concept of dimension more concretely. In particular, we’ll see that digital images made of pixels can be thought of as vectors in a high-dimensional vector space and that we can do image manipulation with linear transformations.

 Finally, in chapter 7, we look at the most ubiquitous computational tool in linear algebra: solving systems of linear equations. As you may remember from high school algebra, the solution to two linear equations in two variables like x and y tell us where two lines meet in the plane. In general, linear equations tell us where lines, planes, or higher-dimensional generalizations intersect in a vector space. Being able to automatically solve this problem in Python, we’ll use it to build a first version of a video game engine.

2 Drawing with 2D vectors

 This chapter covers

 	
Creating and manipulating 2D drawings as collections of vectors

 	
Thinking of 2D vectors as arrows, locations, and ordered pairs of coordinates

 	
Using vector arithmetic to transform shapes in the plane

 	
Using trigonometry to measure distances and angles in the plane

 You probably already have some intuition for what it means to be two-dimensional or three-dimensional. A two-dimensional(2D) object is flat like an image on a piece of paper or a computer screen. It has only the dimensions of height and width. A three-dimensional(3D) object in our physical world, however, has not only height and width but also depth.

 Models of 2D and 3D entities are important in programming. Anything that shows up on the screen of your phone, tablet, or PC is a 2D object, occupying some width and height of pixels. Any simulation, game, or animation that represents the physical world is stored as 3D data and eventually projected to the two dimensions of the screen. In virtual and augmented reality applications, the 3D models must be paired with real, measured 3D data about the user’s position and perspective.

 Even though our everyday experience takes place in three dimensions, it's useful to think of some data as higher dimensional. In physics, it’s common to consider time as the fourth dimension. While an object exists at a location in 3D space, an event occurs at a 3D location and at a specified moment. In data science problems, it’s common for data sets to have far more dimensions. For instance, a user tracked on a website can have hundreds of measurable attributes, which describe usage patterns. Grappling with these problems in graphics, physics, and data analysis requires a framework for dealing with data in higher dimensions. This framework is vector mathematics.

 Vectors are objects that live in multi-dimensional spaces. These have their own notions of arithmetic (adding, multiplying, and so on). We start by studying 2D vectors, which are easy to visualize and compute with. We use a lot of 2D vectors in this book, and we also use them as a mental model when reasoning about higher-dimensional problems.

2.1 Picturing 2D vectors

 The 2D world is flat like a piece of paper or a computer screen. In the language of math, a flat, 2D space is referred to as a plane. An object living in a 2D plane has the two dimensions of height and width but no third dimension of depth. Likewise, you can describe locations in 2D by two pieces of information: their vertical and horizontal positions. To describe the location of points in the plane, you need a reference point. We call that special reference point the origin. Figure 2.1 shows this relationship.

 [image:]

 Figure 2.1 Locating one of several points in the plane, relative to the origin

 There are many points to choose from, but we have to fix one of them as our origin. To distinguish it, we mark the origin with an x instead of with a dot as in figure 2.1. From the origin, we can draw an arrow (like the solid one in figure 2.1) to show the relative location of another point.

 A two-dimensional vector is a point in the plane relative to the origin. Equivalently, you can think of a vector as a straight arrow in the plane; any arrow can be placed to start at the origin, and it indicates a particular point (figure 2.2).

 [image:]

 Figure 2.2 Superimposing an arrow on the plane indicates a point relative to the origin.

 We’ll use both arrows and points to represent vectors in this chapter and beyond. Points are useful to work with because we can build more interesting drawings out of them. If I connect the points in figure 2.2 as in figure 2.3, I get a drawing of a dinosaur:

 [image:]

 Figure 2.3 Connecting points in the plane to draw a shape

 Any time a 2D or 3D drawing is displayed by a computer, from my modest dinosaur to a feature-length Pixar movie, it is defined by points−or vectors−connected to show the desired shape. To create the drawing you want, you need to pick vectors in the right places, requiring careful measurement. Let’s take a look at how to measure vectors in the plane.

2.1.1 Representing 2D vectors

 With a ruler, we can measure one dimension such as the length of an object. To measure in two dimensions, we need two rulers . These rulers are called axes (the singular is axis), and we lay them out in the plane perpendicular to one another, intersecting at the origin. Drawn with axes, figure 2.4 shows that our dinosaur has the notions of up and down as well as left and right. The horizontal axis is called the x-axis and the vertical one is called the y-axis.

 [image:]

 Figure 2.4 The dinosaur drawn with an x-axis and a y-axis.

 With axes to orient us, we can say things like, “Four of the points are above and to the right of the origin.” But we’ll want to get more quantitative than that. A ruler has tick marks that show how many units along it we’ve measured. Likewise, in our 2D drawing, we can add grid lines perpendicular to the axes that show where points lie relative to them. By convention, we place the origin at tick 0 on both the x- and y-axes (figure 2.5).

 In the context of this grid, we can measure vectors in the plane. For example, in figure 2.5, the tip of the dinosaur’s tail lines up with positive 6 on the x-axis and positive 4 on the y-axis. We could think of these distances as centimeters, inches, pixels, or any other unit of length, but usually we leave the units unspecified unless we have a particular application in mind.

 [image:]

 Figure 2.5 Grid lines let us measure the location of points relative to the axes.

 The numbers 6 and 4 are called the x- and y-coordinates of the point, and this is enough to tell us exactly what point we’re talking about. We typically write coordinates as an ordered pair (or tuple) with the x-coordinate first and the y-coordinate second, for example, (6, 4). Figure 2.6 shows how we can now describe the same vector in three ways.

 [image:]

 Figure 2.6 Three mental models describing the same vector.

 From another pair of coordinates like (−3, 4.5), we can find the point in the plane or the arrow that represents them. To get to the point in the plane with these coordinates, start at the origin and then travel three grid lines to the left (because the x-coordinate is −3) and then four and a half grid lines up (where the y-coordinate is 4.5). The point won’t lie at the intersection of two grid lines, but that’s fine; any pair of real numbers gives us some point on the plane. The corresponding arrow will be the straight-line path from the origin to that location, which points up and to the left (northwest, if you prefer). Try drawing this example for yourself as practice!

2.1.2 2D drawing in Python

 When you produce an image on a screen, you’re working in a 2D space. The pixels on the screen are the available points in that plane. These are labeled by whole number coordinates rather than real number coordinates, and you can’t illuminate the space between pixels. That said, most graphics libraries let you work with floating-point coordinates and automatically handle translating graphics to pixels on the screen.

 We have plenty of language choices and libraries to specify graphics and to get them on the screen: OpenGL, CSS, SVG, and so on. Python has libraries like Pillow and Turtle that are well equipped for creating drawings with vector data. In this chapter, I use a small set of custom-built functions to create drawings, built on top of another Python library called Matplotlib. This lets us focus on using Python to build images with vector data. Once you understand this process, you’ll be able to pick up any of the other libraries easily.

 The most important function I’ve included, called draw, takes inputs representing geometric objects and keyword arguments specifying how you want your drawing to look. The Python classes listed in table 2.1 represent each kind of drawable geometric object.

 Table 2.1 Some Python classes representing geometric figures, usable with the draw function.

 	
 Class

 	
 Constructor example

 	
 Description

 	
 Polygon

 	
 Polygon(*vectors)

 	
 Draws a polygon whose vertices (corners) are represented by a list of vectors

 	
 Points

 	
 Points(*vectors)

 	
 Represents a list of points (dots) to draw, one at each of the input vectors

 	
 Arrow

 	
 Arrow(tip)

 Arrow(tip, tail)

 	
 Draws an arrow from the origin to the tip vector or from the tail vector to the head vector if a tail is specified

 	
 Segment

 	
 Segment(start,end)

 	
 Draws a line segment from the start to the vector end

 You can find these functions implemented in the file vector_drawing.py in the source code. At the end of the chapter, I’ll say a bit more about how these are implemented.

 Note For this chapter (and each subsequent chapter), there is a Jupyter notebook in the source code folder showing how to run (in order) all of the code in the chapter, including importing the functions from the vector_drawing module. If you haven’t already, you can consult appendix A to get set up with Python and Jupyter.

 With these drawing functions in hand, we can draw the points outlining the dinosaur (figure 2.5):

 from vector_drawing import *
dino_vectors = [(6,4), (3,1), (1,2), (−1,5), (−2,5), (−3,4), (−4,4),
 # insert 16 remaining vectors here
]

draw(
 Points(*dino_vectors)
)

 I didn’t write out the complete list of dino_vectors, but with the suitable collection of vectors, the code gives you the points shown in figure 2.7 (matching figure 2.5 as well).

 [image:]

 Figure 2.7 Plotting the dinosaur’s points with the draw function in Python

 As a next step in our drawing process, we can connect some dots. A first segment might connect the point (6, 4) with the point (3, 1) on the dinosaur’s tail. We can draw the points along with this new segment using this function call, and figure 2.8 shows the results:

 draw(
 Points(*dino_vectors),
 Segment((6,4),(3,1))
)

 [image:]

 Figure 2.8 The dinosaur’s points with a line segment connecting the first two points (6, 4) and (3, 1)

 The line segment is actually the collection consisting of the points (6, 4) and (3, 1) as well as all of the points lying on the straight line between them. The draw function automatically colors all of the pixels at those points blue. The Segment class is a useful abstraction because we don’t have to build every segment from the points that make up our geometric object (in this case, the dinosaur). Drawing 20 more segments, we get the complete outline of the dinosaur (figure 2.9).

 [image:]

 Figure 2.9 A total of 21 function calls give us 21 line segments, completing the outline of the dinosaur.

 In principle, we can now outline any kind of 2D shape we want, provided we have all of the vectors to specify it. Coming up with all of the coordinates by hand can be tedious, so we’ll start to look at ways to do computations with vectors to find their coordinates automatically.

2.1.3 Exercises

 	
 Exercise 2.1: What are the x- and y-coordinates of the point at the tip of the dinosaur’s toe?

 Solution: (−1, −4)

 	
 Exercise 2.2: Draw the point in the plane and the arrow corresponding to the point (2, −2).

 Solution: Represented as a point on the plane and an arrow, (2, −2) looks like this:

 [image:]

 The point and arrow representing (2, −2)

 	
 Exercise 2.3: By looking at the locations of the dinosaur’s points, infer the remaining vectors not included in the dino_vectors list. For instance, I already included (6, 4), which is the tip of the dinosaur’s tail, but I didn’t include the point (−5, 3), which is a point on the dinosaur’s nose. When you’re done, dino_vectors should be a list of 21 vectors represented as coordinate pairs.

 Solution: The complete set of vectors outlining the dinosaur is as follows:

 dino_vectors = [(6,4), (3,1), (1,2), (−1,5), (−2,5), (−3,4), (−4,4),
 (−5,3), (−5,2), (−2,2), (−5,1), (−4,0), (−2,1), (−1,0), (0,-3),
 (−1,-4), (1,-4), (2,-3), (1,−2), (3,−1), (5,1)
]

 	
 Exercise 2.4: Draw the dinosaur with the dots connected by constructing a Polygon object with the dino_vectors as its vertices.

 Solution:

 draw(
 Points(*dino_vectors),
 Polygon(*dino_vectors)
)

 [image:]

 The dinosaur drawn as a polygon.

 	
 Exercise 2.5: Draw the vectors (x,x**2) for x in the range from x = −10 to x = 11) as points (dots) using the draw function. What is the result?

 Solution: The pairs draw the graph for the function y = x2, plotted for the integers from 10 to 10:

 [image:]

 Points on the graph for y = x2

 To make this graph, I used two keyword arguments for the draw function. The grid keyword argument of (1, 10) draws vertical grid lines every one unit and horizontal grid lines every ten units. The nice_aspect_ratio keyword argument set to False tells the graph it doesn’t have to keep the x -axis and the y-axis scales the same:

 draw(
 Points(*[(x,x**2) for x in range(−10,11)]),
 grid=(1,10),
 nice_aspect_ratio=False
)

2.2 Plane vector arithmetic

 Like numbers, vectors have their own kind of arithmetic; we can combine vectors with operations to make new vectors. The difference with vectors is that we can visualize the results. Operations from vector arithmetic all accomplish useful geometric transformations, not just algebraic ones. We’ll start with the most basic operation: vector addition.

 Vector addition is simple to calculate: given two input vectors, you add their x-coordinates to get the resulting x-coordinate and then you add their y-coordinates to get the resulting y-coordinate. Creating a new vector with these summed coordinates gives you the vector sum of the original vectors. For instance, (4, 3) + (−1, 1) = (3, 4) because 4 + (−1) = 3 and 3 + 1 = 4. Vector addition is a one-liner to implement in Python:

 def add(v1,v2):
 return (v1[0] + v2[0], v1[1] + v2[1])

 Because we can interpret vectors as arrows or as points in the plane, we can visualize the result of the addition in both ways (figure 2.10). As a point in the plane, you can reach (−1, 1) by starting at the origin, which is (0, 0), and move one unit to the left and one unit up. You reach the vector sum of (4, 3) + (−1, 1) by starting instead at (4, 3) and moving one unit to the left and one unit up. This is the same as saying you traverse one arrow and then traverse the second.

 [image:]

 Figure 2.10 Picturing the vector sum of (4, 3) and (−1, 1)

 The rule for vector addition of arrows is sometimes called tip-to-tail addition. That’s because if you move the tail of the second arrow to the tip of the first (without changing its length or direction!), then the sum is the arrow from the start of the first to the end of the second (figure 2.11).

 [image:]

 Figure 2.11 Tip-to-tail addition of vectors

 When we talk about arrows, we really mean “a specific distance in a specific direction.” If you walk one distance in one direction and another distance in another direction, the vector sum tells you the overall distance and direction you traveled (figure 2.12).

 [image:]

 Figure 2.12 The vector sum as an overall distance and direction traveled in the plane.

 Adding a vector has the effect of moving or translating an existing point or collection of points. If we add the vector (−1.5, −2.5) to every vector of dino_vectors, we get a new list of vectors, each of which is 1.5 units left and 2.5 units down from one of the original vectors. Here’s the code for that:

 dino_vectors2 = [add((−1.5,−2.5), v) for v in dino_vectors]

 The result is the same dinosaur shape shifted down and to the left by the vector (−1.5, −2.5). To see this (figure 2.13), we can draw both dinosaurs as polygons:

 draw(
 Points(*dino_vectors, color=blue),
 Polygon(*dino_vectors, color=blue),
 Points(*dino_vectors2, color=red),
 Polygon(*dino_vectors2, color=red)
)

 [image:]

 Figure 2.13 The original dinosaur (blue) and the translated copy (red). Each point on the translated dinosaur is moved by (−1.5, −2.5) down and to the left from its location on the original dinosaur.

 The arrows in the copy on the right show that each point moved down and to the left by the same vector: (−1.5, −2.5). A translation like this is useful if, for instance, we want to make the dinosaur a moving character in a 2D computer game. Depending on the button pressed by the user, the dinosaur could translate in the corresponding direction on the screen. We’ll implement a real game like this with moving vector graphics in chapters 7 and 9.

2.2.1 Vector components and lengths

 Sometimes it’s useful to take a vector we already have and decompose it as a sum of smaller vectors. For example, if I were asking for walking directions in New York City, it would be much more useful to hear “go four blocks east and three blocks north” rather than “go 800 meters northeast.” Similarly, it can be useful to think of vectors as a sum of a vector pointing in the x direction and a vector pointing in the y direction.

 As an example, figure 2.14 shows the vector (4, 3) rewritten as the sum (4, 0) + (0, 3). Thinking of the vector (4, 3) as a navigation path in the plane, the sum (4, 0) + (0, 3) gets us to the same point along a different path.

 [image:]

 Figure 2.14 Breaking the vector (4, 3) into the sum (4, 0) + (0, 3)

 The two vectors (4, 0) and (0, 3) are called the x and y components, respectively. If you couldn’t walk diagonally in this plane (as if it were New York City), you would need to walk four units to the right and then three units up to get to the same destination, a total of seven units.

 The length of a vector is the length of the arrow that represents it, or equivalently, the distance from the origin to the point that represents it. In New York City, this could be the distance between two intersections “as the crow flies.” The length of a vector in the x or y direction can be measured immediately as a number of ticks passed on the corresponding axis: (4, 0) or (0, 4) are both vectors of the same length, 4, albeit in different directions. In general, though, vectors can lie diagonally, and we need to do a calculation to get their lengths.

 You may recall the relevant formula: the Pythagorean theorem. For a right triangle (a triangle having two sides meeting at a 90° angle), the Pythagorean theorem says that the square of the length of the longest side is the sum of squares of the lengths of the other two sides. The longest side is called the hypotenuse, and its length is denoted by c in the memorable formula a2 + b2 = c2, where a and b are the lengths of the other two sides. With a = 4 and b = 3, we can find c as the square root of 42 + 32 (figure 2.15).

 [image:]

 Figure 2.15 Using the Pythagorean theorem to find the length of a vector from the lengths of its x- and y- components

 Breaking a vector into components is handy because it always gives us a right triangle. If we know the lengths of the components, we can compute the length of the hypotenuse, which is the length of the vector. Our vector (4, 3) is equal to (4, 0) + (0, 3), a sum of two perpendicular vectors whose sides are 4 and 3, respectively. The length of the vector (4, 3) is the square root of 42 + 32, which is the square root of 25, or 5. In a city with perfectly square blocks, traveling 4 blocks east and 3 blocks north would take us the equivalent of 5 blocks northeast.

 This is a special case where the distance turns out to be an integer, but typically, lengths that come out of the Pythagorean theorem are not whole numbers. The length of (−3, 7) is given in terms of the lengths of its components 3 and 7 by the following computation:

 [image:]

 We can translate this formula into a length function in Python, which takes a 2D vector and returns its floating-point length:

 from math import sqrt
def length(v):
 return sqrt(v[0]**2 + v[1]**2)

2.2.2 Multiplying vectors by numbers

 Repeated addition of vectors is unambiguous; you can keep stacking arrows tip-to-tail as long as you want. If a vector named v has coordinates (2, 1), then the fivefold sum v + v + v + v + v would look like that shown in figure 2.16.

 [image:]

 Figure 2.16 Repeated addition of the vector v = (2, 1) with itself

 If v were a number, we wouldn’t bother writing v + v + v + v + v. Instead, we’d write the simpler product 5 · v. There’s no reason we can’t do the same for vectors. The result of adding v to itself 5 times is a vector in the same direction but with 5 times the length. We can run with this definition, which lets us multiply a vector by any whole or fractional number.

 The operation of multiplying a vector by a number is called scalar multiplication. When working with vectors, ordinary numbers are often called scalars. It’s also an appropriate term because the effect of this operation is scaling the target vector by the given factor. It doesn’t matter if the scalar is a whole number; we can easily draw a vector that is 2.5 times the length of another (figure 2.17).

 [image:]

 Figure 2.17 Scalar multi-plication of a vector v by 2.5

 The result on the vector components is that each component is scaled by the same factor. You can picture scalar multiplication as changing the size of the right triangle defined by a vector and its components, but not affecting its aspect ratio. Figure 2.18 superimposes a vector v and its scalar multiple 1.5 · v, where the scalar multiple is 1.5 times as long. Its components are also 1.5 times the length of the original components of v.

 [image:]

 Figure 2.18 Scalar multiplication of a vector scales both components by the same factor.

 In coordinates, the scalar multiple of 1.5 times the vector v = (6, 4) gives us a new vector (9, 6), where each component is 1.5 times its original value. Computationally, we execute any scalar multiplication on a vector by multiplying each coordinate of the vector by the scalar. As a second example, scaling a vector w = (1.2, −3.1) by a factor 6.5 can be accomplished like this:

 6.5 · w = 6.5 · (1.2, −3.1) = (6.5 · 1.2, 6.5 · −3.1) = (7.8, −20.15)

 We tested this method for a fractional number as the scalar, but we should also test a negative number. If our original vector is (6, 4), what is −½ times that vector? Multiplying the coordinates, we expect the answer to be (−3, −2). Figure 2.19 shows that this vector is half the length of the original and points in the opposite direction.

 [image:]

 Figure 2.19 Scalar multiplication of a vector by a negative number, −½

2.2.3 Subtraction, displacement, and distance

 Scalar multiplication agrees with our intuition for multiplying numbers. A whole number multiple of a number is the same as a repeated sum, and the same holds for vectors. We can make a similar argument for negative vectors and vector subtraction.

 Given a vector v, the opposite vector, −v, is the same as the scalar multiple −1 · v. If v is (−4, 3), its opposite, −v, is (4, −3) as shown in figure 2.20. We get this by multiplying each coordinate by −1, or in other words, changing the sign of each.

 [image:]

 Figure 2.20 The vector v = (−4, 3) and its opposite −v = (4, −3).

 On the number line, there are only two directions from zero: positive and negative. In the plane, there are many directions (infinitely many, in fact), so we can’t say that one of v and −v is positive while the other is negative. What we can say is that for any vector v, the opposite vector −v will have the same length, but it will point in the opposite direction.

 Having a notion of negating a vector, we can define vector subtraction. For numbers, x − y is the same as x + (−y). We set the same convention for vectors. To subtract a vector w from a vector v, you add the vector −w to v. Thinking of vectors v and w as points, v − w is the position of v relative to w. Thinking instead of v and w as arrows beginning at the origin, figure 2.21 shows that v − w is the arrow from the tip of w to the tip of v.

 [image:]

 Figure 2.21 The result of subtracting v − w is an arrow from the tip of w to the tip of v.

 The coordinates of v − w are the differences of the coordinates v and w. In figure 2.21, v = (−1, 3) and w = (2, 2). The difference for v − w has the coordinates (−1 − 2, 3 − 2) = (−3, 1).

 Let’s look at the difference of the vectors v = (−1, 3) and w = (2, 2) again. You can use the draw function I gave you to plot the points v and w and to draw a segment between them. The code looks like this:

 draw(
 Points((2,2), (−1,3)),
 Segment((2,2), (−1,3), color=red)
)

 The difference for the vectors v − w = (−3, 1) tells us that if we start at point w, we need to go three units left and one unit up to get to point v. This vector is sometimes called the displacement from w to v. The straight, red line segment from w to v in figure 2.22, drawn by this Python code, shows the distance between the two points.

 [image:]

 Figure 2.22 The distance between two points in the plane

 The length of the line segment is computed with the Pythagorean theorem as follows:

 [image:]

 While the displacement is a vector, the distance is a scalar (a single number). The distance on its own is not enough to specify how to get from w to v ; there are plenty of points that have the same distance from w. Figure 2.23 shows a few others with whole number coordinates.

 [image:]

 Figure 2.23 Several points equidistant from w = (2, 2)

2.2.4 Exercises

 	
 Exercise 2.6: If the vector u = (−2, 0), the vector v = (1.5, 1.5), and the vector w = (4, 1), what are the results of u + v, v + w, and u + w? What is the result of u + v + w?

 Solution: With the vector u = (−2, 0), the vector v = (1.5, 1.5), and the vector w = (4, 1), the results are as follows:

 u + v = (−0.5, 1.5)

 v + w = (5.5, 2.5)

 u + w = (2, 1)

 u + v + w = (3.5, 2.5)

 	
 Exercise 2.7—Mini Project: You can add any number of vectors together by summing all of their x-coordinates and all of their y-coordinates. For instance, the fourfold sum (1, 2) + (2, 4) + (3, 6) + (4, 8) has x component 1 + 2 + 3 + 4 = 10 and y component 2 + 4 + 6 + 8 = 20, making the result (10, 20). Implement a revised add function that takes any number of vectors as arguments.

 Solution:

 def add(*vectors):
 return (sum([v[0] for v in vectors]), sum([v[1] for v in vectors]))

 	
 Exercise 2.8: Write a function translate(translation, vectors) that takes a translation vector and a list of input vectors, and returns a list of the input vectors all translated by the translation vector. For instance, translate ((1,1), [(0,0), (0,1,), (−3,−3)]) should return [(1,1),(1,2),(−2, −2)].

 Solution:

 def translate(translation, vectors):
 return [add(translation, v) for v in vectors]

 	
 Exercise 2.9−Mini Project: Any sum of vectors v + w gives the same result as w + v. Explain why this is true using the definition of the vector sum on coordinates. Also, draw a picture to show why it is true geometrically.

 Solution: If you add two vectors u = (a, b) and v = (c, d), the coordinates a, b, c, and d are all real numbers. The result of the vector addition is u + v = (a + c, b + d). The result of v + u is (c + a, d + b), which is the same pair of coordinates because order doesn’t matter when adding real numbers. Tip-to-tail addition in either order yields the same sum vector. Visually, we can see this by adding an example pair of vectors tip-to-tail:

 [image:]

 Tip-to-tail addition in either order yields the same sum vector.

 It doesn’t matter whether you add u + v or v + u (dashed lines), you get the same result vector (solid line). In geometric terms, u and v define a parallelogram, and the vector sum is the length of the diagonal.

 	
 Exercise 2.10: Among the following three arrow vectors (labeled u, v, and w), which pair has the sum that gives the longest arrow? Which pair sums to give the shortest arrow?

 [image:]

 Which pair sums to the longest or shortest arrow?

 Solution: We can measure each of the vector sums by placing the vectors tip-to-tail:

 [image:]

 Tip-to-tail addition of the vectors in question

 Inspecting the results, we can see that v + u is the shortest vector (u and v are in nearly opposite directions and come close to canceling each other out). The longest vector is v + w.

 	
 Exercise 2.11—Mini Project: Write a Python function using vector addition to show 100 simultaneous and non-overlapping copies of the dinosaur. This shows the power of computer graphics; imagine how tedious it would be to specify all 2,100 coordinate pairs by hand!

 Solution: With some trial and error, you can translate the dinosaurs in the vertical and horizontal direction so that they don’t overlap, and set the boundaries appropriately. I decided to leave out the grid lines, axes, origin, and points to make the drawing clearer. My code looks like this:

 def hundred_dinos():
 translations = [(12*x,10*y)
 for x in range(−5,5)
 for y in range(−5,5)]
 dinos = [Polygon(*translate(t, dino_vectors),color=blue)
 for t in translations]
 draw(*dinos, grid=None, axes=None, origin=None)

hundred_dinos()

 The result is as follows:

 [image:]

 100 dinosaurs. Run for your life!

 	
 Exercise 2.12: Which is longer, the x or y component of (3, −2) + (1, 1) + (−2, −2)?

 Solution: The result of the vector sum (3, −2) + (1, 1) + (−2, −2) is (2, −3). The x component is (2, 0) and the y component is (0, −3). The x component has a length of 2 units (to the right), while the y component has a length of 3 units (downward because it is negative). This makes the y component longer.

 	
 Exercise 2.13: What are the components and lengths of the vectors (−6, −6) and (5, −12)?

 Solution: The components of (−6, −6) are (−6, 0) and (0, −6), both having length 6. The length of (−6, −6) is the square root of 62 + 62, which is approximately 8.485.

 The components of (5, −12) are (5, 0) and (0, −12), having lengths of 5 and 12, respectively. The length of (5, −12) is given by the square root of 52 + 122 = 25 + 144 = 169. The result of the square root is exactly 13.

 	
 Exercise 2.14: Suppose I have a vector v that has a length of 6 and an x component (1, 0). What are the possible coordinates of v ?

 Solution: The x component of (1, 0) has length 1 and the total length is 6, so the length b of the y component must satisfy the equation 12 + b2 = 62, or 1 + b2 = 36. Then b2 = 35 and the length of the y component is approximately 5.916. This doesn’t tell us the direction of the y component, however. The vector v could either be (1, 5.916) or (1, −5.916).

 	
 Exercise 2.15: What vector in the dino_vectors list has the longest length? Use the length function we wrote to compute the answer quickly.

 Solution:

 >>> max(dino_vectors, key=length)
(6, 4)

 	
 Exercise 2.16: Suppose a vector w has the coordinates (√2, √3). What are the approximate coordinates of the scalar multiple π · w? Draw an approximation of the original vector and the new vector.

 Solution: The value of (√2, √3) is approximately

 (1.4142135623730951, 1.7320508075688772)

 Scaling each coordinate by a factor of π(pi), we get

 (4.442882938158366, 5.441398092702653)

 The scaled vector is longer than the original as shown here:

 [image:]

 The original vector (shorter) and its scaled version (longer)

 	
 Exercise 2.17: Write a Python function scale(s,v) that multiplies the input vector v by the input scalar s.

 Solution:

 def scale(scalar,v):
 return (scalar * v[0], scalar * v[1])

 	
 Exercise 2.18−Mini Project: Convince yourself algebraically that scaling the coordinates by a factor also scales the length of the vector by the same factor. Suppose a vector of length c has the coordinates (a, b). Show that for any non-negative real number s, the length of (s · a, s · b) is s · c. (This can’t work for a negative value of s because a vector can’t have a negative length.)

 Solution: We use the notation |(a, b)| to denote the length of a vector (a, b). So, the premise of the exercise tells us:

 [image:]

 From that, we can compute the length of (sa, sb):

 [image:]

 As long as s isn’t negative, it’s the same as its absolute value: s = |s|. Then the length of the scaled vector is sc as we hoped to show.

 	
 Exercise 2.19−Mini Project: Suppose u = (−1, 1) and v = (1, 1), and suppose r and s are real numbers. Specifically, let’s assume −3 < r < 3 and −1 < s < 1. Where are the possible points on the plane where the vector r · u + s · v could end up?

 Note that the order of operations is the same for vectors as it is for numbers. We assume scalar multiplication is carried out first and then vector addition (unless parentheses specify otherwise).

 Solution: If r = 0, the possibilities lie on the line segment from (−1, −1) to (1, 1). If r is not zero, the possibilities can leave that line segment in the direction of (−1, 1) or −(−1, 1) by up to three units. The region of possible results is the parallelogram with vertices at (2, 4), (4, 2), (2, −4), and (4, −2). We can test many random, allowable values of r and s to validate this:

 from random import uniform
u = (−1,1)
v = (1,1)
def random_r():
 return uniform(−3,3)
def random_s():
 return uniform(−1,1)

possibilities = [add(scale(random_r(), u), scale(random_s(), v))
 for i in range(0,500)]
draw(
 Points(*possibilities)
)

 If you run this code, you get a picture like the following, showing the possible points where r • u + s • v could end up given the constraints:

 [image:]

 Location of possible points for r · u + s · v given the constraints.

 	
 Exercise 2.20: Show algebraically why a vector and its opposite have the same length.

 Hint: Plug the coordinates and their opposites into the Pythagorean theorem.

 Solution: The opposite vector of (a, b) has coordinates (−a, − b), but this doesn’t affect the length:

 [image:]

 The vector (−a, −b) has the same length as (a, b).

 	
 Exercise 2.21: Of the following seven vectors, represented as arrows, which two are a pair of opposite vectors?

 [image:]

 Solution: Vectors v3 and v7 are the pair of opposite vectors.

 	
 Exercise 2.22: Suppose u is any 2D vector. What are the coordinates of u + −u?

 Solution: A 2D vector u has some coordinates (a, b). Its opposite has coordinates (−a, −b), so:

 u + (−u) = (a, b) + (−a, − b) = (a − a, b − b) = (0, 0)

 The answer is (0, 0). Geometrically, this means that if you follow a vector and then its opposite, you end up back at the origin, (0, 0).

 	
 Exercise 2.23: For vectors u = (−2, 0), v = (1.5, 1.5), and w = (4, 1), what are the results of the vector subtractions v − w, u − v, and w − v?

 Solution: With u = (−2, 0), v = (1.5, 1.5), and w = (4, 1), we have

 v − w = (−2.5, 0.5)

 u − v = (−3.5, −1.5)

 w − v = (2.5, −0.5)

 	
 Exercise 2.24: Write a Python function subtract(v1,v2) that returns the result of v1−v2, taking two 2D vectors as inputs and returning a 2D vector as an output.

 Solution:

 def subtract(v1,v2):
 return (v1[0] - v2[0], v1[1] - v2[1])

 	
 Exercise 2.25: Write a Python function distance(v1,v2) that returns the distance between two input vectors. (Note that the subtract function from the previous exercise already gives the displacement.)

 Write another Python function perimeter(vectors) that takes a list of vectors as an argument and returns the sum of distances from each vector to the next, including the distance from the last vector to the first. What is the perimeter of the dinosaur defined by dino_vectors ?

 Solution: The distance is just the length of the difference of the two input vectors:

 def distance(v1,v2):
 return length(subtract(v1,v2))

 For the perimeter, we sum the distances of every pair of subsequent vectors in the list, as well as the pair of the first and the last vectors:

 def perimeter(vectors):
 distances = [distance(vectors[i], vectors[(i+1)%len(vectors)])
 for i in range(0,len(vectors))]
 return sum(distances)

 We can use a square with side length of one as a sanity check:

 >>> perimeter([(1,0),(1,1),(0,1),(0,0)])
4.0

 Then we can calculate the perimeter of the dinosaur:

 >>> perimeter(dino_vectors)
44.77115093694563

OEBPS/OEBPS/Images/CH02_F09_Orland.png

OEBPS/OEBPS/Images/CH02_F19_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN09_EQ05.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN10.png

OEBPS/OEBPS/Images/CH02_F16_Orland.png

OEBPS/OEBPS/Images/CH01_F15_Orland.png

OEBPS/OEBPS/Images/CH01_F05_Orland.png

OEBPS/OEBPS/Images/CH02_F06_Orland.png

OEBPS/OEBPS/Images/cover.jpeg

OEBPS/OEBPS/Images/CH02_F21_Orland.png

OEBPS/OEBPS/Images/CH02_F01_Orland.png

OEBPS/OEBPS/Images/CH02_F11_Orland.png

OEBPS/OEBPS/Images/CH01_F08_Orland.png

OEBPS/OEBPS/Images/CH01_F10_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN09.png

OEBPS/OEBPS/Images/CH02_F09_Orland_UN03.png

OEBPS/OEBPS/Images/CH02_F17_Orland.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH02_F20_Orland.png

OEBPS/OEBPS/Images/CH02_F08_Orland.png

OEBPS/OEBPS/Images/CH01_F07_Orland.png

OEBPS/OEBPS/Images/CH02_F10_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN08.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN07.png

OEBPS/OEBPS/Images/CH01_F16_Orland.png

OEBPS/OEBPS/Images/CH01_F06_Orland.png

OEBPS/OEBPS/Images/CH02_F22_Orland_EQ02.png

OEBPS/OEBPS/Images/CH02_F07_Orland.png

OEBPS/OEBPS/Images/CH02_F12_Orland.png

OEBPS/OEBPS/Images/CH02_F22_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN08_EQ03.png

OEBPS/OEBPS/Images/CH01_F01_Orland.png

OEBPS/OEBPS/Images/CH01_F09_Orland.png

OEBPS/OEBPS/Images/CH02_F02_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN06.png

OEBPS/OEBPS/Images/CH01_F11_Orland.png

OEBPS/OEBPS/Images/CH01_F04_Orland.png

OEBPS/OEBPS/Images/CH01_F14_Orland.png

OEBPS/OEBPS/Images/CH02_F18_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN05.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN08_EQ04.png

OEBPS/OEBPS/Images/CH02_F15_Orland.png

OEBPS/OEBPS/Images/CH02_F05_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland_UN04.png

OEBPS/OEBPS/Images/CH02_F09_Orland_UN02.png

OEBPS/OEBPS/Images/CH01_F03_Orland.png

OEBPS/OEBPS/Images/CH02_F14_Orland.png

OEBPS/OEBPS/Images/CH01_F13_Orland.png

OEBPS/OEBPS/Images/CH02_F04_Orland.png

OEBPS/OEBPS/Images/CH02_F03_Orland.png

OEBPS/OEBPS/Images/CH02_F13_Orland.png

OEBPS/OEBPS/Images/CH02_F23_Orland.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_F09_Orland_UN01.png

OEBPS/OEBPS/Images/CH01_F02_Orland.png

OEBPS/OEBPS/Images/CH01_F12_Orland.png

OEBPS/OEBPS/Images/CH02_F15_Orland_EQ01.png

