
        
            [image: cover]
        

    
Classic Computer Science Problems in Swift: Essential techniques for practicing programmers

      David Kopec 

      [image: ]

      

Copyright
      

      
      
      For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact
      

      
             Special Sales Department
       Manning Publications Co.
       20 Baldwin Road
       PO Box 761
       Shelter Island, NY 11964
       Email: orders@manning.com

      
      ©2018 by Manning Publications Co. All rights reserved.

      
      
      No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
         mechanical, photocopying, or otherwise, without prior written permission of the publisher.
      

      
      Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
         those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
         printed in initial caps or all caps.
      

      
      [image: ] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
         on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
         of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
         chlorine.
      

      
      
      
         
            
            
         
         
            
               	[image: ]
               	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

            

         
      

      
      
      Development editor: Jenny Stout
Review editor: Ivan Martinović
Project editor: Kevin Sullivan
Copyeditor: Andy Carroll
Proofreader: Alyson Brener
Technical proofreader: Christopher Pickslay
Typesetter: Gordan Salinovic
Illustrations: Richard Shepard
Cover designer: Marija Tudor


      
      
      ISBN 9781617294891

      
      Printed in the United States of America

      
      1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

      
      
      
      



Dedication
      

      
      
         
         Dedicated to the memory of IM Dr. Danny Kopec, who taught thousands in chess, computer science, and life. And with thanks
               to Dr. Jay Selman, who is a great uncle and was an incredible brother-in-law throughout my father’s untimely passing.

         
      

      
      
      
Brief Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Acknowledgments


         About this Book


      

      
         Chapter Introduction


         Chapter 1. Small problems


         Chapter 2. Search problems


         Chapter 3. Constraint-satisfaction problems


         Chapter 4. Graph problems


         Chapter 5. Genetic algorithms


         Chapter 6. K-means clustering


         Chapter 7. Fairly simple neural networks


         Chapter 8. Miscellaneous problems


         Appendix A. Glossary


         Appendix B. More resources


         Appendix C. A brief history of Swift


      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Acknowledgments


         About this Book


      

      
         Chapter Introduction


         
            Why Swift?


            What is a classic computer science problem?


            What kinds of problems are in this book?


            Who is this book for?


            Swift versioning and tools


            No graphics, no UI code


         

         Chapter 1. Small problems


         
            1.1. The Fibonacci sequence


            
               1.1.1. A first recursive attempt


               1.1.2. Utilizing base cases


               1.1.3. Memoization to the rescue


               1.1.4. Keep it simple, Fibonacci


            

            1.2. Trivial compression


            1.3. Unbreakable encryption


            
               1.3.1. Getting the data in order


               1.3.2. Encrypting and decrypting


            

            1.4. Calculating pi


            1.5. The Towers of Hanoi


            
               1.5.1. Modeling the towers


               1.5.2. Solving The Towers of Hanoi


            

            1.6. Real-world applications


            1.7. Exercises


         

         Chapter 2. Search problems


         
            2.1. DNA search


            
               2.1.1. Storing DNA


               2.1.2. Linear search


               2.1.3. Binary search


               2.1.4. A generic example


            

            2.2. Maze solving


            
               2.2.1. Generating a random maze


               2.2.2. Miscellaneous maze minutiae


               2.2.3. Depth-first search


               2.2.4. Breadth-first search


               2.2.5. A* search


            

            2.3. Missionaries and cannibals


            
               2.3.1. Representing the problem


               2.3.2. Solving


            

            2.4. Real-world applications


            2.5. Exercises


         

         Chapter 3. Constraint-satisfaction problems


         
            3.1. Building a constraint-satisfaction problem framework


            3.2. The Australian map-coloring problem


            3.3. The eight queens problem


            3.4. Word search


            3.5. SEND+MORE=MONEY


            3.6. Circuit board layout


            3.7. Real-world applications


            3.8. Exercises


         

         Chapter 4. Graph problems


         
            4.1. Building a graph framework


            
               4.1.1. A concrete implementation of Edge


               4.1.2. A concrete implementation of Graph


            

            4.2. Finding the shortest path


            
               4.2.1. Defining a path


               4.2.2. Revisiting breadth-first search (BFS)


            

            4.3. Minimizing the cost of building the network


            
               4.3.1. Workings with weights


               4.3.2. Finding the minimum spanning tree


            

            4.4. Finding shortest paths in a weighted graph


            
               4.4.1. Dijkstra’s algorithm


            

            4.5. Real-world applications


            4.6. Exercises


         

         Chapter 5. Genetic algorithms


         
            5.1. Biological background


            5.2. Preliminaries


            5.3. A generic genetic algorithm


            5.4. A naive test


            5.5. SEND+MORE=MONEY revisited


            5.6. Challenges for genetic algorithms


            5.7. Real-world applications


            5.8. Exercises


         

         Chapter 6. K-means clustering


         
            6.1. Preliminaries


            6.2. The k-means clustering algorithm


            6.3. Clustering governors by age and longitude


            6.4. K-means clustering problems and extensions


            6.5. Real-world applications


            6.6. Exercises


         

         Chapter 7. Fairly simple neural networks


         
            7.1. Biological basis?


            7.2. Artificial neural networks


            
               7.2.1. Neurons


               7.2.2. Layers


               7.2.3. Backpropagation


               7.2.4. The big picture


            

            7.3. Preliminaries


            
               7.3.1. Help with randomization


               7.3.2. Fast arithmetic


            

            7.4. The activation function


            7.5. Building the network


            
               7.5.1. Implementing neurons


               7.5.2. Implementing layers


               7.5.3. Implementing the network


            

            7.6. Classification problems


            
               7.6.1. Normalizing data


               7.6.2. The classic iris data set


               7.6.3. Classifying wine


            

            7.7. Neural network problems and extensions


            7.8. Real-world applications


            7.9. Exercises


         

         Chapter 8. Miscellaneous problems


         
            8.1. The knapsack problem


            8.2. The traveling salesman problem


            
               8.2.1. The naive approach


               8.2.2. Taking it to the next level


            

            8.3. Phone number mnemonics


            8.4. Tic-tac-toe


            
               8.4.1. Managing state


               8.4.2. Minimax


            

            8.5. Real-world applications


            8.6. Exercises


         

         Appendix A. Glossary


         Appendix B. More resources


         
            Swift


            iOS development


            Mac development


            Algorithms and data structures


            Artificial intelligence


            Functional programming


            Open source projects mentioned in this book


         

         Appendix C. A brief history of Swift


         
            A brief history of programming language paradigms incorporated in Swift


            Programming languages at Apple before Swift


            Swift history


            
               Milestones


               Swift on other platforms


            

            Swift’s future directions


         

      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      

Acknowledgments
      

      
      
      
      Thank you to the team at Manning for enabling this book to see the light of market. Thanks go especially to acquisitions editor
         Brian Sawyer, for believing in the book’s unique concept from my first proposal and seeing “the vision.” Development editor,
         Jennifer Stout, must also be singled out for her care and understanding throughout the book’s development.
      

      
      Significant improvements came to the book thanks to the careful consideration of MEAP readers and of official reviewers, including:
         Albert Choy, Alberto Chiesa, Arun Kumar, Becky Huett, Chad Johnston, Damian Esteban, Eric Giannini, Jeremy Gailor, Julien
         Pohie, Karolina Kafel, Laurence Giglio, Patrick Regan, Shawn Eion Smith, and Tahir Akhtar. Thank you to all who provided constructive
         and specific criticism during the book’s development. Your feedback was carefully considered and incorporated.
      

      
      Thank you to my family, friends, and colleagues for encouraging me during the development of this book—especially Dr. Danny
         Kopec, Dr. Joshua Auerbach, and Rebecca Driesen, who proofread specific chapters. Thank you to Sylvia Kopec and Rebecca Driesen
         for assistance with the development of diagrams in the early chapters. Thank you to my students at SUNY Suffolk and Champlain
         College, who have kept me inspired as a teacher.
      

      
      Finally, thank you most importantly to the readers for purchasing this book. In a world of half-hearted online tutorials,
         I think it is important to still support the development of books that provide the same author’s voice throughout a deep dive
         into a topic. Online tutorials are superb resources, but your purchase enables full-length, vetted, and carefully developed
         books to still have a place in computer science education.
      

      
      



About this Book
      

      
      
      
      
      
Code conventions and repository
      

      
      This book contains many examples of source code, both in separate examples and inline with normal text. In both cases, source
         code is formatted in a fixed-width font like this to separate it from ordinary text.
      

      
      In some places, original source code has been reformatted with added line breaks and reworked indentation to accommodate the
         available page space in the book. Wrapped code lines are often indicated with line-continuation markers ([image: ]).
      

      
      A GitHub repository with the code for the book is available: https://github.com/davecom/ClassicComputerScienceProblemsInSwift. A zip file containing the code at the time of publication is also on the publisher’s website at https://www.manning.com/books/classic-computer-science-problems-in-swift.
      

      
      
      
      
Trademarks
      

      
      Trademarked names appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, the
         names are only used in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
         the trademark. Apple, Xcode, Swift, Mac, iOS, iPhone, and macOS are registered trademarks of Apple Inc.
      

      
      
      
      
      
Book forum
      

      
      Purchase of Classic Computer Science Problems in Swift includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/classic-computer-science-problems-in-swift. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author challenging questions
         lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
         as long as the book is in print.
      

      
      
      
      
About the author
      

      
      DAVID KOPEC is an assistant professor of Computer Science & Innovation at Champlain College in Burlington, Vermont. He is an experienced
         iOS developer and the author of Dart for Absolute Beginners (Apress, 2014). David holds a bachelor’s degree in economics and a master’s in computer science, both from Dartmouth College.
      

      
      
      
      
About the cover illustration
      

      
      The figure on the cover of Classic Computer Science Problems in Swift is captioned “Habit of a Lady of Indostan.” (“Indostan” was an alternate European form of “Hindustan,” meaning the Indian
         subcontinent.) The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern, published in London between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened
         with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who
         was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
         a wide range of commercial maps and atlases, especially of North America. His work as a mapmaker sparked an interest in local
         dress customs of the lands he surveyed and mapped; they are brilliantly displayed in this four-volume collection.
      

      
      Fascination with faraway lands and travel for pleasure were relatively new phenomena in the eighteenth century, and collections
         such as this one were popular, introducing both the tourist and the armchair traveler to the inhabitants of other countries.
         The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
         centuries ago. Dress codes have changed, and the diversity by region and country, so rich at one time, has faded away. It
         is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
         traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical
         life.
      

      
      At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
         computer business with book covers based on the rich diversity of national costumes from centuries ago, brought back to life
         by Jefferys’ pictures.
      

      
      
      
      
      

Introduction
      

      
      Thank you for purchasing Classic Computer Science Problems in Swift: Essential techniques for practicing programmers. Swift is at an exciting stage in its development. As the language continues to stabilize and its popularity soars, there
         is a need to bring traditional computer science education to the language. The problems in this intermediate book will help
         seasoned programmers learn the language and new programmers accelerate their CS education. This book covers such a diversity
         of problem-solving techniques that there is truly something for everyone.
      

      
      This book is not an introduction to Swift. Apple publishes an excellent free book serving that purpose.[1] Instead, this book assumes that you have already obtained a basic working knowledge of Swift’s syntax. Mastery of Swift is
         by no means assumed. In fact, the book’s content was created with the assumption that it would serve as learning material
         to help one achieve such mastery. On the other hand, this book is not appropriate for complete beginners.
      

      
         1 
            

Apple Inc., The Swift Programming Language, http://mng.bz/6fKi.
            

         

      

      
      
      
Why Swift?
      

      
      Swift is an exciting new programming language from Apple that toes the line between the object-oriented and functional paradigms.
         Swift’s creators have achieved a remarkable balance that, for many, is the best of both worlds. Due to its wide deployment
         via Apple’s developer tools, its modern syntax, its amalgamation of great features from other languages, its careful paradigm
         balance, and its future as the main language of development for iOS and Mac applications, now is a great time to learn Swift.
      

      
      Apple has called Swift the first protocol-oriented language, due to its powerful protocol feature set and the extensive use
         of that set in its standard library.[2] Yet, many long-time Objective-C and Java developers have little experience with functional programming, let alone protocol-oriented
         programming. At the same time, there are functional programmers coming into the Swift community who try to do everything the
         same way they would in Haskell or Scheme. They are sometimes missing more elegant, object-oriented solutions.
      

      
         2 
            

Dave Abrahams, “Protocol-Oriented Programming in Swift” (WWDC 2015, Session 408, Apple Inc.), http://mng.bz/zWP3.
            

         

      

      
      This book aims to serve as a bridge between these worlds by approaching classic problems that experienced programmers should
         be familiar with (and new programmers should become familiar with), without being dogmatic about fitting within a single paradigm
         in Swift. Instead, you will get a taste of all of them. A combination is the right way to approach Swift. Building bridges
         is the community’s way forward.
      

      
      
      
      
What is a classic computer science problem?
      

      
      Some say that computers are to computer science as telescopes are to astronomy. If that’s the case, then is a programming
         language like a telescope lens? In any event, the term “computer science problems” is used here to mean “programming problems
         typically taught in an undergraduate computer science curriculum.”
      

      
      There are certain programming problems that are given to new programmers to solve, whether in a classroom setting during the
         pursuit of a bachelor’s degree (in computer science, software engineering, etc.) or within the confines of an intermediate
         programming textbook (for example, a first book on artificial intelligence or algorithms), that have become commonplace enough
         to be deemed “classic.” A selection of such problems is what you will find in this book.
      

      
      The problems range from the trivial, which can be solved in a few lines of code, to the complex, which require the buildup
         of systems over multiple chapters. Some problems touch on artificial intelligence, and others simply require common sense.
         Some problems are practical, and other problems are fanciful.
      

      
      
      
      
What kinds of problems are in this book?
      

      
      Chapter 1 introduces problem-solving techniques that will likely look familiar to most readers. Things like recursion, memoization,
         and simulation are essential building blocks of other techniques explored in later chapters.
      

      
      This gentle introduction is followed by chapter 2, which focuses on search problems. Search is such a large topic that you could arguably place most problems in the book under
         its banner. Chapter 2 introduces the most essential search algorithms, including binary search, depth-first search, breadth-first search, and A*.
         These algorithms are reused throughout the rest of the book.
      

      
      In chapter 3, you will build a framework for solving a broad range of problems that can be abstractly defined by variables of limited
         domains that have constraints between them. This includes such classics as the eight queens problem, the Australian map-coloring
         problem, and the cryptarithmetic SEND+MORE=MONEY.
      

      
      Chapter 4 explores the world of graph algorithms, which to the uninitiated are surprisingly broad in their applicability. In this chapter,
         you will build a graph data structure and then use it to solve several classic optimization problems.
      

      
      Chapter 5 explores genetic algorithms, a technique that is less deterministic than most covered in the book, but that sometimes can
         solve a problem traditional algorithms cannot in a reasonable amount of time.
      

      
      Chapter 6 covers k-means clustering and is perhaps the most algorithmically specific chapter in the book. This clustering technique
         is simple to implement, easy to understand, and broadly applicable.
      

      
      Chapter 7 aims to explain what a neural network is, and to give the reader a taste of what a very simple neural network looks like.
         It does not aim to provide comprehensive coverage of this exciting and evolving field.
      

      
      Finally, chapter 8 covers interesting (and fun) problems that did not quite fit anywhere else in the book.
      

      
      
      
      
Who is this book for?
      

      
      This book is for both intermediate and experienced programmers. Experienced programmers who want to learn Swift will find
         comfortably familiar problems from their computer science or programming education. Fairly new programmers will be introduced
         to these classic problems in the language of their choice—Swift. Developers getting ready for coding interviews will likely
         find this book to be valuable preparation material.
      

      
      In addition to professional programmers, students enrolled in undergraduate computer science programs who have an interest
         in Swift will likely find this book helpful. It makes no attempt to be a rigorous introduction to data structures and algorithms.
         This is not a data structures and algorithms textbook—you will not find proofs or extensive use of big-O notation within its pages. Instead, it is positioned as an approachable,
         hands-on tutorial to the problem-solving techniques that should be the end product of taking data structure, algorithm, and
         artificial intelligence classes.
      

      
      Once again, a basic knowledge of Swift’s syntax and semantics is assumed. A reader with zero programming experience will get
         little out of this book. And a programmer with zero Swift experience will almost certainly struggle. In other words, we could
         call Classic Computer Science Problems in Swift a great second book on Swift.
      

      
      
      
      
Swift versioning and tools
      

      
      The source code in this book was written to adhere to version 4.1 of the Swift language. This version was released alongside
         Xcode 9.3 by Apple in early 2018. A GitHub repository with the code for the book is available: https://github.com/davecom/ClassicComputerScienceProblemsInSwift.
      

      
      Most of the source code in this book will run on Linux (and other platforms Swift is ported to) without modification, as it
         only relies on Foundation (not AppKit/UIKit). The source code files are distributed as part of a Swift playground for Xcode,
         but the raw .swift files contained therein can be extracted for use on Linux. Cross-platform compatibility was a goal for
         this book, but convenience on the Mac for the majority of readers was an even greater goal.
      

      
      This book does not explain how to use Xcode, build Swift projects, or use Playgrounds. There are plenty of great resources
         on those topics available online and in print. The ability to do these tasks is assumed throughout.
      

      
      
      
      
No graphics, no UI code
      

      
      This book is not about learning UIKit or AppKit. The examples in the book do not require the use of either. There are no examples
         in this book that produce graphical output. Why? The goal is to solve the posed problems with solutions that are as concise
         and readable as possible. Often, doing graphics gets in the way, or makes solutions significantly more complex than they need
         to be to illustrate the technique or algorithm in question.
      

      
      Further, to achieve cross-platform compatibility with Swift on Linux, UIKit and AppKit could not be used. At the time of writing,
         only Foundation was ported to Linux. The solutions here largely rely on the Swift standard library alone, with Foundation
         acting as a supplement in areas where the standard library is weak.
      

      
      This is not a book that will teach you how to write full-scale apps. It is a book that will help you with the fundamentals
         of software development under Swift. It is a book that’s written to stay within its scope.
      

      
      
      
      
      


Chapter 1. Small problems
      

      
      To get started, we will explore some simple problems that can be solved with no more than a few relatively short functions.
         Although these problems are small, they will still allow us to explore some interesting problem-solving techniques. Think
         of them as a good warmup.
      

      
      
      
1.1. The Fibonacci sequence
      

      
      The Fibonacci sequence is a series of numbers such that any number, except for the first and second, is the sum of the previous
         two:
      

      
      0, 1, 1, 2, 3, 5, 8, 13, 21...

      
      The value of the first Fibonacci number in the series is 0. The value of the fourth Fibonacci number is 2. It follows that to get the value of any Fibonacci number, n, in the series, one can use the formula
      

      
      fib(n) = fib(n - 1) + fib(n - 2)

      
      
      1.1.1. A first recursive attempt
      

      
      The preceding formula for computing a number in the Fibonacci sequence (illustrated in figure 1.1), a form of pseudocode, can be trivially translated into a recursive Swift function (a recursive function is a function that calls itself). This mechanical translation will serve as the first
         version of our attempt at writing a function to return a given value of the Fibonacci sequence:
      

      
      func fib1(n: UInt) -> UInt {
    return fib1(n: n - 1) + fib1(n: n - 2)
}

      
      
      

      
      
      Figure 1.1. The height of each stickman is the addition of the previous two stickmen’s heights added together.
      

      
      
      
      [image: ]

      
      
      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      fib1() uses UInt instead of Int because the Fibonacci sequence does not exist in the realm of negative integers.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If you run this function by calling it with a value, it will run forever without returning a final result. We call such a
         circumstance infinite recursion, and it is analogous to an infinite loop.
      

      
      
      
      Figure 1.2. The recursive function fib(n) calls itself with the arguments n-2 and n-1.
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      1.1.2. Utilizing base cases
      

      
      Notice that Xcode produces no errors regarding this Fibonacci function, fib1(). It is the duty of the programmer to avoid infinite recursion. The reason for the infinite recursion is that we never specified
         a base case. In a recursive function, a base case serves as a stopping point.
      

      
      In the case of the Fibonacci function, we have natural base cases in the form of the special first two sequence values, 0 and 1. Neither 0 nor 1 is the sum of the previous two numbers in the sequence. Instead, they are the special first two values. Let’s try specifying
         them as base cases:
      

      
      func fib2(n: UInt) -> UInt {
    if (n < 2) {  // base cases
        return n
    }
    return fib2(n: n - 2) + fib2(n: n - 1)  // recursive cases
}

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      The fib2() version of the Fibonacci function returns 0 as the zeroth number (fib2(n: 0)), rather than the first number, as in our original proposition. In a programming context, this kind of makes sense because
         we are used to sequences (such as Swift’s Array type) starting with a zeroth element.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      fib2() can be called successfully and will return correct results. Try calling it with some small values:
      

      
      fib2(n: 5)
fib2(n: 10)

      
      Do not try calling fib2(n: 50). It will never finish executing! Why? Every call to fib2() results in two more calls to fib2() by way of the recursive calls fib2(n: n - 1) and fib2(n: n - 2) (see figure 1.3). In other words, the call tree grows exponentially. For example, a call of fib2(n: 4) results in this entire set of calls:
      

      
      fib2(n: 4) -> fib2(n: 3), fib2(n: 2)
fib2(n: 3) -> fib2(n: 2), fib2(n: 1)
fib2(n: 2) -> fib2(n: 1), fib2(n: 0)
fib2(n: 2) -> fib2(n: 1), fib2(n: 0)
fib2(n: 1) -> 1
fib2(n: 1) -> 1
fib2(n: 1) -> 1
fib2(n: 0) -> 0
fib2(n: 0) -> 0

      
      
      
      Figure 1.3. Every non-base-case call of fib2() results in two more calls of fib2().
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      If you count them (and as you can see if you call fib2(n: 4) in an Xcode playground), there are 9 calls to fib2() just to compute the 4th element! It gets worse. There are 15 calls required to compute element 5, 177 calls to compute element
         10, and 21,891 calls to compute element 20. We can do better.
      

      
      
      
      
      1.1.3. Memoization to the rescue
      

      
      Memoization is a technique in which you store the results of computational tasks when they are completed, so that when you need them
         again, you can look them up instead of needing to compute them a second (or millionth) time (see figure 1.4).[1]

      
         1 
            

Donald Michie, a famous British computer scientist, coined the term memoization. Donald Michie, Memo functions: a language feature with “rote-learning” properties (Edinburgh University, Department of Machine Intelligence and Perception, 1967).
            

         

      

      
      
      
      Figure 1.4. The human memoization machine
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      Let’s create a new version of the Fibonacci function that utilizes a Swift Dictionary for memoization purposes.
      

      
      var fibMemo: [UInt: UInt] = [0: 0, 1: 1]  // our old base cases
func fib3(n: UInt) -> UInt {
    if let result = fibMemo[n] {  // our new base case
        return result
    } else {
        fibMemo[n] = fib3(n: n - 1) + fib3(n: n - 2)  // memoization
    }
    return fibMemo[n]!
}

      
      
         
            
         
         
            
               	
            

         
      

      Warning

      
      
      Using ! to force unwrap optionals is ugly, but I do it here for convenience because it is provable that fibMemo will already contain a result by the time the final return statement is called.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      You can now safely call fib3(n: 50). A call to fib3(n: 20) will result in just 39 calls of fib3() as opposed to the 21,891 of fib2() resulting from the call fib2(n: 20). fibMemo is prefilled with the earlier base cases of 0 and 1, saving fib3() from the complexity of another if statement.
      

      
      
      
      1.1.4. Keep it simple, Fibonacci
      

      
      There is an even more performant option. We can solve Fibonacci with an old fashioned iterative approach.

      
      func fib4(n: UInt) -> UInt {
    if (n == 0) {  // special case
        return n
    }
    var last: UInt = 0, next: UInt = 1  // initially set to fib(0) & fib(1)
    for _ in 1..<n {
        (last, next) = (next, last + next)
    }
    return next
}

      
      
         
            
         
         
            
               	
            

         
      

      Warning

      
      
      The body of the for loop in fib4() uses tuples in perhaps a bit of an overly clever way. Some may feel that it sacrifices readability for conciseness. Others
         may find the conciseness in and of itself more readable. The gist is, last is being set to the previous value of next, and next is being set to the previous value of last plus the previous value of next. This avoids the creation of a temporary variable to hold the old value of next after last is updated, but before next is updated.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      With this approach, the body of the for loop will only run a maximum of n - 1 times. In other words, this is the most efficient version yet. Compare 19 runs of the for loop body to 21,891 recursive calls of fib2() for the 20th Fibonacci number. That could make a serious difference in a real-world application!
      

      
      In the recursive solutions, we worked backward. In this iterative solution, we work forward. Sometimes recursion is the most
         intuitive way to solve a problem. For example, the meat of fib1() and fib2() is pretty much a mechanical translation of the original Fibonacci formula. However, naive recursive solutions can also come
         with significant performance costs. Remember, any problem that can be solved recursively can also be solved iteratively.
      

      
      
      
      
      
1.2. Trivial compression
      

      
      Saving space (virtual or real) is often important. It is more efficient to use less space, and it can save money. If you are
         renting an apartment that is bigger than you need for your things and family, then you may “downsize” to a smaller place that
         is less expensive. If you are paying by the byte to store your data on a server, then you may want to compress it so that
         its storage costs you less. Compression is the act of taking data and encoding it (changing its form) in such a way that it takes up less space. Decompression is reversing the process, returning the data to its original form.
      

      
      If it is more storage-efficient to compress data, then why is all data not compressed? There is a tradeoff between time and
         space. It takes time to compress a piece of data and to decompress it back into its original form. Therefore, data compression
         only makes sense in situations where small size is prioritized over fast execution. Think of large files being transmitted
         over the internet. Compressing them makes sense because it will take longer to transfer the files than it will to decompress
         them once received. Further, the time taken to compress the files for their storage on the original server only needs to be
         accounted for once.
      

      
      The easiest way to compress data is to realize that its storage type uses more bits than are strictly required for its contents.
         For instance, if an unsigned integer that will never exceed 65,535 is being stored as a UInt (64-bit unsigned integer on most Swift platforms), it is being stored inefficiently. It could instead be stored as a UInt16 (16-bit unsigned integer). This would reduce the space consumption for the actual number by 75% (16 bits instead of 64 bits).
         If there are millions of such numbers being stored inefficiently, it can add up to megabytes of wasted space.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      If you are a little rusty regarding binary, recall that a bit is a single value that is either a 1 or a 0. A sequence of 1s
         and 0s is read in base 2 to represent a number. For the purposes of this section, you do not need to do any math in base 2,
         but you do need to understand that the number of bits that a type stores determines how many different values it can represent.
         For example, 1 bit can represent 2 values (0 or 1), 2 bits can represent 4 values (00, 01, 10, 11), 3 bits can represent 8
         values, and so on.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If the number of possible different values that a type is meant to represent is less than the number of values that the bits
         being used to store it can represent, it can likely be more efficiently stored. Consider the nucleotides that form a gene
         in DNA.[2] Each nucleotide can only be one of four values: A, C, G, or T (there will be more about this in chapter 2). Yet, if the gene is stored as a String, which can be thought of as a collection of characters, each nucleotide will be represented by a character, which generally
         requires 8 bits of storage. In binary, just 2 bits are needed to store a type with four possible values: 00, 01, 10, and 11
         are the four different values that can be represented by 2 bits. If A is assigned 00, C is assigned 01, G is assigned 10,
         and T is assigned 11, then the storage required for a string of nucleotides can be reduced by 75% (8 bits to 2 bits per nucleotide).
      

      
         2 
            

This example is inspired by Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne (Addison-Wesley Professional, 2011), page 819.
            

         

      

      
      Instead of storing our nucleotides as a String, they can be stored as a bit string (see figure 1.5). A bit string is exactly what it sounds like—an arbitrary length sequence of 1s and 0s. Unfortunately, the Swift standard
         library contains no off-the-shelf construct for working with bit strings of arbitrary length, but the low-level C library
         Core Foundation, available from Swift, contains CFMutableBitVector. The following code converts a String composed of As, Cs, Gs, and Ts into a CFMutableBitVector and back again.
      

      
      
      
      Figure 1.5. Compressing a String representing a gene into a 2-bit-per-nucleotide bit string.
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      struct CompressedGene {
    let length: Int
    private let bitVector: CFMutableBitVector

    init(original: String) {
        length = original.count
        // default allocator, need 2 * length number of bits
        bitVector = CFBitVectorCreateMutable(kCFAllocatorDefault, length * 2)
        CFBitVectorSetCount(bitVector, length * 2) // fills the bit vector
        [image: ] with 0s
        compress(gene: original)
    }

      
      A CompressedGene internally stores a sequence of nucleotides as a bit string. The init() method’s main responsibility is to initialize the bit-string construct CFMutableBitVector and call compress() to do the dirty work of actually converting the provided String of nucleotides into a bit string. CFBitVectorCreateMutable() takes an allocator and a capacity. The capacity needs to be length * 2 because we need 2 bits for every nucleotide. Confusingly, the size (how many bits are in it) of a CFMutableBitVector is different from its capacity (how many bits can be in it). CFBitVectorSetCount() sets the bit vector’s size and initializes all of the bits to 0.
      

      
      Next, let’s look at how we can actually perform the compression.

      
      
         
            
         
         
            
               	
            

         
      

      Tip

      
      
      Core Foundation constructs like CFMutableBitVector are implemented in portable C and are available in Swift on Linux. You may need to import CoreFoundation on Linux, whereas on macOS import Foundation includes it implicitly.
      

      
      
         
            
         
         
            
               	
            

         
      

      
          private func compress(gene: String) {
        for (index, nucleotide) in gene.uppercased().enumerated() {
            let nStart = index * 2 // start of each new nucleotide
            switch nucleotide {
            case "A": // 00
                CFBitVectorSetBitAtIndex(bitVector, nStart, 0)
                CFBitVectorSetBitAtIndex(bitVector, nStart + 1, 0)
            case "C": // 01
                CFBitVectorSetBitAtIndex(bitVector, nStart, 0)
                CFBitVectorSetBitAtIndex(bitVector, nStart + 1, 1)
            case "G": // 10
                CFBitVectorSetBitAtIndex(bitVector, nStart, 1)
                CFBitVectorSetBitAtIndex(bitVector, nStart + 1, 0)
            case "T": // 11
                CFBitVectorSetBitAtIndex(bitVector, nStart, 1)
                CFBitVectorSetBitAtIndex(bitVector, nStart + 1, 1)
            default:
                print("Unexpected character \(nucleotide) at \(index)")
            }
        }
    }

      
      The compress() method looks at each Character in the String of nucleotides sequentially. When it sees an A, it adds 00 to the bit string. When it sees a C, it adds 01. And so on. Remember that 2 bits are needed for each nucleotide. As a result, the index of each Character in the initial String is multiplied by 2 to find the start of each nucleotide in the bit string.
      

      
      Finally, we will implement decompression.

      
          func decompress() -> String {
        var gene: String = ""
        for index in 0..<length {
            let nStart = index * 2 // start of each nucleotide
            let firstBit = CFBitVectorGetBitAtIndex(bitVector, nStart)
            let secondBit = CFBitVectorGetBitAtIndex(bitVector, nStart + 1)
            switch (firstBit, secondBit) {
            case (0, 0): // 00 A
                gene += "A"
            case (0, 1): // 01 C
                gene += "C"
            case (1, 0): // 10 G
                gene += "G"
            case (1, 1): // 11 T
                gene += "T"
            default:
                break // unreachable, but need default
            }
        }
        return gene
    }
}

      
      Finally, decompress() reads 2 bits from the bit string at a time. It assembles those bits into a tuple that is evaluated using Swift’s built-in
         switch pattern-matching statement. The original String is reassembled and returned, completing the cycle. Let’s test it out.
      

      
      print(CompressedGene(original: "ATGAATGCC").decompress())

      
      The original String should appear in the console after going through the compression/decompression cycle.
      

      
      
      
      
1.3. Unbreakable encryption
      

      
      A one-time pad is a way of encrypting a piece of data by combining it with meaningless random dummy data in such a way that
         the original cannot be reconstituted without access to both the product and the dummy data. In essence, this leaves the encrypter
         with a key pair (one key is the product, one key is the random dummy data). One key on its own is useless—only the combination
         of both keys can unlock the original data. When performed correctly, a one-time pad is a form of unbreakable encryption. Figure 1.6 shows the process.
      

      
      Original Data + Dummy Data -Encryption> Key-Pair (Dummy Data, Product)
[image: ] -Decryption> Original Data

      
      
      

      
      
      Figure 1.6. A one-time pad results in two keys that can be separated and then recombined to recreate the original data.
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      1.3.1. Getting the data in order
      

      
      In this example, we will encrypt a String using a one-time pad. One way of thinking about a Swift String is as a sequence of UTF-8 bytes (with UTF-8 being a Unicode character encoding). A String provides a view of itself as a sequence of UTF-8 bytes through the utf8 instance variable. This “view” is really of a sequence of UInt8, such that each UTF-8 byte is represented by one UInt8. We can therefore define a type for both our one-time pad keys and key pairs.
      

      
      typealias OTPKey = [UInt8]
typealias OTPKeyPair = (key1: OTPKey, key2: OTPKey)

      
      There are three criteria that the dummy data used in a one-time pad encryption operation must meet for the resulting product
         to be unbreakable. The dummy data must be the same length as the original data, truly random, and completely secret. The first
         and third criteria make common sense. If the dummy data repeats, because it is too short, there could be an observed pattern.
         If one of the keys is not truly secret (perhaps it is reused elsewhere or partially revealed), then an attacker has a clue.
         The second criteria poses a question all its own—can we produce truly random data? The answer for most computers is no.
      

      
      In this example we will use the pseudo-random number generating function arc4random_uniform(), so our data will not be truly random (but close enough for our purposes). Let’s work on generating a random OTPKey for use as dummy data.
      

      
      func randomOTPKey(length: Int) -> OTPKey {
    var randomKey: OTPKey = OTPKey()
    for _ in 0..<length {
        let randomKeyPoint = UInt8(arc4random_uniform(UInt32(UInt8.max)))
        randomKey.append(randomKeyPoint)
    }
    return randomKey
}

      
      This function creates an OTPKey (a UInt8 array) filled with length random numbers that are generated using an upper bound that is the maximum value of a UInt8. There is a little annoying conversion between various integer types due to the requirements and output of arc4random_uniform() and our need of UInt8s. In other words, the ultimate output of randomOTPKey() is a sequence of random UInt8s.
      

      
      
      
      1.3.2. Encrypting and decrypting
      

      
      How will the dummy data be combined with the original data that we want to encrypt? The XOR operation will serve this purpose. XOR is a logical bitwise (operates at the bit level) operation that returns true when
         either of its operands is true, but not when both are true or neither is true. As you may have guessed, XOR stands for exclusive or.
      

      
      In Swift, the XOR operator is ^. In the context of the bits of binary numbers, XOR returns 1 for 0 ^ 1 and 1 ^ 0, but 0 for 0 ^ 0 and 1 ^ 1. If the bits
         of two numbers are combined using XOR, a helpful property is that the product can be recombined with either of the operands
         to produce the other operand.
      

      
      A ^ B = C
C ^ B = A
C ^ A = B

      
      This key insight forms the basis of one-time pad encryption. To form our product, we will simply XOR each UInt8 in our original String with each UInt8 in our dummy data. Our returned key pair will be the dummy data and the product.
      

      
      func encryptOTP(original: String) -> OTPKeyPair {
    let dummy = randomOTPKey(length: original.utf8.count)
    let encrypted: OTPKey = dummy.enumerated().map { i, e in
        return e ^ original.utf8[original.utf8.index(original.utf8
        [image: ] .startIndex, offsetBy: i)]
    }
    return (dummy, encrypted)
}

OEBPS/01fig03.jpg


OEBPS/01fig04_alt.jpg


OEBPS/01fig01.jpg


OEBPS/01fig02.jpg


OEBPS/common2.jpg


OEBPS/enter.jpg


OEBPS/logo.jpg


OEBPS/common1.jpg


OEBPS/01fig05.jpg


OEBPS/01fig06.jpg


OEBPS/cover.jpg


