

 [image: cover]

Geoprocessing with Python

 Chris Garrard

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Technical development editor: Karsten Strøbæk
Copyeditor: Katie Petito
Proofreader: Katie Tennant
Technical proofreader: Rizwan Bilbul
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN: 9781617292149

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Introduction

 Chapter 2. Python basics

 Chapter 3. Reading and writing vector data

 Chapter 4. Working with different vector file formats

 Chapter 5. Filtering data with OGR

 Chapter 6. Manipulating geometries with OGR

 Chapter 7. Vector analysis with OGR

 Chapter 8. Using spatial reference systems

 Chapter 9. Reading and writing raster data

 Chapter 10. Working with raster data

 Chapter 11. Map algebra with NumPy and SciPy

 Chapter 12. Map classification

 Chapter 13. Visualizing data

 Appendix A. Installation

 Appendix B. References

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Introduction

 1.1. Why use Python and open source?

 1.2. Types of spatial data

 1.3. What is geoprocessing?

 1.4. Exploring your data

 1.5. Summary

 Chapter 2. Python basics

 2.1. Writing and executing code

 2.2. Basic structure of a script

 2.3. Variables

 2.4. Data types

 2.4.1. Booleans

 2.4.2. Numeric types

 2.4.3. Strings

 2.4.4. Lists and tuples

 2.4.5. Sets

 2.4.6. Dictionaries

 2.5. Control flow

 2.5.1. If statements

 2.5.2. While statements

 2.5.3. For statements

 2.5.4. break, continue, and else

 2.6. Functions

 2.7. Classes

 2.8. Summary

 Chapter 3. Reading and writing vector data

 3.1. Introduction to vector data

 3.2. Introduction to OGR

 3.3. Reading vector data

 3.3.1. Accessing specific features

 3.3.2. Viewing your data

 3.4. Getting metadata about the data

 3.5. Writing vector data

 3.5.1. Creating new data sources

 3.5.2. Creating new fields

 3.6. Updating existing data

 3.6.1. Changing the layer definition

 3.6.2. Adding, updating, and deleting features

 3.7. Summary

 Chapter 4. Working with different vector file formats

 4.1. Vector file formats

 4.1.1. File-based formats such as shapefiles and geoJSON

 4.1.2. Multi-user database formats such as PostGIS

 4.2. Working with more data formats

 4.2.1. SpatiaLite

 4.2.2. PostGIS

 4.2.3. Folders as data sources (shapefiles and CSV)

 4.2.4. Esri file geodatabases

 4.2.5. Web feature services

 4.3. Testing format capabilities

 4.4. Summary

 Chapter 5. Filtering data with OGR

 5.1. Attribute filters

 5.2. Spatial filters

 5.3. Using SQL to create temporary layers

 5.4. Taking advantage of filters

 5.5. Summary

 Chapter 6. Manipulating geometries with OGR

 6.1. Introduction to geometries

 6.2. Working with points

 6.2.1. Creating and editing single points

 6.2.2. Creating and editing multipoints: multiple points as one geometry

 6.3. Working with lines

 6.3.1. Creating and editing single lines

 6.3.2. Creating and editing multilines: multiple lines as one geometry

 6.4. Working with polygons

 6.4.1. Creating and editing single polygons

 6.4.2. Creating and editing multipolygons: multiple polygons as one geometry

 6.4.3. Creating and editing polygons with holes: donuts

 6.5. Summary

 Chapter 7. Vector analysis with OGR

 7.1. Overlay tools: what’s on top of what?

 7.2. Proximity tools: how far apart are things?

 7.3. Example: locating areas suitable for wind farms

 7.4. Example: animal tracking data

 7.5. Summary

 Chapter 8. Using spatial reference systems

 8.1. Introduction to spatial reference systems

 8.2. Using spatial references with OSR

 8.2.1. Spatial reference objects

 8.2.2. Creating spatial reference objects

 8.2.3. Assigning an SRS to data

 8.2.4. Reprojecting geometries

 8.2.5. Reprojecting an entire layer

 8.3. Using spatial references with pyproj

 8.3.1. Transforming coordinates between spatial reference systems

 8.3.2. Great-circle calculations

 8.4. Summary

 Chapter 9. Reading and writing raster data

 9.1. Introduction to raster data

 9.2. Introduction to GDAL

 9.3. Reading partial datasets

 9.3.1. Using real-world coordinates

 9.3.2. Resampling data

 9.4. Byte sequences

 9.5. Subdatasets

 9.6. Web map services

 9.7. Summary

 Chapter 10. Working with raster data

 10.1. Ground control points

 10.2. Converting pixel coordinates to another image

 10.3. Color tables

 10.3.1. Transparency

 10.4. Histograms

 10.5. Attribute tables

 10.6. Virtual raster format

 10.6.1. Subsetting

 10.6.2. Creating troublesome formats

 10.6.3. Reprojecting images

 10.7. Callback functions

 10.8. Exceptions and error handlers

 10.9. Summary

 Chapter 11. Map algebra with NumPy and SciPy

 11.1. Introduction to NumPy

 11.2. Map algebra

 11.2.1. Local analyses

 11.2.2. Focal analyses

 11.2.3. Zonal analyses

 11.2.4. Global analyses

 11.3. Resampling data

 11.4. Summary

 Chapter 12. Map classification

 12.1. Unsupervised classification

 12.2. Supervised classification

 12.2.1. Accuracy assessments

 12.3. Summary

 Chapter 13. Visualizing data

 13.1. Matplotlib

 13.1.1. Plotting vector data

 13.1.2. Plotting raster data

 13.1.3. Plotting 3D data

 13.2. Mapnik

 13.2.1. Drawing vector data

 13.2.2. Storing information as XML

 13.2.3. Drawing raster data

 13.3. Summary

 Appendix A. Installation

 A.1. Anaconda

 A.2. Nonbundled installations

 A.2.1. Linux

 A.2.2. Mac OS X

 A.2.3. Windows

 A.3. Environment variables

 A.4. Source code and data

 A.5. Development environments

 Appendix B. References

 Data used in figures

 Chapter 1

 Chapter 3

 Chapter 4

 Chapter 5

 Chapter 6

 Chapter 7

 Chapter 8

 Chapter 9

 Chapter 10

 Chapter 11

 Chapter 12

 Chapter 13

 Data references

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Although I’d taken a lot of programming classes in college, I never fully appreciated programming until I had a job that involved
 a lot of repetitive tasks. After amusing myself by automating much of that job, I decided to return to school and study biology,
 which is when I took my first GIS course. I was instantly in love, and managed to convince someone to give me a biology degree
 for writing an extension for ArcView GIS (a precursor to ArcGIS, for you Esri fans out there). After finishing that up, I
 went to work for the Remote Sensing/Geographic Information Systems Laboratory at Utah State University. One of my first projects
 involved some web mapping, and I soon became a big fan of the open source UMN MapServer software. That was my introduction
 to open source geospatial software, including GDAL.

 I’m fairly certain that I didn’t appreciate the power of the GDAL/OGR library when I first learned about it, but I came to
 my senses once I started using it in my C++ and C# code. In the College of Natural Resources, there weren’t many people around
 who were interested in coding, but I did get to point people to the GDAL command-line utilities on a regular basis. But then
 Esri introduced Python as the scripting language of choice for ArcGIS, and things started to change. I don’t think I had used
 Python much before then, but playing with arcgisscripting (the original Esri Python module) made me realize how much I enjoyed
 working with Python, so naturally I had to start using GDAL with it as well.

 More importantly for this book, my coworker John Lowry suggested that we team-teach a Python-for-GIS class. He taught students
 how to use Python with ArcGIS, and I taught them about GDAL. The class turned out to be popular, so we taught it that way
 for another few years until John moved away. I took over the entire class and have been teaching it in various configurations
 ever since. I’ve never bothered to take the class material from the first two years off the web, however, which is how Manning
 found me. They asked if I would write a book on using GDAL with Python. I’d never had the desire to write a book, so it took
 a bit of persuasion to convince me to do it. In the end, it was my love for teaching that won me over. I’ve discovered over
 the years that I really enjoy teaching, mostly because I love watching students incorporate what they’re learning into the
 rest of their work. This is especially true of graduate students, some of whom might not have completed their research in
 a timely manner (or at all) if they hadn’t learned how to write code. I know that these skills will continue to assist them
 throughout their careers, and my hope is that this book will provide the same help to you, no matter if you’re a student,
 professional, or a hobbyist. This is fun stuff, and I hope you enjoy it as much as I do!

Acknowledgments

 I knew that writing a book would be difficult, but it was even harder than I anticipated, and it ended up taking quite a bit
 longer than I thought it would. My coworkers, friends, and family were very supportive throughout the process, and definitely
 deserve my thanks. Chris McGinty and Tommy Thompson provided feedback on some of the text. My neighbors Marybeth and McKay
 Wilson knew I was busy and seemed to take joy in mowing my lawn or clearing snow from my driveway before I could get to it,
 and they also dropped treats by occasionally. My friend Gayle Edlin published her own book while I was working on this one,
 which proved to me that it really could be done!

 My Manning editor, Jennifer Stout, was my biggest cheerleader, always encouraging me when I got bogged down. Thanks for being
 so patient with me!

 There were many reviewers who provided invaluable feedback throughout the process: Alban Thomas, Alfredo Alessandrini, Chris
 Gaschler, Fredric Ragnar, Gonzalo Vazquez, Jackie Wilson, Jiří Fejfar, Marcus Geselle, Nate Ron-Ferguson, Ramesha Murthy,
 Ryan Stelly, Scott Chaussée, Shaun Langley, and Thorsten Szutzkus. Rizwan Bilbul gave the complete manuscript a technical
 proofread.

 The book never would’ve been finished without the help of the rest of the team at Manning, including Katie Tennant, Katie
 Petito, Kevin Sullivan, Chuck Larson, and Marija Tudor.

 And last but not least, I’d like to acknowledge my students over the years, because without them this never would’ve happened.
 Nobody would’ve asked me to write a book if I hadn’t left old class materials stranded on the web, nor would I have realized
 how much I enjoyed helping people learn.

About this Book

 I wrote Geoprocessing for Python to help you learn the basics of working with geospatial data, mostly using GDAL/OGR. There are other options, of course,
 but some of them build on top of GDAL, so if you understand the material in this book, you’ll probably be able to pick them
 up without too much trouble. This is not a book on GIS or remote sensing, although some background theory will be explained.
 Instead, this book will teach you how to write Python code for manipulating and creating spatial data, along with some simple
 analyses. You can use these building blocks to implement more-complicated analyses of your own devising.

Who should read this book

 This book is for anyone who wants to learn to work with geospatial data. Some basics of GIS and remote sensing are explained
 so that readers new to geospatial analysis will know why they’re learning certain things, but the code starts out simple enough
 so that people with a geospatial background—but not much coding experience—will also benefit.

How this book is organized

 This book is organized into 13 chapters. It starts out with a general introduction to geospatial data and Python and then
 covers vector data, spatial reference systems, raster data, and visualization.

 	
Chapter 1 is an introduction to spatial data and analysis. It describes types of analyses you can perform with different types of data,
 along with the difference between vector and raster data and the uses of each.

 	
Chapter 2 is a quick Python primer.

 	
Chapter 3 explains what the OGR library is and teaches you how to read, write, and edit vector data sources.

 	
Chapter 4 dives into the differences between vector formats. Although various formats can be treated the same in many cases, here you’ll
 learn about specific capabilities.

 	
Chapter 5 teaches you how to filter and select data based on spatial and attribute relationships.

 	
Chapter 6 describes the nitty-gritty details of creating and editing point, line, and polygon geometries.

 	
Chapter 7 shows you how to look at spatial relationships between geometries and how you might use these concepts for simple analyses.

 	
Chapter 8 includes an introduction to spatial reference systems and then teaches you how to work with them and transform data between
 them.

 	
Chapter 9 explains what the GDAL library is and teaches you how to read and write raster datasets. It also shows you how to convert
 between real-world coordinates and pixel offsets.

 	
Chapter 10 teaches you how to work with aspects of raster data such as ground control points, color tables, histograms, and attribute
 tables. It also covers the use of callback functions and error handlers.

 	
Chapter 11 describes how to use NumPy and SciPy for map algebra, including local, focal, zonal, and global analyses, and covers some
 methods for resampling data.

 	
Chapter 12 shows you some techniques for supervised and unsupervised map classification.

 	
Chapter 13 teaches you how to use matplotlib and Mapnik to visualize your data.

 If you’re familiar with spatial data and analyses, you can safely skip chapter 1. Similarly, if you’re already familiar with Python, then there’s no need to read chapter 2. If you’ve never programmed at all, you might find that you need to read a little more theory than can be provided in one
 chapter, but chapter 2 should be a good start, at least. If you’re only interested in vector data, you can ignore chapters 9-11. Likewise, if you’re only interested in raster data, chapters 3-7 can be skipped.

 This book also has several appendixes. The first two, included in the pBook, contain installation instructions for the software
 used in this book and a list of data resources. Three additional appendixes (containing reference material for the three modules
 included with GDAL: ogr, osr, and gdal) are online-only and can be downloaded from www.manning.com/books/geoprocessing-with-python.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; I’ve added line breaks and reworked indentation to accommodate
 the available page space in the book, and occasionally used line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

 I’ve tried to make variable names understandable while still keeping them short enough so that the code can fit on a line
 in the book. You might want to use more-descriptive variable names in your code, however.

 Source code for the examples can be downloaded from www.manning.com/books/geoprocessing-with-python or from https://github.com/cgarrard/osgeopy-code. The example datasets are also available from the Manning link or from https://app.box.com/osgeopy.

Author Online

 The purchase of Geoprocessing in Python includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/books/geoprocessing-with-python. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking her some challenging questions lest
 her interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

Other online resources

 If you need help with the Python language itself, there are a lot of tutorials online, such as the one at www.codecademy.com/learn/python.

 If you need help with GDAL/OGR, the gdal-dev mailing list is a great place to ask questions and get advice. Sign up or view
 the archives at http://lists.osgeo.org/listinfo/gdal-dev.

 The Python GDAL/OGR Cookbook found at https://pcjericks.github.io/py-gdalogr-cookbook/ contains a lot of useful examples.

 After learning how to use OGR, you might also be interested in learning how to use Fiona (http://toblerity.org/fiona/), which is a module designed to read and write vector data and is built on top of OGR. Shapely (http://toblerity.org/shapely/) is a useful module for manipulating geometries.

 Rasterio (https://github.com/mapbox/rasterio) is built on top of GDAL and is another good module for working with raster data.

About the Author

 Chris Garrard has worked as a developer for the Remote Sensing/Geographic Information Systems Laboratory in the Quinney College
 of Natural Resources at Utah State University for almost 15 years. She has been teaching a Python-for-GIS course for about
 half of that time, and has also taught workshops on campus and at conferences. She loves showing people that there are open
 source alternatives for processing spatial data, but her favorite thing about teaching is that “Aha!” moment when someone
 realizes just how much the ability to code will help them with their work.

About the Cover Illustration

 The illustration on the cover of Geoprocessing with Python is captioned “Man from Dalmatia, Croatia.” Dalmatia is a historical region of Croatia on the Adriatic coast. It was once
 a province of the Roman Empire, and over its history has been fought over and controlled by the Goths, the Byzantines, the
 Venetians, and the Austro-Hungarian Empire. This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist
 who spent many years studying the botany, geology, and ethnography of many parts of the Austro-Hungarian Empire, as well as
 the Veneto, the Julian Alps, and the western Balkans, inhabited in the past by peoples of many different tribes and nationalities.
 Hand-drawn illustrations accompany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of Alpine
 and Balkan regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified
 people uniquely as belonging to one or the other, and when members of an ethnic tribe, social class, or trade could be easily
 distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time,
 has faded away. It is now often hard to tell the inhabitant of one continent from another, and today’s inhabitants of the
 towns and villages on the shores of the Baltic or Mediterranean or Black Seas are not readily distinguishable from residents
 of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 costumes from two centuries ago, brought back to life by illustrations such as this one.

Chapter 1. Introduction

 This chapter covers

 	Introducing basic types of spatial data

 	What is geoprocessing?

 	Using QGIS

 Humans have been making maps for far longer than we’ve been writing, and even the famed Lascaux caves in France have a star
 map on their walls. We know that ancient peoples all over the world used maps, including the Babylonians, Greeks, and Chinese.
 The art of cartography has evolved over the millennia, from cave walls as mediums to clay tablets, parchment, paper, and now
 digital. Maps have also gotten much more detailed, as well as accurate, as technology has been developed and improved. In
 fact, most of us would probably have a hard time recognizing the most primitive maps as maps at all.

 It took mankind a long time to go from cave walls to mass-produced road maps, but the degree of change in the last few decades
 has been staggering. Geographic Information Systems (GISs) became more common and easier to use, giving more people the ability to both analyze spatial data and produce their
 own high-quality maps. Then came web mapping and services that allow users to make custom maps online and share them with
 the world. Many of us even carry devices in our pockets that can display a map showing our current location and tell us how to get to a new restaurant that we want to try. Not only
 that, but the available data has also changed dramatically. Makers of those early maps would be blown away by our roadmaps
 overlaid on top of aerial photography and our talking GPS units.

 Thanks to these recent advances in technology, along with free and open source tools, you have access to powerful software
 to work with your own data. This book aims to teach you the basic concepts of working with spatial data and how to do so with
 the Python programming language and a few open source tools. After reading this book, you’ll write Python scripts to solve
 basic data analysis problems and have the background knowledge to answer more-complicated questions.

1.1. Why use Python and open source?

 Several compelling reasons exist for using Python and open source tools for processing spatial data. First, Python is a powerful
 programming language that has the advantage of being much easier to learn than some other languages, and it’s also easy to
 read. It’s a good language to start with if you’ve never programmed before, and if you’re coming from other languages, you’ll
 probably find Python easy to pick up.

 Learning Python is a good move, even if you never again use it for spatial analysis after reading this book. Many different
 Python modules are available for a wide range of applications, including web development, scientific data analysis, and 3D
 animation. In fact, geospatial applications are only a small subset of what Python is used for.

 In addition, Python is multiplatform, so unless you’ve used an extra module that’s specific to one operating system, a Python
 script that you write on one machine will run on any other machine, provided the required modules are installed. You can use
 your Linux box to develop a set of scripts and then give them to a colleague who uses Windows, and everything should work
 fine. You do need to install a Python interpreter to run the code, but those are freely available for major desktop operating
 systems.

 Python ships with the core language and numerous modules that you can optionally use in your code. In addition, many more
 modules are available from other sources. For example, the Python Package Index (PyPI), available at https://pypi.python.org/pypi, lists more than 60,000 additional modules, all used for different purposes, and all free. That’s not to say that everything
 Python is free, however. Several of you coming from a GIS background are no doubt familiar with ArcPy, which is a Python module that comes with ArcGIS, and is not useable without an ArcGIS license.

 Not only is there an abundance of free Python packages, but many of them are also open source. Although many people associate
 open source software with software that doesn’t cost money, that’s only part of it. The real meaning is that the source code
 is made available for you to use if you wish. The fact that you have access to the source code means that nothing is a “black
 box” (if you want to take the time to learn what’s inside the box), but also that you can modify the code to suit your needs.
 This is extremely liberating. I’ve used open source tools that didn’t quite do what I wanted, so I tweaked the source code,
 recompiled, and then had a utility that did exactly what I needed. This is impossible with proprietary software. These two types of freedom associated with open source software make
 it an attractive model.

 Several different types of open source licenses exist, some of which not only allow you to modify the code as needed, but
 even allow you to turn around and sell your derived work without providing the source code and your modifications. Other licenses
 require that if you use the software, then your software must also be open source.

 We’ll cover a few popular open source Python modules for geospatial data in this book. Several were originally developed in
 other languages, but became so common and well respected that they were either ported to other languages, or bindings were
 developed so that they could be used in other languages. For example, the Geospatial Data Abstraction Library (GDAL) is an extremely popular C/C++ library for reading and writing spatial data, and bindings have been developed for Python,
 .NET, Ruby, and other languages. The GDAL library is even used by many proprietary software packages. Because of the library’s
 widespread use, this book concentrates on GDAL/OGR. If you can learn to use this, then moving to other libraries shouldn’t
 be difficult. In fact, several nice libraries are built on top of GDAL/OGR that are probably easier to use, but don’t necessarily
 provide all of the functionality that’s present in GDAL. See appendix A for installation instructions for the modules used in this book.

 Another advantage to going with open source tools is that active user communities exist for some of these packages, and you
 may find that bugs and other issues are addressed much more quickly than with many proprietary software packages. You can
 even discuss the finer points of the libraries with the actual developers via email lists.

1.2. Types of spatial data

 You’ll learn how to work with the two main types of spatial data, vector and raster. Vector data is made up of points, lines,
 and polygons, while raster data is a two- or three-dimensional array of data values such as the pixels in a photograph. A
 dataset containing country boundaries is an example of vector data. In this case, each country is generally represented as
 a polygon. Datasets that use lines to represent roads or rivers, or points to show the location of weather stations, are other
 examples. Early primitive maps, such as those drawn on cave walls, only showed the features themselves. Later maps contained
 labels for features of interest such as cities or seaports; for example, the Portolan map of northwest Africa shown in figure 1.1.

 Figure 1.1. A Portolan map of the northwest coast of Africa, circa 1590

 [image:]

 Using digital data, you have the advantage of attaching multiple attribute values to each feature, whether you plan to display
 the information on a map or not. For each road, you can store information such as its name, speed limit, number of lanes,
 or anything else you can think of. Figure 1.2 shows an example of data you might store with each country in a dataset.

 Figure 1.2. You can store attributes such as name and population for each geographic feature in a dataset.

 [image:]

 Of the several reasons why this is useful, the obvious one is that you can label features using one of the attributes. For
 example, figure 1.2 could show country names as well as outlines. All of this data can also help you make more-interesting maps that might even
 tell a story. The population counts stored for each feature in figure 1.2 could be used to symbolize countries based on population, so it’s evident at a glance which countries are most populated
 (figure 1.3).

 Figure 1.3. Countries symbolized based on population

 [image:]

 Spatial overlay analyses are also easy using vector data. Say you wanted to know what percentage of Lake Victoria was in Uganda,
 Kenya, and Tanzania. You could always guesstimate the answer based on figure 1.4, but you could also use GIS software to get more accurate numbers. You’ll do simple analyses like this by the time you finish
 this book.

 Figure 1.4. Lake Victoria straddles Uganda, Kenya, and Tanzania. Spatial analysis could help you determine the proportion of the lake
 that falls in each country.

 [image:]

 Attribute values attached to features can also add to the power of spatial operations. For example, say you had a dataset
 containing the locations of water wells with attributes that included depth and flow rate. If you also had a dataset for the
 same area containing geologic landforms or soil types, you could analyze this data to see if flow rate or required well depth
 was affected by landform or soil type.

 Unlike the early mapmakers, you also have access to raster data. Rasters, as the datasets are called, are two- or three-dimensional
 arrays of values, the way a photograph is a two-dimensional array of pixel values. In fact, aerial photographs such as the
 one shown in figure 1.5 are a commonly used type of raster data. Satellite images sometimes look similar, although they generally have lower resolutions. The cool thing about satellite imagery is that much of it is collected using nonvisible light so it can provide
 information that a simple photograph cannot.

 Figure 1.5. An aerial photograph near Seattle, Washington

 [image:]

 Raster datasets are well suited to any continuous data, not only photographs. Precipitation data like that shown in figure 1.6 is a good example. Rain doesn’t usually stop at a sudden boundary, so it’s hard to draw a polygon around it. Instead, a grid
 of precipitation amounts works much better and can capture local variation more easily. The same idea applies to temperature
 data, and many other variables, as well. Another example is a digital elevation model (DEM), in which each pixel contains an elevation value.

 Figure 1.6. A raster dataset showing precipitation (PRISM Climate Group, Oregon State University, 2015)

 [image:]

 Raster data is better suited for different types of analysis than vector data. Satellite imagery and aerial photos are commonly
 used for tasks such as vegetation mapping. Because water only flows downhill, elevation models can be used to determine watershed
 boundaries. Even simple math can be used to perform useful analyses with raster data. For example, simple ratios of one wavelength
 value to another can help identify healthy vegetation or measure soil moisture.

 Blocks of adjacent pixels can also be used to calculate useful information. For example, you can use a DEM to calculate slope,
 which can then be used for runoff analysis, vegetation mapping, or planning a ski resort. But to calculate slope, you need
 the elevation of surrounding cells. In figure 1.7, you use all of the pixel values shown to calculate the slope of the center pixel. For any other pixel, you need the surrounding nine cells to calculate slope for
 it, too. These sets of pixels are called windows, and you can do many other kinds of analyses by moving a window around a raster so each pixel is in the center of its own
 window.

 Figure 1.7. All nine elevation values shown here would be used to calculate the slope for the center pixel.

 [image:]

 Vector and raster data can also be used together. Think of a hybrid web mapping application that shows a photographic basemap
 with roads drawn on top of it. The basemap is raster data and the roads shown on top are vectors. Figure 1.8 shows an example of a simple map that uses a raster DEM of the Grand Canyon as a basemap and shows a vector line dataset
 drawn on top.

 Figure 1.8. Simple map of the Grand Canyon with vector roads layer drawn on top of a raster elevation dataset

 [image:]

1.3. What is geoprocessing?

 Geoprocessing is a general term for manipulating spatial data, whether raster or vector. As you can imagine, that covers an
 awful lot of ground. I’ve always thought of using GIS with geoprocessing as a tool much like statistics in that it can be
 applied to pretty much everything. You even use geoprocessing in your daily life, whether you realize it or not. For example,
 I tend to take a different route to work depending on whether I’m driving or riding a bicycle because I prefer to avoid high-traffic
 roads with no shoulder when riding my bike. Steep hills are also not a concern while driving, but they are when I’m biking.
 Basing my route selection not only on spatial factors such as the direction of the road and elevation gain, but also on attributes
 such as the amount of traffic and road width is a type of geoprocessing. You probably make similar decisions every day.

 You have many reasons to be interested in geoprocessing, other than selecting a route to work. Let’s look at a few examples
 of applications. One famous example of early spatial analysis is the story of John Snow, an English physician who lived in
 the 1800s. Although parts of the story have been disputed, the gist of it is that he used spatial analysis to determine the
 cause of a cholera outbreak in 1854. A section of his map is shown in figure 1.9, with the Broad Street pump in the middle. You can see that it looks like bar charts are anchored on nearby streets. Each
 of these bars is made of horizontal lines, with one per cholera victim. Snow realized that most of the victims probably got
 their water from the pump on Broad Street, because that was the closest one, and he convinced authorities to shut the pump
 down. This is significant not only because it’s an early example of spatial analysis, but also because it wasn’t yet known
 that cholera was contracted from contaminated water. Because of this, Snow is considered one of the fathers of modern epidemiology.

 Figure 1.9. Part of John Snow’s map of the Soho cholera outbreak of 1854

 [image:]

 Spatial analysis is still an important part of epidemiology, but it’s used for many other things, too. I’ve worked on projects
 that include studying the habits of a threatened species, modeling vegetation cover over large areas, comparing data from
 pre- and post-flood events to see how the river channels changed, and modeling carbon sequestration in forests. You can probably
 find examples of spatial analysis wherever your interests lie. Let’s consider a few more examples.

 Chinese researchers Luo et al.[1] used spatial analysis, along with historical records, to pinpoint the locations of missing courier stations along the Silk
 Road. The historical records contained descriptions of the route, including distance traveled and general direction between
 stations. The locations of several stations were already known, and the researchers knew that ancient travelers were unlikely
 to follow a straight line, but instead follow rivers or other landforms. They used all of this information to determine likely
 geographic areas for the still-missing stations. They then used high-resolution satellite imagery to search these areas for
 geometric shapes that could be station ruins. After visiting the sites in person, they determined that one, in fact, was an
 old courier station, and two others were likely military facilities during the Han Dynasty.

 1

Luo, L., X. Wang, C. Liu, H. Guo, and X. Du. 2014. Integrated RS, GIS and GPS approaches to archaeological prospecting in
 the Hexi Corridor, NW China: a case study of the royal road to ancient Dunhuang. Journal of Archaeological Science. 50: 178-190.
 doi:10.1016/j.jas.2014.07.009.

 For a completely different application, Moody et al.[2] were interested in the potential for using microalgae as a biofuel. They used a microalgae growth model and meteorological
 data from various locations around the globe to simulate biomass productivity. Because the meteorological data was only from
 certain sites, the results were then spatially interpolated to provide a global map of productivity potential. It turns out
 that the most promising locations are in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia.

 2

Moody, J. W., C. M. McGinty, and J. C. Quinn. 2014. Global evaluation of biofuel potential from microalgae. Proceedings of
 the National Academy of Sciences of the United States of America. 111: 8691-8696. doi: 10.1073/pnas.1321652111.

 This is interesting, but spatial analyses also affect your everyday life. Have you noticed that your automobile insurance
 premium differs depending on where you live? It’s likely that a sort of spatial analysis also affected the location of your
 favorite coffee shop or grocery store. Several new elementary and high schools are being built in my community, and their
 locations were determined in part by the spatial distribution of future students, along with the availability of suitable
 pieces of real estate.

 Spatial analysis isn’t limited to geography, either. Rose et al.[3] demonstrated that GIS can be used to analyze the distribution of nano- and microstructures in bone. They could use this to
 see how bone remodeling events corresponded to parts of the bone that experience high levels of compression and tension.

 3

Rose, D. C., A. M. Agnew, T. P. Gocha, S. D. Stout, and J. S. Field. 2012. Technical note: The use of geographical information
 systems software for the spatial analysis of bone microstructure. American Journal of Physical Anthropology. 148: 648–654.
 doi: 10.1002/ajpa.22099.

 You personally might need to make data more suitable for a map, such as eliminating unwanted features or simplifying complex
 lines so they display faster on a web map. Or you might analyze demographic data to plan for future transportation needs.
 Perhaps you’re interested in how vegetation responds to different land management practices, such as prescribed burns or mowing.
 Or maybe it’s something else entirely.

 Although geoprocessing techniques can be rather complicated, many are fairly simple. It’s the simple ones that you’ll learn
 about in this book, but they’re the foundation for everything else. By the time you’re done, you’ll read and write spatial
 data in many formats, both vector and raster. You’ll subset vector data by attribute value or by spatial location. You’ll know how to perform
 simple vector geoprocessing, including overlay and proximity analyses. In addition, you’ll know how to work with raster datasets,
 including resizing pixels, performing calculations based on multiple datasets, and moving window analyses.

 You’ll know how to do all of this with Python rather than by pushing buttons in a software package. The ability to script
 your processes like this is extremely powerful. Not only does it make it easy to batch process many datasets at once (something
 I do often), but it gives you the ability to customize your analysis instead of being limited to what the software user interface
 allows. You can build your own custom toolkits based on your workflow, and use these over and over. Automation is another
 big one, and it’s the reason I fell in love with scripting in the first place. I hate pushing buttons and doing the same thing
 over and over, but I’ll happily spend time figuring out how to automate something so I never have to think about it again.
 One last advantage that I’ll mention here is that you always know exactly what you did, as long as you don’t lose your script,
 because everything is right there.

1.4. Exploring your data

 You’ll see ways to visualize your data as you work with it in Python, but the best way to explore the data is still to use
 a desktop GIS package. It allows you to easily visualize the data spatially in multiple ways, but also inspect the attributes
 included with the data. If you don’t have access to GIS software already, QGIS is a good open source option and is the one
 we’ll be using when needed in this book. It’s available from www.qgis.org, and it runs on Linux, Mac OS X, and Windows.

 	

 Downloadable code and sample data

 The examples in this book use code and sample data that’s available for download from the following links. You’ll need to
 download these if you want to follow along. The code contains examples from the book but also custom utilities used by the
 examples, and all of the data used in the examples is included.

 	Code: https://github.com/cgarrard/osgeopy-code and www.manning.com/books/geoprocessing-with-python

 	Data: https://app.box.com/osgeopy and www.manning.com/books/geoprocessing-with-python

 	

 This isn’t a book on QGIS, so I won’t talk much about how to use it. Documentation is available on their website, and you
 can find one or two books published on the topic. However, I’ll briefly discuss how to load data and take a look. If you’ve
 never used a GIS before, then QGIS might look a bit daunting when you first open it up, but it’s not hard to use it to view
 data. For example, to load up one of the shapefiles in the example data for this book, select Add Vector Layer... from the
 Layer menu in QGIS. In the dialog that opens, make sure that the File button is selected and then use the Browse button to
 select a shapefile. A good choice to start out with is the countyp010.shp file in the US folder (figure 1.10).

 Figure 1.10. The dialog for adding a vector layer to QGIS

 [image:]

 After selecting a file, click Open in the Add vector layer dialog, and the spatial data will draw in QGIS, as shown in figure 1.11. You can use the magnifying glass tool (circled in figure 1.11) to zoom in on part of the map.

 Figure 1.11. QGIS window immediately after loading countyp010.shp

 [image:]

 You’ll also see the name of the layer, countyp010 in this case, shown in the Layers list on the left. Double-click on a layer
 and you’ll get a Properties dialog. If you click on the Style tab, then you can change how the data is drawn. Let’s change
 the counties layer so that the counties are not all drawn with the same color, but instead the color depends on the state
 the county is in. To do this, choose Categorized from the dropdown list, set the column to STATE, select a Color ramp from
 the dropdown list, and then click Classify. You’ll see a list of all of the states and the colors they’ll be drawn with, as
 shown in figure 1.12. You can change the color ramp by selecting a new one from the list, clicking Delete All, and then clicking Classify again.
 You can also change a particular entry in the list by double-clicking on the color swatch next to the state abbreviation.

 Figure 1.12. QGIS Style dialog configured to draw the counties in each state in a different color

 [image:]

 	

 Note to Print Book Readers: Color Graphics

 Many graphics in this book are best viewed in color. The eBook versions display the color graphics, so they should be referred
 to as you read. To get your free eBook in PDF, ePub, and Kindle formats, go to https://www.manning.com/books/geoprocessing-with-python to register your print book.

 	

 Once you’re happy with your colors, click Apply, and the colors will be applied in the main QGIS window (figure 1.13).

 Figure 1.13. Results of applying the symbology from figure 1.12 to the counties layer

 [image:]

 You can view the attribute data that’s attached to the spatial data by right-clicking on the layer name in the Layers list
 and selecting Open Attribute Table. Each row in the table shown in figure 1.14 corresponds to a county drawn on the map. In fact, try selecting a row by clicking on the number in the left-most column
 and then clicking on the Zoom map to selected rows button (circled in figure 1.14) and watch what happens.

 Figure 1.14. Attribute table for the counties layer

 [image:]

 Take time to play with QGIS and read at least part of the documentation on the website. The software is extremely powerful
 and worth getting to know. I’ll talk about it more throughout the book, but not a whole lot. You’ll want to use it to inspect
 the sample data and the results of any data you create, however.

1.5. Summary

 	Python is a powerful multiplatform programming language that’s relatively easy to learn.

 	Free and open source software is not only free with regard to price (free beer), but also allows for many freedoms with how
 it’s used (free speech).

 	Many excellent open source Python modules exist for processing both vector and raster geospatial data.

 	You don’t give up quality by using open source tools. In fact several of these packages are also used by proprietary software.

Chapter 2. Python basics

 This chapter covers

 	Using the Python interpreter vs. writing scripts

 	Using the core Python data types

 	Controlling the order of code execution

 You can do many things with desktop GIS software such as QGIS, but if you work with spatial data for long, you’ll inevitably
 want to do something that isn’t available through the software’s interface. If you know how to program, and are clever enough,
 you can write code that does exactly what you need. Another common scenario is the need to automate a repetitive processing
 task instead of using the point-and-click method over and over again. Not only is coding more fun and intellectually stimulating
 than pointing and clicking, but it’s also much more efficient when it comes to repetitive tasks. You have no shortage of languages
 you could learn and work with, but because Python is used with many GIS software packages, including QGIS and ArcGIS, it’s
 an excellent language for working with spatial data. It’s also powerful, but at the same time a relatively easy-to-learn language,
 so that makes it a good choice if you’re starting out with programming.

 Another reason for using Python is that it’s an interpreted language, so programs written in Python will run on any computer
 with an interpreter, and interpreters exist for any operating system you’re likely to use. To run a Python script, you need the script and an interpreter,
 which is different from running an .exe file, for example, where you only need one file. But if you have an .exe file, you
 can only run it under the Windows operating system, which is a bummer if you want to run it on a Mac or Linux. However, if
 you have a Python script, you can run it anywhere that has an interpreter, so you’re no longer limited to a single operating
 system.

2.1. Writing and executing code

 Another advantage of interpreted languages is that you can use them interactively. This is great for playing around and learning
 a language, because you can type a line of code and see the results instantly. You can run the Python interpreter in a terminal
 window, but it’s probably easier to use IDLE, which is a simple development environment installed with Python. Two different types of windows exist in IDLE, shells and edit windows. A shell is an interactive window in which you can type Python code and get immediate results. You’ll know that you’re looking
 at an interactive window if you see a >>> prompt, like that in figure 2.1. You can type code after this prompt and execute it by pressing Enter. Many of the examples in this book are run this way
 to show results. This is an inefficient way to run more than a few lines of code, and it doesn’t save your code for later
 use. This is where the edit window comes in. You can use the File menu in IDLE to open a new window, which will contain an
 empty file. You can type your code in there and then execute the script using the Run menu, although you’ll need to save it
 with a .py extension first. The output from the script will be sent to the interactive window. Speaking of output, in many
 of the interactive examples in this book I type a variable name to see what the variable contains, but this won’t work if
 you’re running the code from a script. Instead, you need to use print to explicitly tell it to send information to the output window.

 Figure 2.1. An IDLE shell window

 [image:]

 In figure 2.1 the string I typed, 'Hello world!', and the output are color coded. This syntax highlighting is useful because it helps you pick out keywords, built-in functions,
 strings, and error messages at a glance. It can also help you find spelling mistakes if something doesn’t change color when
 you expect it to. Another useful feature of IDLE is tab completion. If you start typing a variable or function name and then press the Tab key, a list of options will pop up, as shown in figure 2.2. You can keep typing, and it will narrow the search. You can also use arrow keys to scroll through the list. When the word
 you want is highlighted, press Tab again, and the word will appear on your screen.

 Figure 2.2. Start typing and press the Tab key in order to get a list of possible variables or functions that match what you were typing.

 [image:]

 Because Python scripts are plain text files, you aren’t forced to use IDLE if you don’t want to. You can write scripts in
 whatever text editor you prefer. Many editors are easy to configure, so you can run a Python script directly without leaving
 the editor. See the documentation for your favorite editor to learn how to do this. Packages that are designed specifically
 for working with Python code are Spyder, PyCharm, Wing IDE, and PyScripter. Everybody has their own favorite development environment,
 and you may need to play with a few different ones before you find an environment that you like.

2.2. Basic structure of a script

 Some of the first things you’ll see right at the top of most Python scripts are import statements. These lines of code load additional modules so that the scripts can use them. A module is basically a library
 of code that you can access and use from your scripts, and the large ecosystem of specialized modules is another advantage
 to using Python. You’d have a difficult time working with GIS data in Python without extra modules that are designed for this,
 similar to the way tools such as GIMP and Photoshop make it easier to work with digital images. The whole point of this book
 is to teach you how to use these tools for working with GIS data. Along the way, you’ll also use several of the modules that
 come with Python because they’re indispensable for tasks such as working with the file system.

 Let’s look at a simple example that uses one of the built-in modules. The first thing you need to do to use a module is load
 it using import. Then you can access objects in the module by prefixing them with the module name so that Python knows where to find them.
 This example loads the random module and then uses the gauss function contained in that module to get a random number from the standard normal distribution:

 >>> import random
>>> random.gauss(0, 1)
-0.22186423850882403

 Another thing you might notice in a Python script is the lack of semicolons and curly braces, which are commonly used in other
 languages for ending lines and setting off blocks of code. Python uses whitespace to do these things. Instead of using a semicolon
 to end a line, press Enter and start a new line. Sometimes one line of code is too long to fit comfortably on one line in
 your file, however. In this case, break your line at a sensible place, such as right after a comma, and the Python interpreter
 will know that the lines belong together. As for the missing curly braces, Python uses indentation to define blocks of code
 instead. This may seem weird at first if you’re used to using braces or end statements, but indentation works as well and forces you to write more readable code. Because of this, you need to be careful
 with your indentations. In fact, it’s common for beginners to run into syntax errors because of wayward indentations. For
 example, even an extra space at the beginning of a line of code will cause an error. You’ll see examples of how indentation
 is used in section 2.5.

 Python is also case sensitive, which means that uppercase and lowercase letters are different from one another. For example,
 random.Gauss(0, 1) wouldn’t have worked in the last example because gauss needs to be all lowercase. If you get error messages about something being undefined (which means Python doesn’t know what
 it is), but you’re sure that it exists, check both your spelling and your capitalization for mistakes.

 It’s also a good idea to add comments to your code to help you remember what it does or why you did it a certain way. I can
 guarantee that things that are obvious as you’re writing your code will not be so obvious six months later. Comments are ignored
 by Python when the script is run, but can be invaluable to the real people looking at the code, whether it’s you or someone
 else trying to understand your code. To create a comment, prefix text with a hash sign:

 # This is a comment

 In addition to comments, descriptive variable names improve the legibility of your code. For example, if you name a variable
 m, you need to read through the code to figure out what’s stored in that variable. If you name it mean_value instead, the contents will be obvious.

2.3. Variables

 Unless your script is extremely simple, it will need a way to store information as it runs, and this is where variables come
 in. Think about what happens when you use software to open a file, no matter what kind of file it is. The software displays
 an Open dialog, you select a file and click OK, and then the file is opened. When you press OK, the name of the selected file
 is stored as a variable so that the software knows what file to open. Even if you’ve never programmed anything in your life,
 you’re probably familiar with this concept in the mathematical sense. Think back to algebra class and computing the value
 of y based on the value of x. The x variable can take on any value, and y changes in response. A similar concept applies in programming. You’ll use many different variables, or x’s, that will affect the outcome of your script. The outcome can be anything you want it to be and isn’t limited to a single
 y value, however. It might be a number, if your goal is to calculate a statistic on your data, but it could as easily be one
 or more entirely new datasets.

 Creating a variable in Python is easy. Give it a name and a value. For example, this assigns the value of 10 to a variable called n and then prints it out:

 >>> n = 10
>>> n
10

 If you’ve used other programming languages such as C++ or Java, you might be wondering why you didn’t need to specify that
 the variable n was going to hold an integer value. Python is a dynamically typed language, which means that variable types aren’t checked
 until runtime, and you can even change the data type stored in a variable. For example, you can switch n from an integer to a string and nobody will complain:

 >>> n = 'Hello world'
>>> n
Hello world

 Although you can store whatever you want in a variable without worrying about data type, you will run into trouble if you
 try to use the variable in a way that’s inconsistent with the kind of data stored in it. Because the data types aren’t checked
 until runtime, the error won’t happen until that line of the script is executed, so you won’t get any warning beforehand.
 You’ll get the same errors in the Python interactive window that would occur in a script, so you can always test examples
 there if you’re not sure if something will work. For example, you can’t add strings and integers together, and this shows
 what happens if you try:

 >>> msg = n + 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

 Remember that n contains Hello world, which cannot be added to 1. If you’re using Python 2.7, the core of the problem is the same, but your error message will look like this instead:

 TypeError: cannot concatenate 'str' and 'int' objects

 Notice that you use a single equal sign to assign a value to a variable. To test for equality, always use a double equal sign:

 >>> n = 10
>>> n == 10
True

 When you’re first starting out, you might be more comfortable hardcoding values into your script instead of using variables
 when you don’t have to. For example, say you need to open a file in the script, maybe on line 37. You’ll probably be tempted
 to type the filename on line 37 when the file is opened. This will certainly work, but you’ll find that things are easier
 to change later if you instead define a variable containing the filename early in the script and then use that variable on line 37. First, this makes it easier to find the values you
 need to change, but even more importantly, it will be much easier to adapt your code so that you can use it in more situations.
 Instead of line 37 looking something like this,

 myfile = open('d:/temp/cities.csv')

 you’d define a variable early on and then use it when needed:

 fn = 'd:/temp/cities.csv'
<snip a bunch of code>
myfile = open(fn)

 It might be hard to remember to do this at first, but you’ll be glad you did if you have to adapt your code to use other data.

2.4. Data types

 As your code becomes more complex, you’ll find that it’s extremely difficult to store all of the information that your script
 needs as numbers and strings. Fortunately, you can use many different types of data structures, ranging from simple numbers
 to complex objects that can contain many different types of data themselves. Although an infinite number of these object types
 can be used (because you can define your own), only a small number of core data types exist from which the more complex ones
 are built. I’ll briefly discuss several of those here. Please see a more comprehensive set of Python documentation for more
 details, because this leaves out much information.

 2.4.1. Booleans

 A Boolean variable denotes true or false values. Two case-sensitive keywords, True and False, are used to denote these values. They can be used in standard Boolean operations, like these:

 >>> True or False
True
>>> not False
True
>>> True and False
False
>>> True and not False
True

 Other values can also resolve to True or False when value testing and performing Boolean operations. For example, 0, the None keyword, blank strings, and empty lists, tuples, sets, and dictionaries all resolve to False when used in Boolean expressions. Anything else resolves to True. You’ll see examples of this in section 2.5.

 2.4.2. Numeric types

 As you’d expect, you can use Python to work with numbers. What you might not expect, however, is that distinct kinds of numbers
 exist. Integers are whole numbers, such as 5, 27, or 592. Floating-point numbers, on the other hand, are numbers with decimal points, such as 5.3, 27.0, or 592.8. Would it surprise you to know that 27 and
 27.0 are different? For one, they might take up different amounts of memory, although the details depend on your operating
 system and version of Python. If you’re using Python 2.7 there’s a major difference in how the two numbers are used for mathematical
 operations, because integers don’t take decimal places into account. Take a look at this Python 2.7 example:

 >>> 27 / 7
3
>>> 27.0 / 7.0
3.857142857142857
>>> 27 / 7.0
3.857142857142857

 As you can see, if you divide an integer by another integer, you still end up with an integer, even if there’s a remainder.
 You get the correct answer if one or both of the numbers being used in the operation is floating-point. This behavior has
 changed in Python 3.x, however. Now you get floating-point math either way, but you can still force integer math using the
 // floor division operator:

 >>> 27 / 7
3.857142857142857
>>> 27 // 7
3

 	

 Warning

 Python 3.x performs floating-point math by default, even on integers, but older versions of Python perform integer math if
 all inputs are integers. This integer math often leads to undesirable results, such as 2 instead of 2.4, in which case you
 must ensure that at least one input is floating-point.

 	

 Fortunately, you have a simple way to convert one numeric data type to the other, although be aware that converting floating-point
 to integer this way truncates the number instead of rounding it:

 >>> float(27)
27.0
>>> int(27.9)
27

 If you want to round the number instead, you must use the round function:

 >>> round(27.9)
28

 Python also supports complex numbers, which contain real and imaginary parts. As you might recall, these values result when
 you take the square root of a negative number. We won’t use complex numbers in this book, but you can read more about them
 at python.org if you’re interested.

 2.4.3. Strings

 Strings are text values, such as 'Hello world'. You create a string by surrounding the text with either single or double quotes—it doesn’t matter which, although if you
 start a string with one type, you can’t end it with the other because Python won’t recognize it as the end of the string.
 The fact that either one works makes it easy to include quotes as part of your string. For example, if you need single quotes
 inside your string, as you would in a SQL statement, surround the entire string with double quotes, like this:

 sql = "SELECT * FROM cities WHERE country = 'Canada'"

 If you need to include the same type of quote in your string that you’re using to delineate it, you can use a backslash before
 the quote. The first example here results in an error because the single quote in “don’t” ends the string, which isn’t what
 you want. The second one works, thanks to the backslash:

 >>> 'Don't panic!'
 File "<stdin>", line 1
 'Don't panic!'
 ^
SyntaxError: invalid syntax
>>> 'Don\'t panic!'
"Don't panic!"

 Notice the caret symbol (^) under the spot where Python ran into trouble. This can help you narrow down where your syntax error is. The double quotes
 that surround the string when it’s printed aren’t part of the string. They show that it’s a string, which is obvious in this
 case, but wouldn’t be if the string was "42" instead. If you use the print function, the quotes aren’t shown:

 >>> print('Don\'t panic!')
Don't panic!

 	

 Tip

 Although most of these examples from the interactive window don’t use print to send output to the screen, you must use it to send output to the screen from a script. If you don’t, it won’t show up.
 In Python 3, print is a function and like all functions, you must pass the parameters inside parentheses. In Python 2, print is a statement and the parentheses aren’t required, but they won’t break anything, either.

 	

Joining strings

 You have several ways to join strings together. If you’re only concatenating two strings, then the simplest and fastest is
 to use the + operator:

 >>> 'Beam me up ' + 'Scotty'
'Beam me up Scotty'

 If you’re joining multiple strings, the format method is a better choice. It can also join values together that aren’t all strings, something the + operator can’t do. To use it, you create a template string that uses curly braces as placeholders, and then pass values to
 take the place of the placeholders. You can read the Python documentation online to see the many ways you can use this for sophisticated formatting, but we’ll look at the basic method of specifying order. Here,
 the first item passed to format replaces the {0} placeholder, the second replaces {1}, and so on:

 >>> 'I wish I were as smart as {0} {1}'.format('Albert', 'Einstein')
'I wish I were as smart as Albert Einstein'

 To see that the numeric placeholders make a difference, try switching them around but leaving everything else the same:

 >>> 'I wish I were as smart as {1}, {0}'.format('Albert', 'Einstein')
'I wish I were as smart as Einstein, Albert'

 The fact that the placeholders reference specific values means that you can use the same placeholder in multiple locations
 if you need to insert an item in the string more than once. This way you don’t have to repeat anything in the list of values
 passed to format.

Escape characters

 Remember the backslash that you used to include a quote inside a string earlier? That’s called an escape character and can also be used to include nonprintable characters in strings. For example, "\n" includes a new line, and "\t" represents a tab:

 >>> print('Title:\tMoby Dick\nAuthor:\tHerman Melville')
Title: Moby Dick
Author: Herman Melville

 The fact that Windows uses backslashes as path separators causes angst for beginning programmers who use Windows, because
 they tend to forget that a single backslash isn’t a backslash. For example, pretend you have a file called cities.csv in your
 d:\temp folder. Try asking Python if it exists:

 >>> import os
>>> os.path.exists('d:\temp\cities.csv')
False

 To get an idea of why that fails, when you know that the file does indeed exist, try printing the string instead:

 >>> print('d:\temp\cities.csv')
d: emp\cities.csv

 The "\t" was treated as a tab character! You have three ways to solve this problem. Either use forward slashes or double backslashes,
 or prefix the string with an r to tell Python to ignore escape characters:

 >>> os.path.exists('d:/temp/cities.csv')
True
>>> os.path.exists('d:\\temp\\cities.csv')
True
>>> os.path.exists(r'd:\temp\cities.csv')
True

 I prefer the latter method if I’m copying and pasting paths, because it’s much easier to add one character at the beginning
 than to add multiple backslashes.

 2.4.4. Lists and tuples

 A list is an ordered collection of items that are accessed via their index. The first item in the list has index 0, the second has
 index 1, and so on. The items don’t even have to all be the same data type. You can create an empty list with a set of square
 brackets, [], or you can populate it right off the bat. For example, this creates a list with a mixture of numbers and strings and then
 accesses some of them:

 >>> data = [5, 'Bob', 'yellow', -43, 'cat']
>>> data[0]
5
>>> data[2]
'yellow'

 You can also use offsets from the end of the list, with the last item having index -1:

 >>> data[-1]
'cat'
>>> data[-3]
'yellow'

 You’re not limited to retrieving one item at a time, either. You can provide a starting and ending index to extract a slice,
 or sublist. The item at the ending index isn’t included in the returned value, however:

 >>> data[1:3]
['Bob', 'yellow']
>>> data[-4:-1]
['Bob', 'yellow', -43]

 You can change single values in the list, or even slices, using indices:

 >>> data[2] = 'red'
>>> data
[5, 'Bob', 'red', -43, 'cat']
>>> data[0:2] = [2, 'Mary']
>>> data
[2, 'Mary', 'red', -43, 'cat']

 Use append to add an item to the end of the list, and del to remove an item:

 >>> data.append('dog')
>>> data
[2, 'Mary', 'red', -43, 'cat', 'dog']
>>> del data[1]
>>> data
[2, 'red', -43, 'cat', 'dog']

 It’s also easy to find out how many items are in a list or if it contains a specific value:

 >>> len(data)
5
>>> 2 in data
True
>>> 'Mary' in data
False

 Tuples are also ordered collections of items, but they can’t be changed once created. Instead of brackets, tuples are surrounded
 by parentheses. You can access items and test for existence the same as with lists:

 >>> data = (5, 'Bob', 'yellow', -43, 'cat')
>>> data[1:3]
('Bob', 'yellow')
>>> len(data)
5
>>> 'Bob' in data
True

 Like I said, you’re not allowed to change a tuple once it has been created:

 >>> data[0] = 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

 Because of this, use lists instead of tuples when it’s possible that the data will change.

 	

 Error messages are your friend

 When you get an error message, be sure to look carefully at the information it provides because this can save you time figuring
 out the problem. The last line is a message giving you a general idea of what the problem is, as seen here:

 >>> data[0] = 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

 You could deduce from this error message that your code tried to edit a tuple object somehow. Before the error message, you’ll
 see a list of the lines of code that were executed before it ran into a problem. This is called a stack trace. In this example, <stdin> means the interactive window, so the line number isn’t as helpful. But look at the following, which traces through two lines
 of code:

 [image:]

 The last line tells you the error is from trying to add an integer and a string together. The trace tells you that the problem
 started with line 7 of the file trace_example.py. Line 7 calls a function called add, and the error happens on line 2 inside of that function. You can use the information from the stack trace to determine where
 the error occurred, and where the original line of code that triggered it is. In this example, you know that either you passed
 bad data to the add function on line 7, or else an error exists in the add function on line 2. That gives you two specific places to look for a mistake.

 	

 2.4.5. Sets

 Sets are unordered collections of items, but each value can only occur once, which makes it an easy way to remove duplicates from
 a list. For example, this set is created using a list that contains two instances of the number 13, but only one is in the
 resulting set:

 >>> data = set(['book', 6, 13, 13, 'movie'])
>>> data
{'movie', 6, 'book', 13}

 You can add new values, but they’ll be ignored if they’re already in the set, such as 'movie' in this example:

 >>> data.add('movie')
>>> data.add('game')
>>> data
{'movie', 'game', 6, 'book', 13}

 Sets aren’t ordered, so you can’t access specific elements. You can check if items are in the set, however:

 >>> 13 in data
True

 Sets also make it easy to do things such as combine collections (union) or find out which items are contained in both sets (intersection):

 [image:]

 You’ve already seen that you can use sets to remove duplicates from a list. An easy way to determine if a list contains duplicate
 values is to create a set from the list and check to see if the set and list have the same length. If they don’t, then you
 know duplicates were in the list.

 2.4.6. Dictionaries

 Dictionaries are indexed collections, like lists and tuples, except that the indices aren’t offsets like they are in lists. Instead, you
 get to choose the index value, called a key. Keys can be numbers, strings, or other data types, as can the values they reference. Use curly braces to create a new dictionary:

 >>> data = {'color': 'red', 'lucky number': 42, 1: 'one'}
>>> data
{1: 'one', 'lucky number': 42, 'color': 'red'}
>>> data[1]
'one'

>>> data['lucky number']
42

 As with lists, you can add, change, and remove items:

 >>> data[5] = 'candy'
>>> data
{1: 'one', 'lucky number': 42, 5: 'candy', 'color': 'red'}
>>> data['color'] = 'green'
>>> data
{1: 'one', 'lucky number': 42, 5: 'candy', 'color': 'green'}
>>> del data[1]
>>> data
{'lucky number': 42, 5: 'candy', 'color': 'green'}

 You can also test to see if a key exists in the dictionary:

 >>> 'color' in data
True

 This is a powerful way to store data when you don’t know beforehand what it will be. For example, say you needed to remember
 the spatial extent for each file in a collection of geographic datasets, but the list of datasets changed each time you ran
 your script. You could create a dictionary and use the filenames as keys and the spatial extents as values, and then this
 information would be readily available later in your script.

2.5. Control flow

 The first script you write will probably consist of a sequence of statements that are executed in order, like all of the examples
 we have looked at so far. The real power of programming, however, is the ability to change what happens based on different
 conditions. Similar to the way you might use sale prices to decide which veggies to buy at the supermarket, your code should
 use data, such as whether it’s working with a point or a line, to determine exactly what needs to be done. Control flow is the concept of changing this order of code execution.

 2.5.1. If statements

 Perhaps the simplest way to change execution order is to test a condition and do something different depending on the outcome
 of the test. This can be done with an if statement. Here’s a simple example:

 if n == 1:
 print('n equals 1')
else:
 print('n does not equal 1')

 If the value of the n variable is 1, then the string “n equals 1” will be printed. Otherwise, the string “n does not equal 1” will be printed. Notice that the
 if and else lines end with a colon and that the code depending on a condition is indented under the condition. This is a requirement. Once you quit indenting code, then the code quits depending on the condition. What do you
 think the following code will print?

 n = 1
if n == 1:
 print('n equals 1')
else:
 print('n does not equal 1')
print('This is not part of the condition')

 Well, n is equal to 1, so the equality message prints out, and then control is transferred to the first line of code that isn’t indented, so this
 is the result:

 n equals 1
This is not part of the condition

 You can also test multiple conditions like this:

 if n == 1:
 print('n equals 1')
elif n == 3:
 print('n equals 3')
elif n > 5:
 print('n is greater than 5')
else:
 print('what is n?')

OEBPS/01fig03.jpg

OEBPS/01fig04.jpg
Tanzania

OEBPS/01fig01.jpg

OEBPS/01fig02.jpg
Name: Somalia
Postal code: SO
Population: 9,832,017
Last census: 1987

Name: Democratic Republic of the Congo.
Postal code: DRC

Population: 68,692,542

Last census: 1984

OEBPS/common02.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common01.jpg

OEBPS/01fig05.jpg

OEBPS/01fig07.jpg
54 53 51
53 52 50
50 50 a8

OEBPS/01fig06_alt.jpg

OEBPS/cover.jpg
(hris Garrard

[| FTITHE

OEBPS/026fig01_alt.jpg
>>> info = set(['6', 6, 'game’, 42]) (SIS o
»>> data.union (info) both sets
(6, 'movie', 13, 'game’, 'book', '
.>> data.intersection (info) Only values
{'gamet, 6} cobtalnad i Beil

OEBPS/025fig01_alt.jpg
iTAaceback (most recent calil last.

File "D:\Temp\trace_example.py", line 7, in <module> Code on line 7
y = add(x, '1') -

File "D:\Temp\trace_example.py", line 2, in add Code on line 2
return n1 + n2 o~

TypeBrror: unsupported operand type(s) for +: 'int' and ‘'str’

OEBPS/01fig09_alt.jpg

OEBPS/01fig08.jpg

OEBPS/01fig11_alt.jpg
SAPPRA - - B

R

OEBPS/01fig10.jpg

OEBPS/01fig13_alt.jpg
Scoe 33503, < [57) X Rener

OEBPS/01fig12_alt.jpg
x
-
x
o
o

OEBPS/02fig01.jpg
Fie_€dt_Shell Debug Options Windows _Help
Fyehon 2.7.3 (defauls, Apr 10 2012, 23:24:47) (MSC v.1500 4 bix (RG] on win 4

H
Type “eopyrigner, “credies® ox “license ()" for sere informcion

OEBPS/01fig14_alt.jpg
Attibute table - countypO10 = Features totak: 3641, fitered: 3641, selected: 0

HE EEEEEHEREE

T conmmon [s |_conny

OEBPS/02fig02_alt.jpg
File Edit Shell Debug Options Windows Help
Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit (AMDE®)] on

