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foreword


  A deep learning system can be assumed to be efficient if it can bridge two different worlds—research and prototyping with production operations. Teams who design such systems must be able to communicate with practitioners across these two worlds and work with the different sets of requirements and constraints that come from each. This requires a principled understanding of how the components in deep learning systems are designed and how they are expected to work in tandem. Very little of the existing literature covers this aspect of deep learning engineering. This information gap becomes an issue when junior software engineers are onboarded and expected to become effective deep learning engineers.


  Over the years, engineering teams have filled this void by using their acquired experience and ferreting out what they need to know from the literature. Their work has helped traditional software engineers build, design, and extend deep learning systems in a relatively short amount of time. So it was with great excitement that I learned that Chi and Donald, both of whom have led deep learning engineering teams, have taken the very important initiative of consolidating this knowledge and sharing it in the form of a book.


  We are long overdue for a comprehensive book on building systems that support bringing deep learning from research and prototyping to production. Designing Deep Learning Systems finally fills this need.


  The book starts with a high-level introduction describing what a deep learning system is and does. Subsequent chapters discuss each system component in detail and provide motivation and insights about the pros and cons of various design choices. Each chapter ends with an analysis that helps readers assess the most appropriate and relevant options for their own use cases. The authors conclude with an in-depth discussion, pulling from all previous chapters, on the challenging path of going from research and prototyping to production. And to help engineers put all these ideas into practice, they have created a sample deep learning system, with fully functional code, to illustrate core concepts and offer a taste to those who are just entering the field.


  Overall, readers will find this book easy to read and navigate while bringing their understanding of how to orchestrate, design, and implement deep learning systems to a whole new level. Practitioners at all levels of expertise who are interested in designing effective deep learning systems will appreciate this book as an invaluable resource and reference. They will read it once to get the big picture and then return to it again and again when building their systems, designing their components, and making crucial choices to satisfy all the teams that use the systems.


  —Silvio Savarese, EVP, Chief Scientist, Salesforce


  —Caiming Xiong, VP, Salesforce


  
preface


  A little more than a decade ago, we had the privilege of building some early end user–facing product features that were powered by artificial intelligence. It was a huge undertaking. Collecting and organizing data that would be fit for model training was not a usual practice at that time. Few machine learning algorithms were packaged as ready-to-use libraries. Performing experiments required running management manually and building out custom workflows and visualizations. Custom servers were made to serve each type of model. Outside of resource-intensive tech companies, almost every single new AI-powered product feature was built from scratch. It was a far-reaching dream that intelligent applications would one day become a commodity.


  After working with a few AI applications, we realized that we had been repeating a similar ritual each time, and it seemed to us that it made more sense to design a systematic way, with prototyping, for delivering AI product features to production. The fruit of this effort was PredictionIO, an open source suite of framework software that put together state-of-the-art software components for data collection and retrieval, model training, and model serving. Fully customizable through its APIs and deployable as services with just a few commands, it helped shorten the time required at every stage, from running data science experiments to training and deploying production-ready models. We were thrilled to learn that developers around the world were able to use PredictionIO to make their own AI-powered applications, resulting in some amazing boosts to their businesses. PredictionIO was later acquired by Salesforce to tackle a similar problem on an even larger scale.


  By the time we decided to write this book, the industry was thriving with a healthy AI software ecosystem. Many algorithms and tools have become available to tackle different use cases. Some cloud vendors such as Amazon, Google, and Microsoft even provide complete, hosted systems that make it possible for teams to collaborate on experimentation, prototyping, and production deployments at one centralized location. No matter what your goal is, you now have many choices and numerous ways to put them together.


  Still, as we work with teams to deliver deep learning–powered product features, there have been some recurring questions. Why is our deep learning system designed the way it is? Is this the best design for other specific use cases? We noticed that junior software engineers were the ones most often asking these questions, and we interviewed a few of them to find out why. They revealed that their conventional software engineering training did not prepare them to work effectively with deep learning systems. And when they looked for learning resources, they found only scant and scattered information on specific system components, with hardly any resources discussing the fundamentals of the software components, why they were put together the way they were, and how they worked together to form a complete system.


  To address this problem, we started building a knowledge base, which eventually evolved into manual-like learning material explaining the design principles of each system component, the pros and cons of the design decisions, and the rationale from both technical and product perspectives. We were told that our material helped to quickly ramp up new teammates and allowed traditional software engineers with no prior experience in building deep learning systems to get up to speed. We decided to share this learning material with a much larger audience, in the form of a book. We contacted Manning, and the rest was history.
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about this book


  This book aims to equip engineers to design, build, or set up effective machine learning systems and to tailor those systems to whatever needs and situations they may encounter. The systems they develop will facilitate, automate, and expedite the development of machine learning (deep learning, in particular) projects across a variety of domains.


  In the deep learning field, it is the models that get all the attention. Perhaps rightly so, when you consider that new applications developed from those models are coming onto the market regularly—applications that make consumers excited, such as human-detecting security cameras, virtual characters in internet video games who behave like real humans, a program that can write code to solve arbitrary problems posed to it, and advanced driver assistance systems that can one day lead to fully autonomous and self-driving cars. Within a very short period of time, the deep learning field is filled with immense excitement and promising potential waiting to be fully realized.


  But the model does not act alone. To bring a product or service to fruition, a model needs to be situated within a system or platform (we use these terms interchangeably) that supports the model with various services and stores. It needs, for instance, an API, a dataset manager, and storage for artifacts and metadata, among others. So behind every team of deep learning model developers is a team of non–deep learning developers creating the infrastructure that holds the model and all the other components.


  The problem we have observed in the industry is that often the developers tasked with designing the deep learning system and components have only a cursory knowledge of deep learning. They do not understand the specific requirements that deep learning needs from system engineering, so they tend to follow generic approaches when building the system. For example, they might choose to abstract out all work related to deep learning model development to the data scientist and only focus on automation. So the system they build relies on a traditional job scheduling system or business intelligence data analysis system, which is not optimized for how deep learning training jobs are run, nor for deep learning-specific data access patterns. As a result, the system is hard to use for model development, and model shipping velocity is slow. Essentially, engineers who lack a profound understanding of deep learning are being asked to build systems to support deep learning models. As a consequence, these engineering systems are inefficient and inappropriate for deep learning systems.


  Much has been written about deep learning model development from the data scientist’s point of view, covering data collection and dataset augmentation, writing training algorithms, and the like. But very few books, or even blogs, deal with the system and services that support all these deep learning activities.


  In this book, we discuss building and designing deep learning systems from a software developer perspective. The approach is to first describe a typical deep learning system as a whole, including its major components and how they are connected; then we dive deep into each of the main components in a separate chapter. We begin every component chapter by discussing requirements. We then introduce design principles and sample services/code and, finally, evaluate open source solutions.


  Because we cannot cover every existing deep learning system (vendor or open source), we focus on discussing requirements and design principles (with examples) in the book. After learning these principles, trying the book’s sample services, and reading our discussion of open source options, we hope readers can conduct their own research to find what suits them best.


  
Who should read this book?


  The primary audience of this book is software engineers (including recently graduated CS students) who want to quickly transition into deep learning system engineering, such as those who want to work on deep learning platforms or integrate some AI functionality—for example, model serving—into their products.


  Data scientists, researchers, managers, and anyone else who uses machine learning to solve real-world problems will also find this book useful. Upon understanding the underlying infrastructure (or system), they will be equipped to provide precise feedback to the engineering team for improving the efficiency of the model development process.


  This is an engineering book, and you don’t need a background in machine learning, but you should be familiar with basic computer science concepts and coding tools, such as microservices, gRPC, and Docker, to run the lab and understand the technical material. No matter your background, you can still benefit from the book’s nontechnical material to help you better understand how machine learning and deep learning systems work to bring products and services from ideas into production.


  By reading this book, you will be able to understand how deep learning systems work and how to develop each component. You will also understand when to gather requirements from users, translate requirements into system component design choices, and integrate components to create a cohesive system that helps your users quickly develop and deliver deep learning features.


  
How this book is organized: A roadmap


  There are 10 chapters and three appendixes (including one lab appendix) in this book. The first chapter explains what a deep learning project development cycle is and what a basic deep learning system looks like. The next chapters dive into each functional component of the reference deep learning system. Finally, the last chapter discusses how models are shipped to production. The appendix contains a lab session to allow readers to try out the sample deep learning system.


  Chapter 1 describes what a deep learning system is, the different stakeholders of the system, and how they interact with it to deliver deep learning features. We call this interaction the deep learning development cycle. Additionally, you will conceptualize a deep learning system, called a reference architecture, that contains all essential elements and can be adapted based on your requirements.


  Chapters 2 to 9 cover each core component of the reference deep learning system architecture, such as dataset management service, model training service, auto hyperparameter optimization service, and workflow orchestration service.


  Chapter 10 describes how to take a final product from the research or prototyping stage to make it ready to be released to the public. Appendix A introduces the sample deep learning system and demonstrates the lab exercise, appendix B surveys existing solutions, and appendix C discusses Kubeflow Katib.


  
About the code


  We believe the best way to learn is by doing, practicing, and experimenting. To demo the design principles explained in this book and provide hands-on experience, we created a sample deep learning system and code lab. All the source code, set-up instructions, and lab scripts of the sample deep learning system are available on GitHub (https://github.com/orca3/MiniAutoML). You can also obtain executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/software-engineers-guide-to-deep-learning-system-design and from the Manning website (www.manning.com).


  The “hello world” lab (in appendix A) contains a complete, though simplified, mini deep learning system with the most essential components (dataset management, model training and serving). We suggest you try out the “hello world” lab after reading the first chapter of the book or do it before trying our sample services in this book. This lab also provides shell scripts and links to all the resources you need to get started.


  Besides the code lab, this book contains many examples of source code in numbered listings and in line with normal text. In both cases, the source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  
liveBook discussion forum


  Purchase of Designing Deep Learning Systems includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/software-engineers-guide-to-deep-learning-system-design. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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1 An introduction to deep learning systems


  This chapter covers


  
    	
Defining a deep learning system


    	
The product development cycle and how a deep learning system supports it


    	
An overview of a basic deep learning system and its components


    	
Differences between building a deep learning system and developing models

  


  This chapter will prepare you with a big-picture mental model of a deep learning system. We will review some definitions and provide a reference system architecture design and a complete sample implementation of the architecture. We hope this mental model will prime you to see how the rest of the chapters, which address each system component in detail, fit into the whole picture.


  To begin this chapter, we will discuss an even bigger picture beyond the deep learning system: something we call the deep learning development cycle. This cycle outlines the various roles and stages involved in bringing products based on deep learning to market. The model and the platform do not exist in a vacuum; they affect and are affected by product management, market research, production, and other stages. We believe that engineers design better systems when they understand this cycle and know what each team does and what it needs to do its job.


  In section 1.2, we start our discussion of deep learning system design with a sample architecture of a typical system that can be adapted for designing your own deep learning system. The components described in this section will be explored in greater detail in their own chapters. Finally, we will emphasize the differences between developing a model and developing a deep learning system. This distinction is often a point of confusion, so we want to clear it up right away.


  After reading this introductory chapter, you will have a solid understanding of the deep learning landscape. You will also be able to start creating your own deep learning system design, as well as understand existing designs and how to use and extend them, so you don’t have to build everything from scratch. As you continue reading this book, you will see how everything connects and works together as a deep learning system.


  
    Terminology


    Before we proceed with the rest of the chapter (and the rest of the book), let’s define and clarify a few terms that we use throughout the book.


    Deep learning vs. machine learning


    Deep learning is machine learning, but it is considered an evolution of machine learning. Machine learning, by definition, is an application of artificial intelligence that includes algorithms that parse data, learn from that data, and then apply what it has learned to make informed decisions. Deep learning is a special form of machine learning that uses a programmable neural network as the algorithm to learn from data and make accurate decisions.


    Although this book primarily focuses on teaching you how to build the system or infrastructure to facilitate deep learning development (all the examples are neural network algorithms), the design and project development concepts we discuss are all applicable to machine learning as well. So, in this book we use the terms deep learning and machine learning somewhat interchangeably. For example, the deep learning development cycle introduced in this chapter and the data management service introduced in chapter 2 work in the machine learning context, too.


    Deep learning use case


    A deep learning use case refers to a scenario that utilizes deep learning technology—in other words, a problem that you want to solve using deep learning. Examples include


    
      	
        Chatbot—A user can initiate a text-based conversation with a virtual agent on a customer support website. The virtual agent uses a deep learning model to understand sentences that the user enters and carries on a conversation with the user like a real human.

      


      	
        Self-driving car—A driver can put a car into an assistive driving mode that automatically steers itself according to road markings. Markings are captured by multiple cameras on board the car to form a perception of the road using deep learning–based computer vision technology.

      

    


    Model, prediction and inference, and model serving


    These three terms are described as follows:


    
      	
        Model—A deep learning model can be seen as an executable program that contains an algorithm (model architecture) and required data to make a prediction.

      


      	
        Prediction and inference—Both model prediction and model inference refer to executing the model with given data to get a set of outputs. As prediction and inference are used widely in the context of model serving, they are used interchangeably in this book.

      


      	
        Model serving (prediction service)—This book describes model serving as hosting machine learning models in a web application (on the cloud or on premises) and allowing deep learning applications to integrate the model functionality into their systems through an API. The model serving web program is usually referred to as the prediction service or model serving service.

      

    


    Deep learning application


    A deep learning application is a piece of software that utilizes deep learning technologies to solve problems. It usually does not perform any computationally intensive tasks, such as data crunching, deep learning model training, and model serving (with the exception of hosting models at the edge, such as an autonomous vehicle). Examples include:


    
      	
        A chatbot application that provides a UI or APIs to take natural sentences as input from a user, interprets them, takes actions, and provides a meaningful response to the user. Based on the model output calculated in the deep learning system (from model serving service), the chatbot responds and takes action.

      


      	
        Self-driving software that takes input from multiple sensors, such as video cameras, proximity sensors, and LiDAR, to form a perception of a car’s surroundings with the help of deep learning models and drives the car accordingly.

      

    


    Platform vs. system vs. infrastructure


    In this book, the terms deep learning platform, deep learning system, and deep learning infrastructure all share the same meaning: an underlying system that provides all necessary support for building deep learning applications efficiently and to scale. We tend to use system most commonly, but in the context of this book, all three terms have the same meaning.

  


  Now that we’re all on the same page about the terms, let’s get started!


  
1.1 The deep learning development cycle


  As we’ve said, deep learning systems are the infrastructure necessary for deep learning project development to progress efficiently. So, before we dive into the structure of a deep learning system, it’s prudent to look at the development paradigm that a deep learning system enables. We call this paradigm the deep learning development cycle.


  You may wonder why, in a technical book, we want to emphasize something that is as nontechnical as product development. The fact is that the goal of most deep learning work is, in the end, to bring a product or service to market. Yet many engineers are not familiar with the other stages of product development, just as many product developers do not know about engineering or modeling. From our experience in building deep learning systems, we have learned that persuading people in multiple roles in a company to adopt a system largely depends on whether the system will actually fix their particular problems. We believe that outlining the various stages and roles in the deep learning development cycle helps to articulate, address, communicate, and eventually solve everyone’s pain points.


  Understanding this cycle solves a few other problems, as well. In the last decade, many new deep learning software packages have been developed to address different areas. Some of them tackle model training and serving, whereas others handle model performance tracking and experimentation. Data scientists and engineers would piece these tools together each time they needed to solve a specific application or use case; this is called MLOps (machine learning operations). As the number of these applications grows, piecing these tools together every time from scratch for a new application becomes repetitive and time-consuming. At the same time, as the importance of these applications grows, so do the expectations for their quality. Both of these concerns call for a consistent approach to developing and delivering deep learning features quickly and reliably. This consistent approach starts with everyone working under the same deep learning development paradigm or cycle.


  How does the deep learning system fit into the deep learning cycle? A well-built deep learning system would support the product development cycle and make performing the cycle easy, quick, and reliable. Ideally, data scientists can use a deep learning system as the infrastructure to complete the entire deep learning cycle without learning all the engineering details of the underlying complex systems.


  Because every product and organization is unique, it is crucial for system builders to understand the unique requirements of the various roles to build a successful system. By “successful,” we mean one that helps stakeholders collaborate productively to deliver deep learning features quickly. Throughout this book, as we go through the design principles of deep learning systems and look at how each component works, your understanding of your stakeholder requirements will help you adapt this knowledge to form your own system design. As we discuss the technical details, we will point out when you need to pay attention to certain types of stakeholders during the design of the system. The deep learning development cycle will serve as the guiding framework when we consider the design requirements of each component of a deep learning system.


  Let’s start with a picture. Figure 1.1 illustrates what a typical cycle looks like. It shows the machine learning (especially deep learning) development progress phase by phase. As you can see, cross-functional collaboration happens at almost every step. We will discuss each phase and role involved in this diagram in the following two sections.
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    Figure 1.1 A typical scenario to bring deep learning from research to a product. We call this the deep learning development cycle.

  


  
1.1.1 Phases in the deep learning product development cycle


  The deep learning development cycle typically begins with a business opportunity and is driven by a product plan and its management. After that, the cycle normally goes through four phases: data exploration, prototyping, productionization (shipping to production), and application integration. Let’s look at these phases one at a time. Then we’ll look at all the roles involved (denoted by the icon of a person in figure 1.1).


  Note The number in parentheses next to each following subsection corresponds to the same number in figure 1.1.


  Product initiation (1)


  First, the business stakeholder (product owner or project manager) analyzes the business and identifies a potential business opportunity or problem that can be addressed with machine learning.


  Data exploration (2)


  When data scientists have a clear understanding of business requirements, they begin to work with data engineers to collect as much data as possible, label it, and build datasets. Data collection can include searching publicly available data and exploring internal sources. Data cleaning may also occur. Data labeling can either be outsourced or performed in-house.


  Compared to the following phases, this early phase of data exploration is unstructured and often done casually. It might be a Python script or shell script, or even a manual copy of data. Data scientists often use web-based data analysis applications, such as Jupyter Notebook (open source; https://jupyter.org), Amazon SageMaker Data Wrangler (https://aws.amazon.com/sagemaker/data-wrangler), and Databricks (www.databricks.com), to analyze data. There is no formal data collection pipeline that needs to be built.


  Data exploration is not only important but also critical to the success of a deep learning project. The more relevant data is available, the higher the likelihood of building effective and efficient deep learning models.


  Research and prototyping (3, 4)


  The goal of prototyping is to find the most feasible algorithm/approach to address the business requirement (from product owner) with the given data. In this phase, data scientists can work with AI researchers to propose and evaluate different training algorithms with datasets built from the previous data exploration phase. Data scientists usually pilot multiple ideas in this phase and build proof-of-concept (POC) models to evaluate them.


  Although newly published algorithms are often considered, most of them will not be adopted. The accuracy of an algorithm is not the only factor to be considered; one also must consider computing resource requirements, data volume, and algorithm implementation cost when evaluating an algorithm. The most practical approach is usually the winner.


  Note that due to resource constraints, researchers are not always involved in the prototyping phase. Frequently, data scientists do the research work as well as build the POC.


  You may also notice that in figure 1.1, there is an inner loop (loop A) in the big development cycle: Product Initiation > Data Exploration > Deep Learning Research > Prototyping > Model > Product Initiation. The purpose of this loop is to obtain product feedback in the early phase by building a POC model. We may run through this loop multiple times until all stakeholders (data scientists, product owners) arrive at a consensus on the algorithms and data that will be used to address the business requirement.


  Multiple hard lessons finally taught us that we must vet the solution with the product team or the customer (even better) before starting the expensive process of productionization—building production data and training pipelines and hosting models. The purpose of a deep learning project is no different from any other software development project: to solve a business need. Vetting the approach with the product team in the early stage will prevent the expensive and demoralizing process of reworking it in later stages.


  Productionization aka MLOps (5)


  Productionization, also called “shipping to production,” is the process of making a product production worthy and ready to be consumed by its users. Production worthiness is commonly defined as being able to serve customer requests, withstand a certain level of request load, and gracefully handle adverse situations such as malformed input and request overload. Production worthiness also includes postproduction efforts, such as continuous model metric monitoring and evaluation, feedback gathering, and model retraining.


  Productionization is the most engineering-intensive part of the development cycle because we’ll be converting prototyping experiments into serious production processes. A nonexhaustive to-do list of productionization can include


  
    	
      Building a data pipeline to pull data from different data sources repeatedly and keep the dataset versioned and updated.

    


    	
      Building a data pipeline to preprocess dataset, such as data enhancement or enrichment and integrating with external labeling tools.

    


    	
      Refactoring and dockerizing the prototyping code to production-quality model training code.

    


    	
      Making the result of training and serving codes reproducible by versioning and tracking the inputs and outputs. For example, we could enable the training code to report the training metadata (training date and time, duration, hyperparameters) and model metadata (performance metrics, data, and code used) to ensure the full traceability of every model training run.

    


    	
      Setting up continuous integration (Jenkins, GitLab CI) and continuous deployment to automate the code building, validation, and deployment.

    


    	
      Building a continuous model training and evaluation pipeline so the model training can automatically consume the latest dataset and produce models in a repeatable, auditable, and reliable manner.

    


    	
      Building a model deployment pipeline that automatically releases models that have passed the quality gate, so the model serving component can access them; async or real-time model prediction can be performed depending on the business requirements. The model serving component hosts the model and exposes it via a web API.

    


    	
      Building continuous-monitoring pipelines that periodically assess the dataset, model, and model serving performance to detect potential feature drift (data distribution change) in dataset or model performance degradation (concept drifting) and alert developers or retrain the model.

    

  


  These days, the productionization step has a new alias with buzz: MLOps (machine learning operation), which is a vague term, and its definition is ambiguous for researchers and professionals. We interpret MLOps to mean bridging the gap between model development (experimentation) and operations in production environments (Ops) to facilitate productionization of machine learning projects. An example might be streamlining the process of taking machine learning models to production and then monitoring and maintaining them.


  MLOps is a paradigm rooted in the application of similar principles that DevOps has to software development. It leverages three disciplines: machine learning, software engineering (especially the operation), and data engineering. See figure 1.2 for a look at deep learning through the lens of MLOps.  
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    Figure 1.2 MLOps applies DevOps approaches to deep learning for the productionization phase, when models get shipped to production. (Source: Machine Learning Engineering in Action, by Ben Wilson, Manning, 2022, figure 2.7)

  


  Because this book is about building machine learning systems that support ML operations, we won’t go into details about the practices shown in figure 1.2. But, as you can see, the engineering effort that supports the development of machine learning models in production is huge. Compared to what data scientists used to do during the previous phase of data exploration and model prototyping, the tooling (software), engineering standards, and processes have dramatically changed and become much more complex.


  
    Why is shipping models to production difficult?


    The massive underlying infrastructure (tools, services, servers) and heavy cross-team collaboration are the two biggest hurdles for shipping models to production. This section on productionization (aka MLOps) establishes that data scientists need to work with data engineers, platform developers, DevOps engineers, and machine learning engineers, as well as learn a massive infrastructure (deep learning system), to ship an algorithm/model from prototype to production. It's no wonder that productionizing a model takes so much time.


    To solve these challenges, we need to abstract away the complexity from data scientists when designing and building a deep learning system. As with building a car, we want to put data scientists behind the wheel but without asking them to know much about the car itself.

  


  Now, returning to the development cycle, you may notice there is another inner loop (loop B) in figure 1.1 that goes from Productionization (box 5) and Model to Product Initiation (box 1). This is the second vet with the product team before we integrate the model inference with an AI application.


  Our second vet (loop B) compares the model and data between prototyping and production. We want to ensure the model performance and scalability (for example, model serving capacity) match business requirements.


  Note The following two papers are recommended; if you want to learn more about MLOps, they are great starting points: “Operationalizing Machine Learning: An Interview Study” (arXiv:2209.09125) and “Machine Learning Operations (MLOps): Overview, Definition, and Architecture” (arXiv:2205.02302).


  Application integration (6)


  The last step of the product development cycle is to integrate the model prediction to the AI application. The common pattern is to host the models in the model serving service (which will be discussed in section 1.2.2) of the deep learning system and integrate the business application logic with the model by sending model prediction requests over the internet.


  As a sample user scenario, a chatbot user interacts with the chatbot user interface by typing or voicing questions. When the chatbot application receives input from the customer, it calls the remote model serving service to run a model prediction and then takes action or responds to the customer based on the model prediction result.


  Along with integrating model serving with application logic, this phase also involves evaluating metrics important to the product, such as clickthrough rate and churn rate. Nice ML-specific metrics (good precision–recall curve) do not always guarantee the business requirement is met. So the business stakeholders often perform customer interviews and product metric evaluation at this stage.


  
1.1.2 Roles in the development cycle


  Because you now have a clear idea of each step in a typical development cycle, let’s look at the key roles that collaborate in this cycle. The definitions, job titles, and responsibilities of each role may vary across organizations. So make sure you clarify who does what in your organization and adjust your system’s design appropriately.


  Business stakeholders (product owner)


  Many organizations assign the stakeholder role to multiple positions, such as product managers, engineering managers, and senior developers. Business stakeholders define the business goal of a product and are responsible for communication and execution of the product development cycle. The following are their responsibilities:


  
    	
      Getting inspiration from deep learning research, discussing potential application of deep learning features in products, and driving product requirements that in turn drive model development

    


    	
      Owning the product! Communicating with customers and making sure the engineering solution meets the business requirement and delivers the results

    


    	
      Coordinating cross-functional collaborations between different roles and teams

    


    	
      Running project development execution; providing guidance or feedback during the entire development cycle to ensure the deep learning features offer real value to the customers of the product

    


    	
      Evaluating the product metrics (such as user churn rate and feature usage)—not the model metrics (precision or accuracy)—and driving improvement of model development, productionization, or product integration

    

  


  Researchers


  Machine learning researchers research and develop new and novel neural network architectures. They also develop techniques for improving model accuracy and efficiency in training models. These architectures and techniques can be used during model development.


  Note The machine learning researcher role is often associated with big tech companies like Google, Microsoft, and Salesforce. In many other companies, data scientists fulfill the same role.


  Data scientists


  Data scientists may wear a research hat, but most of the time, they translate a business problem into a machine learning problem and implement it using machine learning methods. Data scientists are motivated by the product’s need and apply research techniques to production data rather than standard benchmark datasets. Besides researching model algorithms, a data scientist’s responsibilities may also include


  
    	
      Combining multiple deep learning neural network architectures and/or techniques from different research into a solution. Sometimes they apply additional machine learning techniques besides pure deep learning.

    


    	
      Exploring available data, determining what data is useful, and deciding on how to preprocess it before supplying it for training.

    


    	
      Prototyping different approaches (writing experimental code) to tackle the business problem.

    


    	
      Converting model prototyping code into production code with workflow automation.

    


    	
      Following the engineering process to ship models to production by using the deep learning system.

    


    	
      Iterating on the need for any additional data that may help with model development.

    


    	
      Continuously monitoring and evaluating data and model performance in production.

    


    	
      Troubleshooting model-related problems, such as model degradation.

    

  


  Data engineers


  Data engineers help collect data and set up data pipelines for continuous data ingestion and processing, including data transformation, enrichment, and labeling.


  MLOps engineer/ML engineer


  An MLOps engineer fulfills a number of roles across multiple domains, including that of data engineer, DevOps (operation) engineer, data scientist, and platform engineer. As well as setting up and operating the machine learning infrastructure (both systems and hardware), they manage automation pipelines to create datasets and train and deploy models. ML infrastructures and user activities, such as training and serving, are also monitored by MLOps engineers.


  As you can see, MLOps is hard, because it requires people to master a set of practices across software development, operation, maintenance, and machine learning development. MLOps engineers’ goal is to ensure the creation, deployment, monitoring, and maintenance of machine learning models are efficient and reliable.


  Deep learning system/platform engineer


  Deep learning system engineers build and maintain the general pieces of the machine learning infrastructure—the primary focus of this book—to support all the machine learning development activities for data scientists, data engineers, MLOps engineers, and AI applications. Among the components of the machine learning system are data warehouses, compute platforms, workflow orchestration services, model metadata and artifact stores, model training services, model serving services, and more.


  Application engineer


  Application engineers build customer-facing applications (both frontend and backend) to address given business requirements. The application logic will make decisions or take actions based on the model prediction for a given customer request.


  Note In the future, as machine learning systems (infrastructure) mature, the roles involved in deep learning development cycle will merge into fewer and fewer. Eventually, data scientists will be able to complete the entire cycle on their own.


  
1.1.3 Deep learning development cycle walk-through


  By giving an example, we can demonstrate the roles and the process in a more concrete manner. Suppose you have been assigned the task of building a customer support system that answers questions automatically about the company’s product lines. The following steps will guide you through the process of bringing that product to market:


  
    	
      The product requirement is to build a customer support application that presents a menu, so customers can navigate to find answers to commonly asked questions. As the number of questions grows, the menu becomes larger, with many layers of navigation. Analytics has shown that many customers are confused by the navigation system and drop off from navigating the menu while trying to find answers.

    


    	
      The product manager (PM) who owns the product is motivated to improve the user retention rate and experience (finding the answers quickly). After conducting some research with customers, the PM finds that a majority of customers would like to obtain answers without a complex menu system, preferably as simple as asking questions in their natural language.

    


    	
      The PM reaches out to machine learning researchers for a potential solution. It turns out that deep learning may help. Experts think the technology is mature enough for this use case and suggest a few approaches based on deep learning models.

    


    	
      The PM writes a product spec indicating that the application should take one question from a customer at a time, recognize intent from the question, and match it with relevant answers.

    


    	
      Data scientists receive product requirements and start to prototype deep learning models that fit the need. They first start data exploration to collect available training data and consult with researchers for the choices of algorithms. And then data scientists start to build prototyping code to produce experimental models. Eventually, they arrive at some datasets, a few training algorithms, and several models. After careful evaluation, one natural language process model is selected from various experiments.

    


    	
      Then the PM assembles a team of platform engineers, MLOps engineers, and data engineers to work with the data scientist to onboard the prototyping code, made in step 5, to production. The work includes building a continuous data processing pipeline and a continuous model training, deployment, and evaluation pipeline, as well as setting up the model serving functionality. The PM also specifies the number of predictions per second and the latency required.

    


    	
      Once a production setup is complete, the application engineers integrate the customer support service’s backend with the model serving service (built in step 6), so when a user types in a question, the service will return answers based on the model prediction. The PM also defines product metrics, such as average time spent finding an answer, to evaluate the end result and use it to drive the next round of improvement.

    

  


  
1.1.4 Scaling project development


  As you saw in section 1.1.2, we need to fill seven different roles to complete a deep learning project. The cross-functional collaboration between these roles happens at almost every step. For example, data engineers, platform developers, and data scientists work together to productionize a project. Anyone who has been involved in a project that requires many stakeholders knows how much communication and coordination are required to keep a project like this moving forward.


  These challenges make deep learning development hard to scale because we either don’t have the resources to fill all the required roles or we can’t meet the product timeline due to the communication costs and slowdowns. To reduce the enormous amount of operational work, communication, and cross-team coordination costs, companies are investing in machine learning infrastructure and reducing the number of people and the scope of knowledge required to build a machine learning project. The goal of a deep learning infrastructure stack is not only to automate model building and data processing but also to make it possible to merge the technical roles so that the data scientist is empowered to take care of all these functions autonomously within a project.


  A key success indicator of a deep learning system is to see how smooth the model productionization process can be. With a good infrastructure, the data scientist, who is not expected to suddenly become an expert DevOps or data engineer, should be able to implement models in a scalable manner, set up data pipelines, and deploy and monitor models in production independently.


  By using an efficient deep learning system, data scientists will be able to complete the development cycle with minimal additional overhead—less communication required and less time wasted waiting by others—and focus on the most important data science tasks, such as understanding the data and experimenting with algorithms. The ability to scale deep learning project development is the true value proposition of a deep learning system.


  
1.2 Deep learning system design overview


  With the context of section 1.1 in mind, let’s dive into the focus of this book: the deep learning system itself. Designing a system—any system—is the art of achieving goals under a set of constraints that are unique to your situation. This is also true for deep learning systems. For instance, let’s say you have a few deep learning models that need to be served at the same time, but your budget does not allow you to operate a machine that has enough memory to fit all of them at the same time. You may need to design a caching mechanism to swap models between memory and disk. Swapping, however, will increase inference latency. Whether this solution is feasible will depend on latency requirements. Another possibility is to operate multiple smaller machines for each model, if your model sizes and budget will allow it.


  Or, for another example, imagine your company’s product must comply with certain certification standards. It may mandate data access policies that pose significant limitations to anyone who wants to gain access to data collected by the company’s product. You may need to design a framework to allow data access in a compliant fashion so that researchers, data scientists, and data engineers can troubleshoot problems and develop new models that require such data access in your deep learning system.


  As you can see, there are many knobs that can be turned. It will certainly be an iterative process to arrive at a design that will satisfy as many requirements as possible. But to shorten the iterative process, it is desirable to start with a design that is as close to the end state as possible.


  In this section, we first propose a deep learning system design with only essential components and then explain the responsibility of each of the components and user workflows. In our experience of designing and tailoring deep learning systems, a few key components are common across different designs. We think that they can be used as a reasonable starting point for your design. We call this the reference system architecture.


  You can make a copy of this reference for your design project, go through your list of goals and constraints, and start by identifying knobs in each component that you can adjust to your needs. Because this isn’t an authoritative architecture, you should also assess whether all components are really necessary and add or remove components as you see fit.


  
1.2.1 Reference system architecture


  Figure 1.3 shows the high-level overview of the reference deep learning system. The deep learning system has two major parts. The first is the application programming interface (API; box A) for the system, located in the middle of the diagram. The second is the collection of components of the deep learning system, which is represented by all the rectangular boxes located within the large box, outlined in a dotted line and taking up the lower half of the diagram. These boxes each represent a system component:


  
    	
      API (box A)

    


    	
      Dataset manager (box B)

    


    	
      Model trainer (box C)

    


    	
      Model serving (box D)

    


    	
      Metadata and artifacts store (box E)

    


    	
      Workflow orchestration (box F)

    


    	
      Interactive data science environment (box G)

    

  


  In this book, we assume that these system components are microservices.
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    Figure 1.3 An overview of a typical deep learning system that includes basic components to support a deep learning development cycle. This reference architecture can be used as a starting point and further tailored. In later chapters, we discuss each component in detail and explain how it fits into this big picture.

  


  Definition There is no single definition for microservices. Here, we will use the term to mean processes that communicate over a network with the HTTP or the gRPC protocol.


  This assumption means we can expect these components to reasonably support multiple users with different roles securely and are readily accessible over a network or the internet. (This book, however, will not cover all engineering aspects of how microservices are designed or built. We will focus our discussion on specifics that are relevant to deep learning systems.)


  NOTE You may wonder whether you need to design, build, and host all deep learning system components on your own. Indeed, there are open source (Kubeflow) and hosted alternatives (Amazon SageMaker) for them. We hope that after you have learned the fundamentals of each component, how they fit in the big picture, and how they are used by different roles, you will make the best decision for your use case.


  
1.2.2 Key components


  Now let’s walk through the key components that we consider essential to a basic deep learning system, as shown in figure 1.3. You may want to add additional components or simplify them further as you see fit for your requirements.


  Application programming interface


  The entry point (box A in figure 1.3) of our deep learning system is an API that is accessible over a network. We opted for an API because the system needs to support not only graphical user interfaces that will be used by researchers, data scientists, data engineers, and the like but also applications and possibly other systems—for example, a data warehouse from a partner organization.


  Although conceptually the API is the single point of entry of the system, it is entirely possible that the API is defined as the sum of all APIs provided by each component, without an extra layer that aggregates everything under a single-service endpoint. Throughout this book, we will use the sum of all APIs provided by each component directly and skip the aggregation for simplicity.


  Note Should you use a centralized or distributed deep learning system API? In the reference architecture (figure 1.3), the deep learning system API is shown as a single box. It should be interpreted as a logical container for the complete set of your deep learning system API, regardless of whether it is implemented on single (e.g., an API gateway that proxies for all components) or multiple service endpoints (direct interaction with each component). Each implementation has its own merits and shortcomings, and you should work with your team to figure out what functions best. Direct interaction with each component may be easier if you start with a small use case and team.


  Dataset manager


  Deep learning is based on data. There is no doubt that the data management component is a central piece of a deep learning system. Every learning system is a garbage-in, garbage-out system, so ensuring good data quality for learning is of paramount importance. A good data management component should provide the solution to this problem. It enables collecting, organizing, describing, and storing data, which in turn makes it possible for data to be explored, labeled, and used for training models.


  In figure 1.3, we can see at least four relationships of the dataset manager (box B) with other parties:


  
    	
      Data collectors push raw data to the dataset manager to create or update datasets.

    


    	
      The workflow orchestration service (box F) executes the data process pipeline, which pulls data from the dataset manager to enhance the training dataset or transform the data format and pushes the result back.

    


    	
      Data scientists, researchers, and data engineers use Jupyter Notebook (box G) to pull data from the data manager for data exploration and examination.

    


    	
      The model training service (box C) pulls training data from the data manger for model training.

    

  


  In chapter 2, we will discuss dataset management in depth. Throughout the book, we use the term dataset as a unit of collected data that may be related.


  Model trainer


  Model trainer (aka, model training service; box C) responds to provide foundational computation resources, such as CPUs, RAM, and GPUs, and job management logics to run the model training code and produce model files. In figure 1.3, we can see that the workflow orchestration service (box F) tells the model trainer to execute a model training code. The trainer takes input training data from the dataset manager (box B) and produces a model. Then it uploads the model with training metrics and metadata to the metadata and artifacts store (box E).


  It is usually necessary to perform intense computation on a large dataset to produce high-quality deep learning models that can make accurate predictions. Adoption of new algorithms and training libraries/frameworks is also a critical requirement. These requirements produce challenges on several levels:


  
    	
      Capability of reducing model training time—Despite the growing size of training data and complexity of model architecture, training systems must keep training times reasonable.

    


    	
      Horizontal scalability—An effective production training system should be able to support multiple training requests from different applications and users simultaneously.

    


    	
      Cost of adopting new technologies—The deep learning community is a vigorous one, with constant updates and improvements to algorithms and tooling (SDK, framework). The training system should be flexible enough to accommodate new innovations easily without interfering with the existing workload.

    

  


  In chapter 3, we will investigate different approaches to solving the aforementioned problems. We will not go deep into the theoretical aspect of training algorithms in this book, as they do not affect how we design the system. In chapter 4, we will look at how we can distribute training to accelerate the process. In chapter 5, we will explore a few different approaches for optimizing training hyperparameters.


  Model serving


  Models can be used in various settings, such as online inference for real-time predictions or offline inference for batch predictions using large volumes of input data. This is where model serving surfaces—when a system hosts the model, takes input prediction requests, runs model prediction, and returns the prediction to users. There are a few key questions to be answered:


  
    	
      Are your inference requests coming from over the network? Or are they coming from sensors that need to be served locally?

    


    	
      What is an acceptable latency? Are inference requests ad hoc or streaming?
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