

 inside front cover

[image:]

 The way to descend from the mountain is to take that one small step in the direction that makes us descend the most and to continue doing this for a long time.

 [image:]

 Grokking Machine Learning

 Luis G. Serrano

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Kris Athi

 	
 Review editor:

 	
 Aleksander Dragosavljević

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Jason Everett

 	
 Technical proofreaders:

 	
 Karsten Strøbæk, Shirley Yap

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Leslie Haimes

 ISBN: 9781617295911

 contents

 [image:]

 front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 1 What is machine learning? It is common sense, except done by a computer

 Do I need a heavy math and coding background to understand machine learning?

 OK, so what exactly is machine learning?

 How do we get machines to make decisions with data? The remember-formulate-predict framework

 2 Types of machine learning

 What is the difference between labeled and unlabeled data?

 Supervised learning: The branch of machine learning that works with labeled data

 Unsupervised learning: The branch of machine learning that works with unlabeled data

 What is reinforcement learning?

 3 Drawing a line close to our points: Linear regression

 The problem: We need to predict the price of a house

 The solution: Building a regression model for housing prices

 How to get the computer to draw this line: The linear regression algorithm

 How do we measure our results? The error function

 Real-life application: Using Turi Create to predict housing prices in India

 What if the data is not in a line? Polynomial regression

 Parameters and hyperparameters

 Applications of regression

 4 Optimizing the training process: Underfitting, overfitting, testing, and regularization

 An example of underfitting and overfitting using polynomial regression

 How do we get the computer to pick the right model? By testing

 Where did we break the golden rule, and how do we fix it? The validation set

 A numerical way to decide how complex our model should be: The model complexity graph

 Another alternative to avoiding overfitting: Regularization

 Polynomial regression, testing, and regularization with Turi Create

 5 Using lines to split our points: The perceptron algorithm

 The problem: We are on an alien planet, and we don’t know their language!

 How do we determine whether a classifier is good or bad? The error function

 How to find a good classifier? The perceptron algorithm

 Coding the perceptron algorithm

 Applications of the perceptron algorithm

 6 A continuous approach to splitting points: Logistic classifiers

 Logistic classifiers: A continuous version of perceptron classifiers

 How to find a good logistic classifier? The logistic regression algorithm

 Coding the logistic regression algorithm

 Real-life application: Classifying IMDB reviews with Turi Create

 Classifying into multiple classes: The softmax function

 7 How do you measure classification models? Accuracy and its friends

 Accuracy: How often is my model correct?

 How to fix the accuracy problem? Defining different types of errors and how to measure them

 A useful tool to evaluate our model: The receiver operating characteristic (ROC) curve

 8 Using probability to its maximum: The naive Bayes model

 Sick or healthy? A story with Bayes’ theorem as the hero

 Use case: Spam-detection model

 Building a spam-detection model with real data

 9 Splitting data by asking questions: Decision trees

 The problem: We need to recommend apps to users according to what they are likely to download

 The solution: Building an app-recommendation system

 Beyond questions like yes/no

 The graphical boundary of decision trees

 Real-life application: Modeling student admissions with Scikit-Learn

 Decision trees for regression

 Applications

 10 Combining building blocks to gain more power: Neural networks

 Neural networks with an example: A more complicated alien planet

 Training neural networks

 Coding neural networks in Keras

 Neural networks for regression

 Other architectures for more complex datasets

 11 Finding boundaries with style: Support vector machines and the kernel method

 Using a new error function to build better classifiers

 Coding support vector machines in Scikit-Learn

 Training SVMs with nonlinear boundaries: The kernel method

 12 Combining models to maximize results: Ensemble learning

 With a little help from our friends

 Bagging: Joining some weak learners randomly to build a strong learner

 AdaBoost: Joining weak learners in a clever way to build a strong learner

 Gradient boosting: Using decision trees to build strong learners

 XGBoost: An extreme way to do gradient boosting

 Applications of ensemble methods

 13 Putting it all in practice: A real-life example of data engineering and machine learning

 The Titanic dataset

 Cleaning up our dataset: Missing values and how to deal with them

 Feature engineering: Transforming the features in our dataset before training the models

 Training our models

 Tuning the hyperparameters to find the best model: Grid search

 Using K-fold cross-validation to reuse our data as training and validation

 Appendix A. Solutions to the exercises

 Appendix B. The math behind gradient descent: Coming down a mountain using derivatives and slopes

 Appendix C. References

 index

 front matter

 foreword

 Did you think machine learning is complicated and hard to master? It’s not! Read this book!

 Luis Serrano is a wizard when it comes to explaining things in plain English. I met him first when he taught machine learning on Udacity. He made our students feel that all of machine learning is as simple as adding or subtracting numbers. And most of all, he made the material fun. The videos he produced for Udacity were incredibly engaging and remain among the most liked content offered on the platform.

 This book is better! Even the most fearful will enjoy the material presented herein, as Serrano demystifies some of the best-held secrets of the machine learning society. He takes you step by step through each of the critical algorithms and techniques in the field. You can become a machine learning aficionado even if you dislike math. Serrano minimizes the mathematical kauderwelsch that so many of us hard-core academics have come to love, and instead relies on intuition and practical explanations.

 The true goal of this book is to empower you to master these methods yourself. So the book is full of fun exercises, in which you get to try out those mystical (and now demystified) techniques yourself. Would you rather gorge on the latest Netflix TV show, or spend your time applying machine learning to problems in computer vision and natural language understanding? If the latter, this book is for you. I can’t express how much fun it is to play with the latest in machine learning, and see your computer do magic under your supervision.

 And since machine learning is just about the hottest technology to emerge in the past few years, you will now be able to leverage your new-found skills in your job. A few years back, the New York Times proclaimed that there were only 10,000 machine learning experts in the world, with millions of open positions. That is still the case today! Work through this book and become a professional machine learning engineer. You are guaranteed to possess one of the most in-demand skills in the world today.

 With this book, Luis Serrano has done an admirable job explaining complex algorithms and making them accessible to almost everyone. But he doesn’t compromise depth. Instead, he focuses on the empowerment of the reader through a sequence of enlightening projects and exercises. In this sense, this is not a passive read. To fully benefit from this book, you have to work. At Udacity, we have a saying: You won’t lose weight by watching someone else exercise. To grok machine learning, you have to learn to apply it to real-world problems. If you are ready to do this, this is your book—whoever you are!

 Sebastian Thrun, PhD

 Founder, Udacity

 Adjunct Professor, Stanford University

 preface

 The future is here, and that future has a name: machine learning. With applications in pretty much every industry, from medicine to banking, from self-driving cars to ordering our coffee, the interest in machine learning has rapidly grown day after day. But what is machine learning?

 Most of the time, when I read a machine learning book or attend a machine learning lecture, I see either a sea of complicated formulas or a sea of lines of code. For a long time, I thought that this was machine learning, and that machine learning was reserved only for those who had a solid knowledge of both math and computer science.

 However, I began to compare machine learning with other subjects, such as music. Musical theory and practice are complicated subjects. But when we think of music, we do not think of scores and scales; we think of songs and melodies. And then I wondered, is machine learning the same? Is it really just a bunch of formulas and code, or is there a melody behind it?

[image:]

 Figure FM.1 Music is not only about scales and notes. There is a melody behind all the technicalities. In the same way, machine learning is not only about formulas and code. There is also a melody, and in this book, we sing it.

 With this in mind, I embarked on a journey to understand the melody of machine learning. I stared at formulas and code for months. I drew many diagrams. I scribbled drawings on napkins and showed them to my family, friends, and colleagues. I trained models on small and large datasets. I experimented. After a while, I started listening to the melody of machine learning. All of a sudden, some very pretty pictures started forming in my mind. I started writing stories that go along with all the machine learning concepts. Melodies, pictures, stories—that is how I enjoy learning any topic, and it is those melodies, those pictures, and those stories that I share with you in this book. My goal is to make machine learning fully understandable to every human, and this book is a step in that journey—a step that I’m happy you are taking with me!

 acknowledgments

 First and foremost, I would like to thank my editor, Marina Michaels, without whom this book wouldn’t exist. Her organization, thorough editing, and valuable input helped shape Grokking Machine Learning. I thank Marjan Bace, Bert Bates, and the rest of the Manning team for their support, professionalism, great ideas, and patience. I thank my technical proofers, Shirley Yap and Karsten Strøbæk; my technical development editor, Kris Athi; and the reviewers for giving me great feedback and correcting many of my mistakes. I thank the production editor, Keri Hales, the copy editor, Pamela Hunt, the graphics editor, Jennifer Houle, the proofreader, Jason Everett, and the entire production team for their wonderful work in making this book a reality. I thank Laura Montoya for her help with inclusive language and AI ethics, Diego Hernandez for valuable additions to the code, and Christian Picón for his immense help with the technical aspects of the repository and the packages.

 I am grateful to Sebastian Thrun for his excellent work democratizing education. Udacity was the platform that first gave me a voice to teach the world, and I would like to thank the wonderful colleagues and students I met there. Alejandro Perdomo and the Zapata Computing team deserve thanks for introducing me to the world of quantum machine learning. Thanks also to the many wonderful leaders and colleagues I met at Google and Apple who were instrumental in my career. Special thanks to Roberto Cipriani and the team at Paper Inc. for letting me be part of the family and for the wonderful job they do in the education community.

 I’d like to thank my many academic mentors who have shaped my career and my way of thinking: Mary Falk de Losada and her team at the Colombian Mathematical Olympiads, where I first started loving mathematics and had the chance to meet great mentors and create friendships that have lasted a lifetime; my PhD advisor, Sergey Fomin, who was instrumental in my mathematical education and my style of teaching; my master’s advisor, Ian Goulden; Nantel and François Bergeron, Bruce Sagan and Federico Ardila, and the many professors and colleagues I had the opportunity to work with, in particular those at the Universities of Waterloo, Michigan, Quebec at Montreal, and York; and finally, Richard Hoshino and the team and students at Quest University, who helped me test and improve the material in this book.

 To all the reviewers: Al Pezewski, Albert Nogués Sabater, Amit Lamba, Bill Mitchell, Borko Djurkovic, Daniele Andreis, Erik Sapper, Hao Liu, Jeremy R. Loscheider, Juan Gabriel Bono, Kay Engelhardt, Krzysztof Kamyczek, Matthew Margolis, Matthias Busch, Michael Bright, Millad Dagdoni, Polina Keselman, Tony Holdroyd, and Valerie Parham-Thompson, your suggestions helped make this a better book.

 I would like to thank my wife, Carolina Lasso, who supported me at every step of this process with love and kindness; my mom, Cecilia Herrera, who raised me with love and always encouraged me to follow my passions; my grandma, Maruja, for being the angel that looks at me from heaven; my best friend, Alejandro Morales, for always being there for me; and my friends who have enlightened my path and brightened my life, I thank you and love you with all my heart.

 YouTube, blogs, podcasts, and social media have given me the chance to connect with thousands of brilliant souls all over the world. Curious minds with an endless passion for learning, fellow educators who generously share their knowledge and insights, form an e-tribe that inspires me every day and gives me the energy to continue teaching and learning. To anyone who shares their knowledge with the world or who strives to learn every day, I thank you.

 I thank anyone out there who is striving to make this world a more fair and peaceful place. To anyone who fights for justice, for peace, for the environment, and for equal opportunities for every human on Earth regardless of their race, gender, place of birth, conditions, and choices, I thank you from the bottom of my heart.

 And last, but certainly not least, this book is dedicated to you, the reader. You have chosen the path of learning, the path of improving, the path of feeling comfortable in the uncomfortable, and that is admirable. I hope this book is a positive step along your way to following your passions and creating a better world.

 about this book

 This book teaches you two things: machine learning models and how to use them. Machine learning models come in different types. Some of them return a deterministic answer, such as yes or no, whereas others return the answer as a probability. Some of them use equations; others use if statements. One thing they have in common is that they all return an answer, or a prediction. The branch of machine learning that comprises the models that return a prediction is aptly named predictive machine learning. This is the type of machine learning that we focus on in this book.

 How this book is organized: A roadmap

 Types of chapters

 This book has two types of chapters. The majority of them (chapters 3, 5, 6, 8, 9, 10, 11, and 12) each contain one type of machine learning model. The corresponding model in each chapter is studied in detail, including examples, formulas, code, and exercises for you to solve. Other chapters (chapters 4, 7, and 13) contain useful techniques to use to train, evaluate, and improve machine learning models. In particular, chapter 13 contains an end-to-end example on a real dataset, in which you’ll be able to apply all the knowledge you’ve obtained in the previous chapters.

 Recommended learning paths

 You can use this book in two ways. The one I recommend is to go through it linearly, chapter by chapter, because you’ll find that the alternation between learning models and learning techniques to train them is rewarding. However, another learning path is to first learn all the models (chapters 3, 5, 6, 8, 9, 10, 11, and 12), and then learn the techniques for training them (chapters 4, 7, and 13). And of course, because we all learn in different ways, you can create your own learning path!

 Appendices

 This book has three appendices. Appendix A contains the solutions to each chapter’s exercises. Appendix B contains some formal mathematical derivations that are useful but more technical than the rest of the book. Appendix C contains a list of references and resources that I recommend if you’d like to further your understanding.

 Requirements and learning goals

 This book provides you with a solid framework of predictive machine learning. To get the most out of this book, you should have a visual mind and a good understanding of elementary mathematics, such as graphs of lines, equations, and basic probability. It is helpful (although not mandatory) if you know how to code, especially in Python, because you are given the opportunity to implement and apply several models in real datasets throughout the book. After reading this book, you will be able to do the following:

 	Describe the most important models in predictive machine learning and how they work, including linear and logistic regression, naive Bayes, decision trees, neural networks, support vector machines, and ensemble methods.

 	Identify their strengths and weaknesses and what parameters they use.

 	Identify how these models are used in the real world, and formulate potential ways to apply machine learning to any particular problem you would like to solve.

 	Learn how to optimize these models, compare them, and improve them, to build the best machine learning models we can.

 	Code the models, whether by hand or using an existing package, and use them to make predictions on real datasets.

 If you have a particular dataset or problem in mind, I invite you to think about how to apply what you learn in this book to it, and to use it as a starting point to implement and experiment with your own models.

 I am super excited to start this journey with you, and I hope you are as excited!

Other resources

 This book is self-contained. This means that aside from the requirements described earlier, every concept that we need is introduced in the book. However, I include many references, which I recommend you check out if you’d like to understand the concepts at a deeper level or if you’d like to explore further topics. The references are all in appendix C and also at this link: http://serrano.academy/grokking-machine-learning.

 In particular, several of my own resources accompany this book’s material. In my page at http://serrano.academy, you can find a lot of materials in the form of videos, posts, and code. The videos are also in my YouTube channel www.youtube.com/c/LuisSerrano, which I recommend you check out. As a matter of fact, most of the chapters in this book have a corresponding video that I recommend you watch as you read the chapter.

 We’ll be writing code

 In this book, we’ll be writing code in Python. However, if your plan is to learn the concepts without the code, you can still follow the book while ignoring the code. Nevertheless, I recommend you at least take a look at the code, so you get familiarized with it.

 This book comes with a code repository, and most chapters will give you the opportunity to code the algorithms from scratch or to use some very popular Python packages to build models that fit given datasets. The GitHub repository is www.github.com/luisguiserrano/manning, and I link the corresponding notebooks throughout the book. In the README of the repository, you will find the instructions for the packages to install to run the code successfully.

 The main Python packages we use in this book are the following:

 	
NumPy: for storing arrays and performing complex mathematical calculations

 	
Pandas: for storing, manipulating, and analyzing large datasets

 	
Matplotlib: for plotting data

 	
Turi Create: for storing and manipulating data and training machine learning models

 	
Scikit-Learn: for training machine learning models

 	
Keras (TensorFlow): for training neural networks

 About the code

 This book contains many examples of source code in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The code for the examples in this book is available for download on the Manning website (https://www.manning.com/books/grokking-machine-learning), and from GitHub at www.github.com/luisguiserrano/manning.

 liveBook discussion forum

 Purchase of Grokking Machine Learning includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/grokking-machine-learning/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 	
 [image:]

 	
 Luis G. Serrano is a research scientist in quantum artificial intelligence at Zapata Computing. He has worked previously as a Machine Learning Engineer at Google, as a Lead Artificial Intelligence Educator at Apple, and as the Head of Content in Artificial Intelligence and Data Science at Udacity. Luis has a PhD in mathematics from the University of Michigan, a bachelor’s and master’s in mathematics from the University of Waterloo, and worked as a postdoctoral researcher at the Laboratoire de Combinatoire et d’Informatique Mathématique at the University of Quebec at Montreal. Luis maintains a popular YouTube channel about machine learning with over 85,000 subscribers and over 4 million views, and is a frequent speaker at artificial intelligence and data science conferences.

1 What is machine learning? It is common sense, except done by a computer

 In this chapter

 	what is machine learning

 	is machine learning hard (spoiler: no)

 	what do we learn in this book

 	what is artificial intelligence, and how does it differ from machine learning

 	how do humans think, and how can we inject those ideas into a machine

 	some basic machine learning examples in real life

 [image:]

 I am super happy to join you in your learning journey!

 Welcome to this book! I’m super happy to be joining you in this journey through understanding machine learning. At a high level, machine learning is a process in which the computer solves problems and makes decisions in much the same way as humans.

 In this book, I want to bring one message to you: machine learning is easy! You do not need to have a heavy math and programming background to understand it. You do need some basic mathematics, but the main ingredients are common sense, a good visual intuition, and a desire to learn and apply these methods to anything that you are passionate about and where you want to make an improvement in the world. I’ve had an absolute blast writing this book, because I love growing my understanding of this topic, and I hope you have a blast reading it and diving deep into machine learning!

 Machine learning is everywhere

 Machine learning is everywhere. This statement seems to be truer every day. I have a hard time imagining a single aspect of life that cannot be improved in some way or another by machine learning. For any job that requires repetition or looking at data and gathering conclusions, machine learning can help. During the last few years, machine learning has seen tremendous growth due to the advances in computing power and the ubiquity of data collection. Just to name a few applications of machine learning: recommendation systems, image recognition, text processing, self-driving cars, spam recognition, medical diagnoses . . . the list goes on. Perhaps you have a goal or an area in which you want to make an impact (or maybe you are already making it!). Very likely, machine learning can be applied to that field—perhaps that is what brought you to this book. Let’s find out together!

Do I need a heavy math and coding background to understand machine learning?

 No. Machine learning requires imagination, creativity, and a visual mind. Machine learning is about picking up patterns that appear in the world and using those patterns to make predictions in the future. If you enjoy finding patterns and spotting correlations, then you can do machine learning. If I were to tell you that I stopped smoking and am eating more vegetables and exercising, what would you predict will happen to my health in one year? Perhaps that it will improve. If I were to tell you that I’ve switched from wearing red sweaters to green sweaters, what would you predict will happen to my health in one year? Perhaps that it won’t change much (it may, but not based on the information I gave you). Spotting these correlations and patterns is what machine learning is about. The only difference is that in machine learning, we attach formulas and numbers to these patterns to get computers to spot them.

 Some mathematics and coding knowledge are needed to do machine learning, but you don’t need to be an expert. If you are an expert in either of them, or both, you will certainly find your skills will be rewarded. But if you are not, you can still learn machine learning and pick up the mathematics and coding as you go. In this book, we introduce all the mathematical concepts we need at the moment we need them. When it comes to coding, how much code you write in machine learning is up to you. Machine learning jobs range from those who code all day long, to those who don’t code at all. Many packages, APIs, and tools help us do machine learning with minimal coding. Every day, machine learning is more available to everyone in the world, and I’m glad you’ve jumped on the bandwagon!

 Formulas and code are fun when seen as a language

 In most machine learning books, algorithms are explained mathematically using formulas, derivatives, and so on. Although these precise descriptions of the methods work well in practice, a formula sitting by itself can be more confusing than illustrative. However, like a musical score, a formula may hide a beautiful melody behind the confusion. For example, let’s look at this formula: Σi4=1i. It looks ugly at first glance, but it represents a very simple sum, namely, 1 + 2 + 3 + 4. And what about Σin=1wi? That is simply the sum of many (n) numbers. But when I think of a sum of many numbers, I’d rather imagine something like 3 + 2 + 4 + 27, rather than 1 Σin=1wi. Whenever I see a formula, I immediately have to imagine a small example of it, and then the picture is clearer in my mind. When I see something like P(A|B), what comes to mind? That is a conditional probability, so I think of some sentence along the lines of “The probability that an event A occurs given that another event B already occurs.” For example, if A represents rain today and B represents living in the Amazon rain forest, then the formula P(A|B) = 0.8 simply means “The probability that it rains today given that we live in the Amazon rain forest is 80%.”

 If you do love formulas, don’t worry—this book still has them. But they will appear right after the example that illustrates them.

 The same phenomenon happens with code. If we look at code from far away, it may look complicated, and we might find it hard to imagine that someone could fit all of that in their head. However, code is simply a sequence of steps, and normally each of these steps is simple. In this book, we’ll write code, but it will be broken down into simple steps, and each step will be carefully explained with examples or illustrations. During the first few chapters, we will be coding our models from scratch to understand how they work. In the later chapters, however, the models get more complicated. For these, we will use packages such as Scikit-Learn, Turi Create, or Keras, which have implemented most machine learning algorithms with great clarity and power.

OK, so what exactly is machine learning?

 To define machine learning, first let’s define a more general term: artificial intelligence.

 What is artificial intelligence?

 Artificial intelligence (AI) is a general term, which we define as follows:

 artificial intelligence The set of all tasks in which a computer can make decisions

 In many cases, a computer makes these decisions by mimicking the ways a human makes decisions. In other cases, they may mimic evolutionary processes, genetic processes, or physical processes. But in general, any time we see a computer solving a problem by itself, be it driving a car, finding a route between two points, diagnosing a patient, or recommending a movie, we are looking at artificial intelligence.

 What is machine learning?

 Machine learning is similar to artificial intelligence, and often their definitions are confused. Machine learning (ML) is a part of artificial intelligence, and we define it as follows:

 machine learning The set of all tasks in which a computer can make decisions based on data

 What does this mean? Allow me to illustrate with the diagram in figure 1.1.

[image:]

 Figure 1.1 Machine learning is a part of artificial intelligence.

 Let’s go back to looking at how humans make decisions. In general terms, we make decisions in the following two ways:

 	By using logic and reasoning

 	By using our experience

 For example, imagine that we are trying to decide what car to buy. We can look carefully at the features of the car, such as price, fuel consumption, and navigation, and try to figure out the best combination of them that adjusts to our budget. That is using logic and reasoning. If instead we ask all our friends what cars they own, and what they like and dislike about them, we form a list of information and use that list to decide, then we are using experience (in this case, our friends’ experiences).

 Machine learning represents the second method: making decisions using our experience. In computer lingo, the term for experience is data. Therefore, in machine learning, computers make decisions based on data. Thus, any time we get a computer to solve a problem or make a decision using only data, we are doing machine learning. Colloquially, we could describe machine learning in the following way:

 Machine learning is common sense, except done by a computer.

 Going from solving problems using any means necessary to solving problems using only data may feel like a small step for a computer, but it has been a huge step for humanity (figure 1.2). Once upon a time, if we wanted to get a computer to perform a task, we had to write a program, namely, a whole set of instructions for the computer to follow. This process is good for simple tasks, but some tasks are too complicated for this framework. For example, consider the task of identifying if an image contains an apple. If we start writing a computer program to develop this task, we quickly find out that it is hard.

[image:]

 Figure 1.2 Machine learning encompasses all the tasks in which computers make decisions based on data. In the same way that humans make decisions based on previous experiences, computers can make decisions based on previous data.

 Let’s take a step back and ask the following question. How did we, as humans, learn how an apple looks? The way we learned most words was not by someone explaining to us what they mean; we learned them by repetition. We saw many objects during our childhood, and adults would tell us what these objects were. To learn what an apple was, we saw many apples throughout the years while hearing the word apple, until one day it clicked, and we knew what an apple was. In machine learning, that is what we get the computer to do. We show the computer many images, and we tell it which ones contain an apple (that constitutes our data). We repeat this process until the computer catches the right patterns and attributes that constitute an apple. At the end of the process, when we feed the computer a new image, it can use these patterns to determine whether the image contains an apple. Of course, we still need to program the computer so that it catches these patterns. For that, we have several techniques, which we will learn in this book.

 And now that we’re at it, what is deep learning?

 In the same way that machine learning is part of artificial intelligence, deep learning is a part of machine learning. In the previous section, we learned we have several techniques we use to get the computer to learn from data. One of these techniques has been performing tremendously well, so it has its own field of study called deep learning (DL), which we define as follows and as shown in figure 1.3:

 deep learning The field of machine learning that uses certain objects called neural networks

 What are neural networks? We’ll learn about them in chapter 10. Deep learning is arguably the most used type of machine learning because it works really well. If we are looking at any of the cutting-edge applications, such as image recognition, text generation, playing Go, or self-driving cars, very likely we are looking at deep learning in some way or another.

[image:]

 Figure 1.3 Deep learning is a part of machine learning.

 In other words, deep learning is part of machine learning, which in turn is part of artificial intelligence. If this book were about transportation, then AI would be vehicles, ML would be cars, and DL would be Ferraris.

How do we get machines to make decisions with data? The remember-formulate-predict framework

 In the previous section, we discussed that machine learning consists of a set of techniques that we use to get the computer to make decisions based on data. In this section, we learn what is meant by making decisions based on data and how some of these techniques work. For this, let’s again analyze the process humans use to make decisions based on experience. This is what is called the remember-formulate-predict framework, shown in figure 1.4. The goal of machine learning is to teach computers how to think in the same way, following the same framework.

 How do humans think?

 When we, as humans, need to make a decision based on our experience, we normally use the following framework:

 	We remember past situations that were similar.

 	We formulate a general rule.

 	We use this rule to predict what may happen in the future.

 For example, if the question is, “Will it rain today?,” the process to make a guess is the following:

 	We remember that last week it rained most of the time.

 	We formulate that in this place, it rains most of the time.

 	We predict that today it will rain.

 We may be right or wrong, but at least we are trying to make the most accurate prediction we can based on the information we have.

[image:]

 Figure 1.4 The remember-formulate-predict framework is the main framework we use in this book. It consists of three steps: (1) We remember previous data; (2) we formulate a general rule; and (3) we use that rule to make predictions about the future.

 Some machine learning lingo—models and algorithms

 Before we delve into more examples that illustrate the techniques used in machine learning, let’s define some useful terms that we use throughout this book. We know that in machine learning, we get the computer to learn how to solve a problem using data. The way the computer solves the problem is by using the data to build a model. What is a model? We define a model as follows:

 model A set of rules that represent our data and can be used to make predictions

 We can think of a model as a representation of reality using a set of rules that mimic the existing data as closely as possible. In the rain example in the previous section, the model was our representation of reality, which is a world in which it rains most of the time. This is a simple world with one rule: it rains most of the time. This representation may or may not be accurate, but according to our data, it is the most accurate representation of reality that we can formulate. We later use this rule to make predictions on unseen data.

 An algorithm is the process that we used to build the model. In the current example, the process is simple: we looked at how many days it rained and realized it was the majority. Of course, machine learning algorithms can get much more complicated than that, but at the end of the day, they are always composed of a set of steps. Our definition of algorithm follows:

 algorithm A procedure, or a set of steps, used to solve a problem or perform a computation. In this book, the goal of an algorithm is to build a model.

 In short, a model is what we use to make predictions, and an algorithm is what we use to build the model. Those two definitions are easy to confuse and are often interchanged, but to keep them clear, let’s look at a few examples.

 Some examples of models that humans use

 In this section we focus on a common application of machine learning: spam detection. In the following examples, we will detect spam and non-spam emails. Non-spam emails are also referred to as ham.

 spam and ham spam is the common term used for junk or unwanted email, such as chain letters, promotions, and so on. The term comes from a 1972 Monty Python sketch in which every item in the menu of a restaurant contained Spam as an ingredient. Among software developers, the term ham is used to refer to non-spam emails.

 Example 1: An annoying email friend

 In this example, our friend Bob likes to send us email. A lot of his emails are spam, in the form of chain letters. We are starting to get a bit annoyed with him. It is Saturday, and we just got a notification of an email from Bob. Can we guess if this email is spam or ham without looking at it?

 To figure this out, we use the remember-formulate-predict method. First, let us remember, say, the last 10 emails that we got from Bob. That is our data. We remember that six of them were spam, and the other four were ham. From this information, we can formulate the following model:

 Model 1: Six out of every 10 emails that Bob sends us are spam.

 This rule will be our model. Note, this rule does not need to be true. It could be outrageously wrong. But given our data, it is the best that we can come up with, so we’ll live with it. Later in this book, we learn how to evaluate models and improve them when needed.

 Now that we have our rule, we can use it to predict whether the email is spam. If six out of 10 of Bob’s emails are spam, then we can assume that this new email is 60% likely to be spam and 40% likely to be ham. Judging by this rule, it’s a little safer to think that the email is spam. Therefore, we predict that the email is spam (figure 1.5).

 Again, our prediction may be wrong. We may open the email and realize it is ham. But we have made the prediction to the best of our knowledge. This is what machine learning is all about.

 You may be thinking, can we do better? We seem to be judging every email from Bob in the same way, but there may be more information that can help us tell the spam and ham emails apart. Let’s try to analyze the emails a little more. For example, let’s see when Bob sent the emails to see if we find a pattern.

[image:]

 Figure 1.5 A very simple machine learning model

 Example 2: A seasonal annoying email friend

 Let’s look more carefully at the emails that Bob sent us in the previous month. More specifically, we’ll look at what day he sent them. Here are the emails with dates and information about being spam or ham:

 	Monday: Ham

 	Tuesday: Ham

 	Saturday: Spam

 	Sunday: Spam

 	Sunday: Spam

 	Wednesday: Ham

 	Friday: Ham

 	Saturday: Spam

 	Tuesday: Ham

 	Thursday: Ham

 Now things are different. Can you see a pattern? It seems that every email Bob sent during the week is ham, and every email he sent during the weekend is spam. This makes sense—maybe during the week he sends us work email, whereas during the weekend, he has time to send spam and decides to roam free. So, we can formulate a more educated rule, or model, as follows:

 Model 2: Every email that Bob sends during the week is ham, and those he sends during the weekend are spam.

 Now let’s look at what day it is today. If it is Sunday and we just got an email from Bob, then we can predict with great confidence that the email he sent is spam (figure 1.6). We make this prediction, and without looking, we send the email to the trash and carry on with our day.

[image:]

 Figure 1.6 A slightly more complex machine learning model

 Example 3: Things are getting complicated!

 Now, let’s say we continue with this rule, and one day we see Bob in the street, and he asks, “Why didn’t you come to my birthday party?” We have no idea what he is talking about. It turns out last Sunday he sent us an invitation to his birthday party, and we missed it! Why did we miss it? Because he sent it on the weekend, and we assumed that it would be spam. It seems that we need a better model. Let’s go back to look at Bob’s emails—this is our remember step. Let’s see if we can find a pattern.

 	1 KB: Ham

 	2 KB: Ham

 	16 KB: Spam

 	20 KB: Spam

 	18 KB: Spam

 	3 KB: Ham

 	5 KB: Ham

 	25 KB: Spam

 	1 KB: Ham

 	3 KB: Ham

 What do we see? It seems that the large emails tend to be spam, whereas the smaller ones tend to be ham. This makes sense, because the spam emails frequently have large attachments.

 So, we can formulate the following rule:

 Model 3: Any email of size 10 KB or larger is spam, and any email of size less than 10 KB is ham.

 Now that we have formulated our rule, we can make a prediction. We look at the email we received today from Bob, and the size is 19 KB. So, we conclude that it is spam (figure 1.7).

[image:]

 Figure 1.7 Another slightly more complex machine learning model

 Is this the end of the story? Not even close.

 But before we keep going, notice that to make our predictions, we used the day of the week and the size of the email. These are examples of features. A feature is one of the most important concepts in this book.

 feature Any property or characteristic of the data that the model can use to make predictions

 You can imagine that there are many more features that could indicate if an email is spam or ham. Can you think of some more? In the next paragraphs, we’ll see a few more features.

 Example 4: More?

 Our two classifiers were good, because they rule out large emails and emails sent on the weekends. Each one of them uses exactly one of these two features. But what if we wanted a rule that worked with both features? Rules like the following may work:

 Model 4: If an email is larger than 10 KB or it is sent on the weekend, then it is classified as spam. Otherwise, it is classified as ham.

 Model 5: If the email is sent during the week, then it must be larger than 15 KB to be classified as spam. If it is sent during the weekend, then it must be larger than 5 KB to be classified as spam. Otherwise, it is classified as ham.

 Or we can get even more complicated.

 Model 6: Consider the number of the day, where Monday is 0, Tuesday is 1, Wednesday is 2, Thursday is 3, Friday is 4, Saturday is 5, and Sunday is 6. If we add the number of the day and the size of the email (in KB), and the result is 12 or more, then the email is classified as spam (figure 1.8). Otherwise, it is classified as ham.

[image:]

 Figure 1.8 An even more complex machine learning model

 All of these are valid models. We can keep creating more and more models by adding layers of complexity or by looking at even more features. Now the question is, which is the best model? This is where we start to need the help of a computer.

 Some examples of models that machines use

 The goal is to make the computer think the way we think, namely, use the remember-formulate-predict framework. In a nutshell, here is what the computer does in each of the steps:

 Remember: Look at a huge table of data.

 Formulate: Create models by going through many rules and formulas, and check which model fits the data best.

 Predict: Use the model to make predictions about future data.

 This process is not much different than what we did in the previous section. The great advancement here is that the computer can build models quickly by going through many formulas and combinations of rules until it finds one that fits the existing data well. For example, we can build a spam classifier with features such as the sender, the date and time of day, the number of words, the number of spelling mistakes, and the appearances of certain words such as buy or win. A model could easily look like the following logical statement:

 Model 7:

 	If the email has two or more spelling mistakes, then it is classified as spam.

 	If it has an attachment larger than 10 KB, it is classified as spam.

 	If the sender is not in our contact list, it is classified as spam.

 	If it has the words buy and win, it is classified as spam.

 	Otherwise, it is classified as ham.

 It could also look like the following formula:

 Model 8: If (size) + 10 (number of spelling mistakes) – (number of appearances of the word “mom”) + 4 (number of appearances of the word “buy”) > 10, then we classify the message as spam (figure 1.9). Otherwise, we classify it as ham.

[image:]

 Figure 1.9 A much more complex machine learning model, found by a computer

 Now the question is, which is the best rule? The quick answer is the one that fits the data best, although the real answer is the one that best generalizes to new data. At the end of the day, we

 may end up with a complicated rule, but the computer can formulate it and use it to make predictions quickly. Our next question is, how do we build the best model? That is exactly what this book is about.

Summary

 	Machine learning is easy! Anyone can learn it and use it, regardless of their background. All that is needed is a desire to learn and great ideas to implement!

 	Machine learning is tremendously useful, and it is used in most disciplines. From science to technology to social problems and medicine, machine learning is making an impact and will continue doing so.

 	Machine learning is common sense, done by a computer. It mimics the ways humans think to make decisions quickly and accurately.

 	Just like humans make decisions based on experience, computers can make decisions based on previous data. This is what machine learning is all about.

 Machine learning uses the remember-formulate-predict framework, as follows:

 	
Remember: look at the previous data.

 	
Formulate: build a model, or a rule, based on this data.

 	
Predict: use the model to make predictions about future data.

2 Types of machine learning

 In this chapter

 	three different types of machine learning: supervised, unsupervised, and reinforcement learning

 	the difference between labeled and unlabeled data

 	the difference between regression and classification, and how they are used

 [image:]

 As we learned in chapter 1, machine learning is common sense for a computer. Machine learning roughly mimics the process by which humans make decisions based on experience, by making decisions based on previous data. Naturally, programming computers to mimic the human thinking process is challenging, because computers are engineered to store and process numbers, not make decisions. This is the task that machine learning aims to tackle. Machine learning is divided into several branches, depending on the type of decision to be made. In this chapter, we overview some of the most important among these branches.

 Machine learning has applications in many fields, such as the following:

 	Predicting house prices based on the house’s size, number of rooms, and location

 	Predicting today’s stock market prices based on yesterday’s prices and other factors of the market

 	Detecting spam and non-spam emails based on the words in the e-mail and the sender

 	Recognizing images as faces or animals, based on the pixels in the image

 	Processing long text documents and outputting a summary

 	Recommending videos or movies to a user (e.g., on YouTube or Netflix)

 	Building chatbots that interact with humans and answer questions

 	Training self-driving cars to navigate a city by themselves

 	Diagnosing patients as sick or healthy

 	Segmenting the market into similar groups based on location, acquisitive power, and interests

 	Playing games like chess or Go

 Try to imagine how we could use machine learning in each of these fields. Notice that some of these applications are different but can be solved in a similar way. For example, predicting housing prices and predicting stock prices can be done using similar techniques. Likewise, predicting whether an email is spam and predicting whether a credit card transaction is legitimate or fraudulent can also be done using similar techniques. What about grouping users of an app based on their similarity? That sounds different from predicting housing prices, but it could be done similarly to grouping newspaper articles by topic. And what about playing chess? That sounds different from all the other previous applications, but it could be like playing Go.

 Machine learning models are grouped into different types, according to the way they operate. The main three families of machine learning models are

 	
supervised learning,

 	
unsupervised learning, and

 	
reinforcement learning.

 In this chapter, we overview all three. However, in this book, we focus only on supervised learning because it is the most natural one to start learning and arguably the most used right now. Look up the other types in the literature and learn about them, too, because they are all interesting and useful! In the resources in appendix C, you can find some interesting links, including several videos created by the author.

What is the difference between labeled and unlabeled data?

 What is data?

 We talked about data in chapter 1, but before we go any further, let’s first establish a clear definition of what we mean by data in this book. Data is simply information. Any time we have a table with information, we have data. Normally, each row in our table is a data point. Say, for example, that we have a dataset of pets. In this case, each row represents a different pet. Each pet in the table is described by certain features of that pet.

 And what are features?

 In chapter 1, we defined features as the properties or characteristics of the data. If our data is in a table, the features are the columns of the table. In our pet example, the features may be size, name, type, or weight. Features could even be the colors of the pixels in an image of the pet. This is what describes our data. Some features are special, though, and we call them labels.

 Labels?

 This one is a bit less straightforward, because it depends on the context of the problem we are trying to solve. Normally, if we are trying to predict a particular feature based on the other ones, that feature is the label. If we are trying to predict the type of pet (e.g., cat or dog) based on information on that pet, then the label is the type of pet (cat/dog). If we are trying to predict if the pet is sick or healthy based on symptoms and other information, then the label is the state of the pet (sick/healthy). If we are trying to predict the age of the pet, then the label is the age (a number).

 Predictions

 We have been using the concept of making predictions freely, but let’s now pin it down. The goal of a predictive machine learning model is to guess the labels in the data. The guess that the model makes is called a prediction.

 Now that we know what labels are, we can understand there are two main types of data: labeled and unlabeled data.

 Labeled and unlabeled data

 Labeled data is data that comes with labels. Unlabeled data is data that comes with no labels. An example of labeled data is a dataset of emails that comes with a column that records whether the emails are spam or ham, or a column that records whether the email is work related. An example of unlabeled data is a dataset of emails that has no particular column we are interested in predicting.

 In figure 2.1, we see three datasets containing images of pets. The first dataset has a column recording the type of pet, and the second dataset has a column specifying the weight of the pet. These two are examples of labeled data. The third dataset consists only of images, with no label, making it unlabeled data.

[image:]

 Figure 2.1 Labeled data is data that comes with a tag, or label. That label can be a type or a number. Unlabeled data is data that comes with no tag. The dataset on the left is labeled, and the label is the type of pet (dog/cat). The dataset in the middle is also labeled, and the label is the weight of the pet (in pounds). The dataset on the right is unlabeled.

 Of course, this definition contains some ambiguity, because depending on the problem, we decide whether a particular feature qualifies as a label. Thus, determining if data is labeled or unlabeled, many times, depends on the problem we are trying to solve.

 Labeled and unlabeled data yield two different branches of machine learning called supervised and unsupervised learning, which are defined in the next three sections.

Supervised learning: The branch of machine learning that works with labeled data

 We can find supervised learning in some of the most common applications nowadays, including image recognition, various forms of text processing, and recommendation systems. Supervised learning is a type of machine learning that uses labeled data. In short, the goal of a supervised learning model is to predict (guess) the labels.

 In the example in figure 2.1, the dataset on the left contains images of dogs and cats, and the labels are “dog” and “cat.” For this dataset, the machine learning model would use previous data to predict the label of new data points. This means, if we bring in a new image without a label, the model will guess whether the image is of a dog or a cat, thus predicting the label of the data point (figure 2.2).

[image:]

 Figure 2.2 A supervised learning model predicts the label of a new data point. In this case, the data point corresponds to a dog, and the supervised learning algorithm is trained to predict that this data point does, indeed, correspond to a dog.

 If you recall from chapter 1, the framework we learned for making a decision was remember-formulate-predict. This is precisely how supervised learning works. The model first remembers the dataset of dogs and cats. Then it formulates a model, or a rule, for what it believes constitutes a dog and a cat. Finally, when a new image comes in, the model makes a prediction about what it thinks the label of the image is, namely, a dog or a cat (figure 2.3).

[image:]

 Figure 2.3 A supervised learning model follows the remember-formulate-predict framework from chapter 1. First, it remembers the dataset. Then, it formulates rules for what would constitute a dog and a cat. Finally, it predicts whether a new data point is a dog or a cat.

 Now, notice that in figure 2.1, we have two types of labeled datasets. In the dataset in the middle, each data point is labeled with the weight of the animal. In this dataset, the labels are numbers. In the dataset on the left, each data point is labeled with the type of animal (dog or cat). In this dataset, the labels are states. Numbers and states are the two types of data that we’ll encounter in supervised learning models. We call the first type numerical data and the second type categorical data.

 numerical data is any type of data that uses numbers such as 4, 2.35, or –199. Examples of numerical data are prices, sizes, or weights.

 categorical data is any type of data that uses categories, or states, such as male/female or cat/dog/bird. For this type of data, we have a finite set of categories to associate to each of the data points.

 This gives rise to the following two types of supervised learning models:

 regression models are the types of models that predict numerical data. The output of a regression model is a number, such as the weight of the animal.

 classification models are the types of models that predict categorical data. The output of a classification model is a category, or a state, such as the type of animal (cat or dog).

 Let’s look at two examples of supervised learning models, one regression and one classification.

 Model 1: housing prices model (regression). In this model, each data point is a house. The label of each house is its price. Our goal is that when a new house (data point) comes on the market, we would like to predict its label, namely, its price.

 Model 2: email spam–detection model (classification). In this model, each data point is an email. The label of each email is either spam or ham. Our goal is that when a new email (data point) comes into our inbox, we would like to predict its label, namely, whether it is spam or ham.

 Notice the difference between models 1 and 2.

 	The housing prices model is a model that can return a number from many possibilities, such as $100, $250,000, or $3,125,672.33. Thus, it is a regression model.

 	The spam detection model, on the other hand, can return only two things: spam or ham. Thus, it is a classification model.

 In the following subsections, we elaborate more on regression and classification.

 Regression models predict numbers

 As we discussed previously, regression models are those in which the label we want to predict is a number. This number is predicted based on the features. In the housing example, the features can be anything that describes a house, such as the size, the number of rooms, the distance to the closest school, or the crime rate in the neighborhood.

 Other places where one can use regression models follow:

 	
Stock market: predicting the price of a certain stock based on other stock prices and other market signals

 	
Medicine: predicting the expected life span of a patient or the expected recovery time, based on symptoms and the medical history of the patient

 	
Sales: predicting the expected amount of money a customer will spend, based on the client’s demographics and past purchase behavior

 	
Video recommendations: predicting the expected amount of time a user will watch a video, based on the user’s demographics and other videos they have watched

 The most common method used for regression is linear regression, which uses linear functions (lines or similar objects) to make our predictions based on the features. We study linear regression in chapter 3. Other popular methods used for regression are decision tree regression, which we learn in chapter 9, and several ensemble methods such as random forests, AdaBoost, gradient boosted trees, and XGBoost, which we learn in chapter 12.

 Classification models predict a state

 Classification models are those in which the label we want to predict is a state belonging to a finite set of states. The most common classification models predict a “yes” or a “no,” but many other models use a larger set of states. The example we saw in figure 2.3 is an example of classification, because it predicts the type of the pet, namely, “cat” or “dog.”

 In the email spam recognition example, the model predicts the state of the email (namely, spam or ham) from the features of the email. In this case, the features of the email can be the words on it, the number of spelling mistakes, the sender, or anything else that describes the email.

 Another common application of classification is image recognition. The most popular image recognition models take as input the pixels in the image, and they output a prediction of what the image depicts. Two of the most famous datasets for image recognition are MNIST and CIFAR-10. MNIST contains approximately 60,000 28-by-28-pixel black-and-white images of handwritten digits which are labelled 0–9. These images come from a combination of sources, including the American Census Bureau and a repository of handwritten digits written by American high school students. The MNIST dataset can be found in the following link: http://yann.lecun.com/exdb/mnist/. The CIFAR-10 dataset contains 60,000 32-by-32-pixel colored images of different things. These images are labeled with 10 different objects (thus the 10 in its name), namely airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. This database is maintained by the Canadian Institute for Advanced Research (CIFAR), and it can be found in the following link: https://www.cs.toronto.edu/~kriz/cifar.html.

 Some additional powerful applications of classification models follow:

 	
Sentiment analysis: predicting whether a movie review is positive or negative, based on the words in the review

 	
Website traffic: predicting whether a user will click a link or not, based on the user’s demographics and past interaction with the site

 	
Social media: predicting whether a user will befriend or interact with another user, based on their demographics, history, and friends in common

 	
Video recommendations: predicting whether a user will watch a video, based on the user’s demographics and other videos they have watched

 The bulk of this book (chapters 5, 6, 8, 9, 10, 11, and 12) covers classification models. In these chapters we learn the perceptrons (chapter 5), logistic classifiers (chapter 6), the naive Bayes algorithm (chapter 8), decision trees (chapter 9), neural networks (chapter 10), support vector machines (chapter 11), and ensemble methods (chapter 12).

Unsupervised learning: The branch of machine learning that works with unlabeled data

 Unsupervised learning is also a common type of machine learning. It differs from supervised learning in that the data is unlabeled. In other words, the goal of a machine learning model is to extract as much information as possible from a dataset that has no labels, or targets to predict.

 What could such a dataset be, and what could we do with it? In principle, we can do a little less than what we can do with a labeled dataset, because we have no labels to predict. However, we can still extract a lot of information from an unlabeled dataset. For example, let’s go back to the cats and dogs example on the rightmost dataset in figure 2.1. This dataset consists of images of cats and dogs, but it has no labels. Therefore, we don’t know what type of pet each image represents, so we can’t predict if a new image corresponds to a dog or a cat. However, we can do other things, such as determine if two pictures are similar or different. This is something unsupervised learning algorithms do. An unsupervised learning algorithm can group the images based on similarity, even without knowing what each group represents (figure 2.4). If done properly, the algorithm could separate the dog images from the cat images, or even group each of them by breed!

[image:]

 Figure 2.4 An unsupervised learning algorithm can still extract information from data. For example, it can group similar elements together.

 As a matter of fact, even if the labels are there, we can still use unsupervised learning techniques on our data to preprocess it and apply supervised learning methods more effectively.

 The main branches of unsupervised learning are clustering, dimensionality reduction, and generative learning.

 clustering algorithms The algorithms that group data into clusters based on similarity

 dimensionality reduction algorithms The algorithms that simplify our data and faithfully describe it with fewer features

 generative algorithms The algorithms that can generate new data points that resemble the existing data

 In the following three subsections, we study these three branches in more detail.

 Clustering algorithms split a dataset into similar groups

 As we stated previously, clustering algorithms are those that split the dataset into similar groups. To illustrate this, let’s go back to the two datasets in the section “Supervised learning”—the housing dataset and the spam email dataset—but imagine that they have no labels. This means that the housing dataset has no prices, and the email dataset has no information on the emails being spam or ham.

 Let’s begin with the housing dataset. What can we do with this dataset? Here is an idea: we could somehow group the houses by similarity. For example, we could group them by location, price, size, or a combination of these factors. This process is called clustering. Clustering is a branch of unsupervised machine learning that consists of the tasks that group the elements in our dataset into clusters where all the data points are similar.

 Now let’s look at the second example, the dataset of emails. Because the dataset is unlabeled, we don’t know whether each email is spam or ham. However, we can still apply some clustering to our dataset. A clustering algorithm splits our images into a few different groups based on different features of the email. These features could be the words in the message, the sender, the number and size of the attachments, or the types of links inside the email. After clustering the dataset, a human (or a combination of a human and a supervised learning algorithm) could label these clusters by categories such as “Personal,” “Social,” and “Promotions.”

 As an example, let’s look at the dataset in table 2.1, which contains nine emails that we would like to cluster. The features of the dataset are the size of the email and the number of recipients.

 Table 2.1 A table of emails with their size and number of recipients

 	
 Email

 	
 Size

 	
 Recipients

 	
 1

 	
 8

 	
 1

 	
 2

 	
 12

 	
 1

 	
 3

 	
 43

 	
 1

 	
 4

 	
 10

 	
 2

 	
 5

 	
 40

 	
 2

 	
 6

 	
 25

 	
 5

 	
 7

 	
 23

 	
 6

 	
 8

 	
 28

 	
 6

 	
 9

 	
 26

 	
 7

 To the naked eye, it looks like we could group the emails by their number of recipients. This would result in two clusters: one with emails having two or fewer recipients, and one with emails having five or more recipients. We could also try to group them into three groups by size. But you can imagine that as the table gets larger and larger, eyeballing the groups gets harder and harder. What if we plot the data? Let’s plot the emails in a graph, where the horizontal axis records the size and the vertical axis records the number of recipients. This gives us the plot in figure 2.5.

[image:]

 Figure 2.5 A plot of the email dataset. The horizontal axis corresponds to the size of the email and the vertical axis to the number of recipients. We can see three well-defined clusters in this dataset.

 In figure 2.5 we can see three well-defined clusters, which are highlighted in figure 2.6.

[image:]

 Figure 2.6 We can cluster the emails into three categories based on size and number of recipients.

 This last step is what clustering is all about. Of course, for us humans, it’s easy to eyeball the three groups once we have the plot. But for a computer, this task is not easy. Furthermore, imagine if our data contained millions of points, with hundreds or thousands of features. With more than three features, it is impossible for humans to see the clusters, because they would be in dimensions that we cannot visualize. Luckily, computers can do this type of clustering for huge datasets with multiple rows and columns.

 Other applications of clustering are the following:

 	
Market segmentation: dividing customers into groups based on demographics and previous purchasing behavior to create different marketing strategies for the groups

 	
Genetics: clustering species into groups based on gene similarity

 	
Medical imaging: splitting an image into different parts to study different types of tissue

 	
Video recommendations: dividing users into groups based on demographics and previous videos watched and using this to recommend to a user the videos that other users in their group have watched

 More on unsupervised learning models

 In the rest of this book, we don’t cover unsupervised learning. However, I strongly encourage you to study it on your own. Here are some of the most important clustering algorithms out there. Appendix C lists several more (including some videos of mine) where you can learn these algorithms in detail.

 	
K-means clustering: this algorithm groups points by picking some random centers of mass and moving them closer and closer to the points until they are at the right spots.

 	
Hierarchical clustering: this algorithm starts by grouping the closest points together and continuing in this fashion, until we have some well-defined groups.

 	
Density-based spatial clustering (DBSCAN): this algorithm starts grouping points together in places with high density, while labeling the isolated points as noise.

 	
Gaussian mixture models: this algorithm does not assign a point to one cluster but instead assigns fractions of the point to each of the existing clusters. For example, if there are three clusters, A, B, and C, then the algorithm could determine that 60% of a particular point belongs to group A, 25% to group B, and 15% to group C.

 Dimensionality reduction simplifies data without losing too much information

 Dimensionality reduction is a useful preprocessing step that we can apply to vastly simplify our data before applying other techniques. As an example, let’s go back to the housing dataset. Imagine that the features are the following:

 	Size

 	Number of bedrooms

 	Number of bathrooms

 	Crime rate in the neighborhood

 	Distance to the closest school

 This dataset has five columns of data. What if we wanted to turn the dataset into a simpler one with fewer columns, without losing a lot of information? Let’s do this by using common sense. Take a closer look at the five features. Can you see any way to simplify them—perhaps to group them into some smaller and more general categories?

 After a careful look, we can see that the first three features are similar, because they are all related to the size of the house. Similarly, the fourth and fifth features are similar to each other, because they are related to the quality of the neighborhood. We could condense the first three features into a big “size” feature, and the fourth and fifth into a big “neighborhood quality” feature. How do we condense the size features? We could forget about rooms and bedrooms and consider only the size, we could add the number of bedrooms and bathrooms, or maybe take some other combination of the three features. We could also condense the area quality features in similar ways. Dimensionality reduction algorithms will find good ways to condense these features, losing as little information as possible and keeping our data as intact as possible while managing to simplify it for easier process and storage (figure 2.7).

[image:]

 Figure 2.7 Dimensionality reduction algorithms help us simplify our data. On the left, we have a housing dataset with many features. We can use dimensionality reduction to reduce the number of features in the dataset without losing much information and obtain the dataset on the right.

 Why is it called dimensionality reduction if all we’re doing is reducing the number of columns in our data? The fancy word for the number of columns in a dataset is dimension. Think about this: if our data has one column, then each data point is one number. A collection of numbers can be plotted as a collection of points in a line, which has precisely one dimension. If our data has two columns, then each data point is formed by a pair of numbers. We can imagine a collection of pairs of numbers as a collection of points in a city, where the first number is the street number and the second number is the avenue. Addresses on a map are two-dimensional, because they are in a plane. What happens when our data has three columns? In this case, then each data point is formed by three numbers. We can imagine that if every address in our city is a building, then the first and second numbers are the street and avenue, and the third one is the floor in the building. This looks more like a three-dimensional city. We can keep going. What about four numbers? Well, now we can’t really visualize it, but if we could, this set of points would look like places in a four-dimensional city, and so on. The best way to imagine a four-dimensional city is by imagining a table with four columns. What about a 100-dimensional city? This would be a table with 100 columns, in which each person has an address that consists of 100 numbers. The mental picture we could have when thinking of higher dimensions is shown in figure 2.8. Therefore, as we went from five dimensions down to two, we reduced our five-dimensional city into a two-dimensional city. This is why it is called dimensionality reduction.

[image:]

 Figure 2.8 How to imagine higher dimensional spaces: One dimension is like a street, in which each house only has one number. Two dimensions is like a flat city, in which each address has two numbers, a street and an avenue. Three dimensions is like a city with buildings, in which each address has three numbers: a street, an avenue, and a floor. Four dimensions is like an imaginary place in which each address has four numbers. We can imagine higher dimensions as another imaginary city in which addresses have as many coordinates as we need.

 Other ways of simplifying our data: Matrix factorization and singular value decomposition

 It seems that clustering and dimensionality reduction are nothing like each other, but, in reality, they are not so different. If we have a table full of data, each row corresponds to a data point, and each column corresponds to a feature. Therefore, we can use clustering to reduce the number of rows in our dataset and dimensionality reduction to reduce the number of columns, as figures 2.9 and 2.10 illustrate.

[image:]

 Figure 2.9 Clustering can be used to simplify our data by reducing the number of rows in our dataset by grouping several rows into one.

[image:]

 Figure 2.10 Dimensionality reduction can be used to simplify our data by reducing the number of columns in our dataset.

 You may be wondering, is there a way that we can reduce both the rows and the columns at the same time? And the answer is yes! Two common ways we can do this are matrix factorization and singular value decomposition. These two algorithms express a big matrix of data into a product of smaller matrices.

 Places like Netflix use matrix factorization extensively to generate recommendations. Imagine a large table where each row corresponds to a user, each column to a movie, and each entry in the matrix is the rating that the user gave the movie. With matrix factorization, one can extract certain features, such as type of movie, actors appearing in the movie, and others, and be able to predict the rating that a user gives a movie, based on these features.

 Singular value decomposition is used in image compression. For example, a black-and-white image can be seen as a large table of data, where each entry contains the intensity of the corresponding pixel. Singular value decomposition uses linear algebra techniques to simplify this table of data, thus allowing us to simplify the image and store its simpler version using fewer entries.

 Generative machine learning

 Generative machine learning is one of the most astonishing fields of machine learning. If you have seen ultra-realistic faces, images, or videos created by computers, then you have seen generative machine learning in action.

 The field of generative learning consists of models that, given a dataset, can output new data points that look like samples from that original dataset. These algorithms are forced to learn how the data looks to produce similar data points. For example, if the dataset contains images of faces, then the algorithm will produce realistic-looking faces. Generative algorithms have been able to create tremendously realistic images, paintings, and so on. They have also generated video, music, stories, poetry, and many other wonderful things. The most popular generative algorithm is generative adversarial networks (GANs), developed by Ian Goodfellow and his coauthors. Other useful and popular generative algorithms are variational autoencoders, developed by Kingma and Welling, and restricted Boltzmann machines (RBMs), developed by Geoffrey Hinton.

 As you can imagine, generative learning is quite hard. For a human, it is much easier to determine if an image shows a dog than it is to draw a dog. This task is just as hard for computers. Thus, the algorithms in generative learning are complicated, and lots of data and computing power are needed to make them work well. Because this book is on supervised learning, we won’t cover generative learning in detail, but in chapter 10, we get an idea of how some of these generative algorithms work, because they tend to use neural networks. Appendix C contains recommendations of resources, including a video by the author, if you’d like to explore this topic further.

What is reinforcement learning?

 Reinforcement learning is a different type of machine learning in which no data is given, and we must get the computer to perform a task. Instead of data, the model receives an environment and an agent who is supposed to navigate in this environment. The agent has a goal or a set of goals. The environment has rewards and punishments that guide the agent to make the right decisions to reach its goal. This all sounds a bit abstract, but let’s look at an example.

 Example: Grid world

 In figure 2.11, we see a grid world with a robot at the bottom-left corner. That is our agent. The goal is to get to the treasure chest in the top right of the grid. In the grid, we can also see a mountain, which means we cannot go through that square, because the robot cannot climb mountains. We also see a dragon, which will attack the robot, should the robot dare to land in its square, which means that part of our goal is to not land over there. This is the game. And to give the robot information about how to proceed, we keep track of a score. The score starts at zero. If the robot gets to the treasure chest, then we gain 100 points. If the robot reaches the dragon, we lose 50 points. And to make sure our robot moves quickly, we can say that for every step the robot makes, we lose 1 point, because the robot loses energy as it walks.

[image:]

 Figure 2.11 A grid world in which our agent is a robot. The goal of the robot is to find the treasure chest, while avoiding the dragon. The mountain represents a place through which the robot can’t pass.

 The way to train this algorithm, in very rough terms, follows: The robot starts walking around, recording its score and remembering what steps took it there. After some point, it may meet the dragon, losing many points. Therefore, it learns to associate the dragon square and the squares close to it with low scores. At some point it may also hit the treasure chest, and it learns to start associating that square and the squares close to it to high scores. After playing this game for a long time, the robot will have a good idea of how good each square is, and it can take the path following the squares all the way to the treasure chest. Figure 2.12 shows

 a possible path, although this one is not ideal, because it passes too close to the dragon. Can you think of a better one?

[image:]

 Figure 2.12 Here is a path that the robot could take to find the treasure chest.

 Of course, this is a very brief explanation, and there is a lot more to reinforcement learning. Appendix C recommends some resources for further study, including a deep reinforcement learning video.

 Reinforcement learning has numerous cutting-edge applications, including the following:

 	
Games: recent advances in teaching computers how to win at games, such as Go or chess, use reinforcement learning. Also, agents have been taught to win at Atari games such as Breakout or Super Mario.

 	
Robotics: reinforcement learning is used extensively to help robots carry out tasks such as picking up boxes, cleaning a room, or even dancing!

 	
Self-driving cars: reinforcement learning techniques are used to help the car carry out many tasks such as path planning or behaving in particular environments.

Summary

 	Several types of machine learning exist, including supervised learning, unsupervised learning, and reinforcement learning.

 	Data can be labeled or unlabeled. Labeled data contains a special feature, or label, that we aim to predict. Unlabeled data doesn’t contain this feature.

 	Supervised learning is used on labeled data and consists of building models that predict the labels for unseen data.

 	Unsupervised learning is used on unlabeled data and consists of algorithms that simplify our data without losing a lot of information. Unsupervised learning is often used as a preprocessing step.

 	Two common types of supervised learning algorithms are called regression and classification.

 	Regression models are those in which the answer is any number.

 	Classification models are those in which the answer is of a type or a class.

 	Two common types of unsupervised learning algorithms are clustering and dimensionality reduction.

 	Clustering is used to group data into similar clusters to extract information or make it easier to handle.

 	Dimensionality reduction is a way to simplify our data, by joining certain similar features and losing as little information as possible.

 	Matrix factorization and singular value decomposition are other algorithms that can simplify our data by reducing both the number of rows and columns.

 	Generative machine learning is an innovative type of unsupervised learning, consisting of generating data that is similar to our dataset. Generative models can paint realistic faces, compose music, and write poetry.

 	Reinforcement learning is a type of machine learning in which an agent must navigate an environment and reach a goal. It is extensively used in many cutting-edge applications.

Exercises

 Exercise 2.1

 For each of the following scenarios, state if it is an example of supervised or unsupervised learning. Explain your answers. In cases of ambiguity, pick one, and explain why you picked it.

 	A recommendation system on a social network that recommends potential friends to a user

 	A system in a news site that divides the news into topics

 	The Google autocomplete feature for sentences

 	A recommendation system on an online retailer that recommends to users what to buy based on their past purchasing history

 	A system in a credit card company that captures fraudulent transactions

 Exercise 2.2

 For each of the following applications of machine learning, would you use regression or classification to solve it? Explain your answers. In cases of ambiguity, pick one, and explain why you picked it.

 	An online store predicting how much money a user will spend on their site

 	A voice assistant decoding voice and turning it into text

 	Selling or buying stock from a particular company

 	YouTube recommending a video to a user

 Exercise 2.3

 Your task is to build a self-driving car. Give at least three examples of machine learning problems that you would have to solve to build it. In each example, explain if you are using supervised/unsupervised learning, and, if supervised, whether you are using regression or classification. If you are using other types of machine learning, explain which ones, and why.

3 Drawing a line close to our points: Linear regression

 In this chapter

 	what is linear regression

 	fitting a line through a set of data points

 	coding the linear regression algorithm in Python

 	using Turi Create to build a linear regression model to predict housing prices in a real dataset

 	what is polynomial regression

 	fitting a more complex curve to nonlinear data

 	discussing examples of linear regression in the real world, such as medical applications and recommender systems

 [image:]

 In this chapter, we will learn about linear regression. Linear regression is a powerful and widely used method to estimate values, such as the price of a house, the value of a certain stock, the life expectancy of an individual, or the amount of time a user will watch a video or spend on a website. You may have seen linear regression before as a plethora of complicated formulas including derivatives, systems of equations, and determinants. However, we can also see linear regression in a more graphical and less formulaic way. In this chapter, to understand linear regression, all you need is the ability to visualize points and lines moving around.

 Let’s say that we have some points that roughly look like they are forming a line, as shown in figure 3.1.

[image:]

 Figure 3.1 Some points that roughly look like they are forming a line

 The goal of linear regression is to draw the line that passes as close to these points as possible. What line would you draw that passes close to those points? How about the one shown in figure 3.2?

 Think of the points as houses in a town, and our goal is to build a road that goes through the town. We want the line to pass as close as possible to the points because the town’s inhabitants all want to live close to the road, and our goal is to please them as much as we can.

[image:]

 Figure 3.2 A line that passes close to the points

 We can also imagine the points as magnets lying bolted to the floor (so they can’t move). Now imagine throwing a straight metal rod on top of them. The rod will move around, but because the magnets pull it, it will eventually end up in a position of equilibrium, as close as it can to all the points.

 Of course, this can lead to a lot of ambiguity. Do we want a road that goes somewhat close to all the houses, or maybe really close to a few of them and a bit farther from others? Some questions that arise follow:

 	What do we mean by “points that roughly look like they are forming a line”?

 	What do we mean by “a line that passes really close to the points”?

 	How do we find such a line?

 	Why is this useful in the real world?

 	Why is this machine learning?

 In this chapter we answer all these questions, and we build a linear regression model to predict housing prices in a real dataset.

 You can find all the code for this chapter in the following GitHub repository: https://github.com/luisguiserrano/manning/tree/master/Chapter_3_Linear_Regression.

The problem: We need to predict the price of a house

 Let’s say that we are real estate agents in charge of selling a new house. We don’t know the price, and we want to infer it by comparing it with other houses. We look at features of the house that could influence the price, such as size, number of rooms, location, crime rate, school quality, and distance to commerce. At the end of the day, we want a formula for all these features that gives us the price of the house, or at least a good estimate for it.

The solution: Building a regression model for housing prices

 Let’s go with as simple an example as possible. We look at only one of the features—the number of rooms. Our house has four rooms, and there are six houses nearby, with one, two, three, five, six, and seven rooms, respectively. Their prices are shown in table 3.1.

 Table 3.1 A table of houses with the number of rooms and prices. House 4 is the one whose price we are trying to infer.

 	
 Number of rooms

 	
 Price

 	
 1

 	
 150

 	
 2

 	
 200

 	
 3

 	
 250

 	
 4

 	
 ?

 	
 5

 	
 350

 	
 6

 	
 400

 	
 7

 	
 450

 What price would you give to house 4, just based on the information on this table? If you said $300, then we made the same guess. You probably saw a pattern and used it to infer the price of the house. What you did in your head was linear regression. Let’s study this pattern more. You may have noticed that each time you add a room, $50 is added to the price of the house. More specifically, we can think of the price of a house as a combination of two things: a base price of $100, and an extra charge of $50 for each of the rooms. This can be summarized in a simple formula:

 Price = 100 + 50(Number of rooms)

 What we did here is come up with a model represented by a formula that gives us a prediction of the price of the house, based on the feature, which is the number of rooms. The price per room is called the weight of that corresponding feature, and the base price is called the bias of the model. These are all important concepts in machine learning. We learned some of them in chapter 1 and 2, but let’s refresh our memory by defining them from the perspective of this problem.

 features The features of a data point are those properties that we use to make our prediction. In this case, the features are the number of rooms in the house, the crime rate, the age of the house, the size, and so on. For our case, we’ve decided on one feature: the number of rooms in the house.

 labels This is the target that we try to predict from the features. In this case, the label is the price of the house.

 model A machine learning model is a rule, or a formula, which predicts a label from the features. In this case, the model is the equation we found for the price.

 prediction The prediction is the output of the model. If the model says, “I think the house with four rooms is going to cost $300,” then the prediction is 300.

 weights In the formula corresponding to the model, each feature is multiplied by a corresponding factor. These factors are the weights. In the previous formula, the only feature is the number of rooms, and its corresponding weight is 50.

 bias As you can see, the formula corresponding to the model has a constant that is not attached to any of the features. This constant is called the bias. In this model, the bias is 100, and it corresponds to the base price of a house.

 Now the question is, how did we come up with this formula? Or more specifically, how do we get the computer to come up with this weight and bias? To illustrate this, let’s look at a slightly more complicated example. And because this is a machine learning problem, we will approach it using the remember-formulate-predict framework that we learned in chapter 2. More specifically, we’ll remember the prices of other houses, formulate a model for the price, and use this model to predict the price of a new house.

 The remember step: Looking at the prices of existing houses

 To see the process more clearly, let’s look at a slightly more complicated dataset, such as the one in table 3.2.

 Table 3.2 A slightly more complicated dataset of houses with their number of rooms and their price

 	
 Number of rooms

 	
 Price

 	
 1

 	
 155

 	
 2

 	
 197

 	
 3

 	
 244

 	
 4

 	
 ?

 	
 5

 	
 356

 	
 6

 	
 407

 	
 7

 	
 448

 This dataset is similar to the previous one, except now the prices don’t follow a nice pattern, where each price is $50 more than the previous one. However, it’s not that far from the original dataset, so we can expect that a similar pattern should approximate these values well.

 Normally, the first thing we do when we get a new dataset is to plot it. In figure 3.3, we can see a plot of the points in a coordinate system in which the horizontal axis represents the number of rooms, and the vertical axis represents the price of the house.

[image:]

 Figure 3.3 Plot of the dataset in table 3.2. The horizontal axis represents the number of rooms, and the vertical axis represents the price of the house.

 The formulate step: Formulating a rule that estimates the price of the house

 The dataset in table 3.2 is close enough to the one in table 3.1, so for now, we can feel safe using the same formula for the price. The only difference is that now the prices are not exactly what the formula says, and we have a small error. We can write the equation as follows:

 Price = 100 + 50(Number of rooms) + (Small error)

 If we want to predict prices, we can use this equation. Even though we are not sure we’ll get the actual value, we know that we are likely to get close. Now the question is, how did we find this equation? And most important, how does a computer find this equation?

 Let’s go back to the plot and see what the equation means there. What happens if we look at all the points in which the vertical (y) coordinate is 100 plus 50 times the horizontal (x) coordinate? This set of points forms a line with slope 50 and y-intercept 100. Before we unpack the previous statement, here are the definitions of slope, y-intercept, and the equation of a line. We delve into these in more detail in the “Crash course on slope and y-intercept” section.

 slope The slope of a line is a measure of how steep it is. It is calculated by dividing the rise over the run (i.e., how many units it goes up, divided by how many units it goes to the right). This ratio is constant over the whole line. In a machine learning model, this is the weight of the corresponding feature, and it tells us how much we expect the value of the label to go up, when we increase the value of the feature by one unit. If the line is horizontal, then the slope is zero, and if the line goes down, the slope is negative.

 y-intercept The y-intercept of a line is the height at which the line crosses the vertical (y-) axis. In a machine learning model, it is the bias and tells us what the label would be in a data point where all the features are precisely zero.

 linear equation This is the equation of a line. It is given by two parameters: the slope and the y-intercept. If the slope is m and the y-intercept is b, then the equation of the line is y = mx + b, and the line is formed by all the points (x,y) that satisfy the equation. In a machine learning model, x is the value of the feature and y is the prediction for the label. The weight and bias of the model are m and b, respectively.

 We can now analyze the equation. When we say that the slope of the line is 50—this means that each time we add one room to the house, we estimate that the price of the house will go up by $50. When we say that the y-intercept of the line is 100, this means that the estimate for the price of a (hypothetical) house with zero rooms would be the base price of $100. This line is drawn in figure 3.4.

[image:]

 Figure 3.4 The model we formulate is the line that goes as close as possible to all the houses.

 Now, of all the possible lines (each with its own equation), why did we pick this one in particular? Because that one passes close to the points. There may be a better one, but at least we know this one is good, as opposed to one that goes nowhere near the points. Now we are back to the original problem, where we have a set of houses, and we want to build a road as close as possible to them.

 How do we find this line? We’ll look at this later in the chapter. But for now, let’s say that we have a crystal ball that, given a bunch of points, finds the line that passes the closest to them.

 The predict step: What do we do when a new house comes on the market?

 Now, on to using our model to predict the price of the house with four rooms. For this, we plug the number four as the feature in our formula to get the following:

 Price = 100 + 50 · 4 = 300

 Therefore, our model predicts that the house costs $300. This can also be seen graphically by using the line, as illustrated in figure 3.5.

[image:]

 Figure 3.5 Our task is now to predict the price of the house with four rooms. Using the model (line), we deduce that the predicted price of this house is $300.

 What if we have more variables? Multivariate linear regression

 In the previous sections we learned about a model that predicts the price of a house based on one feature—the number of rooms. We may imagine many other features that could help us predict the price of a house, such as the size, the quality of the schools in the neighborhood, and the age of the house. Can our linear regression model accommodate these other variables? Absolutely. When the only feature is the number of rooms, our model predicts the price as the sum of the feature times their corresponding weight, plus a bias. If we have more features, all we need to do is multiply them by their corresponding weights and add them to the predicted price. Therefore, a model for the price of a house could look like this:

 Price = 30(number of rooms) + 1.5(size) + 10(quality of the schools) – 2(age of the house) + 50

 In this equation, why are all of the weights positive, except for the one corresponding to the age of the house? The reason is the other three features (number of rooms, size, and quality of the schools) are positively correlated to the price of the house. In other words, because houses that are bigger and well located cost more, the higher this feature is, the higher we expect the price of the house to be. However, because we would imagine that older houses tend to be less expensive, the age feature is negatively correlated to the price of the house.

