
        
            [image: cover]
        

    
Angular Development with Typescript, Second Edition

      Yakov Fain and Anton Moiseev 

      [image: ]

      

Copyright
      

      
      
      For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact
      

      
             Special Sales Department
       Manning Publications Co.
       20 Baldwin Road
       PO Box 761
       Shelter Island, NY 11964
       Email: orders@manning.com

      
      © 2019 by Manning Publications Co. All rights reserved.

      
      
      No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
         mechanical, photocopying, or otherwise, without prior written permission of the publisher.
      

      
      Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
         those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
         printed in initial caps or all caps.
      

      
      [image: ] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
         on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
         of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
         chlorine.
      

      
      
      
         
            
            
         
         
            
               	[image: ]
               	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

            

         
      

      
      
      Development editor: Kristen Watterson
Technical development editor: Doug Warren
Review editor: Aleksandar Dragosavljević
Project manager: Vincent Nordhaus
Copy editor: Corbin Collins
Proofreader: Katie Tennant
Technical proofreader: Keith Webster
Typesetter: Dottie Marsico
Cover designer: Marija Tudor


      
      
      ISBN 9781617295348

      
      Printed in the United States of America

      
      1 2 3 4 5 6 7 8 9 10 – SP – 23 22 21 20 19 18

      
      
      
Brief Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Praise for the First Edition


         Preface


         Acknowledgments


         About this book


         About the authors


         About the cover illustration


      

      
         Chapter 1. Introducing Angular


         Chapter 2. The main artifacts of an Angular app


         Chapter 3. Router basics


         Chapter 4. Router advanced


         Chapter 5. Dependency injection in Angular


         Chapter 6. Reactive programming in Angular


         Chapter 7. Laying out pages with Flex Layout


         Chapter 8. Implementing component communications


         Chapter 9. Change detection and component lifecycle


         Chapter 10. Introducing the Forms API


         Chapter 11. Validating forms


         Chapter 12. Interacting with servers using HTTP


         Chapter 13. Interacting with servers using the WebSocket protocol


         Chapter 14. Testing Angular applications


         Chapter 15. Maintaining app state with ngrx


         A. An overview of ECMAScript


         B. TypeScript essentials


         C. Using the npm package manager


         D. RxJS essentials


      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      
Table of Contents

      
         Copyright


         Brief Table of Contents


         Table of Contents


         Praise for the First Edition


         Preface


         Acknowledgments


         About this book


         About the authors


         About the cover illustration


      

      
         Chapter 1. Introducing Angular


         
            1.1. Why select Angular for web development?


            1.2. Why develop in TypeScript and not in JavaScript?


            1.3. Overview of Angular


            1.4. Introducing Angular CLI


            
               1.4.1. Generating a new Angular project


               1.4.2. Development and production builds


            

            1.5. JIT vs. AOT compilation


            
               1.5.1. Creating bundles with the --prod option


               1.5.2. Generating bundles on the disk


            

            1.6. Introducing the sample ngAuction app


            Summary


         

         Chapter 2. The main artifacts of an Angular app


         
            2.1. Components


            2.2. Services


            2.3. Directives


            2.4. Pipes


            2.5. Modules


            
               2.5.1. Feature modules


            

            2.6. Understanding data binding


            
               2.6.1. Binding properties and events


               2.6.2. One- and two-way data binding in action


            

            2.7. Hands-on: Getting started with ngAuction


            
               2.7.1. The initial project setup for ngAuction


               2.7.2. Generating components for ngAuction


               2.7.3. The application component


               2.7.4. The navbar component


               2.7.5. The search component


               2.7.6. The footer component


               2.7.7. The carousel component


               2.7.8. The home component


            

            Summary


         

         Chapter 3. Router basics


         
            3.1. Routing basics


            3.2. Location strategies


            
               3.2.1. Hash-based navigation


               3.2.2. History API-based navigation


            

            3.3. The building blocks of client-side navigation


            3.4. Navigating to routes with navigate()


            3.5. Passing data to routes


            
               3.5.1. Extracting parameters from ActivatedRoute


               3.5.2. Passing query parameters to a route


            

            3.6. Child routes


            3.7. Hands-on: Adding navigation to the online auction


            
               3.7.1. ProductService


               3.7.2. ProductItemComponent


               3.7.3. HomeComponent


               3.7.4. StarsComponent


               3.7.5. ProductDetailComponent


            

            Summary


         

         Chapter 4. Router advanced


         
            4.1. Guarding routes


            
               4.1.1. Implementing the CanActivate guard


               4.1.2. Implementing the CanDeactivate guard


               4.1.3. Implementing the Resolve guard


            

            4.2. Developing an SPA with multiple router outlets


            
               4.2.1. Lazy-loading modules


               4.2.2. Preloaders


            

            Summary


         

         Chapter 5. Dependency injection in Angular


         
            5.1. The dependency injection pattern


            5.2. Benefits of DI in Angular apps


            
               5.2.1. Loose coupling and reusability


               5.2.2. Testability


            

            5.3. Injectors and providers


            5.4. A simple app with Angular DI


            
               5.4.1. Injecting a product service


               5.4.2. Injecting the HttpClient service


            

            5.5. Switching injectables made easy


            5.6. Declaring providers with useFactory and useValue


            
               5.6.1. Using InjectionToken


               5.6.2. Dependency injection in a modularized app


            

            5.7. Providers in lazy-loaded modules


            5.8. Providers in eagerly loaded modules


            5.9. Hands-on: Using Angular Material components in ngAuction


            
               5.9.1. A brief overview of the Angular Material library


               5.9.2. Adding the AM library to the project


               5.9.3. Adding a feature module with AM components


               5.9.4. Modifying the appearance of NavbarComponent


               5.9.5. Modifying the SearchComponent UI


               5.9.6. Replacing the carousel with an image


               5.9.7. More fixes with spacing


               5.9.8. Using mat-card in ProductItemComponent


               5.9.9. Adding styles to HomeComponent


            

            Summary


         

         Chapter 6. Reactive programming in Angular


         
            6.1. Handling events without observables


            6.2. Turning DOM events into observables


            6.3. Handling observable events with the Forms API


            6.4. Discarding results of unwanted HTTP requests with switchMap


            6.5. Using AsyncPipe


            6.6. Observables and the router


            Summary


         

         Chapter 7. Laying out pages with Flex Layout


         
            7.1. Flex Layout and ObservableMedia


            
               7.1.1. Using Flex Layout directives


               7.1.2. ObservableMedia service


            

            7.2. Hands-on: Rewriting ngAuction


            
               7.2.1. Why rewrite the ngAuction app from scratch?


               7.2.2. Generating a new ngAuction app


               7.2.3. Creating a custom Angular Material theme with Sass


               7.2.4. Adding a toolbar to the top-level component


               7.2.5. Creating the product service


               7.2.6. Creating the home module


               7.2.7. Configuring routes


               7.2.8. Running ngAuction


            

            Summary


         

         Chapter 8. Implementing component communications


         
            8.1. Intercomponent communication


            8.2. Input and output properties


            
               8.2.1. Input properties


               8.2.2. Output properties and custom events


            

            8.3. Implementing the Mediator design pattern


            
               8.3.1. Using a common parent as a mediator


               8.3.2. Using an injectable service as a mediator


            

            8.4. Exposing a child component’s API


            8.5. Projecting templates at runtime with ngContent


            
               8.5.1. View encapsulation modes


               8.5.2. Projecting onto multiple areas


            

            Summary


         

         Chapter 9. Change detection and component lifecycle


         
            9.1. A high-level overview of change detection


            
               9.1.1. Change detection strategies


               9.1.2. Profiling change detection


            

            9.2. Component lifecycle


            
               9.2.1. Catching changes in the ngOnChanges hook


               9.2.2. Catching changes in the ngDoCheck hook


            

            9.3. Hands-on: Adding the product view to ngAuction


            
               9.3.1. Creating product components and the module


               9.3.2. Implementing the product component


               9.3.3. Implementing the product-detail component


               9.3.4. Implementing the product-suggestion component


            

            Summary


         

         Chapter 10. Introducing the Forms API


         
            10.1. Two Forms APIs


            10.2. Template-driven forms


            
               10.2.1. Forms directives


               10.2.2. Applying the template-driven API to HTML forms


            

            10.3. Reactive forms


            
               10.3.1. Form model


               10.3.2. Reactive directives


               10.3.3. Applying the reactive API to HTML forms


               10.3.4. Dynamically adding controls to a form


            

            10.4. Forms API directives summary


            10.5. Updating form data


            10.6. Using FormBuilder


            Summary


         

         Chapter 11. Validating forms


         
            11.1. Using built-in validators


            11.2. Controlling when validation starts


            11.3. Custom validators in reactive forms


            11.4. Validating a group of controls


            11.5. Checking a form control’s status and validity


            
               11.5.1. touched and untouched form controls


               11.5.2. pristine and dirty fields


               11.5.3. Pending fields


            

            11.6. Changing validators dynamically in reactive forms


            11.7. Asynchronous validators


            11.8. Custom validators in template-driven forms


            11.9. Adding a search form to ngAuction


            
               11.9.1. The search-form component


               11.9.2. The search-results component


               11.9.3. Other code refactoring


            

            Summary


         

         Chapter 12. Interacting with servers using HTTP


         
            12.1. Overview of the HttpClient service


            12.2. Reading a JSON file with HttpClient


            12.3. Creating a web server with Node, Express, and TypeScript


            
               12.3.1. Creating a simple web server


               12.3.2. Serving JSON


            

            12.4. Bringing Angular and Node together


            
               12.4.1. Static assets on the server


               12.4.2. Consuming JSON in Angular apps


               12.4.3. Configuring the client proxy


               12.4.4. Subscribing to observables with the async pipe


               12.4.5. Injecting HttpClient into a service


               12.4.6. Deploying Angular apps on the server with npm scripts


            

            12.5. Posting data to the server


            
               12.5.1. Creating a server for handling post requests


               12.5.2. Creating a client for making post requests


            

            12.6. HTTP interceptors


            12.7. Progress events


            Summary


         

         Chapter 13. Interacting with servers using the WebSocket protocol


         
            13.1. Comparing HTTP and WebSockets


            13.2. Pushing data from a Node server to a plain client


            13.3. Using WebSockets in Angular clients


            
               13.3.1. Wrapping an observable stream into a service


               13.3.2. Angular talking to a WebSocket server


            

            13.4. Hands-on: Node server with WebSockets support


            
               13.4.1. Running ngAuction in dev mode


               13.4.2. Reviewing the ngAuction server code


               13.4.3. What changed in the ngAuction client code


            

            Summary


         

         Chapter 14. Testing Angular applications


         
            14.1. Unit testing


            
               14.1.1. Getting to know Jasmine


               14.1.2. Writing test scripts for a class


            

            14.2. Running Jasmine scripts with Karma


            
               14.2.1. Karma configuration file


               14.2.2. Testing in multiple browsers


            

            14.3. Using the Angular testing library


            
               14.3.1. Testing components


               14.3.2. Testing services


               14.3.3. Testing components that use routing


            

            14.4. End-to-end testing with Protractor


            
               14.4.1. Protractor basics


               14.4.2. Angular CLI–generated tests


               14.4.3. Testing a login page


            

            14.5. Hands-on: Adding an E2E test to ngAuction


            
               14.5.1. E2E testing of the product-search workflow


            

            Summary


         

         Chapter 15. Maintaining app state with ngrx


         
            15.1. From a convenience store to Redux architecture


            
               15.1.1. What’s Redux?


               15.1.2. Why storing app state in a single place is important


            

            15.2. Introducing ngrx


            
               15.2.1. Getting familiar with a store, actions, and reducers


               15.2.2. Getting familiar with effects and selectors


               15.2.3. Refactoring the mediator app with ngrx


               15.2.4. Monitoring state with ngrx store DevTools


               15.2.5. Monitoring the router state


            

            15.3. To ngrx or not to ngrx


            
               15.3.1. Comparing ngrx with Angular services


               15.3.2. State mutation problems


               15.3.3. ngrx code is more difficult to read


               15.3.4. The learning curve


               15.3.5. Conclusion


            

            15.4. Hands-on: Using ngrx in ngAuction


            
               15.4.1. Adding the router state support to app module


               15.4.2. Managing state in the home module


               15.4.3. Unit-testing ngrx reducers


            

            Summary


            Angular 6, 7, and beyond


         

         A. An overview of ECMAScript


         
            A.1. How to run the code samples


            A.2. Scope of variables and this


            
               A.2.1. Hoisting of variable declarations


               A.2.2. Block scoping with let and const


            

            A.3. Template literals


            
               A.3.1. Multiline strings


            

            A.4. Optional parameters and default values


            A.5. Arrow function expressions, this, and that


            A.6. The rest operator


            A.7. The spread operator


            A.8. Generator functions


            A.9. Destructuring


            
               A.9.1. Destructuring objects


               A.9.2. Destructuring arrays


            

            A.10. Iterating with forEach(), for-in, and for-of


            
               A.10.1. Using the forEach() method


               A.10.2. Using the for-in loop


               A.10.3. Using for-of


            

            A.11. Classes and inheritance


            
               A.11.1. Constructors


               A.11.2. The super keyword and the super function


               A.11.3. Static variables


               A.11.4. Getters, setters, and method definitions


            

            A.12. Asynchronous processing


            
               A.12.1. A callback hell


               A.12.2. ES6 promises


               A.12.3. Resolving several promises at once


               A.12.4. async and await


            

            A.13. ES6 modules


            
               A.13.1. import and export


            

         

         B. TypeScript essentials


         
            B.1. The role of transpilers


            B.2. Getting started with TypeScript


            
               B.2.1. Installing and using the TypeScript compiler


               B.2.2. TypeScript as a superset of JavaScript


            

            B.3. How to run the code samples


            B.4. Optional types


            B.5. Functions


            
               B.5.1. Default parameters


               B.5.2. Optional parameters


            

            B.6. Classes


            
               B.6.1. Access modifiers


               B.6.2. Methods


               B.6.3. Inheritance


            

            B.7. Interfaces


            
               B.7.1. Declaring custom types with interfaces


               B.7.2. Using the implements keyword


            

            B.8. Generics


            B.9. The readonly modifier


            B.10. Decorators


            B.11. The union type


            B.12. Using type definition files


            B.13. Controlling code style with TSLint


         

         C. Using the npm package manager


         
            C.1. Specifying project dependencies in package.json


            C.2. Semantic versioning


            C.3. Yarn as an alternative to npm


         

         D. RxJS essentials


         
            D.1. Getting familiar with RxJS terminology


            D.2. Observable, observer, and subscriber


            D.3. Creating observables


            D.4. Getting familiar with RxJS operators


            
               D.4.1. Pipeable operators


            

            D.5. Using an observer API


            D.6. Using RxJS Subject


            D.7. The flatMap operator


            D.8. The switchMap operator


            D.9. Error handling with catchError


         

      

      
         Index


      

      
         List of Figures


      

      
         List of Tables


      

      
         List of Listings


      

      

Praise for the First Edition
      

      
      
      
      
         
         An enjoyable and important read. Highly recommended!

         
         
         David Barkol, Microsoft

      

      
      
         
         An instant classic! The only book you need to learn and master Angular 2 and TypeScript.

         
         
         David DiMaria, MapQuest

      

      
      
         
         Excellent! The purpose of this book is not knowledge but action.

         
         
         Irach Ilish Ramos Hernandez, Groupaxis

      

      
      
         
         Shows you how to leverage the combined power of TypeScript and Angular 2, with all the best practices baked in.

         
         
         Sébastien Nichele, Pacifica

      

      
      
         
         This book helps a newbie gain a firm grasp of the span of technologies in the Angular 2 ecosystem, and as such it’s a go-to
               resource for those just getting started.

         
         
         Jeremy Bryan, Software Architect, CACI International

      

      
      
         
         A great, comprehensive coverage of Angular 2, easy to follow with a plethora of helpful examples.

         
         
         Polina Keselman, Principal Java developer

      

      
      

Preface
      

      
      
      
      Our quest for a good JavaScript framework started about five years ago. One of our largest projects was written using the
         Apache Flex framework (formerly Adobe Flex). Flex is an excellent framework for developing web UIs, but it requires Flash
         Player, which isn’t in favor anymore.
      

      
      After trying several pilot JavaScript projects, we noticed a substantial drop in our developers’ productivity. A task that
         required one day in Flex and ActionScript would need three days in other JavaScript frameworks, including AngularJS. The main
         reasons were the lack of types in JavaScript, poor IDE support, and the absence of compiler support.
      

      
      After switching to Angular and TypeScript, we can confirm that it’s the most productive way of developing mid- to large-size
         web applications that can run in any modern browser, as well as on mobile platforms.
      

      
      These are the main reasons we believe that Angular and TypeScript are the right tools for developing web applications:

      
      

      
         
         	
Clean separation of UI and app logic. There’s a clean separation between the code that renders the UI and the code that implements application logic. The UI doesn’t
            have to be rendered in HTML, and there are already products that support native UI rendering for iOS and Android.
         

         
         	
Modularization. There’s a simple mechanism for modularizing applications with support for the lazy loading of modules.
         

         
         	
Navigation. The router supports complex navigation scenarios in single-page applications.
         

         
         	
Loose coupling. Dependency injection gives you a clean way to implement loose coupling between components and services. Binding and events
            allow you to create reusable and loosely coupled components.
         

         
         	
Component lifecycle. Each component goes through a well-defined lifecycle, and hooks for intercepting important component events are available
            for application developers.
         

         
         	
Change detection. An automatic (and fast) change-detection mechanism spares you from the need to manually force UI updates while providing you
            a way to fine-tune this process.
         

         
         	
No callback hell. Angular comes with the RxJS library, which allows you to arrange subscription-based processing of asynchronous data, eliminating
            callback hell.
         

         
         	
Forms and validation. Support for forms and custom validation is well designed. You can create forms either by adding directives to form elements
            in the template or programmatically.
         

         
         	
Testing. Unit and end-to-end testing are well supported, and you can integrate tests into your automated build process.
         

         
         	
Tooling. Angular is well supported by IDEs. The TypeScript code analyzer warns you about errors as you type. Angular CLI quickly generates
            a new project and various artifacts (such as components and services), comes with a web server, and performs dev and prod
            builds, sparing developers from dealing with configuration scripts.
         

         
         	
Concise code. Using TypeScript classes and interfaces makes your code concise and easy to read and write.
         

         
         	
Compilers. The TypeScript code can be compiled into ES3, ES5, or the latest versions of JavaScript. Ahead-of-time compilation of app
            templates makes the initial app rendering faster and eliminates the need to package the Angular compiler with your app.
         

         
         	
Server-side rendering. Angular Universal turns your app into HTML in an offline build step that can be used for server-side rendering, which in turn
            greatly improves indexing by search engines and SEO.
         

         
         	
Modern-looking UI components. Angular Material offers more than 35 well-designed UI components.
         

         
      

      
      As you can see from this list, Angular comes with the batteries included.

      
      From a project-management perspective, Angular is appealing, because there are already more than a million AngularJS developers,
         and most of them will switch to Angular. Having a large pool of workers with specific skills is an important consideration
         for selecting a technology for new projects. Besides, there are more than 15 million Java and .NET developers, combined, and
         many of them will find the syntax of TypeScript a lot more appealing than JavaScript because of its support for classes, interfaces,
         generics, annotations, class member variables, and private and public variables, not to mention its helpful compiler and solid
         support from familiar IDEs. New major releases of Angular are published semiannually, and the upgrades from one release to
         another go smoothly.
      

      
      Writing the first edition of this book was difficult, because we started with early alpha versions of the framework, which
         were changing quite frequently. Now, the framework is stable, and after three years of real-world development and running
         countless workshops, we understand and can explain the Angular framework a lot better. We do encourage you to buy this second
         edition of the book even if you already own the first one.
      

      
      

Acknowledgments
      

      
      
      
      Yakov would like to thank his best friend Sammy for creating a warm and cozy environment while Yakov was working on this book.
         Unfortunately, Sammy can’t talk, but he loves Yakov and all family members. Sammy’s breed is Mini Golden Retriever. Special
         thanks go to all the people who enrolled in our workshop and provided valuable feedback.
      

      
      Anton would like to thank the authors and contributors to the open source projects used in this book. Without the numerous
         hours they regularly dedicate to the projects, constant work to grow, and support communities, the book won’t be possible.
         He’s also grateful to Yakov Fain and Manning Publications for giving him the opportunity to coauthor this book, and to his
         family for being patient while he was working on the book.
      

      
      We would both like to thank Keith Webster for his work on this book. In addition, the authors would like to thank the following
         people for reviewing the book: Alain Couniot, Alberto Acerbis, Angel Ramon Rodriguez, Dennis Sellinger, Desmond Horsley, Javier
         Mercado, Joseph Hunt, Kunal Jaggi, Michael Angelo, Mike Jensen, Peter Lawrence, Rahul Rai, Rudi Steinbach, and Ruslan Verbelchuk.
      

      
      



About this book
      

      
      
      
      Although Angular applications can be developed in JavaScript, using TypeScript is a lot more productive. The framework itself
         was developed in TypeScript, and in this book we use TypeScript for all the code examples. Chapter 1 has a section titled “Why develop in TypeScript and not in JavaScript?” where we explain our reasons for selecting this language.
      

      
      
      
Who should read this book
      

      
      Both authors are practitioners, and we wrote this book for practitioners. Not only do we explain the features of the framework
         using basic code samples, but we also gradually build a single-page online auction application in the course of this book.
      

      
      While working both editions of this book, we ran multiple workshops using the code samples from the book. This allowed us
         to get early (and overwhelmingly positive) feedback about the book’s content. We really hope that you’ll enjoy the process
         of learning Angular with this book.
      

      
      Our early drafts had chapters on ECMAScript and TypeScript at the start of the book, but several reviewers suggested we move
         this material to the appendixes so readers could start learning about Angular sooner. We made this change, but if you aren’t
         already familiar with the syntax of ECMAScript and TypeScript, looking through appendixes A and B first will make it easier to reason about the code samples in the book.
      

      
      Starting from chapter 6, we use reactive programming and observable streams, which are offered by the RxJS library described in appendix D. If you are new to reactive programming, we suggest you go through appendix D after reading the first five chapters.
      

      
      
      
      
      
Where to get the source code
      

      
      This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source
         code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
         of code.
      

      
      In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
         the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
         ([image: ]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
         Code annotations accompany many of the listings, highlighting important concepts.
      

      
      We maintain a GitHub repository with the source code at https://github.com/Farata/angulartypescript. Angular keeps evolving, and we may update the code samples after the book is printed.
      

      
      
      
      
How this book is organized
      

      
      This section provides a brief overview of the book’s content.

      
      Chapter 1 starts with a high-level overview of the Angular architecture, and then we’ll introduce you to Angular CLI—the tool that
         will generate a new Angular project in less than a minute so you can see the first app running right away. We’ll discuss different
         ways of compiling Angular projects. Finally, we’ll introduce a sample ngAuction application that you’ll be developing with
         us starting from chapter 2.
      

      
      Chapter 2 will get you familiar with the main artifacts of Angular: components, services, directives, pipes and modules. At the end
         of chapter 2, we provide detailed instructions on creating the first version of the sample ngAuction app. From this point on, most chapters
         end with a hands-on section where you’ll be working on this sample online auction, gradually adding new features or even doing
         a complete rewrite.
      

      
      Chapter 3 introduces the Angular router, used to arrange client-side navigation in a single-page app. You’ll learn how to configure
         routes and how to pass parameters between them. You’ll also see how to create component hierarchies where both parents and
         children have their own routes.
      

      
      Chapter 4 covers more-advanced router features. You’ll learn how to protect routes and create components with multiple router outlets.
         We’ll show you how to use the router for loading your app modules lazily (on demand). At the end of this chapter, you’ll continue
         working on ngAuction under our guidance.
      

      
      Chapter 5 is about dependency injection (DI). We’ll start with an overview of DI as a design pattern, explaining the benefits of having
         a framework to create and inject object instances. You’ll learn the roles of providers and injectors and how to easily swap
         the object being injected if need be. At the end of this chapter, you’ll make a small facelift to ngAuction using the Angular
         Material library of UI components.
      

      
      Chapter 6 is about working with observable streams of data, and prior to reading this chapter, you need to become familiar with the
         basics of the RxJS library covered in appendix D. We’ll start by showing you how to treat events with observables. Then you’ll see various Angular APIs that offer ready-to-use
         observable streams. You’ll also learn how to discard unwanted HTTP requests with the RxJS switchMap operator.
      

      
      Chapter 7 introduces the Flex Layout library that will allow you to design UI layouts that adapt to the width of user devices. You’ll
         also see how to use the ObservableMedia service that allows you to apply different CSS depending on the screen size. At the end of this chapter, we’ll start rewriting
         ngAuction from scratch using the Angular Material and Flex Layout libraries.
      

      
      Chapter 8 is about arranging intercomponent communications in a loosely coupled manner. You’ll learn about the input and output properties
         of Angular components and see how two components can communicate without knowing about each other, via a common parent or
         an injectable service.
      

      
      Chapter 9 includes an overview of the component lifecycle and the change detection mechanism. At the end of the chapter, we’ll add
         a product view to ngAuction.
      

      
      Chapter 10 will get you familiar with the Angular Forms API. You’ll learn the difference between the template-driven and reactive forms.
         You’ll see how to access form data entered by the user as well as update forms programmatically.
      

      
      Chapter 11 continues coverage of the Forms API. Here you’ll learn how to validate form data. You’ll learn how to create and use built-in
         custom validators for both template-driven and reactive forms. Finally, we’ll add a search form to ngAuction so the user can
         search for products. You’ll have a chance to apply the concepts from chapters 10 and 11 in practice.
      

      
      Chapter 12 is about communicating with web servers using HTTP. Angular offers an HttpClient service with a rich API. You’ll see how to issue GET and POST requests and intercept all HTTP requests and responses to implement
         cross-cutting concerns. As an additional bonus, you’ll learn how to write web servers using Node and Express frameworks. We’ll
         use these servers so Angular clients have someone to talk to, and show you how to write scripts for deploying Angular apps
         under web servers.
      

      
      Chapter 13 explains how to write Angular applications that communicate with the server using the WebSocket protocol, which is an efficient
         and low-overhead way of communication. One of the most valuable features of WebSocket communications is that the server can
         initiate pushing data to the client when an important event happens, without waiting for the client to request the data. You’ll
         see a practical use of WebSocket communication in our ngAuction, which implements bidding notifications over WebSockets. The
         new version of ngAuction comes as two separate projects—one with client-side code and another with server code.
      

      
      Chapter 14 is about testing. We’ll introduce you to unit testing with Jasmine and end-to-end testing with Protractor. We’ll also show
         you how to test the search workflow in ngAuction with Protractor.
      

      
      Chapter 15 is about maintaining app state in Redux style using the ngrx library. It starts with explaining the principles of Redux,
         and then you’ll see how ngrx implements these principles in Angular apps. The chapter ends with a code review of the final
         version of ngAuction, which uses ngrx for state management.
      

      
      This book comes with four appendixes. They cover a new syntax of ECMAScript, TypeScript, basics of the Node package manager
         (npm), and the library of RxJS extensions.
      

      
      Appendix A contains an overview of the syntax introduced in ECMAScript 6, 7, and 8. You’ll learn how to use classes, fat-arrow functions,
         spread and rest operators, what destructuring is, and how to write asynchronous code as if it’s synchronous with the help
         of the async-await keywords. At the time of this writing, ECMAScript 6 is supported by most of the major web browsers.
      

      
      Appendix B is an overview of the syntax of TypeScript, which is a superset of JavaScript. TypeScript will increase your productivity
         when creating JavaScript apps. Not only will you learn how to write classes, interfaces, and generics, but also how to compile
         TypeScript code into JavaScript that can be deployed in all web browsers today.
      

      
      Appendix C is a brief overview of the npm and Yarn package managers, which are used to install JavaScript packages, libraries, and frameworks
         on developer machines. You’ll understand how project dependencies are configured in the package.json file and what semantic
         versioning is about.
      

      
      Appendix D is an introduction to RxJS, a popular library of reactive extensions. You’ll learn the roles of observables, observers, and
         subscribers and how to compose RxJS operators to handle data streams in a functional way. While the RxJS library can be used
         with any JavaScript app, it’s a crucial part of the Angular framework, so understanding the main concepts of RxJS is a must.
      

      
      
      
      
Book forum
      

      
      Purchase of Angular Development with Typescript, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the authors and from other users. To access the forum, go to https://forums.manning.com/forums/angular-development-with-typescript-2E. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions
         lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
         as long as the book is in print.
      

      
      
      

About the authors
      

      
      
      
      Yakov Fain works for Farata Systems, an IT consulting boutique, where he helps various clients with their Angular-related
         projects. Yakov is a Java Champion, and he has authored multiple books on software development. He has written more than a
         thousand blogs at yakovfain.com. Although most of his books are printed, his Java Programming for Kids, Parents, and Grandparents is available for free download in several languages at http://myflex.org/books/java4kids/java4kids.htm. His Twitter handle is @yfain.
      

      
      Anton Moiseev is a lead software developer at SuranceBay. He’s been developing enterprise applications for more than a decade
         with Java and .NET technologies. He has a solid background and strong focus on web technologies, implementing best practices
         to make the frontend work seamlessly with the backend. He has taught a number of training sessions on AngularJS and Angular
         frameworks. His Twitter handle is @antonmoiseev.
      

      
      

About the cover illustration
      

      
      
      
      The illustration on the cover of Angular Development with TypeScript, Second Edition is taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs. This book was first
         published in Paris in 1788, one year before the French Revolution. Each illustration is colored by hand. This figure, captioned
         “Le Tuteur” or “The Tutor,” is just one of many figures in Maréchal’s collection. Their diversity speaks vividly of the uniqueness
         and individuality of the world’s towns and regions just 200 years ago. This was a time when the dress codes of two regions
         separated by a few dozen miles identified people uniquely as belonging to one or the other. The collection brings to life
         a sense of the isolation and distance of that period and of every other historic period—except our own hyperkinetic present.
      

      
      Dress codes have changed since then, and the diversity by region, so rich at the time, has faded away. It is now often hard
         to tell the inhabitant of one continent from another. Perhaps we have traded cultural diversity for a more varied personal
         life—certainly for a more varied and fast-paced technological life.
      

      
      We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
         the rich diversity of regional life two centuries ago, brought back to life by Maréchal’s pictures.
      

      
      
      
      


Chapter 1. Introducing Angular
      

      
      This chapter covers

      
      

      
         
         	A high-level overview of the Angular framework

         
         	Generating a new project with Angular CLI

         
         	Getting started with Angular modules and components

         
         	Introducing the sample application ngAuction

         
      

      
      Angular is an open source JavaScript framework maintained by Google. It’s a complete rewrite of its popular predecessor, AngularJS.
         The first version of Angular was released in September 2016 under the name Angular 2. Shortly after, the digit 2 was removed from the name, and now it’s just Angular. Twice a year, the Angular team make major releases of this framework. Future releases will include new features, perform
         better, and generate smaller code bundles, but the architecture of the framework most likely will remain the same.
      

      
      Angular applications can be developed in JavaScript (using the syntax of ECMAScript 5 or later versions) or TypeScript. In
         this book, we use TypeScript; we explain our reasons for this in appendix B.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      In this book, we expect you to know the syntax of JavaScript and HTML and to understand what web applications consist of.
         We also assume that you know what CSS is. If you’re not familiar with the syntax of TypeScript and the latest versions of ECMAScript, we suggest you read appendixes A and B first, and then continue reading from this chapter on. If you’re new to developing using Node.js tooling, read appendix C.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      All code samples in this book are tested with Angular 6 and should work with Angular 7 without any changes. You can download
         the code samples from https://github.com/Farata/angulartypescript. We provide instructions on how to run each code sample starting in chapter 2.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      This chapter begins with a brief overview of the Angular framework. Then we’ll start coding—we’ll generate our first project
         using the Angular CLI tool. Finally, we’ll introduce the sample application ngAuction that you’ll build while reading this
         book.
      

      
      
      
1.1. Why select Angular for web development?
      

      
      Web developers use different JavaScript frameworks and libraries, and the most popular are Angular, React, and Vue.js. You
         can find lots of articles and blog posts comparing them, but such comparisons aren’t justified, because React and Vue.js are
         libraries that don’t offer a full solution for developing and deploying a complete web application, whereas Angular does offer
         that full solution.
      

      
      If you pick React or Vue.js for your project, you’ll also need to select other products that support routing, dependency injection,
         forms, bundling and deploying the app, and more. In the end, your app will consist of multiple libraries and tools picked
         by a senior developer or an architect. If this developer decides to leave the project, finding a replacement won’t be easy
         because the new hire may not be familiar with all the libraries and tools used in the project.
      

      
      The Angular framework is a platform that includes all you need for developing and deploying a web app, batteries included.
         Replacing one Angular developer with another is easy, as long as the new person knows Angular.
      

      
      From a technical perspective, we like Angular because it’s a feature-complete framework that you can use to do the following
         right out of the box:
      

      
      

      
         
         	Generate a new single-page web app in seconds using Angular CLI

         
         	Create a web app that consists of a set of components that can communicate with each other in a loosely coupled manner

         
         	Arrange the client-side navigation using the powerful router

         
         	Inject and easily replace services, classes where you implement data communication or other business logic
         

         
         	Arrange state management via injectable singleton services

         
         	Cleanly separate the UI and business logic

         
         	Modularize your app so only the core functionality is loaded on app startup, and other modules are loaded on demand

         
         	Creating modern-looking UIs using the Angular Material library

         
         	
Implement reactive programming where your app components don’t pull data that may not be ready yet, but subscribe to a data
            source and get notifications when data is available
         

         
      

      
      Having said that, we need to admit that there is one advantage that React and Vue.js have over Angular. Although Angular is
         a good fit for creating single-page apps, where the entire app is developed in this framework, the code written in React and
         Vue.js can be included into any web app, regardless of what other frameworks were used for development of any single-page
         or multipage web app.
      

      
      This advantage will disappear when the Angular team releases a new module currently known as @angular/elements (see https://github.com/angular/angular/tree/master/packages/elements). Then you’ll be able to package your Angular components as custom elements (see https://developer.mozilla.org/en-US/docs/Web/Web_Components/Custom_Elements) that can be embedded into any existing web app written in JavaScript, with or without any other libraries.
      

      
      
      
      
1.2. Why develop in TypeScript and not in JavaScript?
      

      
      You may be wondering, why not develop in JavaScript? Why do we need to use another programming language if JavaScript is already
         a language? You wouldn’t find articles about additional languages for developing Java or C# applications, would you?
      

      
      The reason is that developing in JavaScript isn’t overly productive. Say a function expects a string value as an argument, but the developer mistakenly invokes it by passing a numeric value. With JavaScript, this error can
         be caught only at runtime. Java or C# compilers won’t even compile code that has mismatching types, but JavaScript is a dynamically
         typed language and the type of a variable can be changed during runtime.
      

      
      Although JavaScript engines do a decent job of guessing the types of variables by their values, development tools have a limited
         ability to help you without knowing the types. In mid- and large-size applications, this JavaScript shortcoming lowers the
         productivity of software developers.
      

      
      On larger projects, good IDE context-sensitive help and support for refactoring are important. Renaming all occurrences of
         a variable or function name in statically typed languages is done by IDEs in a split second, but this isn’t the case in JavaScript,
         which doesn’t support types. If you make a mistake in a function or a variable name, it’s displayed in red. If you pass the
         wrong number of parameters (or wrong types) to a function, again, the errors are displayed in red. IDEs also offer great context-sensitive
         help. TypeScript code can be refactored by IDEs.
      

      
      TypeScript follows the latest ECMAScript specifications and adds to them types, interfaces, decorators, class member variables
         (fields), generics, enums, the keywords public, protected, and private, and more. Check the TypeScript roadmap on GitHub at https://github.com/Microsoft/TypeScript/wiki/Roadmap to see what’s coming in future releases of TypeScript.
      

      
      TypeScript interfaces allow you to declare custom types. Interfaces help prevent compile-time errors caused by using objects
         of the wrong type in your application.
      

      
      The generated JavaScript code is easy to read and looks like hand-written code. The Angular framework itself is written in
         TypeScript, and most of the code samples in the Angular documentation (see https://angular.io), articles, and blogs are use TypeScript. In 2018, a Stack Overflow developer survey (https://insights.stackoverflow.com/survey/2018) showed TypeScript as the fourth-most-loved language. If you prefer to see more scientific proof that TypeScript is more
         productive compared to JavaScript, read the study “To Type or Not to Type: Quantifying Detectable Bugs in JavaScript,” (Zheng
         Gao et al., ICSE 2017) available at http://earlbarr.com/publications/typestudy.pdf.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         From the authors’ real-world experience
         
         We work for a company, Farata Systems, that over the years developed pretty complex software using the Adobe Flex (currently
            Apache Flex) framework. Flex is a productive framework built on top of the strongly typed, compiled ActionScript language,
            and the applications are deployed in the Flash Player browser plugin (a virtual machine).
         

         
         When the web community started moving away from using browser plugins, we spent two years trying to find a replacement for
            the Flex framework. We experimented with different JavaScript-based frameworks, but the productivity of our developers seriously
            suffered. Finally, we saw a light at the end of the tunnel with a combination of the TypeScript language, the Angular framework,
            and the Angular Material UI library.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      
1.3. Overview of Angular
      

      
      Angular is a component-based framework, and any Angular app is a tree of components (think views). Each view is represented
         by instances of component classes. An Angular app has one root component, which may have child components. Each child component
         may have its own children, and so on.
      

      
      Imagine you need to rewrite the Twitter app in Angular. You could take a prototype from your web designer and start by splitting
         it into components, as shown in figure 1.1. The top-level component with the thick border encompasses multiple child components. In the middle, you can see a New Tweet
         component above two instances of the Tweet component, which in turn has child components for reply, retweet, like, and direct
         messaging.
      

      
      
      
      Figure 1.1. Splitting a prototype into components
      

      
      [image: ]

      
      
      A parent component can pass data to its child by binding the values to the child’s component property. A child component has
         no knowledge of where the data came from. A child component can pass data to its parent (without knowing who the parent is)
         by emitting events. This architecture makes components self-contained and reusable.
      

      
      When writing in TypeScript, a component is a class annotated with a decorator, @Component(), where you specify the component’s UI (we explain decorators in section B.10, “Decorators,” in appendix B).
      

      
      @Component({
    ...
}
export class AppComponent {
    ...
})

      
      Most of the business logic of your app is implemented in services, which are classes without a UI. Angular will create instances
         of your service classes and will inject them into your components. Your component may depend on services, and your services
         may depend on other services. A service is a class that implements some business logic. Angular injects services into your components or other services using the
         dependency injection (DI) mechanism we talk about in chapter 5.
      

      
      Components are grouped into Angular modules. A module is a class decorated with @NgModule(). A typical Angular module is a small class that has an empty body, unless you want to write code that manually bootstraps
         the application—for example, if an app includes a legacy AngularJS app. The @NgModule() decorator lists all components and other artifacts (services, directives, and so on) that should be included in this module. The following listing shows
         an example.
      

      
      
      
      Listing 1.1. A module with one component
      

      @NgModule({
  declarations: [
    AppComponent               1
   ],
  imports: [
    BrowserModule
  ],
  bootstrap: [AppComponent]    2
 })
export class AppModule { }

      
      

      
         
         	1 Declares that AppComponent belongs to this module

         
         	2 Declares that AppComponent is a root component

         
      

      
      To write a minimalistic Angular app, you can create one AppComponent and list it in the declarations and bootstrap properties of @NgModule(). A typical module lists several components, and the root component is specified in the bootstrap property of the module. Listing 1.1 also lists BrowserModule, which is a must for apps that run in a browser.
      

      
      Components are the centerpiece of the Angular architecture. Figure 1.2 shows a high-level diagram of a sample Angular application that consists of four components and two services, all packaged
         inside a module. Angular injects its HttpClient service into your app’s Service1, which in turn is injected into the GrandChild1 component.
      

      
      
      
      Figure 1.2. Sample architecture of an Angular app
      

      
      [image: ]

      
      
      The HTML template of each component is inlined either inside the component (the template property of @Component()) or in the file referenced from the component using the templateUrl property. The latter option offers a clean separation between the code and the UI. The same applies to styling components.
         You can either inline the styles using the styles property, or provide the location of your CSS file(s) in styleURLs. The following listing shows the structure of some search component.
      

      
      
      
      Listing 1.2. Structure of a sample component
      

      @Component({
  selector: 'app-search',                       1
   templateUrl: './search.component.html',      2
   styleUrls: ['./search.component.css']        3
 })
export class SearchComponent {
  // Component's properties and methods go here
}

      
      

      
         
         	1 Other components’ templates can use the tag <app-search>.

         
         	2 The template’s code is in this file.

         
         	3 The component’s styles are in this file (there could be more than one).

         
      

      
      The value in the selector property defines the name of the tag that can be used in the other component’s template. For example, the root app component
         can include a child search component, as in the following listing.
      

      
      
      
      Listing 1.3. Using the search component in the app component
      

      @Component({
  selector: 'app-root',
  template: `<div>
             <app-search></app-search>         1
            </div>`,
  styleUrls: ['./app.component.css'],
})
export class AppComponent {
    ...
}

      
      

      
         
         	1 The UI of the AppComponent includes the UI of the SearchComponent.

         
      

      
      Listing 1.3 uses an inline template. Note the use of the backtick symbols instead of quotes for a multiline template (see section A.3 in appendix A).
      

      
      The Angular framework is a great fit for developing single-page applications (SPAs), where the entire browser’s page is not
         being refreshed and only a certain portion of the page (view) may be replacing another as the user navigates through your
         app. Such client-side navigation is arranged with the help of the Angular router. If you want to allocate an area within a
         component’s UI for rendering its child components, you use a special tag, <router-outlet>. For example, on app start, you may display the home component in this outlet, and if the user clicks the Products link,
         the outlet content will be replaced by the product component.
      

      
      To arrange navigation within a child component, you can allocate the <router-outlet> area in the child as well. Chapters 3 and 4 explain how the router works.
      

      
      
      

      
         
            
         
         
            
               	
            

         
      

      
         
         UI components for Angular apps
         
         The Angular team has released a library of UI components called Angular Material (see https://material.angular.io). At the time of this writing, it has more than 30 well-designed UI components based on the Material Design guidelines (see
            https://material.io/guidelines). We recommend using Angular Material components in your projects, and if you need more components in addition to Angular
            Material, use one of the third-party libraries like PrimeNG, Kendo UI, DevExtreme, or others. You can also use the popular
            Bootstrap library with Angular applications, and we show how to do this in the ngAuction example in chapter 2. Starting in chapter 7, you’ll rewrite ngAuction, replacing Bootstrap components with Angular Material components.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Angular for mobile devices
         
         Angular’s rendering engine is a separate module, which allows third-party vendors to create their own rendering engine that
            targets non-browser-based platforms. The TypeScript portion of the components remains the same, but the content of the template property of the @Component decorator may contain XML or another language for rendering native components.
         

         
         For example, you can write a component’s template using XML tags from the Native-Script framework, which serves as a bridge
            between JavaScript and native iOS and Android UI components. Another custom UI renderer allows you to use Angular with React
            Native, which is an alternative way of creating native (not hybrid) UIs for iOS and Android.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      We stated earlier that a new Angular app can be generated in seconds. Let’s see how the Angular CLI tool does it.

      
      
      
      
1.4. Introducing Angular CLI
      

      
      Angular CLI is a tool for managing Angular projects throughout the entire life-cycle of an application. It serves as a code
         generator that greatly simplifies the process of new-project creation as well as the process of generating new components,
         services, and routes in an existing app. You can also use Angular CLI for building code bundles for development and production
         deployment. Angular CLI will not only generate a boilerplate project for you, it will also install Angular framework and all
         its dependencies.
      

      
      Angular CLI has become a de facto way of starting new Angular projects. You’ll install Angular CLI using the package manager
         npm. If you’re not familiar with package managers, read appendix C. To install Angular CLI globally on your computer so it can be used for multiple projects, run the following command in the
         Terminal window:
      

      
      npm install @angular/cli -g

      
      After the installation is complete, Angular CLI is ready to generate a new Angular project.

      
      
      
      1.4.1. Generating a new Angular project
      

      
      CLI stands for command-line interface, and after installing Angular CLI, you can run the ng command from the Terminal window. Angular CLI understands many command-line options, and you can see all of them by running
         the ng help command. You’ll start by generating a new Angular project with the ng new command. Create a new project called hello-cli:
      

      
      ng new hello-cli

      
      This command will create a directory, hello-cli, and will generate a project with one module, one component, and all required
         configuration files including the package.json file, which includes all project dependencies (see appendix C for details). After generating these files, Angular CLI will start npm to install all dependencies specified in package.json.
         When this command completes, you’ll see a new directory, hello-cli, as shown in figure 1.3.
      

      
      
         
            
         
         
            
               	
            

         
      

      Tip

      
      
      Say you have an Angular 5 project and want to switch to the latest version of Angular. You don’t need to modify dependencies
         in the package.json file manually. Run the ng update command, and all dependencies in package.json will be updated, assuming you have the latest version of Angular CLI installed.
         The process of updating your apps from one Angular version to another is described at https://update.angular.io.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      Figure 1.3. A newly generated Angular project
      

      
      
      
      [image: ]

      
      
      
      We’ll review the content of the hello-cli directory in chapter 2, but let’s build and run this project. In the Terminal window, change to the hello-cli directory and run the following command:
      

      
      ng serve

      
      Angular CLI will spend about 10–15 seconds to compile TypeScript into JavaScript and build the application bundles. Then Angular
         CLI will start its dev server, ready to serve this app on port 4200. Your terminal output may look like figure 1.4.
      

      
      
      
      Figure 1.4. Building the bundles with ng serve


      
      [image: ]

      
      
      Now, point your Web browser at http://localhost:4200, and you’ll see the landing page of your app, as shown in figure 1.5.
      

      
      
      
      Figure 1.5. Running the app in the browser
      

      
      [image: ]

      
      
      Congratulations! You created, configured, built, and ran your first Angular app without writing a single line of code!

      
      The ng serve command builds the bundles in memory without generating files. While working on the project, you run ng serve once, and then keep working on your code. Every time you modify and save a file, Angular CLI will rebuild the bundles in memory (it takes a couple of seconds),
         and you’ll see the results of your code modifications right away. The following JavaScript bundles were generated:
      

      
      

      
         
         	inline.bundle.js is a file used by the Webpack loader to load other files.

         
         	main.bundle.js includes your own code (components, services, and so on).

         
         	polyfills.bundle.js includes polyfills needed by Angular so it can run in older browsers.

         
         	styles.bundle.js includes CSS styles from your app.

         
         	vendor.bundle.js includes the code of the Angular framework and its dependencies.

         
      

      
      For each bundle, Angular CLI generates a source map file to allow debugging the original TypeScript, even though the browser
         will run the generated JavaScript. Don’t be scared by the large size of vendor.bundle.js—it’s a dev build, and the size will
         be substantially reduced when you build the production bundles.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Webpack and Angular CLI
         
         Currently, Angular CLI uses Webpack (see http://webpack.js.org) to build the bundles and webpack-dev-server to serve the app. When you run ng serve, Angular CLI runs webpack-dev-server. Starting with Angular 7, Angular CLI offers an option to use Bazel for bundling. After the initial project build, if a developer
            continues working on the project, Bazel can rebuild the bundles a lot faster than Webpack.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Some useful options of ng new
         
         When you generate a new project with the ng new command, you can specify an option that can change what’s being generated. If you don’t want to generate a separate CSS file
            for the application component styles, specify the inline-style option:
         

         
         ng new hello-cli --inline-style

         
         If you don’t want to generate a separate HTML file for the application component template, use the inline-template option:

         
         ng new hello-cli --inline-template

         
         If you don’t want to generate a file for unit tests, use the skip-tests option:

         
         ng new hello-cli --skip-tests

         
         If you’re planning to implement navigation in your app, use the routing option to generate an additional module where you’ll
            configure routes:
         

         
         ng new hello-cli --routing

         
         For the complete list of available options, run the ng help new command or read the Angular CLI Wiki page at https://github.com/angular/angular-cli/wiki.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      
      1.4.2. Development and production builds
      

      
      The ng serve command bundled the app in memory but didn’t generate files and didn’t optimize your Hello CLI application. You’ll use the
         ng build command for file generation, but now let’s start discussing bundle-size optimization and two modes of compilation.
      

      
      Open the Network tab in the dev tools of your browser and you’ll see that the browser had to load several megabytes of code
         to render this simple app. In dev mode, the size of the app is not a concern, because you run the server locally, and it takes
         the browser a little more than a second to load this app, as shown in figure 1.6.
      

      
      
      
      Figure 1.6. Running the non-optimized app
      

      
      [image: ]

      
      
      Now visualize a user with a mobile device browsing the internet over a regular 3G connection. It’ll take 20 seconds to load
         the same Hello CLI app. Many people can’t tolerate waiting 20 seconds for any app except Facebook (30% of the earth’s population
         lives on Facebook). You need to reduce the size of the bundles before going live.
      

      
      Applying the --prod option while building the bundles will produce much smaller bundles (as shown in figure 1.6) by optimizing your code. It’ll rename your variables as single letters, remove comments and empty lines, and remove the
         majority of the unused code. Another piece of code that can be removed from app bundles is the Angular compiler. Yes, the
         ng serve command included the compiler into the vendor .bundle.js. But how are you going to remove the Angular compiler from your
         deployed app when you build it for production?
      

      
      
      
      
      
      
1.5. JIT vs. AOT compilation
      

      
      Let’s revisit the code of app.component.html. For the most part, it consists of standard HTML tags, but there’s one line that
         browsers won’t understand:
      

      
      Welcome to {{title}}!

      
      These double curly braces represent binding a value into a string in Angular, but this line has to be compiled by the Angular
         compiler (it’s called ngc) to replace the binding with something that browsers understand. A component template can include other Angular-specific
         syntax (for example, structural directives *ngIf and *ngFor) that needs to be compiled before asking the browser to render the template.
      

      
      When you run the ng serve command, the template compilation is performed inside the browser. After the browser loads your app bundles, the Angular
         compiler (packaged inside vendor.bundle.js) performs the compilation of the templates from main.bundle.js. This is called
         just-in-time (JIT) compilation. This term means that the compilation happens when the bundles arrive at the browser.
      

      
      The drawbacks of JIT compilation include the following:

      
      

      
         
         	There’s an interval of time between loading bundles and rendering the UI. This time is spent on JIT compilation. For a small
            app like Hello CLI, this time is minimal, but in real-world apps, JIT compilation can take a couple of seconds, so the user
            needs to wait longer before seeing your app.
         

         
         	The Angular compiler has to be included in vendor.bundle.js, which adds to the size of your app.

         
      

      
      Using JIT compilation in production is discouraged, and you want templates to be precompiled into JavaScript before the bundles
         are created. This is what ahead-of-time (AOT) compilation is about.
      

      
      The advantages of AOT compilation are as follows:

      
      

      
         
         	The browser can render the UI as soon as your app is loaded. There’s no need to wait for code compilation.

         
         	The ngc compiler isn’t included in vendor.bundle.js, and the resulting size of your app might be smaller.
         

         
      

      
      Why use the word might and not will? Removing the ngc compiler from the bundles should always result in smaller app size, right? Not always. The compiled templates are larger
         than those that use a concise Angular syntax. The size of Hello CLI will definitely be smaller, as there’s only one line to
         compile. But in larger apps with lots of views, the compiled templates may increase the size of your app so that it’s even
         larger than the JIT-compiled app with ngc included in the bundle. You should use the AOT mode anyway, because the user will see the initial landing page of your app
         sooner.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      You may be surprised by seeing ngc compiler errors in an app that was compiling fine with tsc. The reason is that AOT requires your code to be statically analyzable. For example, you can’t use the keyword private with properties that are used in the template, and no default exports are allowed. Fix the errors reported by the ngc compiler and enjoy the benefits of AOT compilation.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      No matter whether you choose JIT or AOT compilation, at some point you’ll decide to do an optimized production build. How
         do you do this?
      

      
      
      1.5.1. Creating bundles with the --prod option
      

      
      When you build bundles with the --prod option, Angular CLI performs code optimization and AOT compilation. See it in action by running the following command in
         your Hello CLI project:
      

      
      ng serve --prod

      
      Open the app in your browser and check the Network tab, as shown in figure 1.7. Now the size of the same app is only 108 KB gzipped.
      

      
      
      
      Figure 1.7. Running the optimized app with AOT
      

      
      [image: ]

      
      
      Expand the column with the bundle sizes—the dev server even did the gzip compression for you. The filenames of the bundles
         include a hash code of each bundle. Angular CLI calculates a new hash code on each production build to prevent browsers from
         using the cached version if a new app version is deployed in prod.
      

      
      Shouldn’t you always use AOT? Ideally, you should unless you use some third-party JavaScript libraries that produce errors
         during AOT compilation. If you run into this problem, turn AOT compilation off by building the bundles with the following
         command:
      

      
      ng serve --prod --aot false

      
      Figure 1.8 shows that both the size and the load time increased compared to the AOT-compiled app in figure 1.7.
      

      
      
      

      
      
      Figure 1.8. Running the optimized app without AOT
      

      
      [image: ]

      
      
      
      
      1.5.2. Generating bundles on the disk
      

      
      You were using the ng serve command, which was building the bundles in memory. When you’re ready to generate production files, use the ng build command instead. The ng build command generates files in the dist directory (by default), but the bundle sizes won’t be optimized.
      

      
      With ng build --prod, the generated files will be optimized but not compressed, so you’d need to apply the gzip compression to the bundles afterward.
         We’ll go over the process of building production bundles and deploying the app on the Node.js server in section 12.5.3 of
         chapter 12.
      

      
      After the files are built in the dist directory, you can copy them to whatever web server you use. Read the product documentation
         for your web server, and if you know where to deploy an index.html file in your server, this would be the place for the Angular
         app bundles as well.
      

      
      The goal of this section was to get you started with Angular CLI, and we’ll continue its coverage in chapter 2. The first generated app is rather simple and doesn’t illustrate all the features of Angular; the next section will give
         you some ideas of how things are done in Angular.
      

      
      
      
      
      
1.6. Introducing the sample ngAuction app
      

      
      To make this book more practical, we start every chapter by showing you small applications that illustrate Angular syntax
         or techniques, and at the end of most of the chapters you’ll use the new concepts in a working application. You’ll see how
         components and services are combined into a working application.
      

      
      Imagine an online auction (let’s call it ngAuction) where people can browse and search for products. When the results are
         displayed, the user can select a product and bid on it. The information on the latest bids will be pushed by the server to
         all users subscribed to such notifications.
      

      
      The functionality of browsing, searching, and placing bids will be implemented by making requests to the RESTful endpoints,
         implemented in the server developed with Node.js. The server will use WebSockets to push notifications about the user’s bid
         and about the bids placed by other users. Figure 1.9 depicts sample workflows for ngAuction.
      

      
      
      
      Figure 1.9. The ngAuction workflows
      

      
      [image: ]

      
      
      Figure 1.10 shows how the first version of the ngAuction home page will be rendered on desktop computers. Initially, you’ll use gray
         placeholders instead of product images.
      

      
      
      
      Figure 1.10. The ngAuction home page with highlighted components
      

      
      [image: ]

      
      
      You’ll use responsive UI components offered by the Bootstrap library (see http://getbootstrap.com), so on mobile devices the home page may be rendered as in figure 1.11.
      

      
      
      
      Figure 1.11. The online auction home page on smartphones
      

      
      
      
      [image: ]

      
      
      
      Starting in chapter 7, you’ll redesign ngAuction to completely remove the Bootstrap framework, replacing it with the Angular Material and Flex
         Layout libraries. The home page of the refactored version of ngAuction will look like figure 1.12.
      

      
      
      
      Figure 1.12. The redesigned ngAuction
      

      
      [image: ]

      
      
      The development of an Angular application comes down to creating and composing components. In chapter 2 you’ll generate this project and its components and services using Angular CLI, and in chapter 7, you’ll refactor its code. Figure 1.13 shows the project structure for the ngAuction app.
      

      
      
      
      Figure 1.13. The project structure for the online auction app
      

      
      
      
      [image: ]

      
      
      
      In chapter 2, you’ll start by creating an initial version of the landing page of ngAuction, and in subsequent chapters, you’ll keep adding
         functionality that illustrates various Angular features and techniques
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      We recommend that you develop Angular applications using an IDE like WebStorm (inexpensive) or Visual Studio Code (free).
         They offer the autocomplete feature, provide convenient search, and have integrated Terminal windows so you can do all your
         work inside the IDE.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
      
      
Summary
      

      
      

      
         
         	Angular applications can be developed in TypeScript or JavaScript.

         
         	Angular is a component-based framework.

         
         	The TypeScript source code has to be transpiled into JavaScript before deployment.

         
         	Angular CLI is a great tool that helps in jump-starting your project. It supports bundling and serving your apps in development
            and preparing production builds.
         

         
      

      
      
      
      
      


Chapter 2. The main artifacts of an Angular app
      

      
      This chapter covers

      
      

      
         
         	Understanding components, directives, services, modules, and pipes

         
         	Generating components, directives, services, and routes with Angular CLI

         
         	Looking at Angular data bindings

         
         	Building the first version of the ngAuction app

         
      

      
      In this chapter, we’ll start by explaining the roles of the main artifacts of Angular applications. We’ll introduce you to
         each one and show how Angular CLI can generate these artifacts. Then we’ll do an overview of the Angular CLI configuration
         file where you can modify your project settings.
      

      
      After that, we’ll discuss how data binding is implemented in Angular. At the end of the chapter, you’ll develop the initial
         version of the ngAuction application that you’ll continue working on throughout the book.
      

      
      
      
      
2.1. Components
      

      
      A component, the main artifact of any Angular app, is a class with a view (UI). To turn a class into component, you need to
         decorate it with the @Component() decorator. A component can consist of one or more files—for example, a file with the extension .ts with the component class,
         a .css file with styles, an .html file with a template, and a .spec.ts file with test code for the component.
      

      
      You don’t have to split the code of each component into these files. For example, you can have a component in just one file
         with inline styles and templates and no files with tests. No matter how many files will represent your component, they all
         should be located in the same directory.
      

      
      Any component belongs to exactly one module of an app, and you have to include the name of the component’s class into the
         declarations property of the @NgModule() decorator in the module file. In chapter 1, we already had an AppComponent listed in the AppModule.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         The ng generate command of Angular CLI
         
         Even after generating a new project, you can keep using Angular CLI for generating artifacts by using the ng generate command or its alias ng g. Here are some options you can use with the ng g command:
         

         
         

         
            
            	
ng g c— Generates a new component.
            

            
            	
ng g s— Generates a new service.
            

            
            	
ng g d— Generates a new directive.
            

            
            	
ng g m— Generates a new module.
            

            
            	
ng g application— Generates a new app within the same project. This command was introduced in Angular 6.
            

            
            	
ng g library— Starting with Angular 6, you can generate a library project.
            

            
         

         
         This is not an app, but can include services and components as well.

         
         Each of these commands requires an argument, such as the name of the item, to generate. For a complete list of available options
            and arguments, run the ng help generate command or refer to the Angular CLI documentation.
         

         
         Here are some examples of using the ng g command:
         

         
         

         
            
            	
ng g c product will generate four files for a new product component in the src/app/product directory and add the ProductComponent class to the declarations property of @NgModule.
            

            
            	
ng g c product -is --it --spec false will generate a single file, product.component.ts, with inlined styles and template and no test in the src/app/product directory,
               and add ProductComponent to the declarations property of @NgModule.
            

            
            	
ng g s product will generate the file product.service.ts containing a class decorated with @Injectable and the file product.service.spec.ts in the src/app directory.
            

            
         

         
         ng g s product -m app.module will generate the same files as the preceding command and will also add ProductService to the providers property of @NgModule.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      Let’s add a product component to the Hello CLI project you created in chapter 1 by running the following command in the root directory of that project:
      

      
      ng g c product --is --it --spec false

      
      This command will create the src/app/product directory with the product.component .ts file.

      
      
      
      Listing 2.1. product.component.ts
      

      @Component({
  selector: 'app-product',
  template: `
  <p>
  product Works!                                      1
   </p>
  `,
  styles: []
})
export class ProductComponent implements OnInit {     2

  constructor() { }

  ngOnInit() {}                                       3
 }

      
      

      
         
         	1 A default text to render

         
         	2 Implementing OnInit requires the ngOnInit() method in the class.

         
         	3 A lifecycle method

         
      

      
      The generated @Component() decorator has the app-product selector, the template property with inlined HTML, and the styles property for inline CSS. Other components can include your product component in their templates by using the <app-product> tag.
      

      
      The class in listing 2.1 has an empty constructor and one method, ngOnInit(), which is one of the component lifecycle methods. If implemented, ngOnInit() is invoked after the code in the constructor. OnInit is one of the lifecycle interfaces that require the implementation of ngOnInit(). We’ll cover a component lifecycle in section 9.2 in chapter 9.
      

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      
      The @Component() decorator has a few more properties that we’ll discuss when it comes time to use them. All properties of the @Component() decorator are described at https://angular.io/api/core/Component.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Using selector prefixes
         
         The selector of the component in listing 2.1 has the prefix app-, which is a default prefix for apps. For library projects, the default prefix is lib-. A good practice is to come up with a more specific prefix that would better identify your application. Your project is called
            Hello CLI, so you may want to give the hello- prefix to all your components. To do this, use the -prefix option while generating your components:
         

         
         ng g c product -prefix hello

         
         That command would generate a component with the hello-product selector. An easier way to ensure that all generated components have a specific prefix is to specify the prefix in the file
            .angular-cli.json (or in angular.json, starting with Angular 6), discussed later in this chapter.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      If you open the app.module.ts file, you’ll see that ProductComponent has been imported and added to the declarations section by your ng g c command:
      

      
      @NgModule({
  declarations: [
    AppComponent,
    ProductComponent
  ],
  imports: [
    BrowserModule
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

      
      The newly generated ProductComponent class was added to the declarations property of @NgModule(). We’ll keep using components in each chapter of this book so you’ll get a chance to learn the various features of Angular
         components.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         What’s metadata?
         
         TypeScript decorators allow you to modify the behavior of a class, property, or method (or its arguments) without changing
            their code by enabling you to provide metadata about the decorated artifact. In general, metadata is additional information about data. For example, in an MP3 file, the audio is the data, but the name of the artist, song
            title, and album cover are metadata. MP3 players include metadata processors that read the metadata and display some of it
            while playing the song.
         

         
         In the case of classes, metadata refers to additional information about the class. For example, the @Component() decorator tells Angular (the metadata processor) that this is not a regular class, but a component. Angular generates additional JavaScript code based on the information provided
            in the properties of the @Component() nsdecorator to turn a class into a UI component. The @Component() decorator doesn’t change the internals of the decorated class but adds some data describing the class so the Angular compiler
            can properly generate the final code of the component.
         

         
         In the case of class properties, the @Input() decorator tells Angular that this class property should support binding and be able to receive data from the parent component.
            You’ll learn about the @Input() decorator in section 8.2.1 in chapter 8.
         

         
         Under the hood, a decorator is a function that attaches some data to the decorated element. See section B.10 in appendix B for more details.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      A component is a class with a UI, and a service is a class where you implement the business logic of your app. Let’s get familiar
         with services.
      

      
      
      
      
2.2. Services
      

      
      For cleaner code separation, we usually don’t use a component for code that fetches or manipulates data. An injectable service
         is the right place for handling data. A component may depend on one or more services. Chapter 5 covers how dependency injection works in Angular. Here, we’ll give you an idea of how services and components work together.
      

      
      Let’s start with generating a service in a shared folder, assuming that this service will be used by multiple components.
         To ensure that the providers property of @NgModule() will be updated with the newly generated service, use the following option:
      

      
      ng g s shared/product -m app.module

      
      The new file product.service.ts will be generated in the src/app/shared directory:

      
      @Injectable()
export class ProductService {
  constructor() { }
}

      
      Accordingly, the app.module.ts file will be updated to include the provider for this service:

      
      @NgModule({
...
  providers: [ProductService]
})
export class AppModule { }

      
      Next, implement some methods in ProductService with the required business logic. Note that the generated ProductService class is annotated with the @Injectable() decorator. To have Angular instantiate and inject this service into any component, add the following argument to the component’s
         constructor:
      

      
      constructor(productService: ProductService){
  // start using the service, e.g. productService.getMyData();
}

      
      A service isn’t the only artifact without a UI. Directives also don’t have their own UI, but they can be attached to the UI
         of components.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         What’s new in Angular 6
         
         Starting from Angular 6, the ng g s command generates a class with the Injectable() decorator:
         

         
         @Injectable({
  provideIn: 'root'
})

         
         provideIn: 'root' allows you to skip the step of specifying the service in the providers property of the NgModule() decorator.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      
2.3. Directives
      

      
      Think of an Angular directive as an HTML enhancer. Directives allow you to teach an old HTML element new tricks. A directive is a class annotated with the @Directive() decorator. You’ll see the @Directive() decorator used in section 11.7 in chapter 11.
      

      
      A directive can’t have its own UI, but can be attached to a component or a regular HTML element to change their visual representation.
         There are two types of directives in Angular:
      

      
      

      
         
         	
Structural— The directive changes the structure of the component’s template.
         

         
         	
Attribute— The directive changes the behavior or visual representation of an individual component or HTML element.
         

         
      

      
      For example, with the structural *ngFor directive, you can iterate through an array (or other collection) and render an HTML element for each item of the array.
         The following listing uses the *ngFor directive to loop through the products array and render an <li> element for each product (assuming there’s an interface or Product class with a title property).
      

      
      
      
      Listing 2.2. Iterating through products with *ngFor


      @Component({
  selector: 'app-root',
  template: `<h1>All Products</h1>
  <ul>
    <li *ngFor="let product of products">       1
      {{product.title}}                         2
     </li>
  </ul>
  `})
export class AppComponent {

  products: Product[] = [];                     3

 // the code to populate products is removed for brevity
}

      
      

      
         
         	
1 Renders <li> for each product


         
         	2 Each <li> element shows the product title.

         
         	3 *ngFor iterates through this array.

         
      

      
      The following element uses the structural *ngIf directive to either show or hide the <mat-error> element, depending on the return (true or false) of the hasError() method, which checks whether the value in a form field title has invalid minimum length:
      

      
      <mat-error *ngIf="formModel.hasError('minlength', 'title')" >Enter at least 3
     characters</mat-error>

      
      Later in this chapter when we talk about two-way binding, we’ll use the attribute ngModel directive to bind the value in the <input> element to a class variable, shippingAddress:
      

      
      <input type='text' placeholder="Enter shipping address"
   [(ngModel)]="shippingAddress">

      
      You can create custom attribute directives as well, described in the product documentation at https://angular.io/guide/attribute-directives.
      

      
      Yet another artifact that doesn’t have its own UI but that can transform values in the component template is a pipe.

      
      
      
      
2.4. Pipes
      

      
      A pipe is a template element that allows you to transform a value into a desired output. A pipe is specified by adding the vertical
         bar (|) and the pipe name right after the value to be transformed:
      

      
      template: `<p>Your birthday is {{ birthday | date }}</p>`

      
      In the preceding example, the value of the birthday variable will be transformed into a date of a default format. Angular comes with a number of built-in pipes, and each pipe
         has a class that implements its functionality (for example, DatePipe) as well as the name that you can use in the template (such as date):
      

      
      

      
         
         	An UpperCasePipe allows you to convert an input string to uppercase by using | uppercase in the template.
         

         
         	A LowerCasePipe allows you to convert an input string to lowercase by using | lowercase in the template.
         

         
         	
A DatePipe allows you to display a date in different formats by using | date.
         

         
         	A CurrencyPipe transforms a number into a desired currency by using | currency.
         

         
         	An AsyncPipe unwraps the data from the provided Observable stream by using | async. You’ll see a code sample that uses async in section 6.5 in chapter 6.
         

         
      

      
      Some pipes don’t require input parameters (such as uppercase), and some do (such as date:'medium'). You can chain as many pipes as you want. The following code snippet shows how you can display the value of the birthday variable in a medium date format and in uppercase (for example, JUN 15, 2001, 9:43:11 PM):
      

      
      template=
  `<p>{{ birthday | date: 'medium' | uppercase}}</p>`

      
      As you can see, with literally no coding you can convert a date into the required format as well as show it uppercase (see
         the date formats in the Angular DatePipe documentation, http://mng.bz/78lD).
      

      
      In addition to predefined pipes, you can create custom pipes that can include code specific to your application. The process
         of creating custom pipes is described at https://angular.io/guide/pipes. Code samples for this chapter include an app demonstrating a custom pipe that can convert the temperature from Fahrenheit
         to Celsius and back.
      

      
      Now you know that your app can include components, services, directives, and pipes. All these artifacts must be declared in
         your app module(s).
      

      
      
      
      
2.5. Modules
      

      
      An Angular module is a container for a group of related components, services, directives, and pipes. You can think of a module
         as a package that implements certain functionality from the business domain of your application, such as a shipping or billing
         module. All elements of a small application can be located in one module (the root module), whereas larger apps may have more
         than one module (feature modules). All apps must have at least a root module that’s bootstrapped during app launch.
      

      
      From a syntax perspective, an Angular module is a class annotated with the @NgModule() decorator. To load the root module on application startup, invoke the bootstrapModule() method in the main.ts file of your app:
      

      
      platformBrowserDynamic().bootstrapModule(AppModule);

      
      The Angular framework itself is split into modules. Including some of the Angular modules is a must (for example, @angular/core), whereas some modules are optional. For example, if you’re planning to use the Angular Forms API and make HTTP requests,
         you should add @angular/forms and @angular/common/http in your package.json file and should include FormsModule and HttpClientModule in the root module of your app, as shown in the following listing.
      

      
      
      

      
      
      Listing 2.3. A sample root module
      

      @NgModule({
  declarations: [
    AppComponent              1
   ],
  imports: [                  2
     BrowserModule,
    FormsModule,
    HttpClientModule
  ],
  bootstrap: [AppComponent]   3
 })
export class AppModule { }

      
      

      
         
         	
1 The only component included in this module


         
         	2 Other modules that are needed for this app

         
         	3 The top-level component to be loaded on app startup

         
      

      
      If you decide to split your app into several modules, in addition to the root module you’ll need to create feature modules, covered next.
      

      
      
      2.5.1. Feature modules
      

      
      An Angular app may consist of a root module and feature modules. You can implement a certain feature of your app (for example,
         shipping) in a feature module. Whereas the @NgModule() decorator of the root module of a web application must include the BrowserModule, feature modules include the CommonModule instead. Feature modules can be imported by other modules. The @NgModule() decorator of feature modules doesn’t include the bootstrap property, because bootstrapping the entire app is the responsibility of the root module.
      

      
      The following listing generates a small app called Hello Modules and adds a feature module called ShippingModule to it.
      

      
      
      
      Listing 2.4. Generating a project and a feature module
      

      ng new hello-modules      1
 cd hello-modules
ng g m shipping           2

      
      

      
         
         	1 Generates a new project called hello-modules

         
         	2 Generates a new feature module called shipping

         
      

      
      This app will have a feature module with the following listing’s content in the file src/app/shipping/shipping.module.ts.

      
      
      
      Listing 2.5. Generated feature module
      

      @NgModule({
  imports: [
    CommonModule           1
   ],
  declarations: []
})
export class ShippingModule { }

      
      

      
         
         	1 Feature module imports CommonModule instead of the BrowserModule

         
      

      
      Now let’s generate a new shipping component, instructing Angular CLI to include it into ShippingModule:
      

      
      ng g c shipping -it -is -m shipping

      
      This command generates the file shipping/shipping.component.ts with the decorated class ShippingComponent with an inline template and an empty styles property. The command also adds it to the declarations section of the ShippingModule. The code for the shipping component is shown in the following listing.
      

      
      
      
      Listing 2.6. Generated shipping component
      

      @Component({
  selector: 'app-shipping',
  template: `
  <p>
  shipping Works!                                     1
   </p>
  `,
  styles: []
})
export class ShippingComponent implements OnInit {    2

  constructor() { }

  ngOnInit() {}                                       3
 }

      
      

      
         
         	1 A default template

         
         	2 Implementing the lifecycle interface OnInit

         
         	3 This lifecycle hook is invoked after the constructor.

         
      

      
      Note the selector of the shipping component: app-shipping. You’ll be using this name in the template of the AppComponent.
      

      
      The code for your shipping module will include the shipping component and will look like the following listing.

      
      
      
      Listing 2.7. Generated shipping module
      

      @NgModule({
  imports: [
    CommonModule
  ],
  declarations: [ShippingComponent]
})
export class ShippingModule { }

      
      A feature module may declare its own components and services, but to make all or some of them visible to other modules, you
         need to export them. In this case, you need to add an exports section to the shipping module so it looks as follows.
      

      
      
      
      Listing 2.8. Exporting a shipping component
      

      @NgModule({
  imports: [
    CommonModule
  ],
  declarations: [ShippingComponent],
  exports: [ShippingComponent]             1
 })
export class ShippingModule { }

      
      

      
         
         	1 Exporting a component from the module

         
      

      
      External modules will see only those members of the shipping module that were explicitly mentioned in exports. The shipping module may include other members, like classes, directives, and pipes. If you don’t list them in the exports section, these members will remain private to the shipping module and will be hidden from the rest of the app. Now you should
         include the shipping module in the root module.
      

      
      
      
      Listing 2.9. Adding the shipping module to the root module
      

      @NgModule({
  declarations: [
    AppComponent
  ],
  imports: [
    BrowserModule,
    ShippingModule         1
   ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

      
      

      
         
         	1 Adds the shipping module to the root module

         
      

      
      To have the browser render the shipping component in the root component, you can add the <app-shipping> tag to the template of the AppComponent.
      

      
      
      
      Listing 2.10. Adding a shipping component
      

      @Component({
  selector: 'app-root',
  template: `
  <h1>Welcome to {{title}}!!</h1>
  <app-shipping></app-shipping>          1
   `,
  styles: []
})
export class AppComponent {
  title = 'app';
}

      
      

      
         
         	
1 Adds the ShippingComponent to the root component’s template


         
      

      
      Run this app with ng serve and open the browser at http://localhost:4200. You’ll see the window that renders the AppComponent from the root module and the ShippingComponent from the shipping module, as shown in figure 2.1.
      

      
      
      
      Figure 2.1. Running the two-module app
      

      
      
      
      [image: ]

      
      
      
      “Welcome to app!!” is the greeting from the AppComponent located in the root module, whereas “shipping Works!” comes from the ShippingComponent located in your feature module. This was a rather simple example, but it illustrates how you can modularize an app so its specific features are located in a separate reusable module and can be developed by a separate developer(s).
      

      
      Your app modules can be loaded either eagerly on application startup, as was done with the Hello Modules project, or lazily,
         such as when the user clicks a specific link. In section 4.3 in chapter 4, you’ll see a sample app with a module that’s lazy loaded.
      

      
      You know by now that a component consists of TypeScript code and the UI (the template). The next concept to learn is how the
         code and the UI can be synchronized as the data changes either programmatically or as the result of the user’s interaction
         with the app.
      

      
      
      
      
      
2.6. Understanding data binding
      

      
      Angular has a mechanism called data binding that allows you to keep a component’s properties in sync with the view. In this section, we’ll explain how data binding works
         with properties and events.
      

      
      Angular supports two types of data binding: unidirectional (default) and two-way. With unidirectional data binding, the data is synchronized in one direction: either from the class member variable (property)
         to the view or from the view event to the class variable or a method that handles the event. Angular updates the binding during
         its change detection cycle, explained in section 9.1 in chapter 9.
      

      
      
      
      2.6.1. Binding properties and events
      

      
      To display a value of a class variable in a template’s string, use double curly braces. If a class has a variable called name, you can show its value like this:
      

      
      <h1>Hello {{name}}!</h1>

      
      This is also known as interpolation, and you can use any valid expression inside these double curly braces.
      

      
      Use square brackets to bind the value from a class variable to a property of an HTML element or an Angular component. The
         following binds the value of the class variable isValid to the hidden property of the HTML <span> element:
      

      
      <span [hidden]="isValid">This field is required</span>

      
      Note that the square brackets are used to the left of the equals sign. If the value of the isValid variable is false, the text of the span element isn’t hidden, and the user will see the message “This field is required.” As soon as the value of the isValid variable becomes true, the text “This field is required” becomes hidden.
      

      
      The preceding examples illustrate unidirectional binding from the class variable to the view. The next listings will illustrate
         the unidirectional binding from the view to a class member, such as a method.
      

      
      To assign an event-handler function to an event, put the event name in parentheses in the component’s template. The following
         listing shows how to bind the onClickEvent() function to the click event, and the onInputEvent() function to the input event.
      

      
      
      
      Listing 2.11. Two events with handlers
      

      <button (click)="onClickEvent()">Get Products</button>            1

<input placeholder="Product name" (input)="onInputEvent()">       2

      
      

      
         
         	1 If the button is clicked, invoke the method onClickEvent().

         
         	2 As soon as the value of the input field changes, invoke the method onInputEvent().

         
      

      
      When the event specified in parentheses is triggered, the expression in double quotes is reevaluated. In listing 2.11, the expressions are functions, so they’re invoked each time the corresponding event is triggered.
      

      
      If you’re interested in analyzing the properties of the event object, add the $event argument to the method handler. In particular, the target property of the event object represents the DOM node where the event occurred. The instance of the event object will be available
         only within the binding scope (that is, in the event-handler method). Figure 2.2 shows how to read the event-binding syntax.
      

      
      
      
      Figure 2.2. Event-binding syntax
      

      
      
      
      [image: ]

      
      
      
      The event in parentheses is called the target of binding. You can bind functions to any standard DOM events that exist today (see “Event reference” in the Mozilla Developer Network
         documentation, http://mzl.la/1JcBR22) or that will be introduced in the future.
      

      
      Parentheses are used for binding to the standard DOM events as well as the custom events of a component. For example, say
         you have a price-quoter component that can emit a custom event, lastPrice. The following code snippet shows how to bind the lastPrice event to the class method priceQuoteHandler():
      

      
      <price-quoter (lastPrice)="priceQuoteHandler($event)">?</price-quoter>

      
      You’ll learn how to create components that emit custom events in chapter 8, section 8.2.2.
      

      
      
      
      2.6.2. One- and two-way data binding in action
      

      
      Let’s run and review two simple apps from the project bindings that come with this chapter. If you use the Angular 5 code
         samples, the two apps oneway and twoway are configured by creating two elements in the apps array in the file .angular-cli.json. If you use the Angular 6 code samples, these two apps are configured in the file angular
         .json.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Configuring Angular CLI projects
         
         Prior to Angular 6, the generated projects include the configuration file .angular-cli.json, which allows you to specify where
            the source code is located, which directory will contain the compiled code, where to find the assets of your project, where
            the code and styles required by third-party libraries (if any) are, and more. Angular CLI uses properties of this file during
            generation of the your app artifacts, during builds, and while running tests.
         

         
         You can find the complete and current description of each config property in the document “Angular CLI Config Schema,” available
            at https://github.com/angular/angular-cli/wiki/angular-cli. You’ll use the apps config property in this section and the styles and scripts properties in section 2.7.
         

         
         Starting in Angular 6, projects are configured in the angular.json file, and its schema is described at https://github.com/angular/angular-cli/wiki/angular-workspace. Now the project is treated as a workspace, which can contain one or more apps and libraries with their own configurations,
            but all of them share the dependencies located in a single directory: node_modules.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      These two apps will be configured similarly—only the app names and the names of the files that boot these apps will differ,
         as shown in the following listing.
      

      
      
      
      Listing 2.12. Angular 5: Configuring two apps in .angular-cli.json
      

      "apps": [
  {
    "name": "oneway",                         1
     ...
    "main": "main-one-way-binding.ts",        2
   ...
  },
  {
    "name": "twoway",                         3
     ...
    "main": "main-two-way-binding.ts",        4
   ...
  }
  ]

      
      

      
         
         	1 The name of the first app

         
         	2 The bootstrap file of the first app

         
         	3 The name of the second app

         
         	4 The bootstrap file of the second app

         
      

      
      Because both apps are located in the same project, you need to run npm install once. In Angular 5 and earlier versions, you can bundle and run any of these app by specifying the --app option with the ng serve or ng build command. The file main-one-way-binding.ts contains the code to bootstrap the app module from the directory named one-way,
         and the file main-two-way-binding.ts bootstraps the app module from the two-way directory of this project.
      

      
      In Angular 5, if you want to build the bundles in memory and start the dev server with the app configured under the name oneway, the following command will do it:
      

      
      ng serve --app oneway

      
      
         
            
         
         
            
               	
            

         
      

      Note

      
      
      If you use the Angular 6 version of the code samples, the option --app is not required: ng serve oneway.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If you also want Angular CLI to open the browser to http://localhost:4200, add the -o to the preceding command:
      

      
      ng serve --app oneway -o

      
      Open the bindings project in your IDE and run the npm i command in its Terminal window. After dependencies are installed, run the preceding command to see the one-way sample app
         in action. It’ll render the page as shown in figure 2.3.
      

      
      
      

      
      
      Figure 2.3. Running a one-way binding app
      

      
      
      
      [image: ]

      
      
      
      In the Angular 6 version of the code samples, the apps oneway and twoway are configured in the angular.json file in the projects section. The following command will run the oneway app, rendering the UI shown in figure 2.3.
      

      
      ng serve oneway

      
      The following listing shows the code of the AppComponent that rendered this page.
      

      
      
      
      Listing 2.13. The AppComponent for the one-way binding sample
      

      @Component({
  selector: 'app-root',
  template:`
  <h1>{{name}}</h1>                   1
   <button (click)="changeName()">    2
   Change name
  </button>
  `
})
export class AppComponent {
  name: string = "Mary Smith";

  changeName() {
  this.name = "Bill Smart";
  }
}

      
      

      
         
         	1 Initially uses a one-way property binding to render the value of the class variable name

         
         	2 A button click updates the value of the variable name to Bill Smart using a one-way event binding to the method changeName().

         
      

      
      As soon as the user clicks the button, the changeName() method modifies the value of name, one-way property binding kicks in, and the new value of the name variable will be shown on the page.
      

      
      Now stop the dev server (Ctrl-C), and run the app configured under the name twoway:
      

      
      ng serve --app twoway -o

      
      The template of this page has the following HTML tags: <input>, <button>, and <p>. Enter 26 Broadway in the input field, and you’ll see a page like the one shown in figure 2.4.
      

      
      
      
      Figure 2.4. Running a twoway binding sample app
      

      
      [image: ]

      
      
      The value of the text inside the <p> tag changes as soon as the value in the input field changes. If you click the button, the value of the input field and the
         paragraph will change to "The shipping address is 123 Main Street". In this app, you use two-way binding. The code for the app component is shown in the following listing.
      

      
      
      
      Listing 2.14. A two-way binding sample
      

      @Component({
  selector: 'app-root',
  template: `
  <input type='text'
   placeholder="Enter shipping address"
   [(ngModel)]="shippingAddress">                           1

  <button (click)="shippingAddress='123 Main Street'">
  Set Default Address
  </button>                                                 2
   <p>The shipping address is {{shippingAddress}}</p>
  `
})
export class AppComponent {
  shippingAddress: string;
}

      
      

      
         
         	1 Using ngModel to denote the two-way binding

         
         	2 Updating the value of shippingAddress on click

         
      

      
      You bind the value of the input field to the shippingAddress variable by using the Angular ngModel directive:
      

      
      [(ngModel)]="shippingAddress"

      
      Remember, square brackets represent property binding, and parentheses represent event binding. To denote two-way binding,
         surround a template element’s ngModel with both square brackets and parentheses. In the preceding code, you instruct Angular to update the shippingAddress variable as soon as the value in the input field changes, and update the value of the input field as soon when the value of shippingAddress changes. This is what the two-way binding means.
      

OEBPS/01fig03.jpg


OEBPS/01fig04_alt.jpg


OEBPS/01fig01_alt.jpg


OEBPS/01fig02_alt.jpg


OEBPS/common2.jpg


OEBPS/enter.jpg


OEBPS/logo.jpg


OEBPS/common1.jpg


OEBPS/01fig05_alt.jpg


OEBPS/01fig07_alt.jpg


OEBPS/01fig06_alt.jpg


OEBPS/cover.jpg


OEBPS/02fig04_alt.jpg


OEBPS/01fig09_alt.jpg


OEBPS/01fig08_alt.jpg


OEBPS/01fig11.jpg


OEBPS/01fig10_alt.jpg


OEBPS/01fig13.jpg


OEBPS/01fig12_alt.jpg


OEBPS/02fig02.jpg


OEBPS/02fig01.jpg


OEBPS/02fig03.jpg


