

 [image: cover]

 Erlang and OTP in Action

 Martin Logan, Eric Merritt & Richard Carlsson

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 180 Broad St.
 Suite 1323
 Stamford, CT 06901
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901

	Development editor: Cynthia Kane
 Copyeditor: Tiffany Taylor
 Proofreader: Katie Tennant
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11 10

Dedication

 To all the great Erlangers, many of whom we call friends, that we have met along the way. May this book put an end to the
 long hard slog through internet docs that we had to endure to learn OTP.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About This Book

 Introduction

 1. Getting past pure Erlang: the OTP basics

 Chapter 1. The Erlang/OTP platform

 Chapter 2. Erlang language essentials

 Chapter 3. Writing a TCP-based RPC service

 Chapter 4. OTP applications and supervision

 Chapter 5. Using the main graphical introspection tools

 2. Building a production system

 Chapter 6. Implementing a caching system

 Chapter 7. Logging and event handling the Erlang/OTP way

 Chapter 8. Introducing distributed Erlang/OTP

 Chapter 9. Adding distribution to the cache with Mnesia

 Chapter 10. Packaging, services, and deployment

 3. Integrating and refining

 Chapter 11. Adding an HTTP interface to the cache

 Chapter 12. Integrating with foreign code using ports and NIFs

 Chapter 13. Communication between Erlang and Java via Jinterface

 Chapter 14. Optimization and performance

 Appendix A. Installing Erlang

 Appendix B. Lists and referential transparency

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About This Book

 Introduction

 1. Getting past pure Erlang: the OTP basics

 Chapter 1. The Erlang/OTP platform

 1.1. Concurrent programming with processes

 1.1.1. Understanding concurrency

 1.1.2. Erlang’s process model

 1.1.3. Four process communication paradigms

 1.1.4. Programming with processes in Erlang

 1.2. Erlang’s fault tolerance infrastructure

 1.2.1. How process links work

 1.2.2. Supervision and trapping of exit signals

 1.2.3. Layering processes for fault tolerance

 1.3. Distributed Erlang

 1.4. The Erlang runtime system and virtual machine

 1.4.1. The scheduler

 1.4.2. I/O and scheduling

 1.4.3. Process isolation and the garbage collector

 1.5. Functional programming: Erlang’s face to the world

 1.6. Summary

 Chapter 2. Erlang language essentials

 2.1. The Erlang shell

 2.1.1. Starting the shell

 2.1.2. Entering expressions

 2.1.3. Shell functions

 2.1.4. Escaping from the shell

 2.1.5. Job-control basics

 2.2. Data types in Erlang

 2.2.1. Numbers and arithmetic

 2.2.2. Binaries and bitstrings

 2.2.3. Atoms

 2.2.4. Tuples

 2.2.5. Lists

 2.2.6. Strings

 2.2.7. Pids, ports, and references

 2.2.8. Functions as data: funs

 2.2.9. Comparing terms

 2.2.10. Understanding lists

 2.3. Modules and functions

 2.3.1. Calling functions in other modules (remote calls)

 2.3.2. Functions of different arity

 2.3.3. Built-in functions and standard library modules

 2.3.4. Creating modules

 2.3.5. Compiling and loading modules

 2.3.6. The stand-alone compiler, erlc

 2.3.7. Compiled modules versus evaluation in the shell

 2.4. Variables and pattern matching

 2.4.1. Variable syntax

 2.4.2. Single assignment

 2.4.3. Pattern matching: assignment on steroids

 2.4.4. More about patterns

 2.5. Functions and clauses

 2.5.1. A function with side effects: printing text

 2.5.2. Multiple clauses and pattern matching for choice

 2.5.3. Guards

 2.5.4. Patterns, clauses, and variable scope

 2.6. Case and if expressions

 2.6.1. Boolean if-then-else switches in Erlang

 2.6.2. If expressions

 2.7. Funs

 2.7.1. Funs as aliases for existing functions

 2.7.2. Anonymous funs

 2.8. Exceptions, try, and catch

 2.8.1. Throwing (raising) exceptions

 2.8.2. Using try...catch

 2.8.3. try...of...catch

 2.8.4. after

 2.8.5. Getting a stack trace

 2.8.6. Rethrowing

 2.8.7. Plain old catch

 2.9. List comprehensions

 2.9.1. List comprehension notation

 2.9.2. Mapping, filtering, and pattern matching

 2.10. Bit syntax and bitstring comprehensions

 2.10.1. Building a bitstring

 2.10.2. Pattern matching with bit syntax

 2.10.3. Bitstring comprehensions

 2.11. Record syntax

 2.11.1. Record declarations

 2.11.2. Creating records

 2.11.3. Record fields and pattern matching

 2.11.4. Updating record fields

 2.11.5. Where to put the record declarations

 2.12. Preprocessing and include files

 2.12.1. Defining and using macros

 2.12.2. Include files

 2.12.3. Conditional compilation

 2.13. Processes

 2.13.1. Operating on processes

 2.13.2. Receiving messages, selective receive

 2.13.3. Registered processes

 2.13.4. Delivery of messages and signals

 2.13.5. The process dictionary

 2.14. ETS tables

 2.14.1. Why ETS tables work like they do

 2.14.2. Basics of using ETS tables

 2.15. Recursion: it’s how you loop

 2.15.1. From iteration to recursion

 2.15.2. Understanding tail recursion

 2.15.3. Accumulator parameters

 2.15.4. Some words on efficiency

 2.15.5. Tips for writing recursive functions

 2.16. Erlang programming resources

 2.16.1. Books

 2.16.2. Online material

 2.17. Summary

 Chapter 3. Writing a TCP-based RPC service

 3.1. What you’re creating

 3.1.1. A reminder of the fundamentals

 3.1.2. Behaviour basics

 3.2. Implementing the RPC server

 3.2.1. Canonical module layout for a behaviour implementation

 3.2.2. The module header

 3.2.3. The API section

 3.2.4. The callback function section

 3.3. Running the RPC server

 3.4. A few words on testing

 3.5. Summary

 Chapter 4. OTP applications and supervision

 4.1. OTP applications

 4.1.1. The organization of an OTP application

 4.1.2. Adding the application metadata

 4.1.3. The application behaviour

 4.1.4. Application structure summary

 4.2. Adding fault tolerance with supervisors

 4.2.1. Implementing a supervisor

 4.2.2. The supervisor restart strategy

 4.2.3. Writing the child specification

 4.3. Starting the application

 4.4. Generating documentation with EDoc

 4.5. Summary

 Chapter 5. Using the main graphical introspection tools

 5.1. Appmon

 5.1.1. The Appmon GUI

 5.1.2. The WebTool version of Appmon

 5.2. Pman

 5.3. Debugger

 5.4. TV, the Table Viewer

 5.5. Toolbar

 5.6. Summary

 2. Building a production system

 Chapter 6. Implementing a caching system

 6.1. The background story

 6.2. The design of your cache

 6.3. Creating the basic OTP application skeleton

 6.3.1. Laying out the application directory structure

 6.3.2. Creating the application metadata

 6.3.3. Implementing the application behaviour

 6.3.4. Implementing the supervisor

 6.4. From application skeleton to a working cache

 6.4.1. Coding the sc_element processes

 6.4.2. Implementing the sc_store module

 6.4.3. Rounding off with the application-level API module

 6.5. Summary

 Chapter 7. Logging and event handling the Erlang/OTP way

 7.1. Logging in Erlang/OTP

 7.1.1. Logging in general

 7.1.2. Erlang/OTP built-in logging facilities

 7.1.3. The standard logging functions

 7.1.4. SASL and crash reports

 7.2. A custom event handler with gen_event

 7.2.1. Introducing the gen_event behaviour

 7.2.2. Event handler example

 7.2.3. Acting on error events

 7.3. Adding a custom event stream to the Simple Cache

 7.3.1. The event stream API

 7.3.2. Integrating the handler with Simple Cache

 7.3.3. Subscribing to a custom event stream

 7.4. Summary

 Chapter 8. Introducing distributed Erlang/OTP

 8.1. The fundamentals of Erlang distribution

 8.1.1. Process communication by copying

 8.1.2. Location transparency

 8.2. Nodes and clustering

 8.2.1. Starting a node

 8.2.2. Connecting nodes

 8.2.3. How Erlang nodes find each other and communicate

 8.2.4. The magic cookie security system

 8.2.5. Sending messages between connected nodes

 8.2.6. Working with remote shells

 8.3. The nuts and bolts of resource discovery

 8.3.1. Terminology and taxonomy

 8.3.2. The algorithm

 8.3.3. Implementing the resource discovery application

 8.4. Summary

 Chapter 9. Adding distribution to the cache with Mnesia

 9.1. Distributing the cache

 9.1.1. Choosing a communication strategy

 9.1.2. Synchronous versus asynchronous cache

 9.1.3. If you only had a distributed table...

 9.2. Distributed data storage with Mnesia

 9.2.1. Creating a project database

 9.2.2. Initializing the database

 9.2.3. Creating the tables

 9.2.4. Populating the tables

 9.2.5. Do some basic queries on your data

 9.3. Distributing the cache with Mnesia

 9.3.1. Switching from ETS to Mnesia

 9.3.2. Making the cache aware of other nodes

 9.3.3. Integrating resource discovery to find other cache instances

 9.3.4. Bringing the Mnesia tables into dynamic replication

 9.4. Summary

 Chapter 10. Packaging, services, and deployment

 10.1. Applications from a system viewpoint

 10.1.1. Structure

 10.1.2. Metadata

 10.1.3. How the system manages running applications

 10.2. Making a release

 10.2.1. Releases

 10.2.2. Preparing to release your code

 10.2.3. The release metadata file

 10.2.4. The script and boot files

 10.2.5. System configuration

 10.2.6. Starting a target system

 10.3. Release packaging

 10.3.1. Creating a release package

 10.3.2. Release package contents

 10.3.3. Customizing a release package

 10.4. Installing a release

 10.5. Summary

 3. Integrating and refining

 Chapter 11. Adding an HTTP interface to the cache

 11.1. Implementing a TCP server

 11.1.1. A pattern for efficient TCP servers

 11.1.2. Sketching the tcp_interface application

 11.1.3. Fleshing out the TCP server

 11.1.4. The simple text-based protocol

 11.1.5. Text interface implementation

 11.2. Building a web service from the ground up

 11.2.1. A quick-and-dirty introduction to HTTP

 11.2.2. Implementing a generic web server behaviour

 11.2.3. Getting REST

 11.2.4. Implementing the RESTful protocol with gen_web_server

 11.3. Summary

 Chapter 12. Integrating with foreign code using ports and NIFs

 12.1. Ports and NIFs

 12.1.1. Plain ports

 12.1.2. Linked-in port drivers

 12.1.3. Natively implemented functions (NIFs)

 12.2. Integrating with the parser through a port

 12.2.1. The Erlang side of the port

 12.2.2. The C side of the port

 12.2.3. Compiling and running the code

 12.3. Making a linked-in driver

 12.3.1. Understanding linked-in drivers

 12.3.2. The C side of the driver

 12.3.3. Compiling the driver code

 12.3.4. The Erlang side of the driver

 12.4. Implementing the parser as a NIF

 12.4.1. The Erlang side of the NIF

 12.4.2. The C side of the NIF

 12.4.3. Compiling and running the code

 12.5. Summary

 Chapter 13. Communication between Erlang and Java via Jinterface

 13.1. Integrating Erlang with Java using Jinterface

 13.1.1. The OtpNode class

 13.1.2. The OtpMbox class

 13.1.3. Mapping Erlang data structures onto Java

 13.1.4. Message-handling example in Java

 13.1.5. Talking to the Java node from Erlang

 13.2. Installing and configuring HBase

 13.2.1. Downloading and installing

 13.2.2. Configuring HBase

 13.3. Building the bridge between Simple Cache and HBase

 13.3.1. The Erlang side: sc_hbase.erl

 13.3.2. The HBaseConnector class

 13.3.3. Java message handling

 13.3.4. The HBaseTask class

 13.4. Integrating HBase with Simple Cache

 13.4.1. Lookup

 13.4.2. Insert

 13.4.3. Delete

 13.5. Running the integrated system

 13.6. Summary

 Chapter 14. Optimization and performance

 14.1. How to approach performance tuning

 14.1.1. Determining your performance goals

 14.1.2. Establishing a baseline

 14.1.3. Profiling the system

 14.1.4. Decide which problems to attack

 14.1.5. Measure the results

 14.2. Profiling Erlang code

 14.2.1. Counting calls with cprof

 14.2.2. Profiling execution time with fprof

 14.3. Erlang programming language caveats

 14.3.1. Performance aspects of the primitive data types

 14.3.2. Performance of built-in functions and operators

 14.3.3. Functions

 14.3.4. Processes

 14.4. Summary

 Appendix A. Installing Erlang

 A.1. Installing Erlang on Windows

 A.2. Installing Erlang on Mac OS X, Linux, or other UNIX-like systems

 A.2.1. Compiling from source

 A.2.2. Resolving configuration problems

 Appendix B. Lists and referential transparency

 B.1. A definition of referential transparency

 B.2. Advantages of referential transparency

 B.3. What it has to do with lists

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 For a long time, the world of Erlang programming had only one book—The Book,[1] released in 1993 and revised in 1996. Fanatics can still find it in print, at a price of over $100. A decade or so after
 its publication, The Book was getting long in the tooth, to say the least. The language had evolved to include several new
 and powerful programming constructs. Higher-order functions, list comprehensions, and the bit syntax are found everywhere
 in modern Erlang programs but weren’t described in The Book. But the most notable omission was the Open Telecom Platform (OTP),
 Erlang’s application development framework, which was first released in 1996. Erlang was rather easy to learn; OTP wasn’t,
 and early adopters like Martin Logan, who started using Erlang in 1999, pretty much had to learn it the hard way through trial
 and error.

 1 Robert Virding, Claes Wikstrom, and Mike Williams, Concurrent Programming in Erlang (Prentice Hall, 1993, 1996).

 In the past few years, as an indication that Erlang had become interesting enough to justify it, a number of books was released,
 and we were told that other books were being written. Erlang and OTP in Action by Martin Logan, Eric Merritt, and Richard Carlsson was the one most talked about. And now it is here.

 I started programming Erlang in 1993, when I was designing disaster response systems in Anchorage, Alaska. I bought a precompiled
 version of Erlang for HP-UX, delivered on a magnetic QIC tape. The language was smaller back then, as were the number of support
 libraries. I had to start designing my own data-access structures, database managers, protocol parsers, and error-handling
 frameworks—but I enjoyed myself thoroughly. After all, this was a different time: the web was emerging with the release of
 the Mosaic browser that same year, and the term open source wouldn’t be used for another five years; if you wanted a programming framework with support for distributed computing and
 fault tolerance, you had to be prepared to pay dearly, both in time and money. I had scoured the market for such tools and
 felt well-informed about the commercial alternatives. Erlang was raw and unassuming, with a weird-looking syntax and practically
 no documentation, but its core concepts felt right in a way that no other tools had.

 Three years later, I found myself in Sweden, working for Ericsson and chief designer of the largest Erlang-based project to
 date. We would build what is known as a telecom-class ATM switch using Erlang, as well as a new framework called the Open Telecom Platform. The name was intended to make decision makers
 in the company feel warm and fuzzy—Telecom was our core business, Open was the buzzword of the day, and the prevailing wisdom was that if you wanted to build a robust complex product, you had
 to have a Platform that provided things like redundancy, support for remote configuration, live software upgrade, and real-time tracing and
 debugging.

 Ericsson isn’t in the business of selling development tools, but it has designed programming languages by necessity since
 the early 1970s. To its credit (but also to its own benefit), Ericsson released Erlang/OTP as open source in 1998. Enthusiasts
 across the world picked it up and used it, mainly in the telecom field at first, but later also in other areas. We made several
 attempts in the ’90s to pitch Erlang to web developers, but the challenge facing web developers back then wasn’t how to make
 redundant, scalable, and highly responsive e-commerce sites; the time for such systems hadn’t yet come, nor had the time when
 concurrency would be a conversation topic for mainstream programmers. Concurrency was hard—everyone knew that. Concurrency
 was something to be avoided. Why, then, choose a programming language where you could hardly even write “hello world” without
 introducing concurrency?

 The explosive growth of the web and the emergence of increasingly interactive web applications eventually brought Erlang in
 from the cold. Unexpected help also came from the laws of physics, which finally made it impossible to keep cranking up the
 clock frequency on our CPUs to produce faster and faster single-core chips. The message “The free lunch is over” from the
 hardware vendors, urging developers to start learning how to make their programs scale across many weaker cores rather than
 one very fast CPU, was wonderful news for Erlang. This meant many clever programmers would at least look at Erlang, to figure
 out what supposedly made it so special. Many would simply look, and others would borrow concepts and implement them in their
 favorite language. This was wonderful too, because it meant the market value of knowing and loving Erlang and the principles
 behind it would increase rapidly.

 OTP has by now been proven in several problem domains other than telecom and is highly regarded by those who have learned
 to master it. Erlang/OTP is an amazingly powerful platform, but it does take time to learn, not least when you try to apply
 it to a new niche. Interestingly, even programmers who have worked for years in OTP-based projects may be fairly ignorant
 of how to build an OTP-based system from scratch, because the application programmer is exposed only to a fairly small part
 of the total framework. This is exactly what you want in a large project, but the entrepreneur in a small startup can’t rely
 on someone else burning the midnight oil and figuring out the subtleties of OTP release-handling and other dark corners without
 helpful examples and tutorials.

 A good book on OTP has been sorely needed, and it’s with great pleasure that we welcome Erlang and OTP in Action. Martin Logan, Eric Merritt, and Richard Carlsson represent an enormous amount of experience combined, and they have contributed
 greatly to the Erlang community. I’m convinced that this book will help boost the already impressive trend of Erlang adoption.

 Enjoy!

 ULF WIGER

 CTO, ERLANG SOLUTIONS LTD

Preface

 This book is an attempt to distill what we think are the most important things a professional Erlang programmer needs to know
 in order to use this hugely productive programming language to its full potential. Erlang/OTP gives you a lot of power, but
 so far it’s been a daunting task for budding Erlang programmers to learn the OTP framework on their own by studying the documentation
 (which goes into a lot of detail but doesn’t show you the big picture).

 The three of us have worked with Erlang for a long time, but our individual paths have been very different.

 Martin: “My first ‘real’ job introduced me to Erlang programming. I had been doing C and C++, and I thought I was having fun.
 My first boss, Hal Snyder, who even years ago in the ’90s had a passionate dislike for threading, stumbled across Erlang.
 I was an intern at the time, so he gave me a project to complete with Erlang because, well, I was cheap, and if I failed,
 the company only lost about $70 on the deal. I didn’t fail. I wrote my own 1,000-line monstrosity of a supervisor, because
 I didn’t know what OTP was, and there certainly were no books about it. In the process, I fell in love with the ‘right’ way
 to write back-end systems, and I fell in love with Erlang. Erlang gave me the opportunity to see into the future: I wrote
 complex distributed systems, using advanced algorithms that my imperative language colleagues could only dream about and never
 implement in less than two years and a million lines of code. Thousands of pages of documentation and tens of thousands of
 lines of code later, I still love it. Along the way, I’ve met some great people, and I’m thrilled to be writing this book
 with two of them. I met Richard while speaking at an ACM conference in 2004, and I met Eric four years later as we formed
 Erlware—a project in which we’re opening new chapters even now. Erlang has been a big part of my professional and personal
 life for many years and will continue to be so.”

 Eric: “I started noodling with Erlang as a side issue. I wanted to write a massively multiplayer game, but I knew that one
 person, even if they had a talent for it, couldn’t do the graphics for such a game single-handedly. I decided to concentrate
 on game play, thinking that I might be able to do this well, given the right tools and the right language. I liked the idea
 of agents in the game learning on their own over time, having independent concurrent actions. The only realistic way in my
 mind, at the time, was to model each of these agents as some type of independent concurrent thing, but I didn’t know what
 that was. The languages I knew wouldn’t work for one person writing a game like that all by themselves. So, I started exploring
 languages. I spent five years or so doing this, on and off, in some pretty extreme depth. I came upon Erlang fairly early,
 and although I liked the concurrency, its syntax and functional nature threw me off. It wasn’t until I had explored programming
 languages in general a lot more that I started to appreciate Erlang and write code in it. I never wrote that game, but after
 I settled on Erlang as the right choice, I delved deeply into it, explored it thoroughly, and started realizing how useful
 a language it was for many things. This was back in 2000 or 2001. For the following few years, I experimented and taught myself
 OTP. Then, in 2005, I introduced Erlang at Amazon.com, released the first version of Sinan, and met Martin Logan, and we founded
 Erlware. In 2008, I moved to Chicago to get the book project moving and start Erlware in earnest.”

 Richard: “I was introduced to Erlang around 1995 when I was looking for a subject for my master’s thesis in computer science
 at Uppsala University. This led to me being part of the High-Performance Erlang research group as a PhD student, working on
 the Erlang compiler and runtime system for many years. I met Martin Logan and Eric Merritt through conferences in Sweden and
 the U.S. and was impressed by their enthusiasm for Erlang despite it being such a little-known language in those days—particularly
 in the U.S. During my PhD studies, I also hacked on a few side projects: the Syntax Tools library and the EDoc application
 were spin-offs from my compiler-related work, and EUnit had its basis in the need for me to check that my students’ concurrent
 programming assignments worked according to spec. After leaving the world of academia, I spent a few years working with non-Erlang-related
 things, coding mostly in Python, Ruby, and C++. But these days, I’m working full time with Erlang again, in the fast-moving
 world of high-availability payment systems, at one of Sweden’s most successful startup companies.”

 We’ve tried to extract as much as we can from our collective experience in order to make your journey toward becoming a master
 Erlang programmer easier; and we hope that with the help of this book, the OTP framework will finally become something that
 every Erlang programmer knows how to use—not only those brave few who have read the manuals back to front.

Acknowledgments

 First, we want to thank Bob Calco for getting this project started—without you, the book wouldn’t have happened, and we hope
 you like the results.

 We also want to thank all those readers who bought the Early Access edition and waited so long for us to finish, while we
 more or less rewrote the book three times. Your interest made us pull through.

 Thanks to Jerry Cattell for reviewing the Java code, Francesco Cesarini for his help and promotion, Ulf Wiger for the foreword,
 Kevin A. Smith for his driver example code, Ryan Rawson for help with Java and HBase, Ken Pratt for the technical proofreading,
 and Alain O’Dea and all the other Early Access readers who gave us their feedback.

 Special thanks to the following peer reviewers who read the manuscript at various stages of development for their invaluable
 input: Chris Chandler, Jim Larson, Bryce Darling, Brian McCallister, Kevin Jackson, Deepak Vohra, Pierre-Antoine Grégoire,
 David Dossot, Greg Donald, Daniel Bretoi, James Hatheway, John S. Griffin, Franco Lombardo, and Stuart Caborn.

 And a big thank you to the people at Manning for their support and patience, in particular Tiffany Taylor, Katie Tennant,
 and Cynthia Kane. You didn’t lose hope.

 Last but not least: Martin wants to thank his wife Veronica for her patience in this marathon book-writing endeavor. Likewise,
 Richard wants to thank his wife Elisabet for her steadfast support and encouragement despite all the evenings and weekends
 lost to writing. Eric would like to thank Rossana for listening to his complaints about the workload and teasing him incessantly
 about the interminable nature of the book.

About This Book

 This book is focused on getting real, stable, versioned, and maintainable software out into the world. It’s less theoretical,
 and more hands-on practical. We (the authors) have put many systems into production over the years, and in this book we distill
 that knowledge for use in real software development. Our focus is not just the Erlang programming language by itself—other
 books out there are more suited as language tutorials. This book is about the practice of writing Erlang code for production.

 Because this book is aimed at allowing individual programmers or teams of programmers across a company to write effective
 code, it covers Erlang/OTP right from the start, not just Erlang the language. Erlang by itself offers the potential for powerful
 applications to be created, but it’s with OTP that it realizes that potential. OTP is simultaneously a framework, a set of
 libraries, and a methodology for structuring applications; it’s really a language extension. To learn Erlang for the real
 world means learning Erlang/OTP.

 This book illustrates how to use Erlang/OTP in practice, through carefully chosen realistic examples. By implementing these
 examples for yourself, you’ll come to understand how to build solid, versioned, production-ready code that is ready to utilize
 every cycle of that 32-core machine you have sitting in your server rack!

Roadmap

 The book is divided into three parts. Part 1 is aimed at getting you past programming in pure Erlang, introducing the basics of OTP:

	
Chapter 1 presents the Erlang/OTP platform and the main features that make it tick, such as processes, message passing, links, distribution,
 and the runtime system.

 	
Chapter 2 gives a whirlwind tour of the Erlang programming language, both for reference and as a summary of the things every professional
 Erlang programmer should know.

 	
Chapter 3 introduces the concept of OTP behaviours, by throwing you headfirst into writing a server in Erlang that communicates over
 TCP sockets.

 	
Chapter 4 introduces OTP applications and supervision trees, showing how to package your server from the previous chapter as an application
 with a supervisor and with documentation generated by EDoc.

 	
Chapter 5 presents the main GUI tools for finding out what is happening in a running Erlang system: the application monitor, the process
 manager, the debugger, and the table viewer.

Part 2 of the book gets down to business, giving you a real programming task and adding more advanced OTP features to the code as
 you move along:

	
Chapter 6 starts you off on the main project in this book: implementing a cache system for speeding up accesses to a web server. This
 will demonstrate a more complicated application with many processes and using a supervisor as a process factory.

 	
Chapter 7 explains how Erlang/OTP logging and event-handling work, and adds a logging facility to the cache application by means of
 a custom event handler.

 	
Chapter 8 introduces distributed Erlang/OTP, explaining what nodes are, how Erlang clusters work, how you communicate between nodes,
 and how you use job control in the Erlang shell to perform operations on remote nodes. You’ll then put this into immediate
 use by implementing a distributed resource-discovery application that can be used to publish and find information about available
 resources in a cluster of Erlang nodes.

 	
Chapter 9 presents the Mnesia built-in distributed database in Erlang and shows how to use a distributed table to make the cache application
 span multiple nodes in a cluster.

 	
Chapter 10 talks about how one or more Erlang/OTP applications are packaged for release, either as a standalone minimal installation
 or as add-ons to a previous installation, and how to deploy such packages.

Part 3 of the book is about making your code work as part of a greater whole, integrating it with other systems and users, and optimizing
 it as the load increases:

	
Chapter 11 shows how to add a RESTful HTTP interface over TCP to the cache application, by taking you through the process of writing
 your own web server from the ground up as a custom OTP behaviour.

 	
Chapter 12 explains the basic mechanisms in Erlang for communicating with code written in other languages, by demonstrating how to integrate
 a third-party C library in three different ways: using plain ports, using a port driver, and as NIFs.

 	
Chapter 13 shows how to integrate Java code with the help of the Jinterface library, making the Java program appear as a node in the
 Erlang cluster. This is then used to add a Hadoop HBase database as a backing store for the cache application.

 	
Chapter 14 talks about performance measurement and optimization in an Erlang/OTP system, explaining how to use the main code profiling
 tools and discussing some implementation details worth knowing when you’re trying to tune your program.

It’s worth noting that we don’t cover the gen_fsm behaviour in this book. This is intentional; gen_fsm is a behaviour seldom used in practice. The book covers the most important of the OTP behaviours in great detail, and from
 this you’ll come to understand behaviours well enough that learning about gen_fsm from the official documentation on your own will be easy. Among other things, it can be useful for parsing binary protocols;
 but a plain gen_server and the judicious use of pattern matching is almost always more appropriate and, in particular, more flexible. If you were
 looking forward to learning about gen_fsm, we’re sorry, but overall you’re better served by the main behaviours.

Source code

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 The code for this book is available at http://github.com/erlware/Erlang-and-OTP-in-Action-Source (or go to github.com and search for “Erlang and OTP in Action”). It is also available from the publisher’s website at www.manning.com/ErlangandOTP-inAction.

Author Online

 The purchase of Erlang and OTP in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at http://www.manning.com/ErlangandOTPinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 MARTIN J. LOGAN has been heavily involved with the Erlang community since 1999. His great interest in distributed systems and service-based
 design has made him a constant presence in the community. He has given many talks on the topic, in the U.S. and Canada as
 well as in Europe, and he is one of the people behind the Chicago ErlangCamp conference. Martin has implemented many complex
 systems using Erlang in the telecom space, including one of the first call-detail record-collection systems for the SIP protocol;
 but more recently, he has focused on large-scale e-commerce backing systems. Currently, Martin brings his expertise to Orbitz
 Worldwide, one of the largest online travel companies in the world. Martin has also taken on a leadership role with Erlware,
 where he is a core developer and the primary author of the Faxien package-management system. He currently lives in Chicago
 with his wife Veronica.

 ERIC MERRITT is a software engineer who specializes in concurrent languages and distributed systems. For the last nine years, he has been
 coding Erlang and has also been heavily involved in the Erlang community. Eric has been involved in both professional and
 open source development for the last ten years. He started his career developing in C and Java on IBM mainframe and midrange
 hardware. He also provided training and consulting in object-oriented principles and concepts. However, his interest in languages,
 concurrency, and distributed systems soon drove him to more interesting and challenging work at companies such as Amazon.com.
 Currently, Eric is a core developer for the Erlware family of open source products and he is the primary author of the Sinan
 build system. His day job involves hacking Erlang for eCD Market, LLC.

 RICHARD CARLSSON has been deeply involved with Erlang since the mid-nineties. He was one of the original members of the High-Performance Erlang
 group at Uppsala University, and has contributed to many parts of the standard libraries, the Erlang compiler, runtime system,
 and the language itself. Among other things, he is the author of Erlang’s EDoc documentation system and the EUnit unit testing
 framework. He is currently working for Klarna, one of Sweden’s fastest growing companies, which provides payment solutions,
 all based on Erlang, in Scandinavia, Germany, and the Netherlands.

About the cover illustration

 The illustration on the cover of Erlang and OTP in Action bears the caption “An Artvinian,” a resident of a region called Artvin in northeast Turkey. The image is taken from a collection
 of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page
 is missing from the collection and we have been unable to track it down to date. The book’s table of contents identifies the
 figures in both English and French, and each illustration also bears the names of two artists who worked on it, both of whom
 would no doubt be surprised to find their art gracing the front cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present. Dress codes have changed since then and the diversity by region,
 so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying
 to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied
 and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Introduction

 Erlang is a programming language where processes are a fundamental concept. But what is a process? When you run several programs at once on your computer, such as a word
 processor and a web browser, each one of those programs runs inside its own process. If your word processor should crash,
 your browser generally stays running as if nothing happened—or vice versa, a crashing web browser will not cause you to lose
 that document you were writing. Processes are a kind of bubble that provides isolation as well as parallel execution, and
 Erlang is built entirely around processes.

 Erlang makes it easy for you to create processes as you need them—just as easy as it is to create objects in a language like Java. Because processes are so cheap, we can start to look at systems in a different manner. Each independent
 activity in an Erlang program can be coded as a separate process. No unintuitive event loops, no thread pooling, none of those
 pesky implementation details. If your program needs 10,000 processes running simultaneously to accomplish a job, it can easily
 be done. As you’ll see as you read this book, this fundamentally alters the way we look at systems, presenting a view that
 is, as we hope to show you, much more intuitive (and much more productive).

 Erlang is also what is known as a functional programming language. Don’t let this intimidate you. Erlang could have been more like the mainstream programming languages
 you know; the properties described here can be achieved without functional programming. But functional programming and its
 main characteristics like referential transparency, the use of higher-order functions, and the general avoidance of mutable
 data structures lend themselves nicely to the fundamental features of Erlang. Functional programming is the vehicle by which
 these features were codified, and it allows them to be expressed elegantly and succinctly. The power of Erlang without the
 clarity of functional code would yield a more complex and much less enjoyable language to program in.

Where Erlang comes from

 When you first heard of Erlang, it may have been described to you as a “functional, concurrent programming language,” and
 you may have thought that it sounded like some kind of academic and probably unpractical toy language. But we want to emphasize
 that Erlang has its roots in real-world, large-scale software engineering problems. To make this clear, we’ll here give you
 the history behind the language in some detail.

A comparison with C

 The background of Erlang can be seen as an interesting parallel to that of the C programming language. First, both languages
 were created by a small group of people working in the relatively relaxed setting of an R&D department deep in the bowels
 of a large telecom company. The language creators were free spirits, but they were also pragmatic engineers out to solve a
 concrete problem. In the case of C, the problem was how to write systems software in more high-level language than assembler,
 but on hardware with limited resources (for that time). For Erlang, it was how to enable programmers to write very large,
 highly parallel, and extremely fault-tolerant software, while radically improving productivity and reducing the number of
 software defects—a tall order indeed.

 Both languages accumulated followers within the company who used them for internal projects and real products, and gave valuable
 early feedback to the creators about pragmatic details. In both cases, it took some 10 years before the general public heard
 about them, and by that time, they had been well and truly battle tested. C was created around 1972 and was popularized during
 the 1980s. Similarly, Erlang took shape around 1988 and was released as open source in 1998. Both languages also sparked an
 early outside interest within research organizations and universities. And both certainly have their quirks, for historical
 reasons, but we’re generally willing to forgive them because they get the job done like nothing else.

 Let’s step back in time.

Stockholm, mid-1980s: an Englishman gets a license to poke around

 Erlang was born as the result of a project aiming to find a better way of programming the kind of control systems that were
 largely limited to the telecom industry in those days: high-traffic, extremely parallel systems with draconic demands on uptime.
 Joe Armstrong joined this project in 1985, at Ericsson’s Computer Science Laboratory in Stockholm, Sweden.

 A major part of this project was to implement the same kind of telephony control system in as many different programming languages
 as possible. This included Ada, CLU, Smalltalk, and others. The results weren’t conclusive. Although it became clear that
 the high-level, declarative style of the functional and logic languages was attractive, no language had a suitable concurrency
 model.

 But what would a good concurrency model look like? In those days (and still almost two decades later), research into concurrency
 was mostly focused on either pure and abstract process models such as CSP, pi-calculus, and concurrent logic languages, or
 low-level mechanisms such as semaphores, monitors, and signals.

 Meanwhile, engineers had to solve the real problems involved with creating massively parallel and fault-tolerant communication
 systems. Ericsson already had one such home-made solution in the shape of a proprietary hybrid programming language and operating
 system called PLEX, for its successful line of AXE telephony switches.

Some perplexing demands

 PLEX was a relatively normal imperative programming language, but it had some particular features that defined a kind of baseline
 for any solution that aimed to replace it:

	Processes had to be an intrinsic part of the language.

 	Processes must not be able to corrupt each other’s memory spaces, leave dangling pointers, and so on.

 	It must be possible to run tens or hundreds of thousands of processes, so process creation and task switching must be fast,
 and processes must use very little memory.

 	Failure of individual processes must be isolated.

 	You must be able to do a code upgrade on the fly in a running system.

 	You must be able to detect and handle both hardware and software errors.

The only languages that came close to this were concurrent logic languages such as Parlog and Strand, but those had a very
 different, much more fine-grained process concept, with little control over individual processes.

Erlang comes to life

 One day, after discovering the logic programming language Prolog and how well its rule-based programming style matched his
 hand-written notation for describing the telephony control problem, Joe started writing a Prolog meta-interpreter. This way,
 he could extend Prolog with simulated process switching, to run multiple concurrent telephone calls.

 Pretty soon, the interpreted expressions had grown into a small language, with processes and message passing; and although
 it was implemented on top of Prolog, it was simpler, was functional, and didn’t use Prolog’s unification and backtracking
 features. Not much later, the name Erlang was suggested, as a deliberate pun. (A. K. Erlang, a Danish mathematician, was a familiar name to many telecom engineers,
 due to his contributions to the field of communication system statistics, but the name could also be read as “Ericsson language.”)

 The initial evolution of Erlang was thus driven by the requirements of writing a small but working telephony control system.
 In particular, the message-passing primitives were carefully chosen to match the realities of large telecom systems rather
 than any particular theory of concurrency. This meant using an asynchronous send operator, and with automatic buffering of
 messages and out-of-order selective receive (strongly influenced by the CCITT SDL notation used for specifying complicated
 communication protocols).

 After an initial experiment on a group of real users during 1988, writing a prototype for a new telephony architecture, it
 was clear that the new language gave a very large productivity boost but that its current implementation was much too slow.
 Starting in 1990, Joe, Mike Williams, and Robert Virding began implementing the first abstract machine for Erlang. Its name
 was JAM; it was a stack-based abstract machine written in C and was 70 times faster than the Prolog implementation.

 The first Erlang book was published in 1993, with a second edition in 1996. Erlang could finally be considered a real language.

The in-between years

 Over the following years, Erlang accumulated many features, such as distribution, the record syntax, the preprocessor, lambda
 expressions (funs), list comprehensions, the Mnesia database, the binary data type, the bit syntax, and more. The system was ported to other
 platforms besides UNIX, such as Windows, VxWorks, and QNX.

 Erlang got a crucial boost within Ericsson due to the collapse of a gigantic C++-based project in 1995. The project was restarted
 from scratch, this time using Erlang and “a mere 60” programmers; and a proper language support department—the OTP team—was
 formed to back them up. The result was the highly successful AXD301 system, containing more than a million lines of Erlang
 code.

 Meanwhile, a couple of students doing their master’s thesis on native code compilation of Erlang led to the High Performance Erlang research group being founded at Uppsala University in 1998; and eventually, the HiPE native code compiler was integrated
 in the standard Erlang/OTP distribution. Furthermore, although an Ericsson project to improve efficiency by compiling Erlang
 to C was unsuccessful due to the greatly increased code size, a spin-off effect was that a faster, register-based, threaded
 code abstract machine design named BEAM replaced the older JAM.

 But in the late 90s, Java was the word of the day. Upper management decided that Ericsson shouldn’t commit itself to developing
 and supporting its own programming language but should instead focus on “globally used languages.” Hence, Erlang was banned
 for new projects. Management was eventually persuaded to release Erlang as open source, to benefit users outside Ericsson.
 This happened in December 1998. Soon after that, many of the core developers left to form a small startup, using Erlang and
 their substantial telecom experience to successfully get rich quick.

Getting dressed for success

 Slowly, the external user base started growing. At Ericsson, people started to forget about the ban as time passed and it
 became obvious that Erlang was too useful to ignore and that the existing systems weren’t going to be rewritten in anything
 else. The OTP team kept developing and supporting Erlang, and Ericsson kept sponsoring the HiPE project, with its many spin-off
 applications such as EDoc and Dialyzer.

 In the world of academia, Erlang began to get recognition as a well-established and interesting functional programming language.
 Since 2002, the annual Erlang Workshop has been an ACM SIGPLAN sponsored event, co-located with ICFP, the International Conference
 on Functional Programming. As the highest form of flattery, the Erlang concurrency model has been experimentally copied onto
 several other programming languages; but as many people have found out, this is hard to do as an afterthought.

 In 2006, while the hardware industry was beginning to admit that it had hit the uniprocessor performance wall, the first release
 of Erlang with SMP support was released, as the result of a joint effort between Ericsson’s OTP team and the HiPE team. Then,
 in 2007, Joe’s new book Programming Erlang (the first Erlang book in a decade) was published—and suddenly, Erlang was getting a lot of attention all over the world.
 Many companies, both large and small, have picked it up and are putting it to weird and wonderful uses.

 That is where this book begins.

Part 1. Getting past pure Erlang: the OTP basics

 Part 1 of this book is a dive into the fundamentals. We cover language basics in a whirlwind tour and then explore some of the fundamental
 OTP building blocks that set things up for the real-world scenarios that play out through the rest of the book.

Chapter 1. The Erlang/OTP platform

 This chapter covers

	Understanding concurrency and Erlang’s process model

 	Erlang’s support for fault tolerance and distribution

 	Important properties of the Erlang runtime system

 	What functional programming means, and how it applies to Erlang

If you’re reading this book, you probably know already that Erlang is a programming language—and as such it’s pretty interesting
 in itself—but as the title of the book indicates, our focus is on the practical use of Erlang for creating real, live systems.
 And for that, we also need the OTP framework. This is always included in any Erlang distribution and is such an integral part
 of Erlang these days that it’s hard to say where the line is drawn between OTP and the plain Erlang standard libraries; hence,
 we often say “Erlang/OTP” to refer to either or both. Despite this close relationship, not many Erlang programmers have a
 clear idea of what OTP can provide or how to start using it, even if it has always been just a few keystrokes away. This book is here to help.

	

 What does OTP stand for?
 OTP was originally an acronym for Open Telecom Platform, a bit of a branding attempt from the time before Erlang went open
 source. But few people care about that now; these days, it’s just OTP. Nothing in either Erlang or OTP is specific to telecom
 applications: a more fitting name might have been Concurrent Systems Platform.

	

The Erlang programming language is already fairly well known for making it easy to write highly parallel, distributed, and
 fault-tolerant systems, and we give a comprehensive overview of the language in chapter 2 before we jump into the workings of the OTP framework. But why should you learn to use OTP, when you could happily hack away,
 rolling your own solutions as you go? These are some of the main advantages of OTP:

	
Productivity— Using OTP makes it possible to produce production-quality systems in a very short time.

 	
Stability— Code written on top of OTP can focus on the logic and avoid error-prone reimplementations of the typical things that every
 real-world system needs: process management, servers, state machines, and so on.

 	
Supervision— The application structure provided by the framework makes it simple to supervise and control the running systems, both automatically
 and through graphical user interfaces.

 	
Upgradability— The framework provides patterns for handling code upgrades in a systematic way.

 	
Reliable code base— The code for the OTP framework is rock solid and has been thoroughly battle tested.

Despite these advantages, it’s probably true to say that to most Erlang programmers, OTP is still something of a secret art,
 learned partly by osmosis and partly by poring over the more impenetrable sections of the documentation. We’d like to change
 this. This is, to our knowledge, the first book focused on learning to use OTP, and we want to show you that it can be a much
 easier experience than you may think. We’re sure you won’t regret it.

 At the end of this book, you’ll have a thorough knowledge of the concepts, libraries, and programming patterns that make up
 the OTP framework. You’ll understand how individual programs and whole Erlang-based systems can be structured using OTP components
 and principles in order to be fault tolerant, distributable, concurrent, efficient, and easy to control and monitor. You’ll
 probably also have picked up a number of details about the Erlang language, its runtime system, and some of the libraries
 and tools around it that you weren’t already aware of.

 In this chapter, we discuss the core concepts and features of the Erlang/OTP platform that everything else in OTP builds on:

	Concurrent programming

 	Fault tolerance

 	Distributed programming

 	The Erlang virtual machine and runtime system

 	Erlang’s core functional language

The point is to get you acquainted with the thinking behind all the concrete stuff we dive into from chapters 2 and 3 onward, rather than starting by handing you a bunch of facts up front. Erlang is different, and many of the things you’ll
 see in this book will take some time to get accustomed to. With this chapter, we hope to give you an idea of why things work
 the way they do, before we get into technical details.

1.1. Concurrent programming with processes

 Erlang was designed for concurrency—having multiple tasks running simultaneously—from the ground up. It was a central concern when the language was designed.
 Its built-in support for concurrency, which uses the process concept to get a clean separation between tasks, allows you to create fault-tolerant architectures and fully utilize the
 multicore hardware that is available today. But before we go any further, we should explain more exactly what we mean by the
 terms concurrency and process.

 1.1.1. Understanding concurrency

 Is concurrent just another word for in parallel? Almost but not exactly, at least when we’re talking about computers and programming.

 One popular semiformal definition reads something like, “Those things that don’t have anything that forces them to happen
 in a specific order are said to be concurrent.” For example, given the task to sort two packs of cards, you could sort one
 first and then the other; or if you had extra arms and eyes, you could sort both in parallel. Nothing requires you to do them
 in a certain order; hence, they’re concurrent tasks. They can be done in either order, or you can jump back and forth between
 the tasks until they’re both done; or, if you have the extra appendages (or perhaps someone to help you), you can perform
 them simultaneously in true parallel fashion.

 This may sound strange: shouldn’t we say that tasks are concurrent only if they’re happening at the same time? Well, the point
 with that definition is that they could happen at the same time, and we’re free to schedule them at our convenience. Tasks that need to be done simultaneously aren’t separate tasks at all, whereas some tasks are separate but nonconcurrent and must be done
 in order, such as breaking the egg before making the omelet. The rest are concurrent.

 One of the nice things that Erlang does for you is help with the physical execution of tasks. As illustrated in figure 1.1, if extra CPUs (or cores or hyperthreads) are available, Erlang uses them to run more of your concurrent tasks in parallel.
 If not, Erlang uses what CPU power there is to do them all a bit at a time. You won’t need to think about such details, and your Erlang programs
 automatically adapt to different hardware—they just run more efficiently if there are more CPUs, as long as you have things
 lined up that can be done concurrently.

 Figure 1.1. Erlang processes running on uniprocessor and on multiprocessor hardware, respectively. The runtime system automatically distributes
 the workload over the available CPU resources.

 [image:]

 But what if your tasks aren’t concurrent, and your program must first do X, then Y, and finally Z? That is where you need
 to start thinking about the real dependencies in the problem you’re out to solve. Perhaps X and Y can be done in any order
 as long as they’re before Z. Or perhaps you can start working on a part of Z as soon as parts of X and Y are done. There is
 no simple recipe, but surprisingly often a little thinking can get you a long way, and it gets easier with experience.

 Rethinking the problem in order to eliminate unnecessary dependencies can make the code run more efficiently on modern hardware.
 But that should usually be your second concern. The most important effect of separating parts of the program that don’t need
 to be together is that doing so makes your code less confused, more readable, and allows you to focus on the real problems
 rather than on the mess that follows from trying to do several things at once. This means higher productivity and fewer bugs.
 But first, we need a more concrete representation of the idea of having separate tasks.

 1.1.2. Erlang’s process model

 In Erlang, the unit of concurrency is the process. A process represents an ongoing activity; it’s an agent that is running a piece of program code, concurrent to other processes
 running their own code, at their own pace. Processes are a bit like people: individuals who don’t share anything between them.
 Not that people aren’t generous, but if you eat food, nobody else gets full; and more important, if you eat bad food, only you get sick from it. You have your own brain and internals that keep you thinking and living independently from
 everyone else. This is how processes behave; they’re separate from one another and are guaranteed not to disturb one another through their own internal state changes.

 A process has its own working memory and its own mailbox for incoming messages. Whereas threads in many other programming languages and operating systems are concurrent activities that share the same memory space (and
 have countless opportunities to step on each other’s toes), Erlang’s processes can safely work under the assumption that nobody
 else will be poking around and changing their data from one microsecond to the next. We say that processes encapsulate state.

	

 Processes: an example
 Consider a web server: it receives requests for web pages, and for each request it needs to do some work that involves finding
 the data for the page and either transmitting it back to the place the request came from (sometimes split into many chunks,
 sent one at a time) or replying with an error message in case of failure. Clearly, each request has little to do with any
 other; but if the server accepts only one at a time and doesn’t start handling the next request until the previous is finished,
 there will quickly be thousands of requests on queue if the web site is popular.

 If the server instead can begin handling requests as soon as they arrive, each in a separate process, there will be no queue,
 and most requests will take about the same time from start to finish. The state encapsulated by each process is then the specific
 URL for the request, who to reply to, and how far it has come in the handling as yet. When the request is finished, the process
 disappears, cleanly forgetting about the request and recycling the memory. If a bug causes one request to crash, only that
 process dies, while all the others keep working happily.

	

Because processes can’t directly change each other’s internal state, it’s possible to make significant advances in fault tolerance.
 No matter how bad the code is that a process is running, it can’t corrupt the internal state of your other processes. Even
 at a fine-grained level within your program, you can have the same isolation that you see between, for example, the web browser
 and the word processor on your computer desktop. This turns out to be very powerful, as you’ll see later in this chapter when
 we talk about process supervision.

 Because processes can share no internal data, they must communicate by copying. If one process wants to exchange information
 with another, it sends a message; that message is a read-only copy of the data the sender has. These fundamental semantics
 of message passing make distribution a natural part of Erlang. In real life, you can’t share data over the wire—you can only copy it. Erlang’s process communication
 always works as if the receiver gets a personal copy of the message, even if the sender happens to be on the same computer.
 Although it may sound strange at first, this means network programming is no different from coding on a single machine!

 This transparent distribution allows Erlang programmers to look at the network as a collection of resources—we don’t much care about whether process X
 is running on a different machine than process Y, because the method of communication is exactly the same no matter where
 they’re located. In the next section, we provide an overview of methods of process communication used by various programming
 languages and systems, to give you an understanding of the trade-offs involved.

 1.1.3. Four process communication paradigms

 The central problem in all concurrent systems, which all implementers have to solve, is sharing information. If you separate
 a problem into different tasks, how should those tasks communicate with one another? It may seem like a simple question, but
 some of the brightest minds out there have wrestled with it, and many approaches have been tried over the years, some of which
 have appeared as programming language features and some as separate libraries.

 We briefly discuss four approaches to process communication that have gained mindshare over the last few years. We won’t spend
 too much time on any single one, but this will give you an overview of the approaches current-day languages and systems are
 taking and highlight the differences between those and Erlang. These four are shared memory with locking, software transactional
 memory, futures, and message passing. We start with the oldest but still the most popular method.

Shared memory with locks

 Shared memory could reasonably be called the GOTO of our time: it’s the current mainstream technique for process communication;
 it has been so for a long, long time; and just like programming with GOTO, there are numerous ways to shoot yourself in the
 foot. This has imbued generations of engineers with a deep fear of concurrency (and those who don’t fear it haven’t tried
 it yet). Still, we must admit that like GOTO, there is a low-level niche for shared memory where it probably can’t be replaced.

 In this paradigm, one or more regular memory cells can be read or written to by two or more processes in parallel. To make
 it possible for a process to perform an atomic sequence of operations on those cells, so that no other process is able to access any of the cells before all the operations
 have completed, there must be a way for the process to block all others from accessing the cells until it has finished. This
 is done with a lock: a construct that makes it possible to restrict access to a single process at a time.

 Implementing locks requires support from the memory system, typically hardware support in the form of special instructions.
 The use of locks requires complete cooperation between processes: all must make sure to ask for the lock before accessing
 a shared memory region, and they must return the lock when they’re done so that someone else gets a chance to use it. The
 slightest failure can cause havoc; so, generally, higher-level constructs such as semaphores, monitors, and mutexes, are built
 on these basic locks and are provided as operating system calls or programming language constructs to make it easier to guarantee that locks are properly requested and returned. Although this avoids the worst problems,
 locks still have a number of drawbacks. To mention only a few:

	Locks require overhead even when the chances of collisions are low.

 	They’re points of contention in the memory system.

 	They may be left in a locked state by failed processes.

 	It’s extraordinarily hard to debug problems with locks.

Furthermore, locking may work well for synchronizing two or three processes, but as the number grows, the situation quickly
 becomes unmanageable. A real possibility exists (in many cases, more of a certainty) of ending up with a complex deadlock
 that couldn’t be foreseen by even the most experienced developer.

 We think this form of synchronization is best left to low-level programming, such as in the operating system kernel. But it
 can be found in most current popular programming and scripting languages. Its ubiquitousness is likely due to the fact that
 it’s fairly easy to implement and doesn’t interfere with the programming model these languages are based on. Unfortunately,
 its widespread use has hurt our ability to think about concurrent issues and make use of concurrency on a large scale even
 though multiprocessor systems have been widely available for several years.

Software transactional memory (STM)

 The first nontraditional method we are going to look at is software transactional memory (STM). This mechanism can currently
 be found in the GHC implementation of the Haskell programming language, as well as in the JVM-based language Clojure. STM
 treats memory more like a traditional database, using transactions to decide what gets written and when. Typically, the implementation tries to avoid using locks by working in an optimistic
 way: a sequence of read and write accesses are treated as a single operation, and if two processes try to access the shared
 region at the same time, each in its own transaction, only one of them succeeds. The other processes are told that they failed
 and should try again after checking what the new contents are. It’s a straightforward model and doesn’t require anyone to
 wait for someone else to release a lock.

 The main drawback is that you have to retry failed transactions (and they could, of course, fail repeatedly). There is also
 some significant overhead involved with the transaction system itself, as well as a need for additional memory to store the
 data you’re trying to write until it’s decided which process will succeed. Ideally, there should be hardware support for transactional
 memory just as there typically is support for virtual memory.

 The STM approach seems more manageable to programmers than the use of locks, and it may be a good way to take advantage of
 concurrency as long as transactions don’t have to be restarted too often due to contention. We still consider this approach
 to be at its core a variant of shared memory with locks, and one that may be more help on an operating system level than on
 an application programming level; but it’s currently a lively research topic, and things may turn out differently.

Futures, promises, and similar

 Another more modern approach is the use of so-called futures or promises. This is a concept with several variants; it can be found in languages like E and MultiLisp and as a library in Java, and
 it’s similar to I-vars and M-vars in Id and Glasgow Haskell, concurrent logic variables in Concurrent Prolog, and dataflow
 variables in Oz.

 The basic idea is that a future is a result of a computation that has been outsourced to some other process, possibly on another
 CPU or a completely different computer. A future can be passed around like any other object, but if someone wants to read
 the value and it isn’t ready yet, they have to wait for it to be done. Although this is conceptually simple and makes it easy
 to pass around data in concurrent systems, it also makes the program brittle in case of failure of the remote process or the
 network in between: the code that tries to access the value of the promise may have no idea what to do if the value is still
 missing and the connection is dead.

Message passing

 As we said in section 1.1.2, Erlang processes communicate by message passing. This means the receiving process effectively gets a separate copy of the
 data, and nothing it does to that copy is observable by the sender. The only way to communicate information back to the sender
 is to send another message in the reverse direction. One of the most important consequences is that communication works the
 same whether the sender and receiver are on the same computer or separated by a network.

 Message passing in general comes in two flavors: synchronous and asynchronous. In the synchronous form, the sender can’t do anything else until the message has arrived at the receiving end; in the asynchronous
 form, senders can proceed immediately after posting the message. (In the real world, synchronous communication between separate
 machines is only possible if the receiver sends an acknowledgement back to the sender, telling it that it’s OK to continue,
 but this detail can be kept hidden from the programmer.)

 In Erlang, the message passing primitives are asynchronous, because it’s easy to implement the synchronous form when necessary
 by making the receiver always send an explicit reply that the sender can wait for. Often, though, the sender doesn’t need
 to know that the message arrived—that knowledge is overrated, because nothing tells you what the receiver did next: it may
 have died just afterward. This asynchronous “send-and-pray” method of communication also means the sender doesn’t need to
 be suspended while the message is being delivered (in particular if the message is sent over a slow communications link).

 Of course, you don’t get this level of separation between sender and receiver for free. Copying data can be expensive for
 large structures and can cause higher memory usage if the sender also needs to keep their copy of the data. In practice, this
 means you must be aware of and manage the size and complexity of messages you’re sending. But in normal, idiomatic Erlang
 programs, the majority of messages are small, and the overhead of copying is usually negligible.

 We hope this discussion has been of use to your understanding of Erlang’s place in the concurrent programming landscape of
 today. Message passing may not be the sexiest of these techniques, but the track record of Erlang shows that from a systems
 engineering perspective, it seems to be the most practical and flexible.

 1.1.4. Programming with processes in Erlang

 When you build an Erlang program, you say to yourself, “What activities here are concurrent—can happen independently of one
 another?” After you sketch out an answer to that question, you can start building a system where every single instance of
 those activities you identified becomes a separate process.

 In contrast to most other languages, concurrency in Erlang is cheap. Spawning a process is about as much work as allocating
 an object in your average object-oriented language. This can take some getting used to in the beginning, because it’s such
 a foreign concept! But when you do get used to it, magic begins to happen. Picture a complex operation that has several concurrent
 parts, all modeled as separate processes. The operation starts, processes are spawned, data is manipulated, and a result is
 produced, and at that moment the processes involved disappear magically into oblivion, taking with them their internal state,
 their database handles, their sockets, and any other stuff that needs to be cleaned up that you don’t want to have to deal
 with manually.

 In the rest of this section, we take a brief look at how easy it is to create processes, how lightweight they are, and how
 simple it is to communicate between them.

Creating a process: spawning

 Erlang processes are not operating system threads. They’re much more lightweight, implemented by the Erlang runtime system, and Erlang is easily capable
 of spawning hundreds of thousands of processes on a single system running on commodity hardware. Each of these processes is
 separate from all the other processes in the runtime system; it shares no memory with the others, and in no way can it be
 corrupted by another process dying or going berserk.

 A typical thread in a modern operating system reserves some megabytes of address space for its stack (which means a 32-bit
 machine can never have more than a few thousand simultaneous threads), and it still crashes if it uses more stack space than
 expected. Erlang processes, on the other hand, start with only a couple of hundred bytes of stack space each, and they grow
 or shrink automatically as required.

 Erlang’s syntax for creating processes is straightforward, as illustrated by the following example. Let’s spawn a process
 whose job is to execute the function call io:format("erlang!") and then finish:

 spawn(io, format, ["erlang!"])

 That’s all. (Although the spawn function has some other variants, this is the simplest.) This code starts a separate process, which prints the text “erlang!”
 on the console and then quits.

 In chapter 2, we give an overview of the Erlang language and its syntax, but right now we hope you’ll be able to get the gist of our examples
 without further explanation. One of the strengths of Erlang is that it’s generally easy to understand the code even if you’ve
 never seen the language before. Let’s see if you agree.

How processes talk

 Processes need to do more than spawn and run—they need to exchange information. Erlang makes this communication simple. The
 basic operator for sending a message is !, pronounced “bang,” and it’s used in the form “Destination ! Message”. This is message passing at its most primitive, like mailing a postcard. The OTP framework takes process communication
 to another level, and we dive into that in chapter 3; for now, let’s marvel at the simplicity of communicating between two independent and concurrent processes, as illustrated
 in the following listing.

