
 [image: cover]

 OAuth 2 in Action

 Justin Richer Antonio Sanso

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jennifer Stout
Technical development editors: Dennis Sellinger
David Fombella Pombal
Copyeditor: Progressive Publishing Services
Technical proofreader: Ivan Kirkpatrick
Composition: Progressive Publishing Services
Cover design: Marija Tudor

 ISBN: 9781617293276

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 -- EBM -- 22 21 20 19 18 17

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. First steps

 Chapter 1. What is OAuth 2.0 and why should you care?

 Chapter 2. The OAuth dance

 2. Building an OAuth 2 environment

 Chapter 3. Building a simple OAuth client

 Chapter 4. Building a simple OAuth protected resource

 Chapter 5. Building a simple OAuth authorization server

 Chapter 6. OAuth 2.0 in the real world

 3. OAuth 2 implementation and vulnerabilities

 Chapter 7. Common client vulnerabilities

 Chapter 8. Common protected resources vulnerabilities

 Chapter 9. Common authorization server vulnerabilities

 Chapter 10. Common OAuth token vulnerabilities

 4. Taking OAuth further

 Chapter 11. OAuth tokens

 Chapter 12. Dynamic client registration

 Chapter 13. User authentication with OAuth 2.0

 Chapter 14. Protocols and profiles using OAuth 2.0

 Chapter 15. Beyond bearer tokens

 Chapter 16. Summary and conclusions

 Appendix A. An introduction to our code framework

 Appendix B. Extended code listings

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. First steps

 Chapter 1. What is OAuth 2.0 and why should you care?

 1.1. What is OAuth 2.0?

 1.2. The bad old days: credential sharing (and credential theft)

 1.3. Delegating access

 1.3.1. Beyond HTTP Basic and the password-sharing antipattern

 1.3.2. Authorization delegation: why it matters and how it’s used

 1.3.3. User-driven security and user choice

 1.4. OAuth 2.0: the good, the bad, and the ugly

 1.5. What OAuth 2.0 isn’t

 1.6. Summary

 Chapter 2. The OAuth dance

 2.1. Overview of the OAuth 2.0 protocol: getting and using tokens

 2.2. Following an OAuth 2.0 authorization grant in detail

 2.3. OAuth’s actors: clients, authorization servers, resource owners, and protected resources

 2.4. OAuth’s components: tokens, scopes, and authorization grants

 2.4.1. Access tokens

 2.4.2. Scopes

 2.4.3. Refresh tokens

 2.4.4. Authorization grants

 2.5. Interactions between OAuth’s actors and components: back channel, front channel, and endpoints

 2.5.1. Back-channel communication

 2.5.2. Front-channel communication

 2.6. Summary

 2. Building an OAuth 2 environment

 Chapter 3. Building a simple OAuth client

 3.1. Register an OAuth client with an authorization server

 3.2. Get a token using the authorization code grant type

 3.2.1. Sending the authorization request

 3.2.2. Processing the authorization response

 3.2.3. Adding cross-site protection with the state parameter

 3.3. Use the token with a protected resource

 3.4. Refresh the access token

 3.5. Summary

 Chapter 4. Building a simple OAuth protected resource

 4.1. Parsing the OAuth token from the HTTP request

 4.2. Validating the token against our data store

 4.3. Serving content based on the token

 4.3.1. Different scopes for different actions

 4.3.2. Different scopes for different data results

 4.3.3. Different users for different data results

 4.3.4. Additional access controls

 4.4. Summary

 Chapter 5. Building a simple OAuth authorization server

 5.1. Managing OAuth client registrations

 5.2. Authorizing a client

 5.2.1. The authorization endpoint

 5.2.2. Authorizing the client

 5.3. Issuing a token

 5.3.1. Authenticating the client

 5.3.2. Processing the authorization grant request

 5.4. Adding refresh token support

 5.5. Adding scope support

 5.6. Summary

 Chapter 6. OAuth 2.0 in the real world

 6.1. Authorization grant types

 6.1.1. Implicit grant type

 6.1.2. Client credentials grant type

 6.1.3. Resource owner credentials grant type

 6.1.4. Assertion grant types

 6.1.5. Choosing the appropriate grant type

 6.2. Client deployments

 6.2.1. Web applications

 6.2.2. Browser applications

 6.2.3. Native applications

 6.2.4. Handling secrets

 6.3. Summary

 3. OAuth 2 implementation and vulnerabilities

 Chapter 7. Common client vulnerabilities

 7.1. General client security

 7.2. CSRF attack against the client

 7.3. Theft of client credentials

 7.4. Registration of the redirect URI

 7.4.1. Stealing the authorization code through the referrer

 7.4.2. Stealing the token through an open redirector

 7.5. Theft of authorization codes

 7.6. Theft of tokens

 7.7. Native applications best practices

 7.8. Summary

 Chapter 8. Common protected resources vulnerabilities

 8.1. How are protected resources vulnerable?

 8.2. Design of a protected resource endpoint

 8.2.1. How to protect a resource endpoint

 8.2.2. Adding implicit grant support

 8.3. Token replays

 8.4. Summary

 Chapter 9. Common authorization server vulnerabilities

 9.1. General security

 9.2. Session hijacking

 9.3. Redirect URI manipulation

 9.4. Client impersonation

 9.5. Open redirector

 9.6. Summary

 Chapter 10. Common OAuth token vulnerabilities

 10.1. What is a bearer token?

 10.2. Risks and considerations of using bearer tokens

 10.3. How to protect bearer tokens

 10.3.1. At the client

 10.3.2. At the authorization server

 10.3.3. At the protected resource

 10.4. Authorization code

 10.4.1. Proof Key for Code Exchange (PKCE)

 10.5. Summary

 4. Taking OAuth further

 Chapter 11. OAuth tokens

 11.1. What are OAuth tokens?

 11.2. Structured tokens: JSON Web Token (JWT)

 11.2.1. The structure of a JWT

 11.2.2. JWT claims

 11.2.3. Implementing JWT in our servers

 11.3. Cryptographic protection of tokens: JSON Object Signing and Encryption (JOSE)

 11.3.1. Symmetric signatures using HS256

 11.3.2. Asymmetric signatures using RS256

 11.3.3. Other token protection options

 11.4. Looking up a token’s information online: token introspection

 11.4.1. The introspection protocol

 11.4.2. Building the introspection endpoint

 11.4.3. Introspecting a token

 11.4.4. Combining introspection and JWT

 11.5. Managing the token lifecycle with token revocation

 11.5.1. The token revocation protocol

 11.5.2. Implementing the revocation endpoint

 11.5.3. Revoking a token

 11.6. The OAuth token lifecycle

 11.7. Summary

 Chapter 12. Dynamic client registration

 12.1. How the server knows about the client

 12.2. Registering clients at runtime

 12.2.1. How the protocol works

 12.2.2. Why use dynamic registration?

 12.2.3. Implementing the registration endpoint

 12.2.4. Having a client register itself

 12.3. Client metadata

 12.3.1. Table of core client metadata field names

 12.3.2. Internationalization of human-readable client metadata

 12.3.3. Software statements

 12.4. Managing dynamically registered clients

 12.4.1. How the management protocol works

 12.4.2. Implementing the dynamic client registration management API

 12.5. Summary

 Chapter 13. User authentication with OAuth 2.0

 13.1. Why OAuth 2.0 is not an authentication protocol

 13.1.1. Authentication vs. authorization: a delicious metaphor

 13.2. Mapping OAuth to an authentication protocol

 13.3. How OAuth 2.0 uses authentication

 13.4. Common pitfalls of using OAuth 2.0 for authentication

 13.4.1. Access tokens as proof of authentication

 13.4.2. Access of a protected API as proof of authentication

 13.4.3. Injection of access tokens

 13.4.4. Lack of audience restriction

 13.4.5. Injection of invalid user information

 13.4.6. Different protocols for every potential identity provider

 13.5. OpenID Connect: a standard for authentication and identity on top of OAuth 2.0

 13.5.1. ID tokens

 13.5.2. The UserInfo endpoint

 13.5.3. Dynamic server discovery and client registration

 13.5.4. Compatibility with OAuth 2.0

 13.5.5. Advanced capabilities

 13.6. Building a simple OpenID Connect system

 13.6.1. Generating the ID token

 13.6.2. Creating the UserInfo endpoint

 13.6.3. Parsing the ID token

 13.6.4. Fetching the UserInfo

 13.7. Summary

 Chapter 14. Protocols and profiles using OAuth 2.0

 14.1. User Managed Access (UMA)

 14.1.1. Why UMA matters

 14.1.2. How the UMA protocol works

 14.2. Health Relationship Trust (HEART)

 14.2.1. Why HEART matters to you

 14.2.2. The HEART specifications

 14.2.3. HEART mechanical profiles

 14.2.4. HEART semantic profiles

 14.3. International Government Assurance (iGov)

 14.3.1. Why iGov matters to you

 14.3.2. The future of iGov

 14.4. Summary

 Chapter 15. Beyond bearer tokens

 15.1. Why do we need more than bearer tokens?

 15.2. Proof of Possession (PoP) tokens

 15.2.1. Requesting and issuing a PoP token

 15.2.2. Using a PoP token at a protected resource

 15.2.3. Validating a PoP token request

 15.3. Implementing PoP token support

 15.3.1. Issuing the token and keys

 15.3.2. Creating the signed header and sending it to the resource

 15.3.3. Parsing the header, introspecting the token, and validating the signature

 15.4. TLS token binding

 15.5. Summary

 Chapter 16. Summary and conclusions

 16.1. The right tool

 16.2. Making key decisions

 16.3. The wider ecosystem

 16.4. The community

 16.5. The future

 16.6. Summary

 Appendix A. An introduction to our code framework

 A.1. An Introduction to Our Code Framework

 Appendix B. Extended code listings

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 There is nothing more daunting than a blank page. It stares at you. It taunts you.

 It’s not like you don’t know what you want to do. You have a clear picture of the awesome that you want to unleash. You can almost envision the smiles on your boss’s or customer’s face as they delight in the awesome you will create. But the problem is there’s a blank page in front of you.

 So you reach for your tools. Because you’re reading this, it’s likely you are a developer or identity management professional. Either way, you know that security is paramount and you want to protect the awesome that you intend to build.

 Enter OAuth. You’ve heard of it. You know it has something to do with protecting resources—most notably APIs. It’s super popular and, apparently, it can do anything. And the problem with things that can do anything is that they make it hard to do something. They are yet another blank page.

 Enter Justin and Antonio and this book. The easiest way to get over the paralysis when working with a thing that can do anything is to start and just try to do something. This book not only explains what OAuth does, it gently guides you through the process of doing something, at the end of which not only will you have a very solid understanding of OAuth as a tool, but you’ll no longer have a blank page in front of you—you’ll be ready to deliver the awesome that’s in your head.

 OAuth is a very powerful tool. Its power comes from its flexibility. Flexibility often means the ability to not only do what you want to do, but also the ability to do things in an unsafe way. Because OAuth governs access to APIs, which in turn gates access to your important data, it’s crucial that you do use it in a safe way by avoiding antipatterns and using best practices. Stated differently, just because you have the flexibility to do anything and deploy in any way, doesn’t mean that you should.

 There’s another thing about OAuth we might as well get on the table—you are not working with OAuth because you want to work with OAuth. You are working with OAuth because you want to do something else—most likely orchestrate a bunch of API calls and then do something awesome with the results. You’re thinking about a full page; you’re thinking about the awesome you want to unleash. OAuth is a way to get there, and to get there more securely.

 Thankfully, Justin and Antonio provide pragmatic guidance on what to do and what not to do. They acknowledge both the “I just want to get this done” and the “I want to make sure this is secure” mindsets you have.

 With the page filled, with the awesome out of your head and in your customers’ hands, you realize the job wasn’t so hard after all.

 —IAN GLAZER

 SENIOR DIRECTOR, IDENTITY

 SALESFORCE

Preface

 My name is Justin Richer, and I’m not a classically trained security nerd, even though I pretend to be one for my day job as a consultant. My background is in collaboration technologies and how we can get people doing things together using computers. Even so, I’ve been working with OAuth for a long time, having implemented several early OAuth 1.0 servers and clients to connect the collaboration systems that I was conducting research with at the time. It was around then that I came to appreciate that you needed to have a good, implementable, usable security system if your application architecture was going to survive in the real world. Around this time, I attended the early Internet Identity Workshop meetings, where people were talking about a next generation of OAuth, something that would build on the lessons learned from using OAuth 1.0 out in the real world. When the development of OAuth 2.0 started up in the Internet Engineering Task Force (IETF), I joined the group and dove face first into the debates. Several years later, we came up with a specification. It wasn’t perfect, but it worked pretty well, people got it, and it caught fire.

 I stayed involved with the OAuth Working Group, and even served as editor for the Dynamic Registration (RFC 7591 and 7592) and Token Introspection (RFC 7662) extensions to OAuth. Today, I’m the editor or author for parts of the OAuth Proof of Possession (PoP) suite, as well as the technical editor for several profiles and extensions of OAuth and its related protocols. I worked on the OpenID Connect core specification, and my team and I implemented a fairly well-received OAuth and OpenID Connect server and client suite, MITREid Connect. I suddenly found myself talking about OAuth 2.0 to many different audiences and implementing it on a wide variety of systems. I’d taught classes, given lectures, and written a handful of articles about the subject.

 So when Antonio Sanso, a well-respected security researcher in his own right, approached me to write this book together, it made sense for me to jump in. We looked around at what books were available on OAuth 2.0, and were unimpressed. Most of the material we found was specific to a service: How to write an OAuth client to talk to Facebook or Google, for instance. Or How to authorize your native application to GitHub’s API. And if that’s all you care about, there’s plenty of material out there. But what we didn’t see was something that would take the reader through the entire OAuth system, explaining why it is designed the way that it is, pointing out its flaws and limitations as well as its strengths. We decided that there was a need for a more comprehensive approach, and we decided to make it the best that we could. Consequently, this book doesn’t talk to any specific real-world OAuth provider, nor does it get into detail on a particular API or vertical domain. Instead, this book focuses on doing OAuth for its own sake, so that you can see how all the gears mesh together when you turn the cranks.

 We built out a code framework that, we hoped, would allow readers to focus on the core aspects of OAuth without getting overly caught up in the implementation platform details. After all, we didn’t want a book that was “How to implement OAuth 2.0 on Platform Du Jour,” but rather, “How the nuts and bolts of OAuth 2.0 work so you can use whatever platform you want.” So we went with a relatively simple Node.js framework, built on Express.js, and liberally used library code to abstract away the platform-specific weirdness as much as possible. Still, it’s JavaScript, so some of that weirdness crept in from time to time, as it would on any platform. But it’s our hope that you will be able to apply the methods and themes used here to your chosen language, platform, and architecture.

 Speaking of histories, how did we even get here? The story starts in 2006, when several web service companies, including Twitter and Ma.Gnolia, had complementary applications and wanted their users to be able to connect them together. At the time, this type of connection was typically accomplished by asking the user for their credentials on the remote system and sending those credentials to the API. However, the websites in question used a distributed identity technology, OpenID, to facilitate login. As a consequence, there were no usernames or passwords that could be used for the API.

 To overcome this, the developers sought to create a protocol that would allow their users to delegate access to the API. They based their new protocol on several proprietary implementations of this same concept, including Google’s AuthSub and Yahoo!’s BBAuth. In all of these, a client application is authorized by a user and receives a token that can then be used to access a remote API. These tokens were all issued with a public and private portion, and this protocol used a novel (if in retrospect fragile) cryptographic signing mechanism so that it could be used over non-TLS HTTP connections. They called their protocol OAuth 1.0 and published it as an open standard on the web. It quickly gained traction, and free implementations in several languages were made available alongside the specification itself. It worked so well and developers liked it so much that even the large internet companies soon deprecated their own proprietary mechanisms that had inspired OAuth in the first place.

 As happens with many new security protocols, a flaw was found early on in OAuth 1.0’s life, leading to the development of OAuth 1.0a to close a session fixation vulnerability. This version was later codified in the IETF as RFC 5849. At this point, a community was beginning to grow around the OAuth protocol, and new use cases were being developed and implemented. Some of these pushed OAuth into places that it was never meant to be used in, but these off-label OAuth uses worked better than any available alternatives. Still, OAuth 1.0 was a monolithic protocol designed to provide one mechanism to solve all use cases, and it was venturing into uncomfortable territory.

 Soon after the publication of RFC 5849, the Web Resource Access Protocol (WRAP) was published. This proposed protocol took the core aspects of the OAuth 1.0a protocol—a client, delegation, and tokens—and expanded them to be used in different ways. WRAP did away with many of OAuth 1.0’s more confusing and problem-prone aspects, such as its custom signature calculation mechanism. After much debate in the community, WRAP was decided on as the basis for the new OAuth 2.0 protocol. Where OAuth 1.0 was monolithic, OAuth 2.0 was modular. The modularity in OAuth 2.0 allowed it to be a framework that could be deployed and used in all of the ways that OAuth 1.0 had been in practice, but without twisting core aspects of the protocol. OAuth 2.0 essentially provided recipes.

 In 2012, the core OAuth 2.0 specifications were ratified by the IETF, but the community was far from done with it. This modularity was further codified by splitting the specification into two complementary pieces: RFC 6749 details how to get a token, while RFC 6750 details how to use a particular type of token (the Bearer token) at a protected resource. Furthermore, the core of RFC6749 details multiple ways to get a token and provides an extension mechanism. Instead of defining one complex method to fit different deployment models, OAuth 2.0 defines four different grant types, each suited to a different application type.

 Today, OAuth 2.0 is the premier authorization protocol in use on the web. It’s used by everything: from large internet companies to small startups, to enterprises, to just about everything in between and beyond. A whole ecosystem of extensions, profiles, and entire protocols built on top of OAuth 2.0 has sprung up, with people finding new and interesting ways to use this foundational technology. It’s our goal that this book will help you understand not only what OAuth 2.0 is and why it works the way it does, but how you can best use it to solve your own problems and build your own systems.

 JUSTIN RICHER

Acknowledgments

 Creating this book has been quite the journey. Ever since we embarked on the project and started putting the outline together, we had a feeling it was going to take a lot more sweat than we could have ever been prepared for. We were more right than we realized at the time, and it’s with great pleasure that we are finally able to write this part, thanking the many people who helped make it happen. We can’t possibly name you all here, so accept our humble thanks even if your name isn’t listed here explicitly.

 First off, this book would have never happened without the input and encouragement of the OAuth Working Group in the IETF and the larger OAuth and open standards communities. In particular, John Bradley and Hannes Tschofenig each provided invaluable input to the text at various points. Ian Glazer, William Dennis, Brian Campbell, Dick Hardt, Eve Maler, Mike Jones, and many others in the community encouraged us to create the book and helped provide important information to the internet. Aaron Parecki provided us space on oauth.net to not only talk about the book but also publish topical articles, including an early form of what became chapter 13. And special thanks to Ian for contributing the foreword and endorsing our work.

 This book would literally not exist without the help and input from the team from Manning Publications. Our fantastic team of editors and support staff included Michael Stephens, Erin Twohey, Nicole Butterfield, Candace Gillhoolley, Karen Miller, Rebecca Rinehart, Ana Romac, and especially our amazing editor Jennifer Stout. Thanks to Ivan Kirkpatrick, Dennis Sellinger, and David Fombella Pombal for making sure the technical bits made sense. A big thanks to everyone who took a chance and preordered the book as a MEAP; the early feedback we got from you was vital in making this the best book we could make it.

 We would also like to thank our peer reviewers who read the manuscript at various stages of its development and provided invaluable feedback along the way: Alessandro Campeis, Darko Bozhinovski, Gianluigi Spagnuolo, Gregor Zurowski, John Guthrie, Jorge Bo, Richard Meinsen, Thomas O’Rourke, and Travis Nelson.

Justin Richer

 Incomparable thanks are due to my coauthor, Antonio Sanso. His security and cryptographic expertise far outstrips anything I could dream of achieving, and it’s been an honor to work with him. Starting the book was his idea in the first place, and the whole project has been a collaborative effort.

 Thanks to my friends Mark Sherman and Dave Smiley, both of whom successfully published tech books before I first set words to the page. Their existence served to remind me that there was a light at the end of the tunnel, and their experience in navigating the publishing world was a great help. Thanks to John Brooks, Tristan Lewis, and Steve Moore, whom I was able to bounce ideas and phrases off of, even if they didn’t always realize I was doing it at the time.

 Many thanks to my clients over the last year for putting up with me disappearing at random times to go off and write. Thanks are especially due to Debbie Bucci and Paul Grassi, as their fantastic work programs have helped give me the direct experience needed to ground this book in the real world.

 I can’t possibly express enough thanks to my friend and colleague, Sarah Squire. She originally turned me on to the Node.js frameworks used in the exercises throughout the book, and I believe that, thanks to a trip to an office store, she has the distinction of owning the first printed version of this book. Overall, her encouragement, support, critique, and enthusiasm for this project has been without compare, and I doubt that the book would have really happened without her.

 Finally, but perhaps most importantly, a sincere and deep thank you to my entire family. The patience of my wife, Debbie, and my kids, Lucien, Genevieve, and Xavier, has been incredible. Between late nights and seemingly endless weekends with me locked up in my office, just out of reach, I’m sure they started to wonder if I’d ever come out, but now I’m glad to say there should be a whole lot more time to play Legos.

Antonio Sanso

 Working on this book has been quite a ride, and it’s with great delight and satisfaction that I write this part. In the end, as with everything, it’s the journey and not the destination that matters. My contribution to this book could not be possible without the help of many people surrounding me.

 I would like to thank my employer, Adobe Systems, and my managers Michael Marth and Philipp Suter for giving me the green light to work on this book.

 OAuth is a widespread protocol written in a collaborative way by many people under the IETF umbrella. Some of those people are the brightest minds in the security community. We had the privilege to have some extremely useful comments on the work-in-progress draft by John Bradley, Hannes Tschofenig and William Denniss.

 It is incredible how friendship can have an influence on someone’s life. For this reason, I’d like to thank, in no particular order: Elia Florio for being a constant source of inspiration; Damien Antipa for being so patient while explaining the most arcane part of Javascript and CSS; Francesco Mari, who introduced me to the beautiful world of Node.js and tirelessly listened my endless complains; Joel Richard for helping me with the magic of Apache Cordova; Alexis Tessier, the most talented designer I ever met; and Ian Boston for proofreading.

 And last but not least, Justin Richer, who has been the best coauthor I could ever hope for. You rock, Justin!

 But I can’t finish without a special thank you to the people I love.

 To my parents. They always encouraged me to pursue studying, without putting any pressure on me, even if they didn’t study themselves. Their support was unique. To my brother and sister who also encouraged me, especially in the early stage of my university time.

 And of course, the biggest thank you goes to my fiancée (soon wife) Yolanda, who supports and continuously encourages me on everything I do. Finally, to Santiago, my son, who helps me remember every single day how beautiful life is. I love you.

About this Book

 This book is intended to be a comprehensive and thorough treatment of the OAuth 2.0 protocol and many of its surrounding technologies, including OpenID Connect and JOSE/JWT. We want you to come away from this book with a deep understanding of what OAuth can do, why it works the way that it does, and how to deploy it properly and securely in an unsafe internet.

 The target reader for this book is someone who’s probably used OAuth 2.0, or at least heard of it, but doesn’t really know how it works or why it works that way. Maybe you’ve even developed one or more OAuth 2.0 components, such as a client to talk to a specific API, but you’re curious about other kinds of clients, or other parts of the OAuth 2.0 ecosystem. Perhaps you wonder, “What’s the authorization server doing when you go ask for that authorization code, anyway?” Or perhaps you’re tasked with protecting an API and you want to know if OAuth 2.0 is really going to do the job, and if so, how are you supposed to manage that? Maybe in your day job you’re building a client, but you want to know what the protected resource does with that token you sent it. Or maybe you’re building and protecting an API, but you want to know what the authorization server you’re talking to does to get those tokens into the right place. We want you to understand what the tool, OAuth 2.0, is really good at and how you can wield it effectively.

 We’re going to assume you know the basics of how HTTP works, and at least understand the utility of encrypting connections using TLS, if not the intimate details of how it works. Our code is all in JavaScript, but this isn’t a book about JavaScript, and so we’ve done our best to explain the abstractions and functionality that the code itself represents so that you can apply it to your own platform and language.

Roadmap

 This book has 4 sections consisting of 16 chapters in total. The first section, consisting of chapters 1 and 2, provides an overview of the OAuth 2.0 protocol and is considered core reading material. The second section, consisting of chapters 3 to 6, demonstrates how to build an entire OAuth 2.0 ecosystem. The third section, consisting of chapters 7 to 10, discusses vulnerabilities to different parts of the OAuth 2.0 ecosystem and how to avoid them. The final section, consisting of chapters 11 to 16, goes beyond the core OAuth 2.0 protocol and into the wider ecosystem of standards and specifications, as well as providing a wrap-up to the book.

 	
Chapter 1 provides an overview of the OAuth 2.0 protocol, as well as the motivation behind its development, including approaches to API security that predates OAuth.

 	
Chapter 2 goes into depth on the authorization code grant type, the most common and canonical of OAuth 2.0’s core grant types.

 	
Chapters 3 through 5 demonstrate how to build a simple but fully functional OAuth 2.0 client, protected resource server, and authorization server (respectively).

 	
Chapter 6 looks at the variations in the OAuth 2.0 protocol, including grant types other than the authorization code, as well as considerations for native applications.

 	
Chapters 7 through 9 discuss common vulnerabilities in OAuth 2.0 clients, protected resources, and authorization servers (respectively) and how to prevent them.

 	
Chapter 10 discusses vulnerabilities and attacks against OAuth 2.0 bearer tokens and authorization codes and how to prevent them.

 	
Chapter 11 looks at JSON Web Tokens (JWT) and the JOSE mechanisms used in encoding them, as well as token introspection and revocation to complete the token lifecycle.

 	
Chapter 12 looks at dynamic client registration and how that affects the characteristics of an OAuth 2.0 ecosystem.

 	
Chapter 13 looks at how OAuth 2.0 is not an authentication protocol, and then proceeds to show how to build an authentication protocol on top of it using OpenID Connect.

 	
Chapter 14 looks at the User Managed Access (UMA) protocol built on top of OAuth 2.0 that allows for user-to-user sharing, as well as the HEART and iGov profiles of OAuth 2.0 and OpenID Connect and how these protocols are applied in specific industry verticals.

 	
Chapter 15 moves beyond the common bearer token of OAuth 2.0’s core specifications and describes how both Proof of Possession (PoP) tokens and TLS token binding work with OAuth 2.0.

 	
Chapter 16 wraps everything up and directs the reader to how to apply this knowledge going forward, including a discussion of libraries and the wider OAuth 2.0 community.

 We don’t expect you to read this book in order, though you can do just that and we’ve tried to organize things to allow that kind of exposition. We do suggest that you read the first two chapters together, because they’ll give you a very thorough overview of OAuth 2.0 and provide some deep looks into key concepts and components. But let’s be honest, you’re probably looking for specific bits of information, so maybe you’ll go read the chapters on client development and client vulnerabilities, then hop around to the chapter on user authentication or token management, and then go take a look at how authorization servers tick. Because of this, we’ve also tried to make sure that each chapter really stands on its own, and we’ve put in references for other content throughout the book so that you can find your way to topics.

About the code

 All of the code in this book is available as open source under an Apache 2.0 license. We feel that it’s important to encourage people to use, remix, and contribute to the code, even if they’re just exercises and examples. The worlds of open standards, like OAuth, and open source go hand in hand, and we feel it’s important that we help contribute to that. The source is available from GitHub at https://github.com/oauthinaction/oauth-in-action-code/ and we encourage you to fork it, clone it, branch it, and even make pull requests to make it better. Code exercises are available for chapters 3 to 13, and 15, with an overview of the framework available in appendix A and selected code listings in appendix B. The code is also available for download from the publisher’s website at www.manning.com/books/oauth-2-in-action.

 All of the code in this book is written in the JavaScript language using Node.js. Web applications, which comprise most of the examples, use Express.js and a variety of other libraries to function. We’ve tried our best to insulate the readers from the oddities of JavaScript, as the goal of this book is not to learn proficiency in a particular language or platform. If you’ve ever programmed with a web framework, such as Java Spring or Ruby on Rails, then you’ll be familiar with most of the concepts and constructs. Furthermore, we’ve tried to include documented utility functions to handle some of the ancillary details to the OAuth protocol, such as building a properly formatted and encoded URL with query parameters or creating an HTTP Basic authentication string. See appendix A for more details on the code environment used throughout the book, including a simple exercise designed to show the reader how to get things up and running.

 Selected exercises are also available online at Katacoda (www.katacoda.com), an interactive, self-guided tutorial website. These exercises use the exact same code as the book itself, but are presented in a containerized runtime environment available over the web.

Code conventions

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this wasn’t enough, and listings include line-continuation markers ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

Author Online

 The purchase of OAuth 2 in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/oauth-2-in-action. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the Authors

 [image:]

 JUSTIN RICHER is a systems architect, software engineer, standards editor, and service designer with over seventeen years of industry experience in a wide variety of domains including internet security, identity, collaboration, usability, and serious games. As an active member of the Internet Engineering Task Force (IETF) and OpenID Foundation (OIDF) he has directly contributed to a number of foundational security protocols including OAuth 2.0 and OpenID Connect 1.0, as well as being the editor of several extensions of OAuth 2.0 including Dynamic Client Registration (RFC7591 & RFC7592) and Token Introspection (RFC7662). His pioneering work with Vectors of Trust and the third edition of NIST’s Digital Identity Guidelines (Special Publication 800-63) have pushed the conversation of what a trusted identity means in an unpredictable landscape. He is the founder and maintainer of the enterprise-focused MITREid Connect open source implementation of OAuth 2.0 and OpenID Connect and has led production deployment of the system at a number of organizations including The MITRE Corporation and the Massachusetts Institute of Technology. An accomplished and confident presenter, he is much sought-after as a plenary and keynote speaker at conferences around the world to audiences of all technical proficiencies. An ardent proponent of open standards and open source, he believes in solving hard problems with the right solution, even if that solution still needs to be invented.

 [image:]

 ANTONIO SANSO works as Senior Software Engineer at Adobe Research, Switzerland, where he is part of the Adobe Experience Manager security team. Prior to this, he worked as software engineer in the IBM Dublin Software Lab in Ireland. He found vulnerabilities in popular software, such as OpenSSL, Google Chrome, and Apple Safari, and he is included in the Google, Facebook, Microsoft, Paypal, and Github security hall of fame. He is an avid open source contributor, being the Vice President (chair) for Apache Oltu and a PMC member for Apache Sling. His working interests range from web application security to cryptography. Antonio is also the author of more than a dozen computer security patents and applied cryptography academic papers. He holds an MSc in Computer Science.

About the Cover Illustration

 The figure on the cover of OAuth 2 in Action is captioned “Man from Zagrovic, Dalmatia, Croatia.” The illustration is taken from a reproduction of a mid-nineteenth century album of Croatian traditional costumes by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, which is located within the ruins of Emperor Diocletian’s retirement palace from around AD 304, in the Roman core of the medieval center of the town. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Zagrovic is a small town in inland Dalmatia, built on the ruins of an old medieval fortress. The figure on the cover is wearing blue woolen trousers and, over a white linen shirt, a voluminous red woolen jacket, richly trimmed with the colorful embroidery typical for this region. He is holding a long pipe in one hand and has a musket slung over his other shoulder. A red cap and leather moccasins complete the outfit.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

 Part 1. First steps

 In this section, you’ll get a thorough overview of the OAuth 2.0 protocol, how it works, and why it works the way that it does. We’ll start with an overview of what OAuth is and how people used to solve the delegation problem before OAuth was invented. We’ll also take a look at the boundaries of what OAuth is not and how it fits into the larger web security ecosystem. We’ll then take a deep look at the authorization code grant type, the most canonical and complete grant type available in OAuth 2.0 today. These topics will provide a solid basis for understanding the rest of the book.

 Chapter 1. What is OAuth 2.0 and why should you care?

 This chapter covers

 	What OAuth 2.0 is

 	What developers do without OAuth

 	How OAuth works

 	What OAuth 2.0 is not

 If you’re a software developer on the web today, chances are you’ve heard of OAuth. It is a security protocol used to protect a large (and growing) number of web APIs all over the world, from large-scale providers such as Facebook and Google to small one-off APIs at startups and inside enterprises of all sizes. It’s used to connect websites to one another and it powers native and mobile applications connecting to cloud services. It’s being used as the security layer for a growing number of standard protocols in a variety of domains, from healthcare to identity, from energy to the social web. OAuth is far and away the dominant security method on the web today, and its ubiquity has leveled the playing field for developers wanting to secure their applications.

 But what is it, how does it work, and why do we need it?

1.1. What is OAuth 2.0?

 OAuth 2.0 is a delegation protocol, a means of letting someone who controls a resource allow a software application to access that resource on their behalf without impersonating them. The application requests authorization from the owner of the resource and receives tokens that it can use to access the resource. This all happens without the application needing to impersonate the person who controls the resource, since the token explicitly represents a delegated right of access. In many ways, you can think of the OAuth token as a “valet key” for the web. Not all cars have a valet key, but for those that do, the valet key provides additional security beyond simply handing over the regular key. The valet key of a car allows the owner of the car to give limited access to someone, the valet, without handing over full control in the form of the owner’s key. Simple valet keys limit the valet to accessing the ignition and doors but not the trunk or glove box. More complex valet keys can limit the upper speed of the car and even shut the car off if it travels more than a set distance from its starting point, sending an alert to the owner. In much the same way, OAuth tokens can limit the client’s access to only the actions that the resource owner has delegated.

 For example, let’s say that you have a cloud photo-storage service and a photo-printing service, and you want to be able to print the photos that you have stored in your storage service. Luckily, your cloud-printing service can communicate with your cloud-storage service using an API. This is great, except that the two services are run by different companies, which means that your account with the storage service has no connection to your account with the printing service. We can use OAuth to solve this problem by letting you delegate access to your photos across the different services, all without giving your password away to the photo printer.

 Although OAuth is largely indifferent to what kind of resource it is protecting, it does fit nicely with today’s RESTful web services, and it works well for both web and native client applications. It can be scaled from a small single-user application up to a multimillion-user internet API. It’s as much at home on the untamed wilds of the web, where it grew up and is used to protect user-facing APIs of all types, as it is inside the controlled and monitored boundaries of an enterprise, where it’s being used to manage access to a new generation of internal business APIs and systems.

 And that’s not all: if you’ve used mobile or web technology in the past five years, chances are even higher that you’ve used OAuth to delegate your authority to an application. In fact, if you’ve ever seen a web page like the one shown in figure 1.1, then you’ve used OAuth, whether you realize it or not.

 Figure 1.1. An OAuth authorization dialog from the exercise framework for this book

 [image:]

 In many instances, the use of the OAuth protocol is completely transparent, such as in Steam’s and Spotify’s desktop applications. Unless an end user is actively looking for the telltale marks of an OAuth transaction, they would never know it’s being used.[1] This is a good thing, since a good security system should be nearly invisible when all is functioning properly.

 1

 The good news is that by the end of this book, you should be able to pick up on all of these telltale signs yourself.

 We know that OAuth is a security protocol, but what exactly does it do? Since you’re holding a book that’s purportedly about OAuth 2.0, that’s a fair question. According to the specification that defines it:[2]

 2

 RFC 6749 https://tools.ietf.org/html/rfc6749

 The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf.

 Let’s unpack that a bit: as an authorization framework, OAuth is all about getting the right of access from one component of a system to another. In particular, in the OAuth world, a client application wants to gain access to a protected resource on behalf of a resource owner (usually an end user). These are the components that we have so far:

 	The resource owner has access to an API and can delegate access to that API. The resource owner is usually a person and is generally assumed to have access to a web browser. Consequently, this book’s diagrams represent this party as a person sitting with a web browser.

 	The protected resource is the component that the resource owner has access to. This can take many different forms, but for the most part it’s a web API of some kind. Even though the name “resource” makes it sound as though this is something to be downloaded, these APIs can allow read, write, and other operations just as well. This book’s diagrams show protected resources as a rack of servers with a lock icon.

 	The client is the piece of software that accesses the protected resource on behalf of the resource owner. If you’re a web developer, the name “client” might make you think this is the web browser, but that’s not how the term is used here. If you’re a business application developer, you might think of the “client” as the person who’s paying for your services, but that’s not what we’re talking about, either. In OAuth, the client is whatever software consumes the API that makes up the protected resource. Whenever you see “client” in this book, we’re almost certainly talking about this OAuth-specific definition. This book’s diagrams depict clients as a computer screen with gears. This is partially in deference to the fact that there are many different forms of client applications, as we’ll see in chapter 6, so no one icon will universally suffice.

 We’ll cover these all in greater depth in chapter 2 when we look at “The OAuth Dance” in detail. But for now, we need to realize that we’ve got one goal in this whole setup: getting the client to access the protected resource for the resource owner (see figure 1.2).

 Figure 1.2. Connecting the client on behalf of the resource owner

 [image:]

 In the printing example, let’s say you’ve uploaded your vacation photos to the photo-storage site, and now you want to have them printed. The storage site’s API is the resource, and the printing service is the client of that API. You, as the resource owner, need to be able to delegate part of your authority to the printer so that it can read your photos. You probably don’t want the printer to be able to read all of your photos, nor do you want the printer to be able to delete photos or upload new ones of its own. Ultimately, what you’re interested in is getting certain photos printed, and if you’re like most users, you’re not going to be thinking about the security architectures of the systems you’re using to get that done.

 Thankfully, because you’re reading this book, chances are that you’re not like most users and you do care about security architectures. In the next section, we’ll see how this problem could be solved imperfectly without OAuth, and then we’ll look at how OAuth can solve it in a better way.

1.2. The bad old days: credential sharing (and credential theft)

 The problem of wanting to connect multiple disparate services is hardly new, and we could make a compelling argument that it’s been around from the moment there was more than one network-connected service in the world.

 One approach, popular in the enterprise space, is to copy the user’s credentials and replay them on another service (see figure 1.3). In this case, the photo printer assumes that the user is using the same credentials at the printer that they’re using at the storage site. When the user logs in to the printer, the printer replays the user’s username and password at the storage site in order to gain access to the user’s account over there, pretending to be the user.

 Figure 1.3. Copy the resource owner’s credentials without asking

 [image:]

 In this scenario, the user needs to authenticate to the client using some kind of credential, usually something that’s centrally controlled and agreed on by both the client and the protected resource. The client then takes that credential, such as a username and password or a domain session cookie, and replays it to the protected resource, pretending to be the user. The protected resource acts as if the user had authenticated directly, which does in fact make the connection between the client and protected resource, as required previously.

 This approach requires that the user have the same credentials at the client application and the protected resource, which limits the effectiveness of this credential-theft technique to a single security domain. For instance, this could occur if a single company controls the client, authorization server, and protected resources, and all of these run inside the same policy and network control. If the printing service is offered by the same company that provided the storage service, this technique might work as the user would have the same account credentials on both services.

 This technique also exposes the user’s password to the client application, though inside a single security domain using a single set of credentials, this is likely to be happening anyway. However, the client is impersonating the user, and the protected resource has no way to tell the difference between the resource owner and the impersonating client because they’re using the same username and password in the same way.

 But what if the two services occupied different security domains, a likely scenario for our photo-printing example? We can’t copy the password the user gave us to log into our application any longer, because it won’t work on the remote site. Faced with this challenge, these would-be credential thieves could employ an age-old method for stealing something: ask the user (figure 1.4).

 Figure 1.4. Ask for the resource owner’s credentials, and replay them

 [image:]

 If the printing service wants to get the user’s photos, it can prompt the user for their username and password on the photo-storage site. As it did previously, the printer replays these credentials on the protected resource and impersonates the user. In this scenario, the credentials that the user uses to log into the client can be different from those used at the protected resource. However, the client gets around this by asking the user to provide a username and password for the protected resource. Many users will in fact do this, especially when promised a useful service involving the protected resource. Consequently, this remains one of the most common approaches to mobile applications accessing a back end service through a user account today: the mobile application prompts the user for their credentials and then replays those credentials directly to the back end API over the network. To keep accessing the API, the client application will store the user’s credentials so that they can be replayed as needed. This is an extremely dangerous practice, since the compromise of any client in use will lead to a full compromise of that user’s account across all systems.

 This approach still works only in a limited set of circumstances: the client needs to have access to the user’s credentials directly, and those credentials need to be able to be replayed against a service outside of the user’s presence. This rules out a large variety of ways that the user can log in, including nearly all federated, many multifactor, and most higher-security login systems.

 	

 Lightweight Directory Access Protocol (LDAP) authentication

 Interestingly, this pattern is exactly how password-vault authentication technologies such as LDAP function. When using LDAP for authentication, a client application collects credentials directly from the user and then replays these credentials to the LDAP server to see whether they’re valid. The client system must have access to the plaintext password of the user during the transaction; otherwise, it has no way of verifying it with the LDAP server. In a very real sense, this method is a form of man-in-the-middle attack on the user, although one that’s generally benevolent in nature.

 	

 For those situations in which it does work, it exposes the user’s primary credentials to a potentially untrustworthy application, the client. To continue to act as the user, the client has to store the user’s password in a replayable fashion (often in plaintext or a reversible encryption mechanism) for later use at the protected resource. If the client application is ever compromised, the attacker gains access not only to the client but also to the protected resource, as well as any other service where the end user may have used the same password.

 Furthermore, in both of these approaches, the client application is impersonating the resource owner, and the protected resource has no way of distinguishing a call directly from the resource owner from a call being directed through a client. Why is that undesirable? Let’s return to the printing service example. Many of the approaches will work, in limited circumstances, but consider that you don’t want the printing service to be able to upload or delete photos from the storage service. You want the service to read only those photos you want printed. You also want it to be able to read only while you want the photos printed, and you’d like the ability to turn that access off at any time.

 If the printing service needs to impersonate you to access your photos, the storage service has no way to tell whether it’s the printer or you asking to do something. If the printing service surreptitiously copies your password in the background (even though it promised not to do so), it can pretend to be you and grab your photos whenever it wants. The only way to turn off the rogue printing service is to change your password at the storage service, invalidating its copy of your password in the process. Couple this with the fact that many users reuse passwords across different systems and you have yet another place where passwords can be stolen and accounts correlated with each other. Quite frankly, in solving this connection problem, we made things worse.

 By now you’ve seen that replaying user passwords is bad. What if, instead, we gave the printing service universal access to all photos on the storage service on behalf of anyone it chose? Another common approach is to use a developer key (figure 1.5) issued to the client, which uses this to call the protected resource directly.

 Figure 1.5. Use a universal developer key, and identify the user on whose behalf you’re (allegedly) acting

 [image:]

 In this approach, the developer key acts as a kind of universal key that allows the client to impersonate any user that it chooses, probably through an API parameter. This has the benefit of not exposing the user’s credentials to the client, but at the cost of the client requiring a highly powerful credential. Our printing service could print any photos that it wanted to at any time, for any user, since the client effectively has free rein over the data on the protected resource. This can work to an extent, but only in instances in which the client can be fully known to and trusted by the protected resource. It is vanishingly unlikely that any such relationship would be built across two organizations, such as those in our photo-printing scenario. Additionally, the damage done to the protected resource if the client’s credentials are stolen is potentially catastrophic, since all users of the storage service are affected by the breach whether they ever used the printer or not.

 Another possible approach is to give users a special password (figure 1.6) that’s only for sharing with third-party services. Users don’t use this password to log in themselves, but paste it into applications that they want to work for them. This is starting to sound like that limited-use valet key you saw at the beginning of the chapter.

 Figure 1.6. A service-specific password that limits access

 [image:]

 This is starting to get closer to a desirable system, as the user no longer has to share their real password with the client, nor does the protected resource need to implicitly trust the client to act properly on behalf of all users at all times. However, the usability of such a system is, on its own, not very good. This requires the user to generate, distribute, and manage these special credentials in addition to the primary passwords they already must curate. Since it’s the user who must manage these credentials, there is also, generally speaking, no correlation between the client program and the credential itself. This makes it difficult to revoke access to a specific application.

 Can’t we do better than this?

 What if we were able to have this kind of limited credential, issued separately for each client and each user combination, to be used at a protected resource? We could then tie limited rights to each of these limited credentials. What if there were a network-based protocol that allowed the generation and secure distribution of these limited credentials across security boundaries in a way that’s both user-friendly and scalable to the internet as a whole? Now we’re starting to talk about something interesting.

1.3. Delegating access

 OAuth is a protocol designed to do exactly that: in OAuth, the end user delegates some part of their authority to access the protected resource to the client application to act on their behalf. To make that happen, OAuth introduces another component into the system: the authorization server (figure 1.7).

 Figure 1.7. The OAuth authorization server automates the service-specific password process

 [image:]

 The authorization server (AS) is trusted by the protected resource to issue special-purpose security credentials—called OAuth access tokens—to clients. To acquire a token, the client first sends the resource owner to the authorization server in order to request that the resource owner authorize this client. The resource owner authenticates to the authorization server and is generally presented with a choice of whether to authorize the client making the request. The client is able to ask for a subset of functionality, or scopes, which the resource owner may be able to further diminish. Once the authorization grant has been made, the client can then request an access token from the authorization server. This access token can be used at the protected resource to access the API, as granted by the resource owner (see figure 1.8).

 Figure 1.8. The OAuth process, at a high level

 [image:]

 At no time in this process are the resource owner’s credentials exposed to the client: the resource owner authenticates to the authorization server separately from anything used to communicate with the client. Neither does the client have a high-powered developer key: the client is unable to access anything on its own and instead must be authorized by a valid resource owner before it can access any protected resources. This is true even though most OAuth clients have a means of authenticating themselves to the authorization server.

 The user generally never has to see or deal with the access token directly. Instead of requiring the user to generate tokens and paste them into clients, the OAuth protocol facilitates this process and makes it relatively simple for the client to request a token and the user to authorize the client. Clients can then manage the tokens, and users can manage the client applications.

 This is a general overview of how the OAuth protocol works, but in fact there are several ways to get an access token using OAuth. We’ll discuss the details of this process in chapter 2 by looking in more detail at the authorization code grant type of OAuth 2.0. We’ll cover other methods of getting access tokens in chapter 6.

 1.3.1. Beyond HTTP Basic and the password-sharing antipattern

 Many of the more “traditional” approaches listed in the previous section are examples of the password antipattern, in which a shared secret (the password) directly represents the party in question (the user). By sharing this secret password with applications, the user enables applications to access protected APIs. However, as we’ve shown, this is fraught with real-world problems. Passwords can be stolen or guessed, a password from one service is likely to be used verbatim on another service by the same user, and storage of passwords for future API access makes them even more susceptible to theft.

 How did HTTP APIs become password-protected in the first place? The history of the HTTP protocol and its security methods is enlightening. The HTTP protocol defines a mechanism whereby a user in a browser is able to authenticate to a web page using a username and password over a protocol known as HTTP Basic Auth. There is also a slightly more secure version of this, known as HTTP Digest Auth, but for our purposes they are interchangeable as both assume the presence of a user and effectively require the presentation of a username and password to the HTTP server. Additionally, because HTTP is a stateless protocol, it’s assumed that these credentials will be presented again on every single transaction.

OEBPS/OEBPS/Images/01fig01_alt.jpg

OEBPS/OEBPS/Images/01fig02.jpg

OEBPS/OEBPS/Images/xxivfig01.jpg

OEBPS/OEBPS/Images/xxvfig01.jpg

OEBPS/OEBPS/Images/common0a.jpg

OEBPS/OEBPS/Images/enter.jpg

OEBPS/OEBPS/Images/logo.jpg

OEBPS/OEBPS/Images/common0b.jpg

OEBPS/OEBPS/Images/01fig03.jpg

OEBPS/OEBPS/Images/01fig05.jpg

OEBPS/OEBPS/Images/01fig04.jpg

OEBPS/OEBPS/Images/cover.jpg

OEBPS/OEBPS/Images/01fig07.jpg

OEBPS/OEBPS/Images/01fig06.jpg

OEBPS/OEBPS/Images/01fig08_alt.jpg

