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Preface
      

      
      
      
      What can graphs—the things with edges and vertices, not the things with axes and tick marks—do and how can they be used with
         Spark? These are the questions we try to answer in this book.
      

      
      Frequently it is said, “Graphs can do anything,” or at least, “There are a bunch of different things you can do with graphs.”
         That says nothing, of course, so in this book we show a number of specific, real-life ways you can apply graphs and talk about
         how to implement such solutions in Spark GraphX.
      

      
      A lot of technology buzzwords are applicable to this book: Big Data, Hadoop, Spark, graphs, machine learning, Scala, and functional
         programming. We break it all down for you. Even though we end up in some fairly advanced areas, we don’t assume anything more
         than an ability to program in some language such as Java.
      

      
      This chart from Google Trends shows the relative interest in these buzzwords through early 2016:

      
      [image: ]

      
      Note that for the generic terms spark and graphs we had to substitute the overly specific Apache Spark and edges and vertices, but the trends can still be seen. A couple of these technologies, machine learning and graphs, have long histories within
         academic computer science and are attracting new interest in the commercial realm as the availability of Big Data is now mainstreaming
         these technologies. If you studied these technologies in school as theory, the world is ready now for you to put them into
         practice.
      

      
      A lot of companies, including the ones we work for and have worked for in the past, have put Spark—though not necessarily
         GraphX—into production. This makes it more than just a little convenient when embarking on prototyping graph solutions to
         try GraphX first. If you have a Spark cluster already, or if you decide to spin up a Spark cluster in the cloud, such as with
         Databricks or Amazon, you can get started with graphs without having to set up a new graph-specific cluster or technology,
         and you can use your Spark skills in the GraphX API. As more and more applications of graphs hit the newsstands—from rooting
         out terrorist networks on Twitter to fraud detection in credit card transaction data—GraphX becomes an easy platform choice
         for trying them out.
      

      
      In this book, we simultaneously take on two ambitious goals: to cover everything possible about Spark GraphX, and to assume
         little to no expertise about any of the technologies represented by the aforementioned buzzwords. The biggest challenge was
         the hefty amount of prerequisites to get into GraphX—specifically, Spark, Scala, and graphs. Other challenges were the extensive
         GraphX API and the many different ways graphs can be used. The result is an In Action book that differs a bit from others: it takes a while to get started, with the first five chapters laying the groundwork,
         and there are a number of interesting examples rather than one that gradually gets built up over the course of the book. In
         books about other technologies the reader might come with a problem to solve; this book attempts to demystify graphs by showing
         precisely what problems graphs can solve. And it does so without assuming a lot of background knowledge and experience.
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About this Book
      

      
      
      
      With Spark GraphX in Action we hope to bring down to earth the sometimes esoteric topic of graphs, while explaining how to use them from the in-memory
         distributed computing framework that has gained the most mindshare, Apache Spark.
      

      
      
      
Who should read this book
      

      
      We assume the reader has no previous knowledge of Spark, Scala, and graphs, but we move so quickly through the material that
         previous exposure to at least one of these would be helpful. We attempt to be particularly gentle with our use of Scala. We
         provide a brief introduction to Scala in chapter 3 and Scala tips throughout the book whenever a new Scala concept is introduced (these are listed in appendix D). In fact, we have recommended this book as a concise introduction to Scala, pointing to chapter 3, the Scala tips, and appendix D.
      

      
      In addition, we completely avoid the mathematical proofs that are common in college courses in graph theory. Our focus is
         on graph algorithms and applications, and sometimes we pull in graph structure terminology as needed.
      

      
      We target version Spark/GraphX 1.6 in this book.

      
      The intended reader is someone who has a lot of development experience in some programming language such as Java, but graphs
         lend themselves so naturally to illustrations that non-developers will be able to glean ideas about what graphs can be used
         for.
      

      
      
      
      
      
How this book is organized
      

      
      This book is divided into three parts. Part 1 consists of three chapters that cover the prerequisites to using Spark GraphX. The four chapters in part 2 cover standard and expected ways to use GraphX, and the three chapters in part 3 are on advanced topics.
      

      
      We also could have divided the book into two parts, with the first five chapters covering the prerequisites and basic GraphX
         API, and the last five chapters covering ways to apply GraphX.
      

      
      Here’s a run-down of the ten chapters:

      
      

      
         
         	
Chapter 1 sets the stage with what Big Data, Spark, and graphs are, and how Spark GraphX fits into a processing data flow. Chapter 1 is a mini-book unto itself—not in length, but in its breadth of overview.
            
         

         
         	
Chapter 2 is a very brief, hands-on demonstration of using GraphX—no experience required.
            
         

         
         	
Chapter 3 covers the prerequisites of Spark, Scala, and graphs.
            
         

         
         	
Chapter 4 discusses how to do basic Spark GraphX operations and presents the two main methods of implementing custom GraphX algorithms:
            Map/Reduce and Pregel.
            
         

         
         	
Chapter 5 illustrates how to use the numerous algorithms built into GraphX.
            
         

         
         	
Chapter 6 is where something outside the API is finally covered. Here we take some of the classic mid-20th century graph algorithms
            and show how they can be implemented in GraphX.
            
         

         
         	
Chapter 7 is a lengthy and ambitious chapter on machine learning. Normally this would require a book unto itself, but here we cover
            machine learning without assuming any prior knowledge or experience and quickly ramp up to advanced examples of supervised,
            unsupervised, and semi-supervised learning.
            
         

         
         	
Chapter 8 shows how some operations can be done in GraphX that one might assume would come built into a graph-processing package: reading
            RDF files, merging graphs, finding graph isomorphisms, and computing the global clustering coefficient.
            
         

         
         	
Chapter 9 shows how to monitor performance and see what your GraphX application is doing. It then shows how to do performance tuning
            through techniques like caching, checkpointing, and serializer tuning.
            
         

         
         	
Chapter 10 describes how to use languages other than Scala with GraphX (but strongly advises against it) and also discusses how to use
            tools that complement GraphX. It demonstrates Apache Zeppelin notebook software with GraphX to provide visualization of graphs
            inline with an interactive notebook shell. The third-party tool Spark JobServer can be used to convert GraphX from a mere
            batch graph processing system to an online database of sorts. Finally, GraphFrames is a library on GitHub (developed by some
            of the developers of GraphX) that uses Spark SQL DataFrames rather than RDDs to provide a convenient and high-performing way
            to query graphs.
            
         

         
      

      
      We also include four appendixes in the book. Appendix A addresses installing Spark and appendix B gives a brief overview of Gephi visualization software. In appendix C you’ll find a number of online resources for additional information about GraphX and where to go to keep up with latest developments.
         Finally, appendix D lists the Scala tips given throughout the book.
      

      
      Anyone new to Spark, Scala, or graphs should progress through the first five chapters linearly. After that, you can pick and
         choose topics from the last five chapters.
      

      
      Anyone who is expert in Spark, Scala, and graphs but new to GraphX can skip chapter 3 and probably also chapter 5.
      

      
      
      
      
About the code
      

      
      The source code for this book is available for download from manning.com at https://www.manning.com/books/spark-graphx-in-action.
      

      
      For the most part, the code presented in this book and available for download is intended to be used with the interactive
         Spark shell. Thus, the .scala extension is technically a misnomer, as these files can’t be compiled with the scalac compiler.
      

      
      Some examples are meant to be conventionally compiled and executed, and these are always accompanied by a pom.xml for Maven
         or by a .sbt for sbt (Simple Build Tool).
      

      
      This book contains many examples of source code, both in numbered listings and inline with normal text. In both cases, source
         code is formatted in a fixed-width font like this to separate it from ordinary text.
      

      
      In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
         the available page space in the book. In rare cases, even this was not enough, and listings may include line-continuation
         markers ([image: ]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
         Code annotations accompany many of the listings, highlighting important concepts.
      

      
      The code for the examples in this book can be downloaded from the publisher’s website at www.manning.com/books/spark-graphx-in-action.
      

      
      
      
      
Author Online
      

      
      Purchase of Spark GraphX in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
         browser to www.manning.com/books/spark-graphx-in-action. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
         rules of conduct on the forum.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
         readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
         authors, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging
         questions lest their interest stray!
      

      
      The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
         the book is in print.
      

      
      
      
      
About the authors
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      MICHAEL MALAK has been writing software since before computers could be purchased in stores preassembled. He has been developing in Spark
         for two Fortune 200 companies since early 2013 and often gives presentations, especially in the Denver/Boulder region of Colorado
         where he lives. You can find his personal technical blog at http://technicaltidbit.com.
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      ROBIN EAST has worked as a consultant to large organizations for more than 15 years, delivering Big Data and content intelligence solutions
         in the fields of finance, government, healthcare, and utilities. He is a data scientist at Worldpay, helping them deliver
         their vision of putting data at the heart of everything they do. You can find his other writings on Spark, GraphX, and machine
         learning at https://mlspeed.wordpress.com.
      

      
      
      

About the Cover Illustration
      

      
      
      
      The figure on the cover of Spark GraphX in Action is captioned “Man from Šibenik, Dalmatia, Croatia.” The illustration is taken from a reproduction of an album of Croatian
         traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia,
         in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in
         the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.
         The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of
         the costumes and of everyday life.
      

      
      Šibenik is a historic city in Croatia, located in central Dalmatia where the river Krka flows into the Adriatic Sea. Šibenik
         is a political, educational, industrial, and tourist center of Šibenik-Knin County and the third- largest city in the historic
         region of Dalmatia. It is the oldest native Croatian town on the shores of the Adriatic.
      

      
      Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
         away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
         by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
         and fast-paced technological life. Manning celebrates the inventiveness and initiative of the computer business with book
         covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books
         and collections like this one.
      

      
      
      
      


Part 1. Spark and graphs
      

      
      
      Graphs—the things composed of vertices and edges, not graphs from Algebra class—carry a mystique about them. They seem to
         be very powerful, yet what can be done with them is a bit of a mystery. Part of the problem is that the answer “graphs can
         do anything” says precisely nothing. Right off in chapter 1, we suggest a broad categorization of different types of graphs found in the world. In the last third of chapter 3 we illustrate graph terminology.
      

      
      Apache Spark is a distributed computing system growing in popularity due to its speed. GraphX is Spark applied to graphs,
         and chapter 1 describes how GraphX fits into a data processing workflow. In chapter 2, you’ll actually get hands on with PageRank, the algorithm that launched Google.
      

      
      Chapter 3 is a crash course in the three foundational technologies required for this book: Spark, Scala, and graphs.
      

      
      
      
      
      


Chapter 1. Two important technologies: Spark and graphs
      

      
      This chapter covers

      
      

      
         
         	Why Spark has become the leading Big Data processing system
            
         

         
         	What makes graphs a unique way of modeling connected data
            
         

         
         	How GraphX makes Spark a leading platform for graph analytics
            
         

         
      

      
      It’s well-known that we are generating more data than ever. But it’s not just the individual data points that are important—it’s
         also the connections between them. Extracting information from such connected datasets can give insights into numerous areas
         such as detecting fraud, collecting bioinformatics, and ranking pages on the web.
      

      
      Graphs provide a powerful way to represent and exploit these connections. Graphs represent networks of data points as vertices
         and encode connections through edges between pairs of vertices. Graphs can be used to model such diverse areas as computer
         vision, natural language processing, and recommender systems.
      

      
      With such a representation of connected data comes a whole raft of tools and techniques that can be used to mine the information
         content of the network. Among the many tools covered in this book, you’ll find PageRank (for finding the most influential
         members of the network), topic modeling with Latent Dirichlet Allocation (LDA), and clustering coefficient to discover highly
         connected communities.
      

      
      Unfortunately, traditional tools used for the analysis of data, such as relational databases, are not well suited to this
         type of problem. Table-oriented frameworks such as SQL are cumbersome when it comes to representing typical graph notions
         such as following a trail of connections. Furthermore, traditional methods of data processing fail to scale as the size of
         the data to be analyzed increases.
      

      
      A solution is at hand with graph processing systems. Such systems supply data models and programming interfaces that provide
         a more natural way to query and analyze graph structures. Graph processing systems provide the means to create graph structures
         from raw data sources and apply the processing necessary to mine the information content therein.
      

      
      Apache Spark is the Big Data processing alternative that has all but supplanted Hadoop, the open source data processing platform
         that ushered in the era of Big Data. Easily scaling to clusters of hundreds of nodes, Spark’s in-memory data processing can
         often outperform Hadoop many times over.
      

      
      GraphX is the graph processing layer on top of Spark that brings the power of Big Data processing to graphs—graphs that would
         be too large to fit on a single machine. People started using Spark for graphs long ago, including with the predecessor Bagel
         module, but with GraphX we now have a standardized way to do so, and it also provides a library of useful algorithms.
      

      
      Here are some of the many reasons why you may want to use Spark GraphX:

      
      

      
         
         	You already have Spark data processing pipelines and want to incorporate graph processing.
            
         

         
         	You’re curious about the power of Spark and/or GraphX.
            
         

         
         	You’re among the many for whom graph data has become important.
            
         

         
         	Your graph data is too large to fit on a single machine.
            
         

         
         	Either you don’t need multiple applications accessing the same data store or you plan to add a REST server to Spark; for example,
            with the add-on originally by Ooyala called Spark Job Server.
            
         

         
         	Either you don’t need database-type transactions or you plan on using a graph database such as Neo4j or Titan in conjunction
            with GraphX.
            
         

         
         	You already have a Spark cluster available to your application.
            
         

         
         	You would like to use the concise, expressive power of Scala.
            
         

         
      

      
      
      
1.1. Spark: the step beyond Hadoop MapReduce
      

      
      This section discusses Big Data in relation to Spark and graphs. Big Data is a major challenge for data science teams, in
         part because a single machine is unlikely to have the power and capacity to run processing at the scale required. Moreover, even systems designed for Big Data, such as Hadoop,
         can struggle to process graph data efficiently due to some of the properties of that data, as you’ll see later in this chapter.
      

      
      Apache Spark is similar to Apache Hadoop in that it stores data distributed across a cluster of servers, or nodes. The difference is that Apache Spark stores data in memory (RAM) whereas Hadoop stores data on disk (either a spinning hard
         disk drive or a solid-state drive (SSD)), as shown in figure 1.1.
      

      
      
      
      Figure 1.1. Big Data is data that is too big to fit on a single machine. Hadoop and Spark are technologies that distribute Big Data across
         a cluster of nodes. Spark is faster than Hadoop alone because it distributes data across the RAM in the cluster instead of
         the disks.
      

      
      [image: ]

      
      
      
         
            
         
         
            
               	
            

         
      

      Definition

      
      
      The word node has two distinct uses when it comes to graphs and to cluster computing. Graph data is composed of vertices and edges, and
         in that context node is a synonym for vertex. In cluster computing, the physical machines that comprise the cluster are also known as nodes. To
         avoid confusion, we refer to graph nodes/vertices only as vertices, which is also the terminology adopted by Spark GraphX. When we use the word node in this book, we mean strictly one physical computer participating in cluster computing.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Besides differing in where data is processed during computation (RAM versus disk), Spark’s API is much easier to work with
         than the Hadoop Map/Reduce API. Combined with the conciseness of Scala, the native programming language of Spark, a ratio of 100:1 for the number of Hadoop Map/Reduce
         Java lines of code to Spark Scala lines of code is common.
      

      
      Although this book uses Scala primarily, don’t worry if you don’t know Scala yet. Chapter 3 provides a jumpstart into Scala, and all along the way we explain the tricks and terse, arcane syntax that are part and parcel
         of Scala. But deep familiarity with at least one programming language—such as Java, C++, C#, or Python—is assumed.
      

      
      
      1.1.1. The elusive definition of Big Data
      

      
      The idea of Big Data has gotten a lot of hype. The ideas trace back to the 2003 Google Paper on the Google File System and
         the 2004 Google paper on Map/Reduce, and these inspired the development of what is now Apache Hadoop.
      

      
      The term Big Data has a lot of competing definitions, and some claim it has by now lost all meaning, but there is a simple core and crucial
         concept it still legitimately embodies: data that’s too large to fit on a single machine.
      

      
      Data sizes have exploded. Data is coming from website click streams, server logs, and sensors, to name a few sources. Some
         of this data is graph data, meaning it’s comprised of edges and vertices, such as from collaborative websites (aka Web 2.0 of which social media is a subset). Large sets of graph data are effectively crowdsourced, such as the body of interconnected knowledge contained
         in Wikipedia or the graph represented by Facebook friends, LinkedIn connections, or Twitter followers.
      

      
      
      
      1.1.2. Hadoop: the world before Spark
      

      
      Before we talk about Spark, let’s recap how Hadoop solves the Big Data processing problem, because Spark builds on the core
         Hadoop concepts described in this section.
      

      
      Hadoop provides a framework to implement fault-tolerant parallel processing on a cluster of machines. Hadoop provides two
         key capabilities:
      

      
      

      
         
         	
HDFS —Distributed storage
            
         

         
         	
MapReduce —Distributed compute
            
         

         
      

      
      HDFS provides distributed, fault-tolerant storage. The NameNode partitions a single large file into smaller blocks. A typical
         block size is 64 MB or 128 MB. The blocks are scattered across the machines in the cluster. Fault-tolerance is provided by
         replicating each block of the file to a number of nodes (the default is three, but to make the diagram simpler, figure 1.2 shows a replication factor of two). Should a node fail, rendering all the file blocks on that machine unavailable, other
         nodes can transparently provide the missing blocks. This is a key idea in the architecture of Hadoop: the design accommodates
         machine failures as part of normal operations.
      

      
      
      
      Figure 1.2. Three data blocks distributed with replication factor 2 across a Hadoop Distributed File System (HDFS)
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      MapReduce (see figure 1.3) is the Hadoop parallel processing framework that provides parallel and distributed computation. MapReduce allows the programmer
         to write a single piece of code, encapsulated in map and reduce functions that are executed against the dataset residing on HDFS. To achieve data locality, the code is shipped (in .jar form) to the data nodes, and the Map is executed there. This avoids consuming network bandwidth to ship the data around the cluster. For the Reduce summary, though, the results of the Maps are
         shipped to some Reduce node for the Reduce to take place there (this is called shuffling). Parallelism is achieved primarily during the Map, and Hadoop also provides resiliency in that if a machine or process fails,
         the computation can be restarted on another machine.
      

      
      
      
      Figure 1.3. MapReduce is the processing paradigm used by both Hadoop and Spark. Shown is a MapReduce operation to count the number of
         times “error” appears in a server log. The Map is (normally) a one-to-one operation that produces one transformed data item
         for each source data item. The Reduce is a many-to-one operation that summarizes the Map outputs. Both Hadoop and Spark use
         the MapReduce paradigm.
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      The MapReduce programming framework abstracts the dataset as a stream of key-value pairs to be processed and the output written
         back to HDFS. It’s a limited paradigm but it has been used to solve many data parallel problems by chaining together MapReduce
         read-process-write operations. Simple tasks, such as the word counting in figure 1.3, benefit from this approach. But iterative algorithms like machine learning suffer, which is where Spark comes in.
      

      
      
      
      1.1.3. Spark: in-memory MapReduce processing
      

      
      This section looks at an alternative distributed processing system, Spark, which builds on the foundations laid by Hadoop.
         In this section you’ll learn about Resilient Distributed Datasets (RDDs), which have a large role to play in how Spark represents
         graph data.
      

      
      Hadoop falls down on a couple of classes of problems:

      
      

      
         
         	Interactive querying
            
         

         
         	Iterative algorithms
            
         

         
      

      
      Hadoop is good for running a single query on a large dataset, but in many cases, once we have an answer, we want to ask another
         question of the data. This is referred to as interactive querying. With Hadoop, this means waiting to reload the data from disk and process it again. It’s not unusual to have to execute the
         same set of computations as a precursor to subsequent analysis.
      

      
      Iterative algorithms are used in a wide array of machine learning tasks, such as Stochastic Gradient Descent, as well as graph-based
         algorithms like PageRank. An iterative algorithm applies a set of calculations to a dataset over and over until some criterion
         has been met. Implementing such algorithms in Hadoop typically requires a series of MapReduce jobs where data is loaded on
         each iteration. For large datasets, there could be hundreds or thousands of iterations, resulting in long runtimes.
      

      
      Next you’ll see how Spark solves these problems. Like Hadoop, Spark runs on a cluster of commodity hardware machines. The
         key abstraction in Spark is a Resilient Distributed Dataset (RDD). RDDs are created by the Spark application (residing in
         the Spark Driver) via a Cluster Manager, as shown in figure 1.4.
      

      
      
      
      Figure 1.4. Spark provides RDDs that can be viewed as distributed in-memory arrays.
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      An RDD consists of distributed subsets of the data called partitions that can be loaded into memory on the machines across the cluster.
      

      
      
      
      
In-memory processing
      

      
      Spark performs most of its operations in RAM. Because Spark is memory-based, it’s more suited to processing graphs than Hadoop
         Map/Reduce because Map/Reduce processes data sequentially, whereas RAM is by nature random-access.
      

      
      The key to Spark’s usefulness in interactive querying and iterative processing is its ability to cache RDDs in memory. Caching
         an RDD avoids the need to reprocess the chain of parent RDDs each time a result is returned.
      

      
      Naturally, this means that to take advantage of Spark’s in-memory processing, the machines in the cluster must have a large
         amount of RAM. But if the available memory is insufficient, Spark will spill data back to disk gracefully and continue to
         work.
      

      
      A Spark cluster needs a place to store data permanently. That place needs to be a distributed storage system, and options
         include HDFS, Cassandra, and Amazon’s S3.
      

      
      
      
      
      
      
1.2. Graphs: finding meaning from relationships
      

      
      Graphs can be used to represent naturally occurring connected data, such as the following:

      
      

      
         
         	Social networks
            
         

         
         	Mobile phone systems
            
         

         
         	Web pages on the internet
            
         

         
      

      
      Limited for decades to the realm of academia and research, graphs have over the past few years been adopted by organizations
         from Silicon Valley social media companies to governmental intelligence agencies seeking to find and use relationship patterns
         in their data. Graphs have now even entered the popular lexicon, with Facebook introducing its Graph Search, intelligence
         agencies publicly calling for the need to “connect the dots,” and the old internet meme/game called the Six Degrees of Kevin
         Bacon. Even the now-universal and ubiquitous icon for share on social media and smartphone cameras is that of a miniature graph:
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      One of the most common uses for graphs today is to mine social media data, specifically to identify cliques, to recommend
         new connections, and to suggest products and ads. Such data can be big—more than can be stored on a single machine—which is
         where Spark comes in: it stores data across multiple machines participating in a cluster.
      

      
      Spark is well-suited to handling graph data for another reason: it stores data in the memory (RAM) of each computer in the
         cluster, in contrast to Hadoop, which stores data on the disk of each computer in the cluster. Whereas Hadoop can handle sequential
         access of data, Spark can handle the arbitrary access order needed by a graph system, which has to traverse graphs from one
         vertex to the next.
      

      
      GraphX is not a database. Instead, it’s a graph processing system, which is useful, for example, for fielding web service
         queries or performing one-off, long-running standalone computations. Because GraphX isn’t a database, it doesn’t handle updates
         and deletes like Neo4j and Titan, which are graph databases. Apache Giraph is another example of a graph processing system, but Giraph is limited to slow Hadoop Map/Reduce. GraphX, Giraph, and GraphLab
         are all separate implementations of the ideas expressed in the Google Pregel paper. Such graph processing systems are optimized
         for running algorithms on the entire graph in a massively parallel manner, as opposed to working with small pieces of graphs
         like graph databases. To draw a comparison to the world of standard relational databases, graph databases like Neo4j are like
         OLTP (Online Transaction Processing) whereas graph processing systems like GraphX are like OLAP (Online Analytical Processing).
      

      
      Graphs can store various kinds of data: geospatial, social media, paper citation networks, and, of course, web page links.
         A tiny social media network graph is shown in figure 1.5. “Ann,” “Bill,” “Charles,” “Diane,” and “’Went to gym this morning’” are vertices, and “Is-friends-with,” “Wrote-status,” and “Likes-status” are edges.
      

      
      
      
      Figure 1.5. If Charles shares his status with friends of friends, determining the list of who could see his status would be cumbersome
         to figure out if you only had tables or arrays to work with.
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      1.2.1. Uses of graphs
      

      
      It’s well-known that we are now living in a world where we are generating more data than ever before. We are collecting more
         data points with richer content from an ever-expanding variety of sources.
      

      
      To take advantage of this situation, organizations big and small are also putting data analysis and data mining at the heart
         of their operations—a move that some have dubbed the data-driven business. But data is not just getting bigger, it’s more connected. This connectedness is what gives data its richness and provides
         ever greater opportunities to understand the world around us. Graphs offer a powerful way to represent and exploit these connections.
      

      
      What forms does this connected data take? Start with one of the most well-known connected datasets: the World Wide Web. At
         a simplistic level, the web consists of billions of pages of metadata, text, images, and videos, and every page can point
         to one or more of the other pages using a link tag.
      

      
      As figure 1.6 shows, you can represent these pages and links as a graph. You can then use the structure of the graph to provide information
         on the relative authority of each page. You can visualize this as each page providing a vote for each page it points to. But
         not all pages are equal; you might imagine that a page on a major news site has more importance than a posting by an unknown
         blogger. This is the problem that’s solved by the PageRank algorithm, as you will see in chapter 5, and it has many more applications beyond ranking web pages.
      

      
      
      
      Figure 1.6. The links between web pages can be represented as a graph. The structure of the graph provides information about the relative
         authority, or ranking, of each page.
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      The graphs we have looked at so far have captured links between pages; there is either a link or no link. We can make the
         graphs richer if we have more information about the connection. A typical example would be ratings information. When you give
         a 5-star rating to a movie on Netflix, not only do you create a connection between yourself and the movie, you also assign
         a value to that connection.
      

      
      Movie ratings aren’t the only value that can be applied to connections in graphs. Dollar values in the analysis of financial
         fraud, distances travelled between cities, and the traffic carried across a network of mobile phone stations are other examples
         of ways to enhance the richness of the connections represented in graphs.
      

      
      Even if the connections between data points don’t have a measurable value, there is still valuable information that can be
         captured in the graph. Take a social media site as an example. Each profile could store details of where a person went to
         school, and as before, this represents a connection between the person and the school. If we capture other information, such
         when they attended the school, that additional information can be represented in the graph. Now when we want to show friend
         recommendations to our user, we can make sure we don’t show them the class of ‘96 when they are in the class of ‘83.
      

      
      Graphs existed long before social networking. Other uses for graphs include
      

      
      

      
         
         	Finding the shortest route in a geo-mapping app
            
         

         
         	Recommending products, services, personal contacts, or media based on other people with similar-looking graphs
            
         

         
         	Converting a tangle of interconnected topics into a hierarchy for organizational schemes that require a hierarchy (computer
            file system folders, a class syllabus, and so forth)
            
         

         
         	Determining the most authoritative scholarly papers
            
         

         
      

      
      
      
      1.2.2. Types of graph data
      

      
      What kind of data can you put into a graph? The usual answer “anything” is not very helpful. Figure 1.7 shows some different types of data that can be represented by a graph:
      

      
      

      
         
         	Network
            
         

         
         	Tree
            
         

         
         	RDBMS-like data
            
         

         
         	Sparse matrix
            
         

         
         	Kitchen sink
            
         

         
      

      
      
      

      
      
      Figure 1.7. Different types of data that can be represented by graphs
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      A network graph can be a road network as shown in figure 1.7, a social network, or a computer network. A tree graph has no cycles (loops). Any RDBMS can be converted into a graph format;
         an employee RDBMS is shown converted into a graph. But this would only be useful if some graph algorithms are needed, such
         as PageRank for community detection or minimum spanning tree for network planning.
      

      
      As discussed in chapter 3, every graph has an associated adjacency matrix. This powerful concept has an important implication: that a graph is just an alternative data structure and not something
         magical. Some algorithms, which might otherwise have to deal with unwieldy matrices, can take advantage of the more compressed
         representation of a graph, especially if the alternative is a sparse matrix. SVD++, discussed in chapter 7, is an example of such an algorithm.
      

      
      Attempts have been made to create kitchen sink graphs to encode all of human knowledge. The Cyc project is an example that attempts to encode all of human common sense
         into a graph. The YAGO (Yet Another Great Ontology) project has the slightly more modest goal of encoding an ontology (dictionary,
         hierarchy, and relationships) that represents everything in the world. Sometimes people think artificial intelligence will
         automatically result from such an ambitious graph. That doesn’t happen, but such graphs are useful for assististing natural
         language processing projects of reasonable goals.
      

      
      
      
      
      1.2.3. Plain RDBMS inadequate for graphs
      

      
      If you were to try to represent a graph in an RDBMS—or arrays of objects, if you’re not familiar with SQL—you would probably
         have one table (or array) of vertices and another table of edges. The table of edges would have foreign keys (references)
         to the vertices table so that each edge would refer to the two vertices in connects. This is all well and good, provided you
         don’t need to query deeply in the graph.
      

      
      In the example graph in figure 1.5, suppose we want to find out who can see Charles’s status “Went to gym this morning.” If Charles shared it only with direct
         friends, then finding who can see it—who Charles’ direct friends are—would be easy to do with a table structure. But suppose
         Charles shared his status with friends of friends; then to reach Ann would require hopping through the tables. In terms of
         SQL, we would have to join the edge table to itself. If we wanted the Six Degrees of Kevin Bacon, we would have to join the
         edge table to itself six times within the same SQL query.
      

      
      What is common to problems that can be modeled as graphs is that we are focusing as much on the connections between entities
         as on the entities themselves. In many cases we want to traverse the connections to find things such as friends-of-friends-of-friends
         in social networks, cascades of retweets on Twitter, or the common component in a network of failed computers.
      

      
      Furthermore, not all connections are created equal. Suppose we are analyzing surveillance data on a known criminal and his
         many associates and connections. We want to identify those people most likely to provide us with information, but it doesn’t
         make sense to investigate everybody who has some connection; we want to prioritize by some sort of metric that measures the
         strength of the connection. One such metric could be the number of times a week that contact is made. Graphs allow us to assign
         a value or weight to each connection and then use that weighting in subsequent processing.
      

      
      
      
      
      
1.3. Putting them together for lightning fast graph processing: Spark GraphX
      

      
      GraphX is a layer on top of Spark that provides a graph data structure composed of Spark RDDs, and it provides an API to operate
         on those graph data structures. GraphX comes with the standard Spark distribution, and you use it through a combination of
         the GraphX-specific API and the regular Spark API.
      

      
      Spark originated out of AMPLab at the University of California, Berkeley in 2011 and became a top-level Apache project in
         2014. Not everything from AMPLab is part of the official Apache Spark distribution. And to operate, Spark requires two major
         pieces shown in the bottom two gray layers of figure 1.8: distributed storage and a cluster manager. In this book, we assume HDFS for the distributed storage and not having a cluster
         manager, which is running Spark on a single computer; this is sometimes called pseudo-distributed mode for test and development.
      

































