

 [image: Cover Page]

Secure by Design

 Dan Bergh Johnsson

 Daniel Deogun

 Daniel Sawano

 Foreword by Daniel Terhorst-North

 [image: ManningBlackSized.png]

 Manning

 Shelter Island

 Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Development editor: Jennifer Stout

 Technical development editor: Luis Atencio

 Review editor: Aleks Dragosavljević

 Production editor: David Novak

 Copy editor: Frances Buran

 Proofreader: Carl Quesnel

 Technical proofreader: John Guthrie

 Typesetter: Happenstance Type-O-Rama

 Cover designer: Marija Tudor

 ISBN 9781617294358

 Printed in the United States of America

 Dedication

 To our families

 —Dan Bergh Johnsson, Daniel Deogun, and Daniel Sawano

 brief contents

 Part 1. Introduction

 1 Why design matters for security

 2 Intermission: The anti-Hamlet

 Part 2. Fundamentals

 3 Core concepts of Domain-Driven Design

 4 Code constructs promoting security

 5 Domain primitives

 6 Ensuring integrity of state

 7 Reducing complexity of state

 8 Leveraging your delivery pipeline for security

 9 Handling failures securely

 10 Benefits of cloud thinking

 11 Intermission: An insurance policy for free

 Part 3. Applying the fundamentals

 12 Guidance in legacy code

 13 Guidance on microservices

 14 A final word: Don’t forget about security!

 front matter

foreword

 In the early 1990s I was in my first graduate job in the middle of a recession, and they were having a tough round of layoffs. Someone noticed that each victim’s UNIX account was being locked out just before the friendly HR person came to tap them on the shoulder and escort them from the building. They wrote a small script to monitor differences in the user password file and display the names of users whose accounts were being locked. We suddenly had a magic tool that would identify the next target just before the hatchet fell...and an enormous security and privacy breach.

 In my second job, as a programmer at a marketing firm, there were lots of password-protected Microsoft Word documents flying around, often with sensitive commercial information in them. I pointed out how weak the encryption was on these files, and how easy it was to read them using a freely available tool that was making the rounds on Usenet (your grandparents’ Google Groups). No one listened until I started emailing the files back to the senders with the encryption removed.

 Then I figured most people’s login passwords were probably too weak as well. I got the same lack of response until I wrote a script that ran a simple password-cracking tool on a regular basis, and emailed people their login passwords. There was a pretty high hit rate. At that stage I didn’t know anything about information theory, Shannon entropy, attack surface areas, asymmetric cryptography—I was just a kid with a password-cracking tool. But I became the company’s de facto InfoSec Officer. Those were simpler times!

 Over a decade later, as a developer at ThoughtWorks building a large-scale energy trading platform, I received what is still my favorite ever bug report. One of our testers noticed that a password field didn’t have a check for password length, which should have been 30 characters. However, she didn’t log the bug as “30 character password limit isn’t being checked.” Instead, she thought “I wonder how much text I could shove into that password field?” By a process of trial and error, the final bug report was “If you enter more than 32,000 characters in the password field, then the application crashes.” She had turned a simple validation error into a denial-of-service security exploit, crashing the entire application server just by entering a suitably crafted password. (Some years later I was at a software testing conference where they decided to use iPads for conference registration, using an app they had written themselves. I learned you should never do this with software testers, when a tester friend tried registering as “Julie undefined” and brought the whole system to its knees. Testers are evil.)

 Fast-forward another decade or so to the present day, and I watch in dismay as nearly every week yet another data security breach of a high-profile company appears in the news. I could cite some recent ones, but they will be ancient history by the time you read this, and newer, bigger, more worrying data hauls of passwords, phone numbers, credit card details, social security numbers, and other sensitive personal and financial data will have appeared on the dark web, only to be discovered and reported months or years later to an increasingly desensitized and vulnerable public.

 Why is this picture so bleak? In a world of free multifactor authentication, biometric security, physical tokens, password suites like 1Password (https://1password.com/) and LastPass (https://www.lastpass.com/), and notification services like Have I Been Pwned (https://haveibeenpwned.com), you could be forgiven for thinking we’ve got security covered. But as Dan, Daniel, and Daniel point out in the introduction (I felt obliged to write this foreword on the basis there weren’t enough people called Daniel involved), there is no point having strong locks and heavy doors if a malicious actor can just lift the doors off their metaphorical hinges and walk off with the prize.

 There is no such thing as a secure system, at least not in absolute terms. All security is relative to a perceived threat model, and all systems are more or less secure with respect to that model. The goal of this book, and the reason its content has never been more urgent or relevant, is to demonstrate that security is first and foremost a design consideration. It isn’t something you can graft on at the end, however well-intentioned you are.

 Security is in the data types you choose, and how you represent them in code. Security is in the domain terms you use, and how faithfully you model domain concepts and business rules. Security is in reducing the cognitive distance between the business domain and the tools you build to address customer needs in that domain.

 As the authors demonstrate again and again throughout this book, reducing this cognitive distance eliminates entire classes of security risk. The easier we can make it for domain experts to recognize concepts and processes in the way we model a solution, and in the corresponding code, tests, and other technical artifacts, the more likely they are to spot problems. They can call out the discrepancies, inconsistencies, assumptions, and all the other myriad ways we build systems that don’t reflect the real world: online bookstores where you can buy a negative number of books, password fields that allow you to submit a decent-sized sonnet, and sensitive account information that can be viewed by casual snoopers.

 Secure by Design is my favorite kind of book for two reasons. First, it weaves together two of my favorite fields: Application and Information Security—in which I am an enthusiastic amateur—and Domain-Driven Design—in which I hope I can claim some kind of proficiency. Second, it is a practical, actionable handbook. It isn’t just a call to arms about treating security seriously as a design activity, which would be a worthy goal in its own right, it also provides a raft of real examples, worked through from design considerations to actual code listings, that put meat on the bones of security by design.

 I want to note a couple of standout examples, though there are many. One is the treatment of “shallow design,” exemplified by using primitive types like integers and strings to represent rich business concepts. This exposes you to risks like the password exploit (a Password type would be self-validating for length, say, in a way a string isn’t), or the negative books (a BookCount type wouldn’t allow negative values like an integer does). Reading this section, as someone who has been writing software professionally for over 30 years, I wanted to reach back through time and hit my younger programming self on the head with this book, or at least leave it mysteriously on his desk with an Alice in Wonderland-style Read Me label on it.

 Another exemplar is the topic of poor error handling, which is a huge source of potential security violations. Most modern programming languages have two types of code paths: the ones where things go OK, and the ones where bad things happen. The latter mostly live in a twilight zone of catch-blocks and exception handlers, or halfhearted guard clauses. As programmers, our cognitive biases conspire to convince us we have covered all the cases. We even have the hubris to write comments like // this can’t happen. We are wrong again and again.

 The late Joe Armstrong, an amazing systems engineer and inventor of the Erlang language, used to say that the only reliable way to handle an error is to “Let it crash!” The contortions we go through to avoid “letting it crash” range from the “billion-dollar mistake” of null pointers and their tricksy exceptions, through nested if-else stacks and the will-they-won’t-they fall-through logic of switch blocks, to leaning on our IDEs to generate the arcane boilerplate code for interpolating strings or evaluating equality.

 We know smaller components are easier to test than larger ones. They have exponentially fewer places for bugs to hide, and it is therefore easier to reason about their security. However, we are only beginning to understand the security implications of running a system of hundreds or thousands of small components—microservices or serverless architectures—and the fledgling domains of Observability and Chaos Engineering are starting to gain mindshare in a way DevOps and Continuous Delivery did before them.

 I see Secure by Design as an important contribution to this trajectory, but focusing on the very heart of the development cycle, in the domain-modeling activities that DDD folks refer to as knowledge crunching, and leveraging the ideas of ubiquitous language and bounded contexts to bring security to the fore in programming, testing, deployment, and runtime. Shallow modeling and post hoc security audits don’t cut it anymore.

 We can’t all be security experts. We can all be mindful of good Domain-Driven Design and its consequent impact on security.

 Daniel Terhorst-North, Security Amateur, London, July 2019

preface

 As developers, good design feels natural to us. Even before we met, all three of us enjoyed good code: code that speaks its intention, that captures the ideas of its creators in ways that are easy to understand, and that’s intuitive to work with. We assume you also like good code. We also share a common interest in security, realizing both how important and how hard that work is. The digitization of our world is a marvelous thing, but bad security is one of the things that can undermine it.

 Over the years, we’ve met and worked with lots of people. We’ve discussed code and design in general, and security in particular. The idea that high-quality programming practices can reduce the number of security-related mistakes gradually took hold and grew. If programmers could have that kind of support at their fingertips, it could have a tremendous impact, making our world a little bit more stable. This is the idea that later became secure by design and this book. Independently, we’ve tried and tested that idea in various forms, most of which never got a name, and we’ve met and exchanged ideas with many people. Some of these exchanges have left a somewhat bigger imprint and deserve mentioning—at the risk of not mentioning other important exchanges.

 Some important influences came from Eric Evans. His ideas about Domain-Driven Design (DDD) provided a terminology to talk about how code should capture meaning. In 2008, security researcher John Wilander and DDD enthusiast Dan Bergh Johnsson began to work together, and security entered the mix. The ideas from DDD came to form the platform for their discussions about security and code. Together, they coined the phrase Domain-Driven Security in 2009, which was one of the first-named front-runners to secure by design. Upon presenting at the OWASP European conference in 2010, they realized that Erlend Oftedal in Oslo had been playing with similar ideas, and the discussion broadened. These discussions led to a deeper understanding of how to mitigate risks such as injection flaws and cross-site scripting (XSS). In 2011, Daniel Deogun and Daniel Sawano joined the team, which started an era of increased industry practice. We evolved ideas on using design for improved security and tried them out in practice on a large scale, and, to our delight, they worked surprisingly well. For example, a client of ours secretly ordered a security audit to test one of our projects, and it came out with only one solitary security remark, where a comparable project received a list of 3,000 remarks!

 Spreading our thoughts and findings through projects, blog posts, and conference presentations, we put more and more ideas under the umbrella of using design to avoid security weaknesses, until Daniel Deogun was approached by Manning in 2015 with a proposal to put these kinds of ideas into the form of a book. At the time of writing these lines in 2019, we’ve covered a lot of ground, and the book has become both thicker and denser than we had intended. But we’ve tried to only include material we think is important for security. We’ve also taken care to ensure that the book isn’t too dependent on specific languages or frameworks. We hope that the ideas of secure by design transcend languages and frameworks and won’t be outdated soon. We’re glad you picked up a copy of this book, and hope you’ll find it useful to make this wonderful digital world somewhat better, somewhat more stable, and somewhat more secure—to make it secure by design.

acknowledgments

 We want to thank the wonderful community of software professionals that we have the honor to be part of. Thanks for all the conference discussions, thanks for all the blog posts, thanks for all the code. Without you, all our professional lives would be much duller.

 We also want to thank those who have brought this book to life. Thanks to our patient editors—Cynthia Kane, Toni Arritola, and Jennifer Stout—who have given us excellent feedback on content and style. Thanks to our wonderful copy editor, Rachel Head, who has polished our rough, nonnative English to the shiny phrasings you read on these pages. And thanks to the Manning production team, who helped turn the manuscript into the book you’re reading. Much appreciation goes to Daniel Terhorst-North for contributing the foreword and for his helpful feedback while writing it. Thanks to Gojko Adzic, Erlend Oftedal, Peter Magnusson, Jimmy Nilsson, Luis Atencio, and John Guthrie for technical reviews and feedback. To all the reviewers: Adrian Citu, Alexander Zenger, Andrea Barisone, Arnaldo Gabriel Ayala Meyer, Christoffer Fink, Daut Morina, David Raymond, Doug Sparling, Eros Pedrini, Henrik Gering, Jan Goyvaerts, Jeremy Lange, Jim Amrhein, John Kasiewicz, Jonathan Sharley, Joseph Preston, Pietro Maffi, Richard Vaughan, Robert Kielty, Steve Eckmann, and Zorodzayi Mukuya, your suggestions helped make this a better book. Thanks to the publisher, who believed in us and the book’s topic. We also want to thank everyone else involved in creating this book, but whom we’ve not interacted with directly. It’s amazing how much goes into creating a book like this.

 Dan Bergh Johnsson: First, and above all, I want to thank my lovely wife, Fia, and my wonderful sons, Karl and Anton. Thanks for all the tea and support. You are the light of my eyes. On a more professional note, I’d like to thank Cons Åhs, who taught me programming; Eric Evans, for showing me the rigor of Domain-Driven Design; and John Wilander, who helped me understand the connection between good programming and good security. Thanks to the security professionals who can’t be named. And finally, thanks to the spirit that lives in the computer.

 Daniel Deogun: I’d like to thank my beautiful wife, Ida, and my beloved children, Lucas and Isac. Thank you for all your support, love, and understanding during the so-often stressful times while writing this book. This wouldn’t have been possible without you—thank you. I’d also like to thank everyone who’s challenged my ideas over the years; all the questions, comments, and interesting discussions have truly been helpful while working on this book.

 Daniel Sawano: I want to thank my wonderful wife, Elin, and my beloved children, Alvin and Oliver, for the patience with all the late nights and long hours spent on writing this book—thank you for all your love and support. I also want to thank everyone I’ve had the opportunity to work with during my career (none mentioned, none forgotten). Thank you for the inspiring discussions, debates, and knowledge-sharing. You’ve all played a part in shaping the ideas that are expressed in this book.

about this book

 Secure by Design is a book about security that comes with a different twist than regular security books. Instead of taking the classical approach, where security is the main focus, it makes software design its primary concern. This might sound a bit odd at first, but when you realize that security flaws are often caused by poor design, then the approach of looking at security from a design perspective becomes much more appealing. Because, what if a fair amount of security vulnerabilities could be avoided using good design and best practices? Then it would certainly revolutionize how we look at software development and justify why you need to make certain design choices.

 Exploring how software design relates to software security is therefore the main objective of this book. This, in turn, means that you won’t find discussions about classical security topics like buffer overflows, weaknesses in cryptographic hash functions, or which authentication method to use. Instead, you’ll learn why certain design choices matter for security and how to use them to craft secure software from the inside out.

 Who should read this book

 Secure by Design is a book primarily written for software developers, but it can be read by anyone with a technical background and interest in security. What’s important when reading this book is that you feel comfortable reading C-like syntax and have basic programming skills in a language such as Java or C#. Examples and best practices are all presented in a way that makes them relevant, regardless of your experience level, because learning how to design secure code is important to everyone, no matter if you’re a junior developer or an experienced architect. Reading Secure by Design is therefore a good idea if you want to improve your overall programming skills or need to make an existing codebase more secure. The book is also suitable as lecture material at universities or to be read in study groups.

 How this book is organized: A roadmap

 This book is divided into three parts and 14 chapters. The first two parts end with an intermission that tells a story about security flaws that could have been avoided using the concepts in this book. The intermissions are based on real cases we’ve worked on during our careers and serve as mini-case studies, as well as being a good read.

 Part 1 introduces you to the concepts of this book and why we believe they are an effective approach to creating secure software.

 	Chapter 1—Teaches you how design can drive software security and how it can enable you to create secure software with ease. It also contains an appetizing example of how a security flaw can be prevented through a secure by design mindset.

 	Chapter 2—Is an intermission about how a weak software design caused significant economic loss. The security weaknesses in this case study could have been avoided if the concepts presented in part 2 had been utilized.

 Part 2 is about the fundamental concepts that makes up the foundation of secure by design. The chapters are roughly laid out so that they start with concepts close to the code and then move up to higher abstraction levels. Some chapters build on previous ones, so it makes sense to read them in the order presented. You’re free to read these in any order you want, of course, but if you run into concepts or terms you don’t really understand, you might want to go back to previous chapters to read up on them.

 	Chapter 3—Teaches you some of the core concepts of Domain-Driven Design (DDD). The concepts discussed are essential for understanding many of the ideas of secure by design. The ideas and the terminology you learn in this chapter are used extensively throughout the book, so if you’re not well-versed in DDD, we recommend you start with this chapter.

 	Chapter 4—Introduces you to some code constructs that are important for security. It talks about the benefits of immutability and failing fast and how you can perform data validation in a secure way.

 	Chapter 5—Discusses domain primitives and how they form the foundation of secure code. It also teaches you about the benefits of read-once objects and how domain primitives are the foundation for creating secure entities.

 	Chapter 6—Talks about the basics of creating secure entities: how you can ensure that entities are consistent upon creation and how to protect the integrity of entities during their life cycle.

 	Chapter 7—Continues with the topic of entities and teaches you different approaches to handle the inherent complexity that comes with them.

 	
Chapter 8—Shows you how you can use your delivery pipeline to enhance and verify the security of software. It also discusses some of the challenges when automating security testing.

 	Chapter 9—Teaches you how to deal with failures and errors without compromising security. In addition to that, you’ll also explore some ways to mitigate failures through design.

 	Chapter 10—Describes how popular design principles used in cloud environments can be used to increase the security of your systems, even though the design principles were originally developed for other purposes.

 	Chapter 11—Another intermission, relating how a system built with a service-oriented architecture ended up being broken even though none of the individual services were. The story is a real-life example of the unique security challenges that you’ll face when building a system of systems. These challenges are discussed further in part 3 of the book.

 Part 3 discusses how to apply what you’ve learned in part 2. You’ll learn how to spot common security issues and how you can use secure by design concepts to address them.

 	Chapter 12—Looks at design patterns and code constructs that are problematic from a security perspective and that are common in legacy code. You’ll learn how to spot them and how to fix them.

 	Chapter 13—Goes into the (sometimes subtle) challenges that come with microservice architectures and how they can be addressed using secure software design.

 	Chapter 14—Discusses the importance of explicitly thinking about security every now and then. It also gives you some hints about important areas to address when creating secure software systems.

 About the code

 The concepts in this book are language agnostic, but we’ve chosen to use Java as the programming language for all code examples, partly because it’s one of the most commonly used programming languages, but also because its C-style syntax should be readable by any developer. The purpose of the code is to showcase certain concepts, not to be fully runnable examples. We’ve tried to make the code look as close as possible to what you’d write in real life. At the same time, there’s always a need to remove any distractions that could interfere with the teaching. This means we’ve sometimes omitted parts of methods and classes to improve clarity.

 Another convention used in this book is that names of test methods (as in JUnit @Test annotated methods) are always written in snake case. The reason for this is readability. When using a behavior-driven development (BDD) style to express tests (as we often like to do), the names of the test methods tend to become long sentences—using proper grammar and being understandable by others than just developers. Very long method names become almost unreadable when using camel case. Snake case solves that problem. All other method and class names use camel case, which is the standard naming convention in Java.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/secure-by-design.

 liveBook discussion forum

 Purchase of Secure by Design includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/secure-by-design/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 [image: berghjohnsson.tif]

 [image: new_d_deogun_large.tif]

 [image: new_d_sawano_large.tif]

 The authors from left to right: Dan Bergh Johnsson, Daniel Deogun, and Daniel Sawano

 Dan Bergh Johnsson, Daniel Deogun, and Daniel Sawano have collectively been working with security and development for several decades. They are developers at heart, and understand that security is often a side-concern. They’ve also evolved work habits that enable them to develop systems in a way that promotes security while focusing on high-quality design habits—something that’s easier for developers to keep in mind during their daily work. All three are established international speakers and often present at conferences on topics regarding high-quality development, as well as security.

about the cover illustration

 Typically, the cover of a software security book signals values such as strength, defense, armor, or other signs of war. Even the terminology in the software security field is a bit like that, with terms like attackers and attack vectors. Because Secure by Design is about creating, rather than destroying, and about building instead of breaking software, it is appropriate that the illustration we’ve chosen conveys values such as creativity and nurturing.

 The figure on the cover of Secure by Design is a “Sultana, or Kaddin,” which means “wife” in Turkish. The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with a handshake. The seller simply proposed that the money be transferred to him by wire, and the editor walked out with the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every other historic period except our own hyperkinetic present. Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1. Introduction

 In this first part, we set the stage for this book. We present how we think about security, development, and how they fit together. We analyze where problems tend to occur and what we think can be done about it. The opening chapter covers these aspects, together with an example of what we mean by secure by design.

 We finish this part with an intermission chapter that is more of a light read. Here, we introduce some of the ideas of the next part through a case study from a client we’ve worked with. So, let’s get started with how security and development fit together, and the basic ideas behind secure by design.

1 Why design matters for security

 This chapter covers

 	Viewing security as concerns, not features

 	Design and why it’s important for security

 	Building in lots of security by focusing on good design

 	Addressing the Billion Laughs attack

 Imagine yourself setting up a typical software project. You assemble a team of developers, testers, and domain experts and start outlining the key requirements. With input from stakeholders, you come up with a list of important attributes: performance, security, maintainability, and usability. As with many software projects, quality takes top priority, time to market is of the essence, and you need to stay within budget. You decide to be proactive and add security features to your backlog, and some of the other team members come up with a good list of security libraries you can use in your code. After the initial planning, you get the project up and running and start implementing features and business functionality. The team is motivated and delivers features at a good pace.

 Although you know you should think security all the time, it gets in the way of other tasks you’re focused on. In addition to that, most of the time you aren’t working on internet-facing code anyway, so those web security libraries you thought about using don’t really fit. Plus, the security-related tasks in the backlog keep getting lower priority compared to the business functionality. After all, time is tight, and it doesn’t matter if the system is secure if the features the users need aren’t there. Business functionality is where the money is, and no user is going to thank you for putting CSRF tokens in your login form.1 Besides, you can always go back and deal with lower priority tasks later.

 1 For more about CSRF tokens, see https://en.wikipedia.org/wiki/Cross-site_request_forgery.

 As a developer, you feel the responsibility of security is a burden you’d rather not have on your shoulders. You think it’d be better if the company brought in a security expert on a permanent basis as part of the development team. Developers are experts at crafting good code, building scalable architectures, and using continuous delivery, not waving magic wands to cast spells that can defend against evil hackers in black hoodies. You have never understood why security has to be so secretive in the first place, and it’s much more fulfilling to create than it is to destroy. The project must move forward, so you keep your focus on the top of the backlog and implementing features.

 After some time, your software is ready to go into production. Your project’s future can now play out in a couple of different ways. One way is that you conduct a security audit and a penetration test.2 But the security review report finds vulnerabilities that are considered to be severe enough that you must address them before deploying to production. This sets your project back a couple of weeks, or maybe even months, with lost revenue as a consequence. If you’re unlucky, solving the issues involves rewriting the entire program from scratch, so the stakeholders decide to scrap the project, and it never makes it into production.

 2 A penetration test is a test performed on a system to uncover possible security weaknesses.

 Another scenario is that a security review is never conducted, and you deploy into production. Users start to use your service, and all is well, until one day you find your service has made it into the news after being hacked and having all its user data leaked. Those hard-earned users are now abandoning your service quicker than rats leaving a sinking ship.

 Although this is a fictional story, it’s not that far from reality. During our careers, we’ve seen similar scenarios play out more than once. A couple of interesting things are at play here, and some questions arise:

 	Why is it that security tasks always get lower priority compared to other tasks?

 	Why are developers in general so seemingly uninterested in security?

 	Experts keep telling developers to think more about security, so why isn’t everyone doing it?

 	Why don’t managers realize they need to include security experts in the team just as they put testers in the team?

 Literature and experts have been telling us to focus more on security for a long time. Alas, we keep seeing news about systems being hacked every so often. Something is clearly not working.

 Important In order to efficiently and effortlessly create secure software, you need to have a mindset different from what you might be used to.

 What if there were a different way to approach software security that allowed you to avoid many of the problems we see in our industry today? We believe that in order to efficiently and effortlessly create secure software, you need to have a mindset that might be different from what you’re used to—a mindset where you focus more on design rather than on security.

 This might sound counterintuitive at first, but in this chapter, we’ll explain what we mean by the word design and why it’s important for security. We’ll discuss some of the shortcomings of the traditional approach to software security and show you how you can use design to overcome those issues. We’ll also provide a couple of examples of how to apply these ideas in the real world in order to give you a first taste of some of the concepts covered in the upcoming chapters.

 1.1 Security is a concern, not a feature

 A productive way to view security is as a concern—as in, “we’re concerned about security.” But it’s not uncommon to come across situations where security is described as a set of features. The difference is that even when security features address a specific security problem, your concern about security may not have been met. To illustrate how security is a concern rather than a feature, let’s start with a historical example. Let’s go back in time to one of the first recorded bank robberies in history to see how security features like high-quality locks don’t matter if hinges are weak. In the example, the features implemented didn’t prevent the robbery, so the concern for security wasn’t met.

 1.1.1 The robbery of Öst-Götha Bank, 1854

 It is the night of March 25, 1854, and the Swedish Öst-Götha Bank is soon to be robbed. A military corporal and former farmer, Nils Strid, walks silently up to the bank with his companion, the blacksmith, Lars Ekström. The outer door to the bank office is locked, but the key hangs outside on a nail if you know where to look. The bank has also invested in high-quality locks for the vault—more or less impossible to pick. But for blacksmith Lars, it’s not a big job to splinter the hinges and open the vault door backward. The two perpetrators walk away with the entire treasury of the bank: 900,000 riksdaler, the official Swedish currency at the time.3

 3 Comparing this to the value of money nowadays is hard, but a comparable sum would be in the range of 5 to 10 million dollars.

 For years, this was one of the largest heists in history. Not until the great train robbery in Buckinghamshire, England, at Bridego Railway Bridge in 1963, would the loot be of a similar size. In Sweden, the burglars left behind a single three-riksdaler banknote,4 together with a message with a silly rhyming verse:

 4 Yes, there actually were notes with the denomination of three.

 Vi länsat haver Östgötha Bank och mången rik knös torde blivit pank. Vi lämna dock en tredaler kvar ty hundar pissar på den som inget har.

 We now have plundered Östgötha Bank, and many moneybags will become broke. However, we leave a three-daler behind, because dogs piss on those who have naught.

 Apart from being an interesting historical event, the robbery is also interesting from a security point of view in two different ways: one legal and one technical. From a legal perspective, the robbery resulted in new laws mandating a certain level of bank security. These laws forced the banks at that time to adhere to some level of security awareness and practices. The first, passed in the following year, 1855, was one of the earliest examples of regulatory security. From a technical perspective, the robbers consistently attacked the bank’s weak spots: the office door was locked, but the key was poorly hidden; the vault locks were of high quality, but the hinges could be broken.

 What this story spotlights is how security can be viewed as a set of features—locks and hinges. In our example, using high-quality locks gave the perception of security, but security wasn’t implemented by that feature as such. Having high-quality locks isn’t sufficient if the key hangs on a nail or if the vault door hinges are weak. Rather than treating security as a set of features, it’s more fruitful to understand it as a concern that should be met.

 Had the bank viewed security as a concern, it would have asked, “How do we stop people from walking away with the bank’s money?” The answer wouldn’t have been with a lock; it should have included keeping the office key elsewhere or checking if there were other ways to force the vault door. The bank’s owners might have come up with novel ideas about alarms. They might have invented some of the theft-deterring mechanisms that emerged during the coming century, but they wouldn’t have relied on just having a lock on the door.

 Now let’s return from nineteenth-century banking to the contemporary world of software development. It’s time to see how the idea of security as a feature or a concern applies to your projects today. In the next section, we’ll show you how you can turn from specifying security as a feature to identifying security as a concern.

 1.1.2 Security features and concerns

 Software is often described in the language of features (or what you can do with the product). For example, this is an app that lets you share a shopping list; this is a site where you can upload photos for others to see and comment on; this is a program for creating presentation slideware. Software is also described in this way in formal contexts.

 Many methodologies have their primary focus on what the system should do—the functional side. The Rational Unified Process (RUP), which still influences a lot of software development, puts the major focus on the functionality in the form of use cases. Other considerations like response time or capacity required are put in a peripheral section called supplementary specifications. In the agile community, the dominating format for describing what’s to be done in the next sprint (or comparable) is a user story in a format along the lines of “As a such-and-such user, I’d like this feature so that I reap this benefit.” With this focus on features (what the system does), it’s no surprise that often security is described in the same way: we need a login page; we must have a fraud detection module; there should be logging.

 Security experts John Wilander and Jens Gustavsson researched how security was described and specified. They studied a selection of major software initiatives that were financed through public funding. When security was mentioned, they found that 78% could be directly classified as security features.5

 5 See Wilander, J., and Gustavsson, J., “Security Requirements—A Field Study of Current Practice,” http://johnwilander.se/research_publications/paper_sreis2005_wilander_gustavsson.pdf.

 Of course, there exist security features that add value, both visible and invisible. A visible example can be a high-quality authentication mechanism that allows customers to trust that their access and communications are safe.6 The problem is that describing security through features often misses the point. Let’s try to phrase a security story to see how you can turn from a feature focus to a concern focus.

 6 The Swedish certificate-based authentication system BankID is one example that has become a de facto standard, beginning with financial institutions and governmental agencies but now encompassing lots of industries.

 Let’s look at an example of user authentication at a photo-storing website. If you try to squeeze this into the format of a function-focused user story, you might end up with something like this: “As a user, I want a login page so that I can access my uploaded pictures.”

 Although phrased as a feature, most probably the stakeholder is airing a concern about security. If you implement only this functionality, then you’ve met the objectives of the login page story. But the mere existence of a login page as such doesn’t provide the security you’re after. It might seem obvious that nobody really wants a login page like this, but we’ve seen this kind of feature-focused user story about security many times.

 Imagine that you and your team implement a login page. After logging in, the user is redirected to a listing of their pictures, and among them is a really-embarrasing-pose.jpg. The user can click a link to get a download of the picture as well. To complicate things, imagine further that another user happens to have the direct download link and is also able to download that embarrassing photo (figure 1.1). How does that feel? You have implemented the story, because you have a login page with the described functionality, but you’ve subtly missed the point, have you not?

 Taking a step back, we realize that the purpose of the story wasn’t the login page as such. The purpose was rather that only the owner of the pictures should be able to see their pictures and download them—no one else. The login page is just there to uphold that rule. There should be no way for a user to get to the pictures without going through the login page.

 You can now propose a better phrasing for the story: “As a user, I want access to my uploaded pictures to pass through a login page so that my pictures stay confidential.” This phrasing better catches the concern the stakeholder was airing when initially talking about the login page.

 An even better phrasing is not to mention the login page at all: “As a user, I want all access to my uploaded pictures to be protected by authentication so that my pictures stay confidential.”

 The point of the user story wasn’t to have a security feature, it was to address a security concern; in this case, a concern about confidentiality (keeping things secret). The tricky part here is that when implementing such a story, it doesn’t suffice to change the code along one path to the pictures. Instead, all paths leading to the pictures must be guarded, and it’s enough to miss just one of them for the concern to not be met.

 [image: figure01-01.eps]

 Figure 1.1 Having only a login page doesn’t help much.

 To get real security, you need to get away from thinking about security as a set of features. You must think about security as a cross-cutting concern—a concern that cuts across the functionality.

 1.1.3 Categorizing security concerns: CIA-T

 We’ve mentioned confidentiality as a security concern. But security is more than keeping things secret, and in this book, we’ll talk about other aspects of security as well. To begin, let’s provide some terminology around security concerns.

 Classical information security usually talks about the security concern triad: confidentiality, integrity, and availability (or CIA as a mnemonic):

 	
Confidentiality—Most often associated with talking about security, is about keeping things secret that shouldn’t be made known to the public. Your healthcare record is one of the best examples of confidential information.

 	
Integrity—Refers to when it’s important that the information doesn’t change or is only allowed to change in specific, authorized ways. An example of integrity is counting election results. Security in this context means that the votes haven’t been manipulated.

 	
Availability—Means data is at hand in a timely manner. The fire department needs to know about the location of a fire, and they need that information immediately. If they get the location later, it might be too late, and the need for security can’t be met.

 All three factors might be important for any piece of data, but most often there’s some kind of profile for the concern of how much you suffer from a breach. Take your health record, for example. If some data is revealed (breached confidentiality), you’ll be irritated and angry. If there are errors in the data (breached integrity), things might get confused and dangerous. If the data isn’t there when needed in the emergency room (breached availability), you might end up dead.

 On the other hand, let’s think about your bank record. If you can’t see your balance (availability) when trying to pay your bills, it’s irritating. If your balance is revealed publicly (confidentiality), you’ll most probably be angry. But if your pension fund is suddenly wiped out (integrity), it’s a catastrophe.

 Later added to the CIA triad was the letter T for traceability, which captures the need for knowing who changed or accessed what data when. After some scandals, this became important in the financial sector and in healthcare. This kind of audit logging is also an important part of the European Union directive, GDPR (General Data Protection Regulation), which went into effect in 2018. For example, GDPR specifies that when personal data is accessed, the access should be traced and saved to a persistent audit log. We’ll refer to confidentiality, integrity, availability, and traceability in the rest of this book when we want to be a little bit more specific about what kind of security is at stake.

 Focusing on security concerns instead of security features does a lot for the quality of the system, but it also puts developers in a difficult position: how do you ensure security in the software you write? It’s hard to make sure there are no security mistakes anywhere. Ensuring this would require developers to actively think about security all the time while working. But there’s another way—embed security into the way you work and the way you design.

 1.2 Defining design

 Writing software is by no means a trivial task. As a developer, you’re required to have skills within a wide range of disciplines. You’re expected to be knowledgeable in areas ranging from programming languages and algorithms to system architecture and agile methodologies. Although these software development disciplines span various fields of knowledge and can be quite different from one another, one term that keeps occurring when discussing almost all the different disciplines is design. But what do people mean when they use the word design?

 Our view, in general, is that the word design is used quite loosely and takes on a different meaning depending on whom you talk to and in what context it’s being used. We believe that design is an extremely important concept in software development, so important that we even put the word in the title of this book. As such, it’s only appropriate to start by defining our view of the term design and how it’s used throughout this book. Understanding the meaning of the word will help you understand the discussions and concepts being conveyed in this book.

 When developing software, you constantly make decisions on how to write the code that solves the problems at hand. You decide what syntax to use, what constructs and algorithms to apply, how to structure the code, and how to steer the flow of execution. If you’re using an object-oriented approach, you’ll make decisions on what your object model should look like and the interactions between the objects within that model. If you’re applying a functional style of programming, you’ll make decisions on what behavior to pass in as functions, making sure you’re creating pure functions without side effects.7 All these decisions can be viewed as part of the design process.

 7 A pure function is a function that always returns the same result for a given argument and has no side effects.

 When you write code, you pay careful attention to how to represent your business logic, which is the functionality that makes your software unique. You’ll think about how you’ll implement that logic and how to make it explicit and easy to maintain. If you’re involved in activities around modeling your business domain, you’ll spend a considerable amount of time evolving and refining your domain model and how it’ll be represented in code. Even when you’re implementing simple logic such as a straightforward conditional statement, you’re making an active choice. For example, you might consider aspects such as readability or performance, and, based on your preferences, you’ll make a decision on how you’re going to write the code in that statement. You’re drawing from your experience and knowledge to actively make choices appropriate to the software you’re creating. These choices are part of what determines the design of the software.

 As your codebase evolves, you’ll put effort into structuring your code into packages or modules to make it more understandable and easier to work with, while at the same time achieving desirable properties like high cohesion and low coupling. You might apply techniques and concepts like the use of interfaces, the Dependency Inversion Principle,8 and immutability, while making sure you’re not violating the Liskov Substitution Principle.9 You might also think about breaking out and isolating certain functionality within the code in order to make it more explicit or to allow it to be easily testable. What you’re doing is writing and refactoring your code in order to give it a better design.

 8 See Martin, R. C., “The Dependency Inversion Principle,” C++ Report 8 (May, 1996).

 9 See Liskov, B., “Keynote Address—Data Abstraction and Hierarchy,” OOPSLA '87 Addendum to the Proceedings on Object-Oriented Programming Systems, Languages and Applications (1987).

 If your software is interacting with other software (say, for example, you’re developing a service in a microservices architecture), then you’re going to need to think about how to define the public API for your service in order for it to be cohesive and easy to consume and be versioned. You’ll also need to consider how it’ll interact with other services in order to be resilient and responsive, and to provide acceptable uptime. On a higher level, you’re probably going to have to take into account that your service also needs to fit into the overall system architecture. You’re making decisions that, albeit quite diverse, are all part of shaping the overall design of the software.

 All of the activities that we’ve discussed so far are related to writing code. We’ve stated that they are all part of the design process, but if you think about them for a moment, which would you say are design activities and which are not?

 	Are API design and taking system architecture into account typical examples of design activities?

 	Can domain modeling also count as a design activity?

 	Is the choice between making the declaration of an object’s field final or nonfinal a design activity?

 If you ask 10 people what activities in software development count as design, then you’re probably going to end up with 10 different answers. Many will probably answer that domain modeling, API design, applying design patterns, and system architecture are clearly examples of design activities, partly because this is the more traditional view of what design is. Whereas only a few, if any, will say that thinking hard about how to write an if statement or for loop qualifies as part of the software design process.

 The answer to the question of which activities are design activities is that everything involved in software development is part of the design process. A system or piece of software won’t reach a point of stable design (stable as in functioning, not as in having stopped evolving) until it has been written and put into production. That means that domain models, software modules, APIs, and design patterns are just as important to the design of the software as are field declarations, if statements, hash tables, and method declarations. All of these contribute to the stability of the design.

 One thing that all these activities have in common is that they involve conscious decision-making. Any activity that involves active decision-making should be considered part of the software design process and can thus be referred to as design. This, in turn, means that design is the guiding principle for how a system is built and is applicable on all levels, from code to architecture.

 Note Design is the guiding principle for how a system is built and is applicable on all levels, from code to architecture. It includes any activity that involves active decision-making.

 In this section, you’ve learned how to view software design and what the word design means when used in this book. Next, we’ll take a look at the traditional software security approach and some of its shortcomings.

 1.3 The traditional approach to software security and its shortcomings

 From our observation of the software industry, a common view when attempting to mitigate security vulnerabilities is that security should be a top priority when developing and writing code. Everyone involved in the process should be trained and experienced in software security. Let’s refer to this view as the traditional approach to software security. This approach typically includes specific tasks and actions developers need to adhere to (figure 1.2).

 [image: figure01-02.eps]

 Figure 1.2 Traditionally, software security is viewed as explicit activities and concepts.

 Developers should know about things like cross-site scripting (XSS) attacks, be aware of vulnerabilities in low-level protocols, and know the OWASP Top 10 like the backs of their hands.10 Testers should be trained in basic penetration testing techniques, and business domain experts should be capable of having discussions and making decisions concerning software security.

 10 See the Open Web Application Security Project (OWASP) Top 10, https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.

 The weakness in this approach is that, for a number of reasons, it struggles to create software that’s secure enough to withstand the harsh reality of production environments. If it had been successful, software security vulnerabilities wouldn’t be as common as they are today, and we wouldn’t see the same vulnerabilities responsible for massive security breaches over and over again. Let’s take a closer look at some of the shortcomings of this approach to better understand why this approach struggles and why we think a different approach can be more successful.

 As an example, say you have a simple domain object that represents a user in a typical web application, where the username is displayed on some page. The user object is quite simple and holds only an ID and a username. It’s a simplified example but, in our experience, it’s quite representative of code one might see. The implementation of the user object can be seen in the following listing.

 Listing 1.1 Simple User class

 public class User {

 private final Long id;

 private final String username;

 public User(final Long id, final String username) {

 this.id = id;

 this.username = username; ①

 }

 // ...

}

 ① Possible XSS vulnerability

 If you take a look at this representation of a user, you can see that there are possible security issues in this code. One issue is that because you’re accepting any string value as a username, the username could be used for performing XSS attacks. An XSS attack occurs when an attacker uses a web application to send malicious code to a different user. The malicious code could, for example, be in the form of client-side JavaScript. If the attacker enters something like <script>alert(42);</script> as the username when registering for the service, later, when the user’s username is displayed on some web page in the application, it could lead to an alert box being displayed in the browser showing the number 42.11

 11 In a real attack, the executed script would most likely perform something a bit more evil than simply showing this number!

 If you want to mitigate this security vulnerability using the traditional approach, you could introduce explicit, security-focused input data validation. The data validation could, for example, be implemented as web application filters that validate all posted form data in the web application and check that it doesn’t contain any malicious XSS code. Or the validation could occur right in the domain class. If you chose to introduce input validation in the User class, it could look something like that shown in the following listing.

 Listing 1.2 User class with input validation

 import static com.example.xss.ValidationUtils.validateForXSS;

import static org.apache.commons.lang3.Validate.notNull;

public class User {

 private final Long id;

 private final String username;

 public User(final Long id, final String username) {

 notNull(id); ①

 notNull(username); ①

 this.id = notNull(id);

 this.username = validateForXSS(username); ②

 }

 // ...

}

 ① Checks that parameters aren’t null

 ② Validates input with an (imaginary) external library, ValidationUtils

 You can see in the listing how you’re pulling in an (imaginary) security library that provides functionality to validate a string for possible XSS attacks. You also decided to check that none of the constructor parameters are null to further improve the validation. This way of handling security in software is common, but it’s also problematic for several reasons, some being:

 	The developer needs to explicitly think about security vulnerabilities, while at the same time focusing on solving business functionality.

 	It requires every developer to be a security expert.

 	It assumes that the person writing the code can think of every potential vulnerability that might occur now or in the future.

 Let’s take a look at each one of these issues and see why they’re problematic.

 1.3.1 Explicitly thinking about security

 The first issue, thinking explicitly about security, is problematic, because when you as a developer are writing code, your main focus will always be the functionality you’re trying to implement. Saying that you also need to actively think about security while coding is going to conflict with that focus. When that conflict occurs, security will always come in second to the priority of the business functionality. Security always gets a lower priority for a couple of reasons, and we’ll look into those in more depth in section 1.4.2.

 1.3.2 Everyone is a security expert

 The next issue, requiring every developer to be a security expert, is also problematic because not everyone can be or wants to be such an expert, in the same way as everyone can’t be an expert on JVM performance or UX design. And if the developers aren’t highly skilled in security, then the software they create is only going to reflect the level of security that the developers are capable of.

 Perhaps sometime in the future, all developers will need to have a thorough understanding of software security similar to the more or less mandatory knowledge nowadays of how to write good unit tests. But this isn’t what the current state in the industry looks like, so it’s somewhat of an unrealistic expectation.

 1.3.3 Knowing all and the unknowable

 Even if you have a team of security experts writing your software, you’d still face the fact that you can only write countermeasures for the vulnerabilities that you already know about. Not only do you need to know a lot about the many different types of attack vectors that you’re familiar with, but you also need to know about the attacks that you currently are unaware of. You need to know the unknowable, so to speak. Once you realize this dilemma, it becomes obvious that the third issue also has its shortcomings in creating secure software.

 The approach of creating secure software by making security the top priority has been around for as long as anyone can remember, and we’ve all tried it. Sometimes it has gotten the job done, but many times we’ve felt that there was something missing and that there should be a better way of creating secure software. We believe that software design is the enabler for successfully creating truly secure code. And by focusing on design, you avoid many of the shortcomings posed by the approach we’ve discussed in this section.

 1.4 Driving security through design

 We’re not arguing that security isn’t important or that you don’t have to be aware of security when developing software. But we believe that, instead of adhering to the traditional approach to software security, there’s an alternative approach that achieves the same or even better results when it comes to how secure your finished software will be (figure 1.3).

 [image: figure01-03.eps]

 Figure 1.3 A focus on design rather than on security avoids issues with the traditional approach to security.

 Rather than having security be one of the main focuses when you’re developing software, you can choose to focus on software design instead—focusing on design in the sense that you’re always aiming toward the highest possible standards with what you create. By shifting the focus to design, you’ll be able to achieve a high degree of software security without the need to constantly and explicitly think about security.

 1.4.1 Making the user secure by design

 Let’s go back to the example of the User class from the previous section and see how you’d approach it instead by focusing on good design. First, you’ll discuss with your domain experts what the meaning of a username is in the context of the current application (figure 1.4).

 You twist and turn on the concept and finally come to the conclusion that a username can only contain the characters [A-Za-z0-9_-] and must be at least 4 characters long, but no longer than 40. This is because that’s what’s considered to be a normal username in the application you’re creating. You’re not excluding characters like < or > because they might be part of an XSS attack in the event of the username being rendered in a web browser. Rather, you address the question, “In this context, what’s a username supposed to look like?” In this case, you decide < or > isn’t part of a valid username and shouldn’t be included.

 [image: figure01-04.eps]

 Figure 1.4 Exploring concepts with domain experts to gain deeper insight into the domain

 This little exploration exercise with your domain experts has given you a deeper insight into the current domain that, in turn, allows you to create a more precise definition of a username. The following listing shows the new User class.

 Listing 1.3 User class with domain constraints

 import static org.apache.commons.lang3.Validate.*;

public class User {

 private static final int USERNAME_MINIMUM_LENGTH = 4;

 private static final int USERNAME_MAXIMUM_LENGTH = 40;

 private static final String USERNAME_VALID_CHARACTERS =

 "[A-Za-z0-9_-]+";

 private final Long id;

 private final String username;

 public User(final Long id, final String username) {

 notNull(id);

 notBlank(username);

 final String trimmed = username.trim();

 inclusiveBetween(USERNAME_MINIMUM_LENGTH, ①

 USERNAME_MAXIMUM_LENGTH, ①

 trimmed.length()); ①

 matchesPattern(trimmed, ①

 USERNAME_VALID_CHARACTERS, ①

 "Allowed characters are: %s", ①

 USERNAME_VALID_CHARACTERS); ①

 this.id = id;

 this.username = trimmed;

 }

 // ...

}

 ① Using domain invariants validates input at the time of creation.

 Looking at the User class now, you can see that there’s a lot of logic concerning the username of a user. This, together with the fact that you discussed it extensively with your domain experts, is a sign that the username should be represented explicitly in the domain model. That’s partly because it seems to be an important concept, but also because extracting the logic would follow the principle of high cohesion.

 With that insight, you can go ahead and extract the logic into its own Username class that encapsulates all the knowledge about a username. The new class also enforces all domain rules at the time of creation. This new object is called a domain primitive (you’ll learn more about them in chapter 5). The following listing shows what your User class will look like once you’ve extracted the new Username class.

 Listing 1.4 User class with domain value object

 import static org.apache.commons.lang3.Validate.*;

public class Username { ①

 private static final int MINIMUM_LENGTH = 4;

 private static final int MAXIMUM_LENGTH = 40;

 private static final String VALID_CHARACTERS = "[A-Za-z0-9_-]+";

 private final String value;

 public Username(final String value) {

 notBlank(value);

 final String trimmed = value.trim();

 inclusiveBetween(MINIMUM_LENGTH,

 MAXIMUM_LENGTH,

 trimmed.length());

 matchesPattern(trimmed,

 VALID_CHARACTERS,

 "Allowed characters are: %s", VALID_CHARACTERS);

 this.value = trimmed;

 }

 public String value() {

 return value;

 }

}

public class User {

 private final Long id;

 private final Username username; ②

 public User(final Long id, final Username username) {

 this.id = notNull(id);

 this.username = notNull(username);

 }

 // ...

}

 ① The value object that upholds the domain invariants for a username

 ② The User object now uses the Username domain primitive, knowing that a username is always valid if one exists.

 By focusing on design, you were able to find out more about the details surrounding a user and a username. This, in turn, let you create a more precise domain model. You also paid close attention to when concepts within the current domain became so important that they should be extracted into their own objects. In the end, you gained a deeper knowledge about your domain and, at the same time, protected yourself against the XSS vulnerability we discussed earlier; attempting to input <script>alert(42);</script> as a username becomes impossible because it’s not a valid username anymore. And you haven’t even started to think about security yet! If you were to consider security in your design choices, then you could probably tighten the restrictions on a username even more, hardening the code further, but still keeping the focus on good design.

 Note A strong design focus lets you create code that’s more secure when compared to the traditional approach to software security.

 So far, you’ve learned about the shortcomings of the traditional approach, and you’ve seen how to use design to your advantage to create secure software. Some of the concepts that we’ve briefly touched on in this section will be explained in detail in chapter 3. There, you’ll learn core concepts about Domain-Driven Design relevant for this book. Then, in chapters 4 and 5, we’ll explain fundamental code constructs that promote security. Now, let’s take a look at the advantages of driving security through design and why we believe this approach succeeds better than the traditional approach to software security.

 1.4.2 The advantages of the design approach

 In the simple User example, we showed you how to use design to drive security in your development process. We also stated that by focusing on design, you can achieve a level of software security that’s on par with, or even better than, the traditional approach. But on what grounds do we make the claim that this approach succeeds better than the traditional one?

 We believe that if the main focus when developing software centers on design, security can become a natural part of the development process instead of being perceived as a forced requirement. We also believe that this overcomes or avoids many of the shortcomings of the traditional approach and that it brings its own advantages. The main reasons for this follow:

 	Software design is central to the interest and competence of most developers, which makes secure by design concepts easy to adapt.

 	By focusing on design, business and security concerns gain equal priority in the view of both business experts and developers.

 	By choosing good design constructs, nonsecurity experts are able to write secure code.

 	By focusing on the domain, many security bugs are solved implicitly.

 Let’s take a closer look at the reasoning behind these advantages and why we believe the design approach succeeds better than the traditional approach.

 Design is a natural part of software development

 As software developers, you’re taught from early on the importance of good design. You study it and you take pride in creating good designs that serve their purpose well. This makes design a natural part of creating software.

 Many developers feel like it’s hard to understand all the details around intricate software vulnerabilities, classifying themselves as people who don’t do security—security is something that’s best left to someone else. But because most developers understand and appreciate software design, if you can use design to achieve security, then suddenly everyone can create secure software.

 When you focus on design, security becomes the concern and interest of everyone, not only the experts. It also means that there’s no longer a conflict between business functionality and security concerns because the distinction between them no longer exists. This reduces the cognitive load on the developer and avoids one of the shortcomings of the traditional approach.

 Business concerns and security concerns become of equal priority

 One issue with the traditional approach is that it treats security as a separate activity. This forces security to compete with all the other important aspects you’re trying to address, such as business functionality, scalability, testability, maintainability, and so on. Security-related tasks are added to the backlog and prioritized against everything else that needs to be done.

 When you determine the priority of the different tasks, there’s nothing that says security should automatically get the fast lane in the backlog. But what we often see is that security tends to consistently get too low of a priority. Here are some of the reasons for this:

 	Security isn’t well understood by either the business side or the development side of the organization.

 	
Developers tend to think security isn’t their concern because of the reasons we discussed earlier.

 	Even if security is understood, it’s easy to think of it as less important than user features, and something that can therefore be added at a later time.

 The caveat with the notion of adding security later is that it might not be possible if the security aspects needed imply a fundamentally different design. This is similar to why it’s usually hard or impossible to add scalability or statelessness late in the software cycle.

 By focusing on design and domain knowledge (as you did in the previous example with the User), you’re removing several of the situations where it’s necessary to prioritize security against other tasks in the backlog. It’s no longer a question about whether to implement a security feature or a business feature. Now it’s about implementing functionality relevant to your domain.

 Finally, the design focus also makes security more accessible to all stakeholders, not only the experts. This is because it’s easier to reason about, see the value in, and prioritize tasks that are related to your domain rather than specific security vulnerabilities.

 Non-security experts naturally write secure code

 Another interesting benefit of using a secure by design approach is that non-security experts can now naturally write secure code. This isn’t because they consider attack vectors and how malicious data might affect the system, but rather because the design implicitly avoids insecure constructs. To illustrate this, consider the Username class in listing 1.4, where invariants ensure only valid usernames are accepted. How do we justify using this complex type instead of a simple string?

 As it turns out, when talking to domain experts, most developers realize the importance of representing business concepts as precisely as possible. A username isn’t an unbounded random sequence of characters; it’s a well-defined concept with a precise meaning and purpose in the domain. Representing this by the standard String class isn’t only a poor design decision, it’s completely wrong—an insight that makes preciseness and correctness the natural choice for any developer, regardless of interest in security or experience level.

 Domain focus solves security bugs implicitly

 Security issues are often perceived as scary and complicated, but when using the design approach, the complexity suddenly disappears. This is primarily because the distinction between security bugs and ordinary bugs is erased when focus is placed on the domain rather than on which countermeasure to use.

 If you look at Username in listing 1.4, the main reason for applying strict invariants isn’t to protect a username from injection attacks, but rather to ensure the true meaning of a username is captured. As a consequence, every malicious input not satisfying the definition is rejected, and a username becomes secure by focusing on the domain rather than by thinking about security. The domain focus reduces the risk of security bugs in your code and, in some cases, it can also protect you against security bugs in third-party code.

 1.4.3 Staying eclectic

 As we mentioned earlier, if you complement your focus on design with a more traditional and explicit security awareness, then the resulting code becomes even more secure. This is an important note to point out, because the design focus gives you a high level of security but never covers all the security needs a system has (nor is that the intention). There’s always a need to perform tasks like penetration testing and to actively think about specific attack vectors and vulnerabilities when creating software systems.12 Even if the domain focus makes Username in the example secure, you still have to remember to perform proper output encoding when displaying it on a web page. By keeping the focus on design and at the same time taking an eclectic approach to software security, you can create truly secure software.

 12 We’ll discuss some of the other aspects important for software security in more depth in chapter 14.

 We’ve gone through quite a lot of material so far, but we believe it’s important to understand the why before looking at the how. You’ve learned the meaning of design and the fundamental thinking behind the idea that a strong design focus can drive security in software development. You’ve also seen a simple example of how this can work. In the next section, we’ll take a look at a slightly more complex scenario to give you another example of how design can improve security.

 1.5 Dealing with strings, XML, and a billion laughs

 When designing software, you’re often faced with the decision of how to represent data. Unfortunately, there’s a tendency towards using data types that are too generic for the purpose. For example, representing a phone number as a string can seem convenient at first, but from a security perspective, it’s devastating, because a string can represent almost any kind of data—not just what you’d expect. Still, developers tend to favor strings, and often the protection against invalid input is enforced by name typing as seen in the next listing. The method register expects a phone number, but the argument is a String, which means it could be anything!

 Listing 1.5 A String argument protected by name typing

 public void register(String phoneNumber) { ①

...

}

 ① phoneNumber can contain any character sequence because it’s a String.

 Obviously, preventing invalid input this way doesn’t work. The solution is to use strict domain types with rules, as you saw with User and Username earlier. But using strict types is only half of the story.

 If you dissect Username, you see that the validation logic in the constructor contains a notBlank and a length check before applying the regular expression. This turns out to be extremely important from a security perspective, and we’ll further discuss why this is in chapter 4. So, for now, accept that validation should be executed in the following order:

 	
Length check —Is the input length within the expected boundaries?

 	
Lexical content check—Does the input contain the right characters and encoding?

 	
Syntax check—Is the input format right?

 Up to this point, we’ve only touched on simple examples using validation, but that doesn’t mean validation can’t be used in more complex situations as well. To illustrate, we’ll walk you through an example where you’ll learn how to process XML securely. This seems quite remote from the previous examples, but when applying the same validation principles, you’ll see that the parsing complexity is reduced to an ordinary input validation problem. So let’s proceed with some XML.

 1.5.1 Extensible Markup Language (XML)

 XML is similar to a string in the sense that it can represent almost any kind of data.13 Because of this, XML is often used as an intermediate data representation when communicating between systems. Unfortunately, not many realize there’s a lot more to XML than just representing data on a normalized form.

 13 For more, see W3C, https://www.w3.org/XML/.

 XML is really a complete language derived from SGML (Standard Generalized Markup Language), which means there are probably features supported by XML that most developers don’t care about. Consequently, many security weaknesses are introduced in software because of how XML is used. And to illustrate, we’ll use the Billion Laughs attack (which exploits the expandability property of XML entities during the parsing process) as a foundation when learning how to process XML securely. But before we dive into details, let’s take a quick refresher on how internal XML entities work.

 1.5.2 Internal XML entities in a nutshell

 Internal XML entities are powerful constructs that allow you to create simple abbreviations in XML. They’re defined in the Document Type Definition (DTD) and written in the form <!ENTITY name "value">. The following listing shows a simple example of an entity that’s an abbreviation of Secure by Design.

 Listing 1.6 Defining an entity and referencing it in XML

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE example [

<!ELEMENT example (#PCDATA)>

<!ENTITY title "Secure by Design">

]>

<example>&title;</example> ①

 ① References the title entity

 When the XML parser encounters the title entity, it expands the abbreviation and replaces it with the value found in the DTD. This, in turn, leads to a rich XML block without abbreviations, as seen in the next listing.

 Listing 1.7 XML after entity expansion

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE example [

<!ELEMENT example (#PCDATA)>

<!ENTITY title "Secure by Design">

]>

<example>Secure by Design</example> ①

 ① Replaces the title entity with the string Secure by Design

 Allowing entity expansion is handy indeed, but, unfortunately, it also opens up the possibility of entity expansion attacks. Let’s see how the Billion Laughs attack exploits this behavior.

 1.5.3 The Billion Laughs attack

 The Billion Laughs attack is as simple as it is effective. The main idea is to exploit the expandability property of XML entities by defining recursive definitions that expand into a huge memory footprint. Listing 1.8 shows an example of the attack that’s defined by a small XML block, less than 1 KB in size. This allows the block to pass most validation checks that rely on size or length. When the XML is loaded by the parser, lol9 expands into 10 lol8s, which then expands into 100 lol7s, and so on. This finally results in a billion lol strings that consume several gigabytes of memory.

 Listing 1.8 XML expanding to a billion “lol”s

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE lolz [

<!ELEMENT lolz (#PCDATA)>

<!ENTITY lol "lol">

<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz> ①

 ① lol9 expands into 10 lol8s, which then expands into 100 lol7s, and so on.

 Obviously, this violates the intended behavior of entities, but the mere fact that entities are part of the XML language makes every parser vulnerable to expansion attacks. From our experience, the best way to address this is to use a design that combines parser configuration with a lexical content check. Let’s start this process by configuring the parser.

 1.5.4 Configuring the XML parser

 To disallow entity expansion, you need to figure out which settings control entity behavior in the parsing process. Surprisingly, this becomes a challenge without fully understanding the underlying parser implementation, because every parser can behave differently. To get a solid foundation, a good starting point is to use external resources such as OWASP (the Open Web Application Security Project) as a guide.

 Listing 1.9 provides an example of a parser configuration based on OWASP’s recommendations that attempts to avoid entity expansion.14 The selected features are quite invasive because almost everything regarding entities is disabled. For example, disallowing doctype does indeed make it difficult to do an entity attack, but at the same time, it affects overall usability. In these situations, security concerns are often compared against business needs, and if it’s decided to weaken the configuration, it’s important to understand what the risks are.

 14 See the “XML External Entity (XXE) Prevention Cheat Sheet,” https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/.

 Listing 1.9 XML parser configuration suggested by OWASP

 import static javax.xml.XMLConstants.FEATURE_SECURE_PROCESSING;

public final class XMLParser {

 static final String DISALLOW_DOCTYPE =

 "http://apache.org/xml/features/disallow-doctype-decl";

 static final String ALLOW_EXT_GEN_ENTITIES =

 "http://xml.org/sax/features/external-general-entities";

 static final String ALLOW_EXT_PARAM_ENTITIES =

 "http://xml.org/sax/features/external-parameter-entities";

 static final String ALLOW_EXTERNAL_DTD =

 "http://apache.org/xml/features/nonvalidating/load-external-dtd";

 public static Document parse(final InputStream input)

 throws SAXException, IOException {

 try {

 final DocumentBuilderFactory factory =

 DocumentBuilderFactory.newInstance();

 factory.setExpandEntityReferences(false); ①

 factory.setFeature(FEATURE_SECURE_PROCESSING, ②

 true);

 factory.setFeature(DISALLOW_DOCTYPE, true); ③

 factory.setFeature(ALLOW_EXT_GEN_ENTITIES, ④

 false);

 factory.setFeature(ALLOW_EXT_PARAM_ENTITIES, ⑤

 false);

 factory.setFeature(ALLOW_EXTERNAL_DTD, false); ⑥

 return factory.newDocumentBuilder().parse(input);

 } catch(ParserConfigurationException e) {

 throw new IllegalStateException("Configuration Error", e);

 }

 }

}

OEBPS/Images/berghjohnsson.png

OEBPS/Images/figure01-02.png
Worklist
d Attack vectors
d Zero day exploits
d Web vulnerabilities
e owAs?

OEBPS/Images/cover.jpeg
Dan Bergh Johnsson
Daniel Deoqun

Daniel Sawano

Foreword by Daniel Terhorst-North

/ll MANNING

OEBPS/Images/figure01-01.png
Login page

Takes you to

> your pictures

Listing of"
pictures

Link 2o
download
picture

Keally
embarrassing
picture

Ocps! Knowin: /3a=55i,,
link, I could downloa
without login.

OEBPS/Images/new_d_deogun_large.png

OEBPS/Images/figure01-03.png

OEBPS/Images/figure01-04.png

OEBPS/Images/ManningBlackSized.png

OEBPS/Images/9781617294358.jpg
Dan Bergh Johnsson
Daniel Deoqun

Daniel Sawano

Foreword by Daniel Terhorst-North

/ll MANNING

OEBPS/Images/new_d_sawano_large.png

