

 inside front cover

 	

 Topic

 	

 This topic covers...

 	

 Resource identification

 	

 How to identify resources in an API

 	

 Standard methods

 	

 The set of standard methods for use in resource-oriented APIs

 	

 Partial updates and retrievals

 	

 How to interact with portions of resources

 	

 Custom methods

 	

 Using custom (non-standard) methods in resource-oriented APIs

 	

 Long-running operations

 	

 How to handle methods that are not instantaneous

 	

 Rerunnable jobs

 	

 Running repeated custom functionality in an API

 	

 Singleton sub-resources

 	

 Isolating portions of resource data

 	

 Cross references

 	

 How to reference other resources in an API

 	

 Association resources

 	

 How to manage many-to-many relationships with metadata

 	

 Add and remove custom methods

 	

 How to manage many-to-many relationships without metadata

 	

 Polymorphism

 	

 Designing resources with dynamically-typed attributes

 	

 Copy and move

 	

 Duplicating and relocating resources in an API

 	

 Batch operations

 	

 Extending methods to apply to groups of resources atomically

 	

 Criteria-based deletion

 	

 Deleting multiple resources based on a set of filter criteria

 	

 Anonymous writes

 	

 Ingesting unaddressable data into an API

 	

 Pagination

 	

 Consuming large amounts of data in bite-sized chunks

 	

 Filtering

 	

 Limiting result sets according to a user-specified filter

 	

 Importing and exporting

 	

 Moving data into or out of an API by interacting directly with a storage system

 	

 Versioning and compatibility

 	

 Defining compatibility and strategies for versioning APIs

 	

 Soft deletion Moving resources to the

 	

 “API recycle bin”

 	

 Request deduplication

 	

 Preventing duplicate work due to network interruptions in APIs

 	

 Request validation

 	

 Allowing API methods to be called in “safe mode”

 	

 Resource revisions

 	

 Tracking resource change history

 	

 Request retrial

 	

 Algorithms for safely retrying API requests

 	

 Request authentication

 	

 Verifying that requests are authentic and untampered with

 [image:]

 API Design Patterns

 JJ Geewax

 Foreword by Jon Skeet

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Christina Taylor

 	

 Technical development editor:

 	

 Al Krinker

 	

 Review editor:

 	

 Ivan Martinović

 	

 Production editor:

 	

 Deirdre S. Hiam

 	

 Copy editor:

 	

 Michele Mitchell

 	

 Proofreader:

 	

 Keri Hales

 	

 Technical proofreader:

 	

 Karsten Strøbæk

 	

 Typesetter:

 	

 Dennis Dalinnik

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781617295850

 dedication

 To Kai and Luca. You are awesome.

contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Introduction

 1 Introduction to APIs

 1.1 What are web APIs?

 1.2 Why do APIs matter?

 1.3 What are resource-oriented APIs?

 1.4 What makes an API “good”?

 Operational

 Expressive

 Simple

 Predictable

 2 Introduction to API design patterns

 2.1 What are API design patterns?

 2.2 Why are API design patterns important?

 2.3 Anatomy of an API design pattern

 Name and synopsis

 Motivation

 Overview

 Implementation

 Trade-offs

 2.4 Case study: Twapi, a Twitter-like API

 Overview

 Listing messages

 Exporting data

 Part 2 Design principles

 3 Naming

 3.1 Why do names matter?

 3.2 What makes a name “good”?

 Expressive

 Simple

 Predictable

 3.3 Language, grammar, and syntax

 Language

 Grammar

 Syntax

 3.4 Context

 3.5 Data types and units

 3.6 Case study: What happens when you choose bad names?

 3.7 Exercises

 4 Resource scope and hierarchy

 4.1 What is resource layout?

 Types of relationships

 Entity relationship diagrams

 4.2 Choosing the right relationship

 Do you need a relationship at all?

 References or in-line data

 Hierarchy

 4.3 Anti-patterns

 Resources for everything

 Deep hierarchies

 In-line everything

 4.4 Exercises

 5 Data types and defaults

 5.1 Introduction to data types

 Missing vs. null

 5.2 Booleans

 5.3 Numbers

 Bounds

 Default values

 Serialization

 5.4 Strings

 Bounds

 Default values

 Serialization

 5.5 Enumerations

 5.6 Lists

 Atomicity

 Bounds

 Default values

 5.7 Maps

 Bounds

 Default values

 5.8 Exercises

 Part 3 Fundamentals

 6 Resource identification

 6.1 What is an identifier?

 6.2 What makes a good identifier?

 Easy to use

 Unique

 Permanent

 Fast and easy to generate

 Unpredictable

 Readable, shareable, and verifiable

 Informationally dense

 6.3 What does a good identifier look like?

 Data type

 Character set

 Identifier format

 Checksums

 Resource type

 Hierarchy and uniqueness scope

 6.4 Implementation

 Size

 Generation

 Tomb-stoning

 Checksum

 Database storage

 6.5 What about UUIDs?

 6.6 Exercises

 7 Standard methods

 7.1 Motivation

 7.2 Overview

 7.3 Implementation

 Which methods should be supported?

 Idempotence and side effects

 Get

 List

 Create

 Update

 Delete

 Replace

 Final API definition

 7.4 Trade-offs

 7.5 Exercises

 8 Partial updates and retrievals

 8.1 Motivation

 Partial retrieval

 Partial update

 8.2 Overview

 8.3 Implementation

 Transport

 Maps and nested interfaces

 Repeated fields

 Default values

 Implicit field masks

 Updating dynamic data structures

 Invalid fields

 Final API definition

 8.4 Trade-offs

 Universal support

 Alternative implementations

 8.5 Exercises

 9 Custom methods

 9.1 Motivation

 Why not just standard methods?

 9.2 Overview

 9.3 Implementation

 Side effects

 Resources vs. collections

 Stateless custom methods

 Final API definition

 9.4 Trade-offs

 9.5 Exercises

 10 Long-running operations

 10.1 Motivation

 10.2 Overview

 10.3 Implementation

 What does an LRO look like?

 Resource hierarchy

 Resolution

 Error handling

 Monitoring progress

 Canceling operations

 Pausing and resuming operations

 Exploring operations

 Persistence

 Final API definition

 10.4 Trade-offs

 10.5 Exercises

 11 Rerunnable jobs

 11.1 Motivation

 11.2 Overview

 11.3 Implementation

 Job resources

 The custom run method

 Job execution resources

 Final API definition

 11.4 Trade-offs

 11.5 Exercises

 Part 4 Resource relationships

 12 Singleton sub-resources

 12.1 Motivation

 Why should we use a singleton sub-resource?

 12.2 Overview

 12.3 Implementation

 Standard methods

 Resetting

 Hierarchy

 Final API definition

 12.4 Trade-offs

 Atomicity

 Exactly one sub-resource

 12.5 Exercises

 13 Cross references

 13.1 Motivation

 13.2 Overview

 13.3 Implementation

 Reference field name

 Data integrity

 Value vs. reference

 Final API definition

 13.4 Trade-offs

 13.5 Exercises

 14 Association resources

 14.1 Motivation

 14.2 Overview

 Association alias methods

 14.3 Implementation

 Naming the association resource

 Standard method behavior

 Uniqueness

 Read-only fields

 Association alias methods

 Referential integrity

 Final API definition

 14.4 Trade-offs

 Complexity

 Separation of associations

 14.5 Exercises

 15 Add and remove custom methods

 15.1 Motivation

 15.2 Overview

 15.3 Implementation

 Listing associated resources

 Data integrity

 Final API definition

 15.4 Trade-offs

 Nonreciprocal relationship

 Relationship metadata

 15.5 Exercises

 16 Polymorphism

 16.1 Motivation

 16.2 Overview

 16.3 Implementation

 Deciding when to use polymorphic resources

 Polymorphic structure

 Polymorphic behavior

 Why not polymorphic methods?

 Final API definition

 16.4 Trade-offs

 16.5 Exercises

 Part 5 Collective operations

 17 Copy and move

 17.1 Motivation

 17.2 Overview

 17.3 Implementation

 Identifiers

 Child resources

 Related resources

 External data

 Inherited metadata

 Atomicity

 Final API definition

 17.4 Trade-offs

 17.5 Exercises

 18 Batch operations

 18.1 Motivation

 18.2 Overview

 18.3 Implementation

 Atomicity

 Operation on the collection

 Ordering of results

 Common fields

 Operating across parents

 Batch Get

 Batch Delete

 Batch Create

 Batch Update

 Final API definition

 18.4 Trade-offs

 18.5 Exercises

 19 Criteria-based deletion

 19.1 Motivation

 19.2 Overview

 19.3 Implementation

 Filtering results

 Validation only by default

 Result count

 Result sample set

 Consistency

 Final API definition

 19.4 Trade-offs

 19.5 Exercises

 20 Anonymous writes

 20.1 Motivation

 20.2 Overview

 20.3 Implementation

 Consistency

 Final API definition

 20.4 Trade-offs

 20.5 Exercises

 21 Pagination

 21.1 Motivation

 21.2 Overview

 21.3 Implementation

 Page size

 Page tokens

 Total count

 Paging inside resources

 Final API definition

 21.4 Trade-offs

 Bi-directional paging

 Arbitrary windows

 21.5 Anti-pattern: Offsets and limits

 21.6 Exercises

 22 Filtering

 22.1 Motivation

 22.2 Overview

 22.3 Implementation

 Structure

 Filter syntax and behavior

 Final API definition

 22.4 Trade-offs

 22.5 Exercises

 23 Importing and exporting

 23.1 Motivation

 23.2 Overview

 23.3 Implementation

 Import and export methods

 Interacting with storage systems

 Converting between resources and bytes

 Consistency

 Identifiers and collisions

 Handling related resources

 Failures and retries

 Filtering and field masks

 Final API definition

 23.4 Trade-offs

 23.5 Exercises

 Part 6 Safety and security

 24 Versioning and compatibility

 24.1 Motivation

 24.2 Overview

 What is compatibility?

 Defining backward compatibility

 24.3 Implementation

 Perpetual stability

 Agile instability

 Semantic versioning

 24.4 Trade-offs

 Granularity vs. simplicity

 Stability vs. new functionality

 Happiness vs. ubiquity

 24.5 Exercises

 25 Soft deletion

 25.1 Motivation

 25.2 Overview

 25.3 Implementation

 Deleted designation

 Modifying standard methods

 Undeleting

 Expunging

 Expiration

 Referential integrity

 Effects on other methods

 Adding soft delete across versions

 Final API definition

 25.4 Trade-offs

 25.5 Exercises

 26 Request deduplication

 26.1 Motivation

 26.2 Overview

 26.3 Implementation

 Request identifier

 Response caching

 Consistency

 Request ID collisions

 Cache expiration

 Final API definition

 26.4 Trade-offs

 26.5 Exercises

 27 Request validation

 27.1 Motivation

 27.2 Overview

 27.3 Implementation

 External dependencies

 Special side effects

 Final API definition

 27.4 Trade-offs

 27.5 Exercises

 28 Resource revisions

 28.1 Motivation

 28.2 Overview

 28.3 Implementation

 Revision identifiers

 Creating revisions

 Retrieving specific revisions

 Listing revisions

 Restoring a previous revision

 Deleting revisions

 Handling child resources

 Final API definition

 28.4 Trade-offs

 28.5 Exercises

 29 Request retrial

 29.1 Motivation

 29.2 Overview

 Client-side retry timing

 Server-specified retry timing

 29.3 Implementation

 Retry eligibility

 Exponential back-off

 Retry After

 Final API definition

 29.4 Trade-offs

 29.5 Exercises

 30 Request authentication

 30.1 Motivation

 Origin

 Integrity

 Nonrepudiation

 30.2 Overview

 30.3 Implementation

 Credential generation

 Registration and credential exchange

 Generating and verifying raw signatures

 Request fingerprinting

 Including the signature

 Authenticating requests

 Final API definition

 30.4 Trade-offs

 30.5 Exercises

 index

 front matter

foreword

 It started with a drum kit. In the summer of 2019, a friend of mine got me into drumming with an electronic kit, and I embraced it wholeheartedly. Sometimes I would actually play the drums, but I spent a rather larger proportion of my time writing code to interact with my drum kit’s configuration using MIDI SysEx commands.

 When the COVID-19 pandemic hit, I suddenly had rather different priorities in terms of considering the audio/visual needs of my local church, both while we were worshiping remotely and considering how we might meet in person again. This involved learning about protocols such as VISCA, NDI, and OSC (for cameras and audio mixers) as well as more software-oriented integration with Zoom, VLC, PowerPoint, Stream Deck, and more.

 These projects don’t have huge amounts of business logic. Almost all the code is integration code, which is at once frustrating and hugely empowering. It’s frustrating because of protocols that are obscurely documented or aren’t really designed for the kind of usage I’m trying to achieve, or are just inconsistent with each other. It’s empowering because once you’ve cracked the integration aspect, you can write useful apps really easily, standing on the shoulders of multiple giants.

 While my experience over the past couple of years has been primarily local integration, the same balance of frustration and empowerment applies with web APIs. Every experience I’ve had of picking up a new web API has had a curve of emotional responses, including some mix of excitement, bewilderment, annoyance, acceptance, and eventual uneasy peace. Once you thoroughly understand a powerful API, it feels like you’re the conductor of a magnificent orchestra, ready to play whatever music you provide—even if the violin players’ notes are only eventually consistent and you have to use a different color of baton for the brass section for no obvious reason.

 This book won’t change that on its own. It’s only a book. But if you read it and follow its guidance, you can help to change the experience for your users. If lots of people read it and follow its guidance, together we might move the needle toward a more consistent and less frustrating web API experience.

 It’s important to understand the value of this book as more than the sum of its parts. For any one of the aspects J J dives into, any given team could make a reasonable choice (albeit one that might miss some of the corner cases pointed out here). That choice may even be better for that specific situation than the recommendation provided in this book due to the limited requirements of the context. That approach achieves lots of local optimal decisions but a highly fragmented bigger picture, with potentially several different approaches being taken, even by APIs within the same company.

 Beyond consistency for any given problem, this book provides a consistent approach across multiple areas of API design. It’s rare for API designers to be given the space to think deeply about this, and I count myself as very lucky to have worked with J J and others (notably Luke Sneeringer) in discussing many of the topics within the book. I’m thrilled that the investment Google has made in API design can pay dividends to other developers through this book and through the AIP system at https://aip.dev.

 While I have great confidence in the value of this book, it doesn’t make it easy to design a great API. Instead, it takes away a lot of the incidental complexity that comes with API design, allowing you to focus on the aspects that are truly unique to the API you want to build. You should still expect to have to think, and think hard, but with confidence that the result of that thinking can be an API that is a joy to work with. Your users may never explicitly thank you for it; a well-designed API often feels obvious despite being the result of huge amounts of toil. But you can sleep well at night knowing that they won’t have experienced the frustrations of an API that doesn’t quite feel right, even when it works.

 Use this book as a footstool to help your API be a giant that provides shoulders for others to stand on.

 —Jon Skeet, Staff Developer Relations Engineer, Google

preface

 In school, we learned about computer science in the same way that we might learn about the laws of physics. We analyzed run-time and space complexity using Big-O notation, learned how a variety of sorting algorithms worked, and explored the different ways of traversing binary trees. So as you might imagine, after graduating, I expected my day job to be primarily scientific and mathematical in nature. But imagine my surprise when I found that wasn’t the case at all.

 It turned out that most of the work I had to do was more about design, structure, and aesthetics than about mathematics and algorithms. I never needed to think about which sorting algorithm to use because there was a library for that (usually something like array.sort()). I did, however, have to think long and hard about the classes I’d create, the functions that would exist on those classes, and what parameters each function would accept. And this was far more difficult than I expected.

 In the real world, I learned how perfectly-optimized code is not nearly as valuable as well-designed code. And this turned out to be doubly true for web APIs, as they generally have a far broader audience with a wider variety of use cases.

 But this begs the question: what does it mean for software to be “well-designed”? What is a “well-designed web API”? For quite some time I had to rely on a mostly haphazard collection of resources to answer these questions. For some topics there might be interesting blog posts that explored some of the popular alternatives in use today. For others there might be a particularly useful answer on Stack Overflow that could guide me in the right direction. But in many scenarios, there was relatively little material on the topic in question, and I was left trying to come up with an answer on my own and hoping my colleagues didn’t hate it too much.

 After many years of this (and carrying around a notebook with “Scary API Problems” written on the cover), I finally decided that it was time to write down all the information I’d collected and had seen to work first-hand. At first, this was a set of rules for Google that Luke Sneeringer and I codified, which ultimately became AIP.dev. But these rules read sort of like a book of laws; they said what you should do, but didn’t say why you should do it that way. After lots of research and asking myself this exact question over and over, this book is here to present these rules, but also to explain why.

 As great as it would be for this book to be the ultimate solution to the world’s API design problems, I sadly don’t think this is the case. The reason for this is simple: much like architecture, any sort of design is generally a matter of opinion. This means that some of you may think these guidelines are beautiful and elegant and use them for all of your projects going forward. At the same time, some of you may think that this book presents designs that are hideous and overly restrictive and use it as an example of what not to do when building a web API. Since I can’t make everyone happy, my only goal is to provide a set of battle-tested guidelines, along with logical explanations for why they look the way they do.

 Whether you use them as examples to follow or avoid is up to you. At the very least, I hope the topics covered in this book spark many conversations and quite a lot of future work on this fascinating, complex, and intricate world of API design.

acknowledgments

 As with most of my work, this book is the result of many contributions from many different people. First, I have to thank my wife, Ka-el, for listening to me rant and complain while struggling with the finishing touches of this manuscript. There’s a good chance that this book may have been abandoned had it not been for her unwavering support. Additionally, many others have played a similar role, including Kristen Ranieri, Becky Susel, Janette Clarke, Norris Clarke, Tahj Clarke, Sheryn Chan, Asfia Fazal, and Adama Diallo, to whom I’m very grateful.

 A core team of API enthusiasts were instrumental in reviewing and debating the topics covered in this book, as well as providing high-level guidance. In particular, I want to thank Eric Brewer, Hong Zhang, Luke Sneeringer, Jon Skeet, Alfred Fuller, Angie Lin, Thibaud Hottelier, Garrett Jones, Tim Burks, Mak Ahmad, Carlos O’Ryan, Marsh Gardiner, Mike Kistler, Eric Wheeler, Max Ross, Marc Jacobs, Jason Woodard, Michael Rubin, Milo Martin, Brad Meyers, Sam McVeety, Rob Clevenger, Mike Schwartz, Lewis Daly, Michael Richards, and Brian Grant for all of their help over the years.

 Many others contributed to this book indirectly with their own independent work, and for that I must thank Roy Fielding, the “gang of four” (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides), Sanjay Ghemawatt, Urs Hoelzle, Andrew Fikes, Sean Quinlan, and Larry Greenfield. I’d also like to thank Stu Feldman, Ari Balogh, Rich Sanzi, Joerg Heilig, Eyal Manor, Yury Izrailevsky, Walt Drummond, Caesar Sengupta, and Patrick Teo for their support and guidance while exploring these topics at Google.

 A special thanks to Dave Nagle for being a champion for all my work in ads, the cloud, APIs, and beyond and for encouraging me to push myself beyond my comfort zone. And thanks to Mark Chadwick who, over 10 years ago, helped me get past my imposter syndrome in API design. His constructive feedback and kind words are a big part of why I decided to dive deeper into this interesting area of computer science. Additionally, a special thank you is owed to Mark Hammond, who first taught me to question everything, even when it’s uncomfortable.

 This project would not have been possible without the editorial team at Manning, in particular Mike Stephens and Marjan Bace who okay’d the initial idea for this book, and Christina Taylor who stuck with me for another long-term project. I am also grateful for the detailed chapter reviews by Al Krinker; my project editor, Deirdre Hiam; copyeditor, Michele Mitchell; proofreader, Keri Hales; and reviewer editor, Ivan Martinović. Thank you to all those at Manning who helped make this happen.

 To all the reviewers: Akshat Paul, Anthony Cramp, Brian Daley, Chris Heneghan, Daniel Bretoi, David J. Biesack, Deniz Vehbi, Gerardo Lecaros, Jean Lazarou, John C. Gunvaldson, Jorge Ezequiel Bo, Jort Rodenburg, Luke Kupka, Mark Nenadov, Rahul Rai, Richard Young, Roger Dowell, Ruben Vandeginste, Satej Kumar Sahu, Steven Smith, Yul Williams, Yurii Bodarev, and Zoheb Ainapore, your suggestions helped make this a better book.

about this book

 API Design Patterns was written to provide a collection of safe, flexible, reusable patterns for building web APIs. It starts by covering some general design principles and builds on these to showcase a set of design patterns that aim to provide simple solutions to common scenarios when building APIs.

Who should read this book

 API Design Patterns is for anyone who is building or plans to build a web API, particularly when that API will be exposed to the public. Familiarity with some serialization formats (e.g., JSON, Google Protocol Buffers, or Apache Thrift) or common storage paradigms (e.g., relational database schemas) is certainly nice to have but is in no way required. It’s also a nice bonus if you’re already familiar with HTTP and its various methods (e.g., GET and POST), as it is the transport of choice throughout the examples in this book. If you find yourself designing an API and running into problems and thinking, “I’m sure someone must have figured this out already,” this book is for you.

How this book is organized: A roadmap

 This book is divided into six parts, with the first two parts covering more general topics in API design and the next four dedicated to the design patterns themselves. Part 1 opens by setting the stage for the rest of the book and providing some definitions and evaluative frameworks for web APIs themselves and the design patterns that we’ll apply to those web APIs in the future.

 	

 Chapter 1 starts by defining what we mean by an API and why APIs are important. It also provides a framework of sorts for how we can evaluate how good an API really is.

 	

 Chapter 2 expands on chapter 1 by looking at how design patterns can be applied to APIs and explaining how they can be useful to anyone building them. It covers the anatomy of an API design pattern as well as a short case study of how using one of these design patterns can lead to an overall better API.

 Part 2 aims to further build on the stage established in part 1 by outlining some general design principles that should be considered when building any API.

 	

 Chapter 3 looks at all the different components we might need to name in an API and what to take into consideration when choosing names for them. It also shows how naming is critically important despite seeming like something superficial.

 	

 Chapter 4 digs deeper into larger APIs, where we might have multiple resources that relate to one another. After going through some questions to ask when deciding on the resources and their relationships, it finishes by covering some examples of things to avoid.

 	

 Chapter 5 explores how different data types and the default values for these data types should be used in an API. It covers the most common data types such as strings and numbers, as well as the more complex possibilities like maps and lists.

 Part 3 marks the beginning of the design pattern catalog, starting with the fundamental patterns that should apply to almost all APIs.

 	

 Chapter 6 looks closely at how resources can be identified by users of an API, digging into the low-level details of identifiers such as tombstoning, character set and encodings, and using checksums to distinguish between missing versus invalid IDs.

 	

 Chapter 7 outlines in great detail how the different standard methods of web APIs (get, list, create, update, and delete) should work. It also explains why it’s so important that each standard method behave in exactly the same way across all the resources rather than varying to accommodate the unique aspects of each resource.

 	

 Chapter 8 expands on two specific standard methods (get and update) to address how users can interact with parts of a resource rather than the entire thing. It explains why this is necessary and useful (for both users and the API), as well as how to keep support for this functionality as minimally intrusive as possible.

 	

 Chapter 9 pushes past standard methods and opens the door to any sort of action we might want in an API using custom methods. Special emphasis is given to explain when custom methods make sense (and when they don’t), as well as how to make this decision in your own API.

 	

 Chapter 10 explores the unique scenario where API methods may not be instantaneous and how to support this in a convenient way for users with long-running operations (LROs). It explores how LROs work and all the methods that can be supported by LROs, including pausing, resuming, and canceling the long-running work.

 	

 Chapter 11 covers the concept of work that gets executed over and over, sort of like cron jobs for web APIs. It explains how to use Execution resources and run these on either a schedule or on demand.

 Part 4 focuses on resources and how they relate to one another, sort of like a more expansive exploration of chapter 4.

 	

 Chapter 12 explains how small, isolated bits of related data might be segregated into singleton sub-resources. It goes into detail about the circumstances for when this is a good idea as well as when it’s not.

 	

 Chapter 13 outlines how resources in a web API should store references to other resources with either reference pointers or in-lined values. It also explains how to handle edge-case behaviors such as cascading deletes or updates as referenced data changes over time.

 	

 Chapter 14 expands on one-to-one relationships between resources and explains how to use association resources to represent many-to-many relationships. It also covers how metadata can be stored about these relationships.

 	

 Chapter 15 looks at using add and remove shortcut methods as an alternative to relying on association resources when handling many-to-many relationships. It also covers some of the trade-offs when using these methods and why they might not always be the ideal fit.

 	

 Chapter 16 looks at the complex concept of polymorphism, where variables can take on a variety of different types. It covers how to handle polymorphic fields on API resources as well as why polymorphic methods should be avoided.

 Part 5 moves beyond interactions involving a single API resource at a time and begins looking at API design patterns targeted at interacting with entire collections of resources.

 	

 Chapter 17 explains how resources can be copied or moved in an API. It addresses the nuanced complications such as handling external data, inherited metadata from a different parent, and how child resources should be treated.

 	

 Chapter 18 explores how to adapt the standard methods (get, create, update, and delete) to operate on a collection of resources rather than a single resource at a time. It also covers some of the tricky pieces, such as how results should be returned and how to handle partial failures.

 	

 Chapter 19 expands on the idea of the batch delete method from chapter 17 to remove resources that match a specific filter rather than just a specific identifier. It also explores how to address issues of consistency and best practices to avoid accidental destruction of data.

 	

 Chapter 20 looks closely at ingestion of non-resource data that, itself, is not directly addressable. It covers how to use anonymous writes as well as topics of consistency and the trade-offs of when this type of anonymous data ingestion is a good fit for an API.

 	

 Chapter 21 explains how to handle browsing large data sets using pagination, relying on opaque page tokens to iterate through data. It also demonstrates how to use pagination inside single large resources.

 	

 Chapter 22 looks at how to handle applying filter criteria to listing resources and the best way to represent these filters in APIs. This applies directly to the topics covered in chapter 19.

 	

 Chapter 23 explores how to handle importing and exporting resources in and out of an API. It also dives into the nuanced differences between import and export operations as compared to backup and restore.

 Part 6 focuses on the somewhat less exciting areas of safety and security in APIs. This means ensuring that APIs are safe from attackers but also that the API methods provided are made safe from users’ own mistakes.

 	

 Chapter 24 explores the topic of versioning and what it means for different versions to be compatible with one another. It digs into the idea of compatibility as a spectrum and the importance of a compatibility policy definition that is consistent across an API.

 	

 Chapter 25 begins the work of protecting users from themselves by providing a pattern (soft deletion) for allowing resources to be removed from view while not being completely deleted from the system.

 	

 Chapter 26 attempts to protect the system from duplicate actions using request identifiers. It explores the pitfalls of using request IDs as well as an algorithm to ensure that these IDs are handled properly in large-scale systems.

 	

 Chapter 27 focuses on validation requests that allow users to get a preview of an action in an API without executing the underlying operation. It also explores how to handle more advanced topics such as side effects during both live requests and validation requests.

 	

 Chapter 28 introduces the idea of resource revisions as a way of tracking changes over time. It also covers the basic operations, such as restoring to previous revisions, and more advanced topics, such as how to apply revisions to child resources in the hierarchy.

 	

 Chapter 29 presents a pattern for informing users when API requests should be retried. It also includes guidelines about different HTTP response codes and whether they are safe to be retried.

 	

 Chapter 30 explores the topic of authenticating individual requests and the different security criteria to be considered when authenticating users in an API. It presents a specification for digitally signing API requests that adheres to security best practices to ensure API requests have verifiable origin and integrity and are not able to be repudiated later.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 After quite a bit of discussion with our early readers and review team, I’ve decided to use TypeScript as the standard language for a variety of reasons. First, TypeScript is easy to follow for anyone familiar with both dynamic languages (like JavaScript or Python) as well as static languages (like Java or C++). Additionally, while it might not be everyone’s favorite, and not all readers will be able to write their own TypeScript code right away, the code snippets can be treated as pseudo code, and most software developers should be able to discern the meaning.

 When it comes to defining APIs using TypeScript, there are two pieces to address: resources and methods. For the former, TypeScript’s primitives (e.g., interfaces) are quite expressive when defining schemas for API resources, keeping the API definitions short enough that they almost always fit in just a few lines. As a result, all API resources are defined as TypeScript interfaces, which has the added bonus of making the JSON representation quite obvious.

 For API methods, the problem is a bit more complicated. In this case, I’ve opted to use TypeScript abstract classes to represent the overarching API itself, with abstract functions to define the API methods, following a convention commonly used with Google’s Protocol Buffers’ RPCs. This provides the ability to define just the API methods without having to worry about the underlying implementations.

 When considering the inputs and outputs of API methods, I’ve decided to rely again on Protocol Buffers for inspiration, thinking in terms of request and response interfaces. This means that in most cases there will be interfaces representing these inputs and outputs, named as the API method with a -Request or -Response suffix (e.g., CreateChatRoomRequest for a CreateChatRooom API method).

 Finally, since this book relies quite a lot on RESTful concepts, there had to be a way of mapping these RPCs to a URL (and HTTP method). For this, I’ve chosen to use TypeScript decorators as annotations on the various API methods, with one decorator for each of the different HTTP methods (e.g., @get, @post, @delete). To indicate the URL path that the API method should map to, each decorator accepts a template string, which also supports wildcards for variables in the request interface. For example, @get("/{id=chatRooms/*}") would populate an ID field on the request. In this case, the asterisk indicates a placeholder for any value excluding a forward slash character.

 As great as it would have been to rely on OpenAPI specifications for all these design patterns, there are a few issues that tended to do a disservice to readers of this book. First, OpenAPI specifications are intended for consumption primarily by computers (e.g., code generators, documentation renders, etc.). Since the goal of this book is to communicate complicated API design topics to other API designers, OpenAPI just didn’t seem like the best option available for that goal.

 Secondly, while OpenAPI is an amazing project, it is quite verbose regardless of whether we represent APIs in YAML or JSON format. Unfortunately, representing these complicated topics using OpenAPI would have been completely possible, but not the most concise choice, leading to quite a lot of extra content without adding as much value.

 In the end, between OpenAPI, Protocol Buffers, and TypeScript, the early readers and reviewers gave pretty clear feedback that the TypeScript option was the best fit for this particular use case. Keep in mind that I’m not at all advocating people use TypeScript for defining their APIs. It was just a very good fit for this project.

Live book discussion forum

 Purchase of API Design Patterns includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/book/api-design-patterns/welcome/v-7. You can also learn more about Manning’s forums and the rules of conduct at https://livebook .manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 For further reading on API design topics, see https://aip.dev, which covers many similar topics in quite a lot of detail.

about the author

 J J Geewax is a software engineer at Google, focusing on real-time payment systems, cloud infrastructure, and API design. He is also the author of Google Cloud Platform in Action and the cofounder of AIP.dev, an industry-wide collaboration on API design standards started at Google. He lives in Singapore with his wife, Ka-el, and son, Luca.

about the cover illustration

 The figure on the cover of API Design Patterns is captioned Marchand d’Estampes à Vienne, or “Merchant of Prints in Vienna.” The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1 Introduction

 API design is complicated. After all, if it were easy there would probably be little need for this book at all. But before we start exploring the tools and patterns to make API design a bit more manageable, we first have to agree on some fundamental terminology and what to expect from this book. In the next two chapters, we’ll cover some of the introductory material that will act as a platform for us to build on throughout the rest of the book.

 We’ll start in chapter 1 by defining in detail what we mean by an API. More importantly, we’ll investigate what good APIs look like and how to distinguish them from bad APIs. Then in chapter 2, we’ll look more closely at what we mean by a design pattern and the anatomy of the patterns outlined in the rest of the book, with the end goal of relying on these design patterns to build consistently good APIs.

1 Introduction to APIs

 This chapter covers

 	
What are interfaces?

 	
What are APIs?

 	
What is resource orientation?

 	
What makes an API “good”?

 Chances are that by picking up this book you’re already familiar with the high-level concept of an API. Additionally, you probably already know that API stands for application programming interface, so the focus of this chapter will cover what these basics actually mean in more detail, as well as why they matter. Let’s start by looking more closely at this idea of an API.

1.1 What are web APIs?

 An API defines the way in which computer systems interact. And since an exceptionally small number of systems live in a vacuum, it should come as no surprise that APIs are everywhere. We can find APIs in the libraries we use from language package managers (e.g., an encryption library that provides a method like function encrypt(input: string): string) and technically in the code we write ourselves, even if it’s never intended for use by anyone else. But there’s one special type of API that is built to be exposed over a network and used remotely by lots of different people, and it’s these types that are the focus of this book, often called “web APIs.”

 Web APIs are interesting in many ways, but the most interesting aspect of this special category is arguably the fact that those building the API have so much control while those using web APIs have relatively little. When we use a library, we deal in local copies of the library itself, meaning those building the API can do whatever they want, whenever they want without the possibility of harming users. Web APIs are different because there are no copies. Instead, when the builders of a web API make changes, these changes are forced on users whether they ask for them or not.

 For example, imagine a web API call that allows you to encrypt data. If the team that works on this API decides to use a different algorithm when encrypting your data, you don’t really have a choice in the matter. When calling the encryption method, your data will be encrypted with the latest algorithm. In a more extreme example, the team could decide to shut off the API entirely and ignore your requests. At that point, your application will suddenly stop working and there’s not much you can do about it. Both of these scenarios are shown in figure 1.1.

 [image:]

 Figure 1.1 Possible consumer-facing experiences when dealing with a web API

 However, the drawbacks of a web API for consumers are often the primary benefits for those building the APIs: they’re able to maintain complete control of the API. For example, if the encryption API used a super-secret new algorithm, the team that built it would probably not want to just give that code away to the world in the form of a library. Instead, they’d probably prefer to use a web API, which would allow them to expose the functionality of the super-secret algorithm without giving away their valuable intellectual property. Other times, a system might require extraordinary computational power, which would take way too long to run if it was deployed as a library and run on a home computer or laptop. In those cases, such as with many machine learning APIs, building a web API allows you to expose the powerful functionality while hiding the computational requirements from consumers, shown in figure 1.2.

 [image:]

 Figure 1.2 An example of a web API hiding the computational power needed

 Now that we understand what APIs (and specifically web APIs) are, this raises the question: why do they matter?

1.2 Why do APIs matter?

 It’s not uncommon for software to be designed and built for human use exclusively, and there’s nothing fundamentally wrong with this. However, over the past several years we’ve seen more and more focus on automation, where we aim to build computer programs that do what we humans do, only faster. Unfortunately, it’s at this point that the “human-only” software becomes a bit of a problem.

 When we design something exclusively for human use, where our interactions involve a mouse and keyboard, we tend to conflate the system’s layout and visual aspects with the raw data and functional aspects. This is a problem because it can be difficult to explain to a computer how to interact with a graphical interface. And this problem gets worse because changing the visual aspects of a program may also require us to reteach the computer how to interact with this new graphical interface. In effect, while changes may simply be cosmetic to us, they’re completely unrecognizable to a computer. Put differently, to a computer there is no such thing as “cosmetic only.”

 APIs are interfaces specifically for computers with important properties to make it easy for computers to use them. For example, these interfaces have no visual aspects, so there’s no need to worry about superficial changes. And these interfaces generally evolve in only “compatible” ways (see chapter 24), so there’s no need to reteach the computer anything in the face of new changes. In short, APIs provide a way to speak the language computers need to interact in a safe and stable way.

 But this doesn’t stop at simple automation. APIs also open the door to composition, which allows us to treat functionality like Lego building blocks, assembling pieces together in novel ways to build things that are much larger than the sum of their parts. To complete the cycle, these new compositions of APIs can likewise join the ranks of reusable building blocks, enabling even more complex and extraordinary future projects.

 But this leads to an important question: how can we make sure the APIs we build fit together like Lego bricks? Let’s start by looking at one strategy for this, called resource orientation.

1.3 What are resource-oriented APIs?

 Many web APIs that exist today act a bit like servants: you ask them to do something and they go off and do it. For example, if we want the weather for our hometown we might order the web API to predictWeather(postalCode=10011)like a servant. This style of ordering another computer around by calling a preconfigured subroutine or method is often referred to as making a “remote procedure call” (RPC) because we’re effectively calling a library function (or procedure) to be executed on another computer that is somewhere potentially far away (or remote). The critical aspect of APIs like this is the primary focus on the actions being performed. That is, we think about calculating the weather (predictWeather(postalCode=...)) or encrypting data (encrypt(data=...)) or sending an email (sendEmail(to=...)), each with an emphasis on “doing” something.

 So why aren’t all APIs RPC-oriented? One of the main reasons has to do with the idea of “statefulness,” where API calls can either be “stateful” or “stateless.” An API call is considered stateless when it can be made independently from all other API requests, with no additional context or data whatsoever. For example, a web API call to predict the weather involves only one independent input (the postal code) and would therefore be considered stateless. On the other hand, a web API that stores a user’s favorite cities and provides weather forecasts for those cities has no runtime inputs but requires a user to already have stored the cities they’re interested in. As a result, this kind of API request, involving other prior requests or previously stored data, would be considered stateful. It turns out that RPC-style APIs are great for stateless functionality, but they tend to be a much poorer fit when we introduce stateful API methods.

 NOTE If you happen to be familiar with REST, now might be a good time to point out that this section is not about REST and RESTful APIs specifically, but more generally about APIs that emphasize “resources” (as most RESTful APIs do). In other words, while there will be a lot of overlap with the topic of REST, this section is a bit more general than just REST.

 To see why this is, let’s consider an example of a stateful API for booking airline flights. In table 1.1, we can see a list of RPCs for interacting with airline travel plans, covering actions such as scheduling new bookings, viewing existing bookings, and canceling unwanted travel.

 Table 1.1 Summary of methods for an example flight-booking API

 	

 Method

 	

 Description

 	

 ScheduleFlight()

 	

 Schedules a new flight

 	

 GetFlightDetails()

 	

 Shows information about a specific flight

 	

 ShowAllBookings()

 	

 Shows all travel plans currently booked

 	

 CancelReservation()

 	

 Cancels an existing flight reservation

 	

 RescheduleFlight()

 	

 Reschedules an existing flight to another date or time

 	

 UpgradeTrip()

 	

 Upgrades from economy class to first class

 Each of these RPCs is pretty descriptive, but there’s no escaping the requirement that we memorize these API methods, each of which is subtly different from the others. For example, sometimes a method talks about a “flight” (e.g., RescheduleFlight()) and other times operates on a “reservation” (e.g., CancelReservation()). We also have to remember which of the many synonymous forms of the action were used. For example, we need to remember whether the way to see all of our bookings is ShowFlights(), ShowAllFlights(), ListFlights(), or ListAllFlights() (in this case, it’s ShowAllFlights()). But what can we do to solve this? The answer comes in the form of standardization.

 Resource orientation aims to help with this problem by providing a standard set of building blocks to use when designing an API in two areas. First, resource-oriented APIs rely on the idea of “resources,” which are the key concepts we store and interact with, standardizing the “things” that the API manages. Second, rather than using arbitrary RPC names for any action we can think of, resource-oriented APIs limit actions to a small standard set (described in table 1.2), which apply to each of the resources to form useful actions in the API. Thinking of this a bit differently, resource-oriented APIs are really just a special type of RPC-style APIs where each RPC follows a clear and standardized pattern: <StandardMethod><Resource>().

 Table 1.2 Summary of standard methods and their meanings

 	

 RPC

 	

 Description

 	

 Create<Resource>()

 	

 Creates a new <Resource>

 	

 Get<Resource>()

 	

 Shows information about a specific <Resource>

 	

 List<Resources>()

 	

 Shows a list of all existing <Resources>

 	

 Delete<Resource>()

 	

 Deletes an existing <Resource>

 	

 Update<Resource>()

 	

 Updates an existing <Resource> in place

 If we go down this route of special, limited RPCs, this means that instead of the variety of different RPC methods shown in table 1.1, we could come up with a single resource (e.g., FlightReservation) and get equivalent functionality with the set of standard methods, shown in table 1.3.

 Table 1.3 Summary of standard methods applied to the flight resource

 	

 Method

 	

 	

 Resource

 	

 	

 Methods

 	

 Create

 	

 ×

 	

 FlightReservation

 	

 =

 	

 CreateFlightReservation()

 	

 Get

 	

 GetFlightReservation()

 	

 List

 	

 ListFlightReservations()

 	

 Delete

 	

 DeleteFlightReservation()

 	

 Update

 	

 UpdateFlightReservation()

 Standardization is clearly more organized, but does that mean that all resource-oriented APIs are strictly better than RPC-oriented APIs? Actually, no. For some scenarios RPC-oriented APIs will be a better fit (particularly in the case where the API method is stateless). In many other cases however, resource-oriented APIs will be much easier for users to learn, understand, and remember. This is because the standardization provided by resource-oriented APIs makes it easy to combine what you already know (e.g., the set of standard methods) with what you can easily learn (e.g., the name of a new resource) to start interacting with the API right away. Put a bit more numerically, if you are familiar with, say, five standard methods, then, thanks to the power of a reliable pattern, learning about one new resource is actually the same as learning five new RPCs.

 Obviously, it’s important to note that not every API is the same, and it’s a bit crude to define the complexity of an API in terms of the size of a to-do list of “stuff to learn.” On the other hand, there is an important principle at work here: the power of patterns. It seems that learning about composable pieces and combining them into more complex things that follow a set pattern tends to be easier than learning about pre-built complex things that follow a custom design every time. Since resource-oriented APIs exploit the power of battle-tested design patterns, they are often easier to learn and therefore “better” than their RPC-oriented equivalents. But this brings us to an important question: What does “better” mean here? How do we know if an API is “good”? What does “good” even mean?

1.4 What makes an API “good”?

 Before we explore a few of the different aspects that tend to make APIs “good,” we first need to dig into why we have an API at all. In other words, what is the purpose of building an API in the first place? Often this comes down to two simple reasons:

 	

 We have some functionality that some users want.

 	

 Those users want to use this functionality programmatically.

 For example, we might have a system that is amazing at translating text from one language to another. There are probably lots of people in the world who want this ability, but that alone isn’t enough. After all, we could launch a translation mobile app that exposes this amazing translation system instead of an API. To merit an API at all, the people who want this functionality must also want to write a program that uses it. Given these two criteria, where does this lead us when thinking about the desirable qualities of an API?

1.4.1 Operational

 Starting with the most important piece, no matter what the final interface looks like, the system as a whole must be operational. In other words, it must do the thing users actually want. If this is a system that intends to translate text from one language to another, it must actually be able to do so. Additionally, most systems are likely to have many nonoperational requirements. For example, if our system translates text from one language to another, there may be nonoperational requirements related to things like latency (e.g., the translation task should take a few milliseconds, not a few days) or accuracy (e.g., translations should not be misleading). It’s these two aspects together that we say constitute the operational aspects of a system.

1.4.2 Expressive

 If it’s important that a system is able to do something, it’s just as important that the interface to that system allows users to express the thing they want to do clearly and simply. In other words, if the system translates text from one language to another, the API should be designed such that there is a clear and simple way to do so. In this case, it might be an RPC called TranslateText(). This type of thing might sound obvious, but it can actually be more complicated than it seems.

 One example of this hidden complication is the case where an API supports some functionality already but, due to an oversight on our part, we didn’t realize that users wanted it and therefore didn’t build an expressive way for users to access that functionality. Scenarios like these tend to manifest as workarounds, where users do unusual things to access hidden functionality. For example, if an API provides the ability to translate text from one language to another, then it’s possible a user could coerce the API into acting as a language detector even if they’re not really interested in translating anything, as shown in listing 1.1. As you might imagine, it would be far better if users had an RPC called DetectLanguage() rather than making lots of API calls guessing at the language.

 Listing 1.1 Functionality to detect language using only a TranslateText API method

 function detectLanguage(inputText: string): string {

 const supportedLanguages: string[] = ['en', 'es', ...];

 for (let language of supportedLanguages) {

 let translatedText = TranslateApi.TranslateText({ ❶

 text: inputText,

 targetLanguage: language

 });

 if (translatedText === inputText) { ❷

 return language;

 }

 }

 return null; ❸

}

 ❶ This assumes the API in question defines a TranslateText method that takes some input text and a target language to translate into.

 ❷ If the translated text is the same as the input text, we know that the two languages are the same.

 ❸ If we don’t find translated text that is the same as the input text, we return null, indicating we can’t detect the language of the input text.

 As this example shows, APIs that support certain functionality but don’t make it easy for users to access that functionality would be not very good. On the other hand, APIs that are expressive provide the ability for users to clearly dictate exactly what they want (e.g., translate text) and even how they want it done (e.g., “within 150 milliseconds, with 95% accuracy”).

1.4.3 Simple

 One of the most important things related to the usability of any system is simplicity. While it’s easy to argue that something being simple is reducing the number of things (e.g., RPCs, resources, etc.) in an API, unfortunately this is rarely the case. For example, an API could rely on a single ExecuteAction() method that handles all functionality; however, that’s not really simplifying anything. Instead, it shifts complexity from one place (lots of different RPCs) to another (lots of configuration in a single RPC). So what exactly does a simple API look like?

 Rather than trying to excessively reduce the number of RPCs, APIs should aim to expose the functionality that users want in the most straightforward way possible, making the API as simple as possible, but no simpler. For example, imagine a translation API wanted to add the ability to detect the language of some input text. We could do this by returning the detected source text on the response of a translation; however, this still obfuscates the functionality by hiding it inside a method designed for another purpose. Instead, it would make more sense to create a new method that is designed specifically for this purpose, such as DetectLanguage(). (Note that we might also include the detected language when translating content, but that’s for another purpose entirely.)

 Another common position on simplicity takes the old saying about the “common case” (“Make the common case fast”) but focuses instead on usability while leaving room for edge cases. This restatement is to “make the common case awesome and the advanced case possible.” This means that whenever you add something that might complicate an API for the benefit of an advanced user, it’s best to keep this complication sufficiently hidden from a typical user only interested in the common case. This keeps the more frequent scenarios simple and easy, while still enabling more advanced features for those who want them.

 For example, let’s imagine that our translation API includes the concept of a machine learning model to be used when translating text, where instead of specifying the target language, we choose a model based on the target language and use that model as the “translating engine.” While this functionality provides much more flexibility and control to users, it is also much more complex, with the new common case shown in figure 1.3.

 [image:]

 Figure 1.3 Translating text after choosing a model

 As we can see, we’ve effectively made it much more difficult to translate some text in exchange for supporting the more advanced functionality. To see this more clearly, compare the code shown in listing 1.2 to the simplicity of calling TranslateText("Hello world", "es").

 Listing 1.2 Translating text after choosing a model

 function translateText(inputText: string,

 targetLanguage: string): string {

 let sourceLanguage =

 TranslateAPI.DetectLanguage(inputText); ❶

 let model = TranslateApi.ListModels({ ❷

 filter: `sourceLanguage:${sourceLanguage}

 targetLanguage:${targetLanguage}`,

 })[0];

 return TranslateApi.TranslateText({

 text: inputText,

 modelId: model.id ❸

 });

}

 ❶ Since we need to choose a model, we first need to know the language of the input text. To determine this we could rely on the hypothetical DetectLanguage() method provided by the API.

 ❷ Once we know both the source and destination languages, we can choose any of the matching models provided by the API.

 ❸ Now that we finally have all the required inputs, we can get back to our original goal of translating text into a target language.

 How could we design this API to be as simple as possible, but no simpler as well as make the common case awesome and the advanced case possible? Since the common case involves users who don’t really care about a specific model, we could do this by designing the API so that it accepts either a targetLanguage or a modelId. The advanced case would still work (in fact, the code shown in listing 1.2 would continue to work), but the common case would look far simpler, relying on just a targetLanguage parameter (and expecting the modelId parameter to be left undefined).

 Listing 1.3 Translating text to a target language (the common case)

 function translateText(inputText: string,

 targetLanguage: string,

 modelId?: string): string {

 return TranslateApi.TranslateText({

 text: inputText,

 targetLanguage: targetLanguage,

 modelId: modelId,

 });

}

 Now that we have some background on how simplicity is an important attribute of a “good” API, let’s look at the final piece: predictability.

1.4.4 Predictable

 While surprises in our lives can sometimes be fun, one place surprises do not belong is in APIs, either in the interface definition or underlying behavior. This is a bit like the old adage about investing: “If it’s exciting, you’re doing it wrong.” So what do we mean by “unsurprising” APIs?

 Unsurprising APIs rely on repeated patterns applied to both the API surface definition and the behavior. For example, if an API that translates text has a TranslateText() method that takes as a parameter the input content as a field called text, then when we add a DetectLanguage() method, the input content should be called text as well (not inputText or content or textContent). While this might seem obvious now, keep in mind that many APIs are built by multiple teams and the choice of what to call fields when presented a set of options is often arbitrary. This means that when two different people are responsible for these two different fields, it’s certainly possible that they’ll make different arbitrary choices. When this happens, we end up with an inconsistent (and therefore surprising) API.

 Even though this inconsistency might seem insignificant, it turns out that issues like these are much more important than they appear. This is because it’s actually pretty rare that users of an API learn each and every detail by thoroughly reading all the API documentation. Instead, users read just enough to accomplish what they want to do. This means that if someone learns that a field is called text in one request message, they’re almost certainly going to assume it’s named the same way in another, effectively building on what they’ve already learned to make an educated guess about things they haven’t yet learned. If this process fails (e.g., because another message named that field inputText), their productivity hits a brick wall and they have to stop what they’re doing to go figure out why their assumptions failed.

 The obvious conclusion is that APIs that rely on repeated, predictable patterns (e.g., naming fields consistently) are easier and faster to learn and therefore better. And similar benefits arise from more complex patterns, such as the standard actions we saw in our exploration of resource-oriented APIs. This brings us to the entire purpose of this book: APIs built using well-known, well-defined, clear, and (hopefully) simple patterns will lead to APIs that are predictable and easy to learn, which should lead to overall “better” APIs. Now that we have a good grasp on APIs and what makes them good, let’s start thinking about higher-level patterns we can follow when designing them.

Summary

 	

 Interfaces are contracts that define how two systems should interact with one another.

 	

 APIs are special types of interfaces that define how two computer systems interact with one another, coming in many forms, such as downloadable libraries and web APIs.

 	

 Web APIs are special because they expose functionality over a network, hiding the specific implementation or computational requirements needed for that functionality.

 	

 Resource-oriented APIs are a way of designing APIs to reduce complexity by relying on a standard set of actions, called methods, across a limited set of things, called resources.

 	

 What makes APIs “good” is a bit ambiguous, but generally good APIs are operational, expressive, simple, and predictable.

2 Introduction to API design patterns

 This chapter covers

 	
What an API design pattern is

 	
Why API design patterns are important

 	
The anatomy and structure of an API design pattern

 	
Designing an API with and without design patterns

 Now that we have a grasp of what APIs are and what makes them “good,” we can explore how we might apply different patterns when building an API. We’ll start by exploring what API design patterns are, why they matter, and how they’ll be described in later chapters. Finally, we’ll look at an example API and see how using pre-built API design patterns can save lots of time and future headaches.

2.1 What are API design patterns?

 Before we start exploring API design patterns we have to lay a bit of groundwork, starting with a simple question: what is a design pattern? If we note that software design refers to the structure or layout of some code written in order to solve a problem, then a software design pattern is what happens when a particular design can be applied over and over to lots of similar software problems, with only minor adjustments to suit different scenarios. This means that the pattern isn’t some pre-built library we use to solve an individual problem, but instead more of a blueprint for solving similarly structured problems.

 If this seems too abstract, let’s firm it up and imagine that we want to put a shed in our backyard. There are a few different options to choose from, ranging from what we did a few hundred years ago to what we do today thanks to the magic of companies like Lowe’s and Home Depot. There are lots of options, but four common ones are as follows:

 	

 Buy a pre-built shed and put it in the backyard.

 	

 Buy a shed kit (blueprints and materials) and assemble it ourselves.

 	

 Buy a set of shed blueprints, modify the design as necessary, then build it ourselves.

 	

 Design and build the entire shed from scratch.

 If we think of these in terms of their software equivalent, they would range from using a pre-built off-the-shelf software package all the way through writing an entirely custom system to solve our problem. In table 2.1 we see that these options get more and more difficult as we move through the list, but also add more and more flexibility from one option to the next. In other words, the least difficult has the least flexibility, and the most difficult has the most flexibility.

 Table 2.1 Comparison of ways to build a shed with ways to build software

 	

 Option

 	

 Difficulty

 	

 Flexibility

 	

 Software equivalent

 	

 Buy pre-built

 	

 Simple

 	

 None

 	

 Use a pre-built software package

 	

 Assemble from a kit

 	

 Easy

 	

 Very little

 	

 Build by customizing existing software

 	

 Build from blueprints

 	

 Moderate

 	

 Some

 	

 Build from a design document

 	

 Build from scratch

 	

 Difficult

 	

 Most

 	

 Write completely custom software

 Software engineers tend to choose the “build from scratch” option most of the time. Sometimes this is necessary, particularly in cases where the problems we’re solving are new. Other times this choice wins out in a cost-benefit analysis because our problem is just different enough to prevent us from relying on one of the easier options. And still other times we know of a library that happens to solve our problem exactly (or close enough), and we choose to rely on someone else having already solved the problem at hand. It turns out that choosing one of the in-between options (customizing existing software or building from a design document) is much less common but could probably be used more often with great results. And this is where design patterns fit in.

 At a high level, design patterns are the “build from blueprints” option applied to software. Just like blueprints for a shed come with the dimensions, locations of doors and windows, and the materials for the roof, design patterns come with some set of specifications and details for the code that we write. In software this often means specifying a high-level layout of the code as well as the nuances of relying on the layout to solve a particular design problem. However, it’s rare that a design pattern is made to be used entirely on its own. Most often, design patterns focus on specific components rather than entire systems. In other words, the blueprints focus on the shape of a single aspect (like the roof shape) or component (like a window design) rather than the entire shed. This might seem like a downside at first glance, but that’s only the case if the goal is exactly to build a shed. If you’re trying to build something sort of like a shed, but not quite a shed, then having blueprints for each individual component means you can mix and match lots of them together into exactly what you want to build, choosing roof shape A and window design B. This carries over into our discussion of design patterns, since each one tends to focus on a single component or problem type of your system, helping you build exactly what you want by assembling lots of pre-designed pieces.

 For example, if you want to add debug logging to your system, you’ll likely want one and only one way to log messages. There are lots of ways you could do this (for example, using a single shared global variable), but there happens to be a design pattern aimed at solving this software problem. This pattern, described in the seminal work Design Patterns (Gamma et al., 1994), is called the singleton pattern, and it ensures that only a single instance of a class is created. This “blueprint” calls for a class with a private constructor and a single static method called getInstance(), which always returns a single instance of the class (it handles creating that single instance if and only if it doesn’t exist yet). This pattern is not at all complete (after all, what good is it to have a singleton class that does nothing?); however, it’s a well-defined and well-tested pattern to follow when you need to solve this small compartmentalized problem of always having a single instance of a class.

 Now that we know what software design patterns are generally, we have to ask the question: what are API design patterns? Using the definition of an API as described in chapter 1, an API design pattern is simply a software design pattern applied to an API rather than all software generally. This means that API design patterns, just like regular design patterns, are simply blueprints for ways of designing and structuring APIs. Since the focus is on the interface rather than the implementation, in most cases an API design pattern will focus on the interface exclusively, without necessarily building out the implementation. While most API design patterns will often remain silent on the underlying implementation of those interfaces, sometimes they dictate certain aspects of the API ’s behavior. For example, an API design pattern might specify that a certain RPC can be eventually consistent, meaning that the data returned from that RPC could be slightly stale (for example, it could be read from a cache rather than the authoritative storage system).

 We’ll get into a more formal explanation of how we plan to document API patterns in a later section, but first let’s take a quick look at why we should care about API design patterns at all.

2.2 Why are API design patterns important?

 As we already learned, API design patterns are useful in building APIs, just like blueprints are when building a shed: they act as pre-designed building blocks we can use in our projects. What we didn’t dig into is why we need these pre-designed blueprints in the first place. Aren’t we all smart enough to build good APIs? Don’t we know our business and technical problems best? While this is often the case, it turns out that some of the techniques we use to build really well-designed software don’t work as well when building APIs. More specifically, the iterative approach, advocated in particular by the agile development process, is difficult to apply when designing APIs. To see why, we have to look at two aspects of software systems. First, we have to explore the flexibility (or rigidity) of the various interfaces generally, and then we must understand what effect the audience of the interface has on our ability to make changes and iterate on the overall design. Let’s start by looking at flexibility.

 As we saw in chapter 1, APIs are special kinds of interfaces that are made primarily so computing systems can interact with one another. While having programmatic access to a system is very valuable, it’s also much more fragile and brittle in that changes to the interface can easily cause failures for those using the interface. For example, changing the name of a field in an API would cause a failure for any code written by users before the name change occurred. From the perspective of the API server, the old code is asking for something using a name that no longer exists. This is a very different scenario from other kinds of interfaces, such as graphical user-interfaces (GUIs), which are used primarily by humans rather than computers and as a result are much more resilient to change. This means that even though a change might be frustrating or aesthetically displeasing, it typically won’t cause a catastrophic failure where we can no longer use the interface at all. For example, changing the color or location of a button on a web page might be ugly and inconvenient, but we can still figure out how to accomplish what we need to do with the interface.

 We often refer to this aspect of an interface as its flexibility, saying that interfaces where users can easily accommodate changes are flexible and those where even small changes (like renaming fields) cause complete failures are rigid. This distinction is important because the ability to make lots and lots of changes is determined in large part by the flexibility of the interface. Most importantly we can see that rigid interfaces make it much more difficult for us to iterate toward a great design like we would in other software projects. This means that we often end up stuck with all design decisions, both good and bad. This might lead you to think that the rigidity of APIs implies we’ll never be able to use an iterative development process, but this is not always the case thanks to another important aspect of interfaces: visibility.

 Generally, we can put most interfaces into two different categories: those that your users can see and interact with (in software usually called the frontend) and those that they can’t (usually called the backend). For example, we can easily see the graphical user interface for Facebook when we open a browser; however, we don’t have the ability to see how Facebook stores our social graph and other data. To use more formal terms for this aspect of visibility, we can say that the frontend (the part that all users see and interact with) is usually considered public and the backend (only visible to a smaller internal group) is considered private. This distinction is important because it partly determines our ability to make changes to different kinds of interfaces, particularly rigid ones like APIs.

 If we make a change to a public interface, the whole world will see it and may be affected by it. Since the audience is so large, carelessly making changes could result in angry or frustrated users. While this certainly applies to rigid interfaces like APIs, it also applies to flexible interfaces just the same. For example, in the early days of Facebook most major functional or design changes caused outrage among college students for a few weeks. But what if the interface isn’t public? Is it a big deal to make changes to backend interfaces that are only seen by members of some private internal group of people? In this scenario the number of users affected by a change is much smaller, possibly even limited to people on the same team or in the same office, so it seems we have gained back a bit more freedom to make changes. This is great news because it means we should be able to iterate quickly toward an ideal design, applying agile principles along the way.

 So why are APIs special? It turns out that when we design many APIs (which are rigid by definition) and share them with the world, we really have a worst-case scenario for both aspects. This means that making changes is much more difficult than any other combination of these two properties (as summarized in table 2.2).

 Table 2.2 Difficulty of changing various interfaces

 	

 Flexibility

 	

 Audience

 	

 Example interface

 	

 Change difficulty

 	

 Flexible

 	

 Private

 	

 Internal monitoring console

 	

 Very easy

 	

 Flexible

 	

 Public

 	

 Facebook.com

 	

 Moderate

 	

 Rigid

 	

 Private

 	

 Internal photo storage API

 	

 Difficult

 	

 Rigid

 	

 Public

 	

 Public Facebook API

 	

 Very difficult

 Put simply, this “worst of both worlds” scenario (both rigid and difficult to change) makes reusable and proven design patterns even more important for building APIs than other types of software. While code is often private and out of sight in most software projects, design decisions in an API are front and center, shown to all of the users of the service. Since this seriously limits our ability to make incremental improvements on our designs, relying on existing patterns that have survived the tests of time are very valuable in getting things right the first time rather than just eventually as in most software.

 Now that we’ve explored some of the reasons these design patterns are important, let’s get into an API design pattern by dissecting it and exploring its various components.

2.3 Anatomy of an API design pattern

 Like most pieces in software design, API design patterns are made up of several different components, each one responsible for a different aspect of consuming the pattern itself. Obviously the primary component focuses on how the pattern itself works, but there are other components targeted at the less technical aspects of consuming a design pattern. These are things like figuring out that a pattern exists for a given set of problems, understanding whether the pattern is a good fit for the problem you’re dealing with, and understanding why the pattern does things in one way rather than using a (possibly simpler) alternative.

 Since this anatomy lesson could get a bit complicated, let’s imagine that we’re building a service that stores data and that the customers of that service want an API where they can get their data out of the service. We’ll rely on this example scenario to guide our discussion through each of the pattern components that we’ll explore next, starting with the beginning: the name.

2.3.1 Name and synopsis

 Each design pattern in the catalog has a name, given to uniquely identify the pattern in the catalog. The name will be descriptive enough to convey what the pattern is doing, but not so long-winded that it’s not easy to shout across a noisy room. For example, when describing a pattern that solves our example scenario of exporting data, we could call it “Import, export, back-up, restore, snapshot, and rollback pattern,” but it’s probably better named as “Input/Output pattern” or “IO pattern” for short.

 While the name itself is usually enough to understand and identify the pattern, it’s sometimes not quite verbose enough to sufficiently explain the problem that the pattern addresses. To ensure there is a short and simple introduction to the pattern itself, there will also be a short summary of the pattern following the name, which will have a brief description of the problem it is aiming to solve. For example, we might say that the input/output pattern “offers a structured way of moving data to or from a variety of different storage sources and destinations.” In short, the overall goal of this section is to make it easy to quickly identify whether any particular pattern is worth further investigation as a potential fit for solving a given problem.

2.3.2 Motivation

 Since the goal of an API design pattern is to provide a solution for a category of problems, a good place to start is a definition of the problem space the pattern aims to cover. This section aims to explain the fundamental problem so that it’s easy to understand why we need a pattern for it in the first place. This means we first need a detailed problem statement, which often comes in the form of a user-focused objective. In the case of our data export example, we might have a scenario where a user “wants to export some data from the service into another external storage system.”

 After that, we must dig a bit deeper into the details of what users want to accomplish. For example, we might find that users need to export their data to a variety of storage systems, not just Amazon’s S3. They also may need to apply further constraints on how the data is exported, such as whether it’s compressed or encrypted before transmission. These requirements will have a direct impact on the design pattern itself, so it’s important that we articulate these details of the problem we’re addressing with this particular pattern.

 Next, once we understand the user objectives more fully, we need to explore the edge cases that are likely to arise in the normal course of actual implementation. For example, we should understand how the system should behave when the data is too large (and how large is too large, since those words often mean different numbers to different people). We also must explore how the system should react in failure scenarios. For example, when an export job fails we should describe whether it should be retried. These unusual scenarios are likely to be much more common than we typically expect, and even though we might not have to decide how to address each scenario right away, it’s critical that the pattern take note of these blanks so that they can eventually be filled in by an implementation.

2.3.3 Overview

 Now we’re getting closer to the fun part: explaining what the design pattern recommends as a solution to the problem space. At this point, we’re no longer focused on defining the problem, but on offering a high-level description of the solution. This means that we get to start exploring the tactics we’ll employ to address the problem and the methods we’ll use to do so. For example, in our exporting data scenario, this section would outline the various components and their responsibilities, such as a component for describing the details of what data to export, another for describing the storage system that acts as a destination for the exported data, and still another for describing encryption and compression settings applied before sending the data to that destination.

 In many cases the problem definition and list of solution requirements will dictate a general outline of a solution. In those cases, the goal of the overview is to explicitly articulate this outline rather than leaving it to be inferred from the problem description, regardless of how obvious a solution may seem. For example, if we’re defining a pattern for searching through a list of resources, it seems pretty obvious to have a query parameter; however, other aspects (such as the format of that parameter or the consistency guarantees of the search) might not be so obvious and merit further discussion. After all, even obvious solutions may have subtle implications that are worth addressing, and, as they say, the devil is often in the details.

 Other times, while the problem is well-defined, there may not be a single obvious solution, but instead several different options that may each have their own trade-offs. For example, there are many different ways to model many-to-many relationships in an API, each with its different benefits and drawbacks; however, it’s important that an API choose one option and apply it consistently. In cases like this, the overview will discuss each of the different options and the strategy employed by the recommended pattern. This section might contain a brief discussion of the benefits and drawbacks of the other possible options mentioned, but the bulk of that discussion will be left for the trade-offs section at the end of the pattern description.

2.3.4 Implementation

 We’ve gotten to the most important piece of every design pattern: how we go about implementing it. At this point, we should thoroughly understand the problem space that we’re trying to address and have an idea of the high-level tactics and strategy we’ll be employing to solve it. The most important piece of this section will be interface definitions defined as code, which explain what an API using this pattern to solve a problem would look like. The API definitions will focus on the structure of resources and the various specific ways to interact with those resources. This will include a variety of things such as the fields present on resources or requests, the format of the data that could go into those fields (e.g., Base64 encoded strings), as well as how the resources relate to one another (e.g., hierarchical relationships).

 In many cases, the API surface and field definitions themselves may not be sufficient to explain how the API actually works. In other words, while the structure and list of fields may seem clear, the behavior of those structures and interaction between different fields may be much more complex rather than simple and obvious. In those cases, we’ll need a more detailed discussion of these non-obvious aspects of the design. For example, when exporting data we may specify a way to compress it on the way to the storage service using a string field to specify the compression algorithm. In this situation, the pattern might discuss the various possible values of this field (it might use the same format used by the Accept-Encoding HTTP header), what to do when an invalid option is supplied (it might return an error), and what it means when a request leaves the field blank (it might default to gzip compression).

 Finally, this section will include an example API definition, with comments explaining what an API that correctly implements this pattern should look like. This will be defined in code, with comments explaining the behaviors of the various fields, and will rely on a specific example of a scenario illustrating the problem that’s addressed by the pattern. This section will almost certainly be the longest and have the most detail.

2.3.5 Trade-offs

 At this point we understand what a design pattern gives us, but we’ve yet to discuss what it takes away, which is actually pretty important. Put bluntly, there may simply be things that are not possible if the design pattern is implemented as designed. In these cases it’s very important to understand what sacrifices are necessary in order to achieve the benefits that come from relying on a design pattern. The possibilities here are quite varied, ranging from functional limitations (e.g., it’s impossible to export data directly as a download to the user in a web browser) to increased complexity (e.g., it’s much more typing to describe where you want to send your data), and even to more technical aspects like data consistency (e.g., you can see data that might be a bit stale, but you can’t know for sure), so the discussion can range from simple explanations to detailed exploration of the subtle limitations when relying on a particular design pattern.

 Additionally, while a given design pattern may often fit the problem space perfectly, there will certainly be scenarios where it is a close enough fit but not quite perfect. In these cases it’s important to understand what consequences will arise by relying on a design pattern that is in this unique spot: not the wrong pattern, but not quite a perfect pattern either. This section will discuss the consequences of slight misalignments like this.

 Now that we’ve gotten a better grasp on how API design patterns will be structured and explained, let’s switch gears and look at the difference these patterns can make when building a supposedly simple API.

2.4 Case study: Twapi, a Twitter-like API

 If you’re unfamiliar with Twitter, think of it like a place where you can share short messages with others—that’s it. It’s a little scary to think that an entire business is built on everyone creating tiny messages, but apparently that’s enough to merit a multi-billion dollar technology company. What’s not mentioned here is that even with an extremely simple concept, there happens to be quite a lot of complexity hiding underneath the surface. To better understand this, let’s begin by exploring what an API for Twitter might look like, which we’ll call Twapi.

2.4.1 Overview

 With Twapi, our primary responsibility is to allow people to post new messages and view messages posted by other people. On the surface this looks pretty simple, but as you might guess, there are a few hidden pitfalls for us to be aware of. Let’s start by assuming that we have a simple API call to create a Twapi message. After that, we’ll look at two additional actions this API might need: listing lots of messages and exporting all messages to a different storage system.

OEBPS/Images/01-02.png
Consumer

Detect faces in an image.

Faces in the image

Web API

Run calculations

Faces detected

OEBPS/Images/Manning_M_small.png

OEBPS/Images/cover.jpeg
JJ Geewax

Foreword by Jon Skeet

/'l MANNING

OEBPS/Images/01-03.png
Consumer

Find matching models based on language.

[{ id: "model1”, ... },

omen

model

Translate the text using the model.

<translated text>

OEBPS/Images/01-01.png
Consumer

encrypt ({ data: "Hello world!" })

Later that day

encrypt ({ data: "Hello world!" })

"ab6e92£20"

New encryption algorithm

encrypt ({ data: "Hello world!" })

"b7c993"

Service shuts down

encrypt ({ data: "Hello world!" })

OEBPS/Images/Manning_copyright.png

