

 inside front cover

 Quick overview of refactoring patterns

 	
 EXTRACT METHOD (P3.2.1)—Takes part of one method and extracts it into its own method.

 	
 REPLACE TYPE CODE WITH CLASSES (P4.1.3)—Transforms an enum into an interface, and the enums’ values become classes.

 	
 PUSH CODE INTO CLASSES (P4.1.5)—Is a natural continuation of REPLACE TYPE CODE WITH CLASSES (P4.1.3), as it moves functionality into classes.

 	
 INLINE METHOD (P4.1.7)—Removes methods that no longer add readability to our program.

 	
 SPECIALIZE METHOD (P4.2.2)—Removes unnecessary and problematic generality from methods.

 	
 TRY DELETE THEN COMPILE (P4.5.1)—Removes unused methods from interfaces and classes when we know their entire scope.

 	
 UNIFY SIMILAR CLASSES (P5.1.1)—Unifies two or more classes that differ from each other in a set of constant methods.

 	
 COMBINE ifS (P5.2.1)—Reduces duplication by joining consecutive ifs that have identical bodies.

 	
 INTRODUCE STRATEGY PATTERN (P5.4.2)—Replaces variance through if by instead instantiating classes.

 	
 EXTRACT INTERFACE FROM IMPLEMENTATION (P5.4.4)—Replaces dependencies on a class with an interface.

 	
 ELIMINATE GETTER OR SETTER (P6.1.3)—Eliminates getters and setters by moving the functionality closer to the data.

 	
 ENCAPSULATE DATA (P6.2.3)—Localizes invariants related to variables and makes cohesion clearer.

 	
 ENFORCE SEQUENCE (P6.4.1)—Makes the compiler guarantee things happen in a specific order.

 [image:]

 Five Lines of Code

 How and when to refactor

 Christian Clausen

 Foreword by Robert C. Martin

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Helen Stergius

 	
 Technical development editor:

 	
 Mark Elston

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Tiffany Taylor

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Jean François Morin

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617298318

 dedication

 To my university mentors, who told me

 The key to being consistently brilliant is hard work every day.

 —Olivier Danvy

 and

 You’re missing the point.

 —Mayer Goldberg

 Thank you for teaching me to stop trying to do the right thing, and do the right thing.

brief contents

 1 Refactoring refactoring

 2 Looking under the hood of refactoring

 Part 1. Learn by refactoring a computer game

 3 Shatter long functions

 4 Make type codes work

 5 Fuse similar code together

 6 Defend the data

 Part 2. Taking what you have learned into the real world

 7 Collaborate with the compiler

 8 Stay away from comments

 9 Love deleting code

 10 Never be afraid to add code

 11 Follow the structure in the code

 12 Avoid optimizations and generality

 13 Make bad code look bad

 14 Wrapping up

 Appendix. Installing the tools for part 1

contents

 front matter

 foreword

 preface

 acknowledgments

 about the author

 about the cover illustration

 1 Refactoring refactoring

 1.1 What is refactoring?

 1.2 Skills: What to refactor?

 An example code smell

 An example rule

 1.3 Culture: When to refactor?

 Refactoring in a legacy system

 When should you not refactor?

 1.4 Tools: How to refactor (safely)

 1.5 Tools you need to get started

 Programming language: TypeScript

 Editor: Visual Studio Code

 Version control: Git

 1.6 Overarching example: A 2D puzzle game

 Practice makes perfect: A second codebase

 1.7 A note on real-world software

 2 Looking under the hood of refactoring

 2.1 Improving readability and maintainability

 Making code better

 Maintaining code . . . without changing what it does

 2.2 Gaining speed, flexibility, and stability

 Favoring composition over inheritance

 Changing code by addition rather than modification

 2.3 Refactoring and your daily work

 Refactoring as a method for learning

 2.4 Defining the “domain” in a software context

 Part 1. Learn by refactoring a computer game

 3 Shatter long functions

 3.1 Establishing our first rule: Why five lines?

 Rule: Five lines

 3.2 Introducing a refactoring pattern to break up functions

 Refactoring pattern: Extract method

 3.3 Breaking up functions to balancing abstraction

 Rule: Either call or pass

 Applying the rule

 3.4 Properties of a good function name

 3.5 Breaking up functions that are doing too much

 Rule: if only at the start

 Applying the rule

 4 Make type codes work

 4.1 Refactoring a simple if statement

 Rule: Never use if with else

 Applying the rule

 Refactoring pattern: Replace type code with classes

 Pushing code into classes

 Refactoring pattern: Push code into classes

 Inlining a superfluous method

 Refactoring pattern: Inline method

 4.2 Refactoring a large if statement

 Removing generality

 Refactoring pattern: Specialize method

 The only switch allowed

 Rule: Never use switch

 Eliminating the if

 4.3 Addressing code duplication

 Couldn’t we use an abstract class instead of the interface?

 Rule: Only inherit from interfaces

 What is up with all this code duplication?

 4.4 Refactoring a pair of complex if statements

 4.5 Removing dead code

 Refactoring pattern: Try delete then compile

 5 Fuse similar code together

 5.1 Unifying similar classes

 Refactoring pattern: Unify similar classes

 5.2 Unifying simple conditions

 Refactoring pattern: Combine ifs

 5.3 Unifying complex conditions

 Using arithmetic rules for conditions

 Rule: Use pure conditions

 Applying condition arithmetic

 5.4 Unifying code across classes

 Introducing UML class diagrams to depict class relations

 Refactoring pattern: Introduce strategy pattern

 Rule: No interface with only one implementation

 Refactoring pattern: Extract interface from implementation

 5.5 Unifying similar functions

 5.6 Unifying similar code

 6 Defend the data

 6.1 Encapsulating without getters

 Rule: Do not use getters or setters

 Applying the rule

 Refactoring pattern: Eliminate getter or setter

 Eliminating the final getter

 6.2 Encapsulating simple data

 Rule: Never have common affixes

 Applying the rule

 Refactoring pattern: Encapsulate data

 6.3 Encapsulating complex data

 6.4 Eliminating a sequence invariant

 Refactoring pattern: Enforce sequence

 6.5 Eliminating enums another way

 Enumeration through private constructors

 Remapping numbers to classes

 Part 2. Taking what you have learned into the real world

 7 Collaborate with the compiler

 7.1 Getting to know the compiler

 Weakness: The halting problem limits compile-time knowledge

 Strength: Reachability ensures that methods return

 Strength: Definite assignment prevents accessing uninitialized variables

 Strength: Access control helps encapsulate data

 Strength: Type checking proves properties

 Weakness: Dereferencing null crashes our application

 Weakness: Arithmetic errors cause overflows or crashes

 Weakness: Out-of-bounds errors crash our application

 Weakness: Infinite loops stall our application

 Weakness: Deadlocks and race conditions cause unintended behavior

 7.2 Using the compiler

 Making the compiler work

 Don’t fight the compiler

 7.3 Trusting the compiler

 Teach the compiler invariants

 Pay attention to warnings

 7.4 Trusting the compiler exclusively

 8 Stay away from comments

 8.1 Deleting outdated comments

 8.2 Deleting commented-out code

 8.3 Deleting trivial comments

 8.4 Transforming comments into method names

 Using comments for planning

 8.5 Keeping invariant-documenting comments

 Invariants in the process

 9 Love deleting code

 9.1 Deleting code may be the next frontier

 9.2 Deleting code to get rid of incidental complexity

 Technical ignorance from inexperience

 Technical waste from time pressure

 Technical debt from circumstances

 Technical drag from growing

 9.3 Categorizing code based on intimacy

 9.4 Deleting code in a legacy system

 Using the strangler fig pattern to get insight

 Using the strangler fig pattern to improve the code

 9.5 Deleting code from a frozen project

 Making the desired outcome the default

 Minimizing waste with spike and stabilize

 9.6 Deleting branches in version control

 Minimizing waste by enforcing a branch limit

 9.7 Deleting code documentation

 Algorithm to determine how to codify knowledge

 9.8 Deleting testing code

 Deleting optimistic tests

 Deleting pessimistic tests

 Fixing or deleting flaky tests

 Refactoring the code to get rid of complicated tests

 Specializing tests to speed them up

 9.9 Deleting configuration code

 Scoping configuration in time

 9.10 Deleting code to get rid of libraries

 Limiting our reliance on external libraries

 9.11 Deleting code from working features

 10 Never be afraid to add code

 10.1 Accepting uncertainty: Enter the danger

 10.2 Using spikes to overcome the fear of building the wrong thing

 10.3 Overcoming the fear of waste or risk with a fixed ratio

 10.4 Overcoming the fear of imperfection by embracing gradual improvement

 10.5 How copy and paste effects change velocity

 10.6 Modification by addition through extensibility

 10.7 Modification by addition enables backward compatibility

 10.8 Modification by addition through feature toggles

 10.9 Modification by addition through branch by abstraction

 11 Follow the structure in the code

 11.1 Categorizing structure based on scope and origin

 11.2 Three ways that code mirrors behavior

 Expressing behavior in the control flow

 Expressing behavior in the structure of the data

 Expressing behavior in the data

 11.3 Adding code to expose structure

 11.4 Observing instead of predicting, and using empirical techniques

 11.5 Gaining safety without understanding the code

 Gaining safety through testing

 Gaining safety through mastery

 Gaining safety through tool assistance

 Gaining safety through formal verification

 Gaining safety through fault tolerance

 11.6 Identifying unexploited structures

 Exploiting whitespace with extraction and encapsulation

 Exploiting duplication with unification

 Exploiting common affixes with encapsulation

 Exploiting the runtime type with dynamic dispatch

 12 Avoid optimizations and generality

 12.1 Striving for simplicity

 12.2 When and how to generalize

 Building minimally to avoid generality

 Unifying things of similar stability

 Eliminating unnecessary generality

 12.3 When and how to optimize

 Refactoring before optimizing

 Optimizing according to the theory of constraints

 Guiding optimization with metrics

 Choosing good algorithms and data structures

 Using caching

 Isolating optimized code

 13 Make bad code look bad

 13.1 Signaling process issues with bad code

 13.2 Segregating into pristine and legacy code

 The broken window theory

 13.3 Approaches to defining bad code

 The rules in this book: Simple and concrete

 Code smells: Complete and abstract

 Cyclomatic complexity: Algorithmic (objective)

 Cognitive complexity: Algorithmic (subjective)

 13.4 Rules for safely vandalizing code

 13.5 Methods for safely vandalizing code

 Using enums

 Using ints and strings as type codes

 Putting magic numbers in the code

 Adding comments to the code

 Putting whitespace in the code

 Grouping things based on naming

 Adding context to names

 Creating long methods

 Giving methods many parameters

 Using getters and setters

 14 Wrapping up

 14.1 Reflecting on the journey of this book

 Introduction: Motivation

 Part 1: Making it concrete

 Part 2: Widening the horizon

 14.1 Exploring the underlying philosophy

 Searching for ever-smaller steps

 Searching for the underlying structure

 Using the rules for collaboration

 Prioritizing the team over individuals

 Prioritize simplicity over completeness

 Using objects or higher-order functions

 14.1 Where to go from here?

 Micro-architecture route

 Macro-architecture route

 Software quality route

 Appendix. Installing the tools for part 1

 index

 front matter

foreword

 Have you ever read a book on software and thought that the author was talking over your head? Did the book use unfamiliar vocabulary and overly complex concepts to make its points? Did it make you feel as though it was written for some elite inner circle of know-it-alls that didn’t include you?

 This is not that book. This book is down to earth, focused, and right on point.

 Neither is this book a primer. It doesn’t start at the atom and bore you with the basics of programming and languages. It doesn’t try to coddle you and keep you safe. I guarantee that this book will challenge you. But it will challenge you without intimidating you and without insulting your intelligence.

 Refactoring is the discipline of transforming bad code into good code without breaking it. When we consider that our entire civilization now depends on software for its further existence, it seems unlikely that there is a topic more worthy of study.

 Perhaps you think that’s hyperbolic. It’s not. Look around you. How many processors running software are currently on your body? Your watch, your phone, your car keys, your headphones . . . how many are within 30 meters of you? Your microwave, your stove, your dishwasher, your thermostat, your clothes washer . . . and how about your car?

 These days, nothing happens in our society without software. You can’t buy or sell anything, or drive or fly anywhere, or cook a hot dog, or watch TV, or call someone on the phone without software.

 And how much of that software is actually good code? Think of the systems you are working on right now. Are they clean? Or are they, like most, a mess in desperate need of refactoring?

 This book does not present the kind of sterile and simplistic refactoring you may have heard or read about before. This book talks about real refactoring. Refactoring in real projects. Refactoring in legacy systems. Refactoring in the kinds of environments that we all face virtually every day.

 What’s more, this book won’t make you feel guilty for not having automated tests. The author realizes that most inherited systems grew and evolved over time, and we are not so fortunate as to have such test suites.

 This book lays down a set of simple rules that you can follow to reliably refactor complex, messy, tangled, untested systems. By learning and following these rules, you can make a real difference in the quality of the systems you maintain.

 Don’t get me wrong—it’s not a silver bullet. Refactoring old, crufty, untested code is never easy. But armed with the rules and examples in this book, you will be able to make inroads against the cruft and tangle of systems that have bedeviled you for too long.

 So I advise you to read this book carefully. Study the examples. Think hard about the abstractions and intentions the author presents. Get the codebase he offers, and refactor it along with him. Follow his refactoring journey from beginning to end.

 It will take time. It will be frustrating. It will challenge you. But you’ll come out the other side with a set of skills that will serve you well for the rest of your career. You’ll also come out with a new intuition and understanding of what separates good code from bad code, and just what it is that makes code clean.

 —Robert C. Martin (aka Uncle Bob)

preface

 My father taught me to code at a very young age, so I have been thinking about structures for as long as I can remember. I was always motivated by helping people; that is why I got up in the morning. Therefore, teaching was naturally interesting to me. So when I was offered a teaching assistant position at university, I accepted immediately. I had a handful of these gigs, but unfortunately my luck ran out, and one semester there was nothing I could teach.

 Being entrepreneurial, I decided to start a student organization where students would teach each other. Anyone was welcome to attend or speak, and the topics ranged from lessons learned from side projects to advanced topics not covered by the curriculum. I believed this would allow me to teach, and I was not wrong. As it turns out, computer scientists are timid, so I had to host almost 60 weeks in a row to get the ball rolling. I learned a great deal during this period, both about the topics I taught and about teaching. These talks also spawned a community of curious people where I met my best friends.

 Some time after I left university, I was hanging out with one of those friends. We were bored, so he asked me if I could improvise a talk because I had done so many of them. I answered, “Let’s find out.” We opened a laptop, and without stopping for breath, I typed out what is essentially the overarching example of part 1 of this book.

 When I took my fingers off the keyboard, he was awestruck. He thought that was the demonstration, but I had a different idea. I wanted to teach him refactoring.

 My goal was that after one hour, he could code as though he were a master refactorer. Because refactoring and code quality are such intricate subjects, it was obvious that we had to fake it. So, I looked at the code and tried to come up with rules that would make him do the right thing while also being easy to remember. During the exercise, even though we were faking it, he made real improvements to the code. The results were so promising, and his improvement was so quick, that when I got home that evening, I wrote down everything we had covered. I repeated the exercise when we hired juniors at work, and slowly I collected, built, and refined the rules and refactoring patterns in this book.

Goal: The selected rules and refactoring patterns

 Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.

 —Antoine de Saint-Exupéry

 There are hundreds of refactoring patterns in the world; I chose to include only 13. I did so because I believe deep understanding is more valuable than broad familiarity. I also wanted to craft a complete, cohesive story because it helps add perspective and makes the subject matter easier to organize mentally. The same arguments apply to the rules.

 There is no new thing under the sun.

 —Book of Ecclesiastes

 I don’t claim to have come up with much novel stuff in this book, but I think I have combined things in a way that is both interesting and advantageous. Many of the rules are derived from Robert C. Martin’s Clean Code (Pearson, 2008) but are modified to be easier to understand and apply. Many refactoring patterns originated in Martin Fowler’s Refactoring (Addison-Wesley Professional, 1999) but are adapted to take advantage of the compiler instead of relying on strong test suites.

Audience and roadmap

 This book consists of two parts with very different styles. The first builds a solid foundation of refactoring and is targeted at individuals. Instead of comprehensiveness, I focus on ease of learning. This part is for people who have yet to develop a solid foundation for refactoring, such as students and junior or self-taught developers. If you look at the book’s source code and think, “This seems easy to improve,” then part 1 is not for you.

 In part 2, I focus more on the context and the team. I have selected what I believe to be the most valuable lessons about software development in the real world. Some topics are mostly theoretical, like “Collaborate with the compiler” and “Follow the structure in the code”; and some are primarily practical, like “Love deleting code” and “Make bad code look bad.” Thus this part applies more widely, and even experienced developers should learn from these chapters.

 Because the chapters of part 1 all use a single overarching example, they are linked tightly together and should be read one after the other. But in part 2, the chapters are largely self-contained, except for a few references to each other. If you do not have time to read the whole book, you can easily pick the most exciting topics in part 2 and read them in isolation.

About the teaching

 I have spent much time reflecting on teaching. Transferring knowledge and skills presents many challenges. A teacher has to stimulate motivation, confidence, and reflection. But the student’s brain would rather conserve the energy, so it constantly tries to distract from learning.

 To overcome this struggling brain, we first need to stimulate motivation. I usually do this by posing a simple-looking exercise; when students realize that they cannot solve it, their natural curiosity takes over. This is the purpose of the code in part 1. “Improve this codebase” seems like a simple instruction; however, the code is already at a quality where many people don’t know how to make progress.

 The second stage is to give students confidence to experiment and apply new knowledge or skills. I first realized how important this is during extracurricular French lessons. When our teacher wanted to teach us a new phrase, she would go through the same steps:

 	
 She asked each of us to repeat the phrase verbatim. This pure imitation step would force us to say the phrase once.

 	
 She asked each of us a question. We did not always understand the question, but the intonation made it clear that it was a question. As we had no other tools available, we again repeated the phrase. This repetition built confidence and gave us the first bit of context for the phrase. Here, understanding started.

 	
 She asked us to use the phrase in a conversation. Being able to synthesize something new is the goal of teaching and requires both understanding and confidence.

 I have learned that this approach follows the Japanese Shuhari concept from martial arts, which is becoming increasingly popular. It consists of three parts: “Shu” is imitation, with neither question nor understanding; “ha” is variation, doing something slightly novel; and “ri” is originality, departing entirely from the known.

 Shuhari underlines all of part 1. I recommend first following the rules without understanding; then, once you understand their value, you can come up with variations. Finally, when you master them, you can move on to code smells. For the refactoring patterns, I show how to do something in the real code, and the reader should follow along (imitation). Then I show the same refactoring pattern in a different context (variation). Finally, I present another place to apply the pattern; here, I encourage the reader to attempt it on their own (synthesis).

 You can use the book to verify the process and the Git tags to verify the code. If you are not following along in the code, this will feel overly repetitive, so I urge you to read part 1 with your hands on the keyboard.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. The code has been syntax highlighted with keywords set in bold, making the structure of the code easier to understand.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The code for the examples in this book is available for download from on the Manning website (https://www.manning.com/books/five-lines-of-code) or in my GitHub repository (https://github.com/thedrlambda/five-lines).

liveBook discussion forum

 Purchase of Five Lines of Code includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/five-lines-of-code/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Bonus project

 To help you get an additional grasp of how to use the rules and refactoring patterns in this book, I've set up a bonus project. This project is slightly more advanced and comes without a solution; you can get it from Github: https://github.com/thedrlambda/bomb-guy. Good luck!

acknowledgments

 First, I would not be the person I am, let alone have written this book, were it not for the two people to whom this book is dedicated: Olivier Danvy and Mayer Goldberg. I cannot thank each of you enough. You taught me type theory and lambda calculus, respectively, which form the very foundation of this work. But like any excellent teacher, you did much more. To Danvy: I know it was a surprise to you, but it is no surprise to me that you are the most thanked person in science. You earn that by offering advice that is immediately applicable and that can still be useful years later. To Mayer: Your inexhaustible enthusiasm, patience, and method for teaching arbitrarily complex topics in programming have shaped how I think about and teach programming.

 I also want to extend a huge thank you to Robert C. Martin; if someone finds this book as inspiring as I found yours, I will be happy. I am also amazingly grateful that you took the time to look at this book and decided to write the foreword.

 The last person who contributed to this book is my graphics designer: thank you, Lee McGorie. Your creativity and competence have pushed the quality of the graphics to the level of the content.

 Deep-felt thanks go out to everyone on my Manning team. My acquisition editor, Andrew Waldron, offered fantastic feedback and enthusiasm that were the reasons I decided to work with Manning. My development editor, Helen Stergius, was my sensei throughout the enormous undertaking required to write a book like this one. Without her encouragement and excellent feedback, this book would not have reached this level of quality. My fantastic technical development editor was Mark Elston, whose comments were always very insightful and accurate; his perspective on the topics complement my own perfectly. Also, thanks go to the copy editor, the marketing team, and Manning itself for collaborating and being patient with me.

 Another thank you goes out to the people who have mentored me in my work life. To Jacob Blom: You taught me by example how to be a technically brilliant consultant without sacrificing yourself or your values. Your passion for what you do is evident through the fact that you could recognize and recall code you worked on 10 years earlier—something that still baffles me. To Klaus Nørregaard: Your level of inner peace and goodness is something I aspire to every day. To Johan Abildskov: Never have I met a person who has so much technical breadth and depth at the same time, rivaled only by your kindness. Without you, this book would never have left my hard drive. Also, I thank all the people I have mentored or worked with closely.

 I also want to thank all the people who have helped this book become what it is through feedback and countless technical discussions. I chose to spend time with you because you make my life better. To Hannibal Keblovszki: Your curiosity spawned the original idea for this book. To Mikkel Kringelbach: Thank you for helping any time I asked, challenging me intellectually, and sharing your insight and experiences, which benefited the book significantly. To Mikkel Brun Jakobsen: Your passion and competence in software craftsmanship inspire me and push me to be better. Thank you, everyone who at any point considered yourself part of the spare-time teaching community; your unquenchable thirst for knowledge kept me teaching. Notably: Sune Ohrt Sørensen, Mathias Vorreiter Pedersen, Jens Jensen, Casper Freksen, Mathias Bak, Frederik Brinck Truelsen, Kent Grigo, John Smedegaard, Richard Möhn, Kristoffer Nøddebo Knudsen, Kenneth Hansen, Rasmus Buchholdt, and Kristoffer Just Andersen.

 Finally, to all the reviewers: Ben McNamara, Billy O’Callaghan, Bonnie Malec, Brent Honadel, Charles Lam, Christian Hasselbalch Thoudahl, Clive Harber, Daniel Vásquez, David Trimm, Gustavo Filipe Ramos Gomes, Jeff Neumann, Joel Kotarski, John Guthrie, John Norcott, Karthikeyarajan Rajendran, Kim Kjærsulf, Luis Moux, Marcel van den Brink, Marek Petak, Mathijs Affourtit, Orlando Méndez Morales, Paulo Nuin, Ronald Haring, Shawn Mehaffie, Sebastian Larsson, Sergiu Popa, Tan Wee, Taylor Dolezal, Tom Madden, Tyler Kowallis, and Ubaldo Pescatore—your suggestions helped make this a better book.

about the author

 	
 [image:]

 	
 Christian Clausen holds a master’s degree in computer science. He specialized in programming languages, specifically, software quality and how to code without bugs. He coauthored two peer-reviewed papers on the topic of software quality, published in some of the most prestigious journals and conferences. Christian has worked as a software engineer on a project called Coccinelle for a research group in Paris. He has taught introductory and advanced programming topics in both object-oriented and functional programming languages at two universities. Christian has worked as a consultant and tech lead for five years.

about the cover illustration

 The figure on the cover of Five Lines of Code is captioned “Femme Samojede en habit d’Été,” or a Samoyed woman in summer attire. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes Civils Actuels de Tous les Peuples Connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

1 Refactoring refactoring

 This chapter covers

 	
Understanding the elements of refactoring

 	
Incorporating refactoring into your daily work

 	
The importance of safety for refactoring

 	
Introducing the overarching example for part 1

 It is well known that high code quality leads to cheaper maintenance, fewer errors, and happier developers. The most common way to get high code quality is through refactoring. However, the way refactoring is usually taught—with code smells and unit testing—imposes an unnecessarily high barrier to entry. I believe that anyone can execute simple refactoring patterns safely with a little practice.

 In software development, we place problems somewhere on the diagram shown in figure 1.1, indicating a lack of sufficient skills, culture, tools, or a combination of those. Refactoring is a sophisticated endeavor and therefore lies right in the middle. It requires each component:

 	
 Skills—We need the skills to know what code is bad and needs refactoring. Experienced programmers can determine this through their knowledge of code smells. But the boundaries of code smells are blurry (requiring judgment and experience) or open to interpretation and therefore not easy to learn; and to a junior developer, understanding code smells can seem more like a sixth sense than a skill.

 	
 Culture—We need a culture and workflow that encourage taking the time to perform refactoring. In many cases, this culture is implemented through the famous red-green-refactor loop used in test-driven development. However, test-driven development is a much more difficult craft, in my opinion. Red-green-refactor also does not easily give way to doing refactoring in a legacy codebase.

 	
 Tools—We need something to help ensure that what we are doing is safe. The most common way to achieve this is through automated testing. But as already mentioned, learning to do effective automated testing is difficult in itself.

 [image:]

 Figure 1.1 Skills, culture, and tools

 The following sections dive into each of these areas and describe how we can begin our refactoring journey from a much simpler foundation without testing and abstract code smells. Learning refactoring this way can quickly catapult junior developers’, students’, and programming enthusiasts’ code quality to the next level. Tech leads can also use the methods in this book as a basis for introducing refactoring in teams that are not routinely doing it.

1.1 What is refactoring?

 I answer the question “What is refactoring?” in a lot more detail in the next chapter, but it is helpful to get an intuition for it up front before we dive into the different hows of refactoring. In its simplest form, refactoring means “changing code without changing what it does.” Let’s start with an example of refactoring to make it clear what I’m talking about. Here, we replace an expression with a local variable.

 	
 Listing 1.1 Before

 	
 Listing 1.2 After

 	
 return pow(base, exp / 2) * pow(base, exp / 2);

 	
 let result = pow(base, exp / 2);
return result * result;

 There are many possible reasons to refactor:

 	
 Making code faster (as in the previous example)

 	
 Making code smaller

 	
 Making code more general or reusable

 	
 Making code easier to read or maintain

 The last reason is so important and central that we equate it with good code.

 Definition

 Good code is human-readable and easy to maintain, and it correctly performs what it set out to do.

 As refactoring mustn’t change what the code is doing, in this book we focus on human-readable and easy to maintain. We discuss these reasons to refactor in more detail in chapter 2. In this book, we only consider refactoring that results in good code; therefore, the definition we use is as follows.

 Definition

 Refactoring—Changing code to make it more human-readable and maintainable without changing what it does.

 I should also mention that the type of refactoring we consider relies heavily on working with an object-oriented programming language.

 Many people think of programming as writing code; however, most programmers spend more time reading and trying to understand code than writing it. This is because we work in a complex domain, and changing something without understanding it can cause catastrophic failures.

 So, the first argument for refactoring is purely economic: programmers’ time is expensive, so if we make our codebase more readable, we free up time for implementing new features. The second argument is that making our code more maintainable means fewer, easier-to-fix bugs. Third, a good codebase is simply more fun. When we read code, we build a model in our heads of what the code is doing; the more we have to keep in our head at one time, the more exhausting it is. This is why it is much more fun to start from scratch—and why debugging can be dreadful.

1.2 Skills: What to refactor?

 Knowing what you should refactor is the first barrier to entry. Usually, refactoring is taught alongside something called code smells. These “smells” are descriptions of things that might suggest our code is bad. While they are powerful, they are also abstract and difficult to get started with, and it takes time to develop a feel for them.

 This book takes a different approach and presents easily recognizable, applicable rules to determine what to refactor. These rules are easy to use and quick to learn. They are also sometimes too strict and require you to fix code that is not smelly. On rare occasions, we might follow the rules and still have smelly code.

 As figure 1.2 illustrates, the overlap between smells and rules is not perfect. My rules are not the be-all and end-all of good code. They are a head start on the road to developing a guru-like feeling for what good code is. Let’s look at an example of the difference between a code smell and the rules in this book.

 [image:]

 Figure 1.2 Rules and code smells

1.2.1 An example code smell

 A well-known code smell is as follows: a function should do one thing. This is a great guideline, but it is not easy to know what the one thing is. Look again at the earlier code: is it smelly? Arguably, it divides, exponentiates, and then multiplies. Does that mean it does three things? On the other hand, it only returns one number and doesn’t change any state, so is it doing only one thing?

 let result = pow(base, exp / 2);
return result * result;

1.2.2 An example rule

 Compare the preceding code smell to the following rule (covered in detail in chapter 3): a method should never have more than Five Lines of Code. We can determine this at a glance, with no further questions to ask. The rule is clear, concise, and easy to remember—especially since it is also the title of this book.

 Remember, the rules presented in this book are like training wheels. As discussed earlier, they cannot guarantee good code in every situation; and on some occasions, it might be wrong to follow them. However, they are useful if you don’t know where to start, and they motivate nice code refactoring.

 Note that all the names of the rules are stated in absolute terms, using words like never, so they are easy to remember. But the detailed descriptions often specify exceptions: when not to apply the rules. The descriptions also state the rules’ intentions. At the beginning of learning refactoring, we only need to use the absolute names; when those are internalized, we can start learning the exceptions as well, after which we can begin to use the intentions—then we’ll be coding gurus.

1.3 Culture: When to refactor?

 Refactoring is like taking a shower.

 —Kent Beck

 Refactoring works best—and costs least—if you do it regularly. So if you can, I recommend that you incorporate it into your daily work. Most of the literature suggests a red-green-refactor workflow; but as mentioned earlier, this approach ties refactoring to test-driven development—and in this book, we want to separate them and focus specifically on the refactoring part. Therefore, I recommend a more general six-step workflow to solve any programming task, as shown in figure 1.3:

 	
 Explore. Often, we are not completely sure what we need to build right from the start. Sometimes the customer does not know what they want us to build; other times, the requirements are written in ambiguous prose; sometimes we do not even know if the task can be solved. So, always start by experimenting. Implement something quickly, and then you can validate with the customer that you agree on what they need.

 	
 Specify. Once you know what you need to build, make it explicit. Optimally, this results in some form of automated test.

 	
 Implement. Implement the code.

 	
 Test. Make sure the code passes the specification from step 2.

 	
 Refactor. Before delivering the code, make sure it is easy for the next person to work with (and that next person might be you).

 	
 Deliver. There are many ways to deliver; the most common are through a pull request or by pushing to a specific branch. The most important thing is that your code gets to the users. Otherwise, what’s the point?

 [image:]

 Figure 1.3 Workflow

 Because we are doing rule-based refactoring, the workflow is straightforward and easy to get started with. Figure 1.4 zooms in on step 5: refactor.

 [image:]

 Figure 1.4 Detailed view of the refactoring step

 I have designed the rules so they are easy to remember and so that it’s easy to spot when to use them without any assistance. This means finding a method that breaks a rule is usually trivial. Every rule also has a few refactoring patterns linked with it, making it easy to know exactly how to fix a problem. The refactoring patterns have explicit step-by-step instructions to ensure that you do not accidentally break something. Many of the refactoring patterns in this book intentionally use compile errors to help make sure you don’t introduce errors. Once we’ve practiced a little, both the rules and the refactoring patterns will become second nature.

1.3.1 Refactoring in a legacy system

 Even if we are starting from a large legacy system, there is a clever way to incorporate refactoring into our daily work without having to stop everything and refactor the whole codebase first. Simply following this awesome quote:

 First make the change easy, then make the easy change.

 —Kent Beck

 Whenever we are about to implement something new, we start by refactoring, so it is easy to add our new code. This is similar to getting all the ingredients ready before you start baking.

1.3.2 When should you not refactor?

 Mostly, refactoring is awesome, but it has a few downsides. Refactoring can be time consuming, especially if you don’t do it regularly. And as mentioned earlier, programmer time is expensive.

 There are three types of codebases where refactoring probably isn’t worth it:

 	
 Code you are going to write, run only once, and then delete. This is what is known as a spike in the Extreme Programming community.

 	
 Code that is in maintenance mode before it is going to be retired.

 	
 Code with strict performance requirements, such as an embedded system or a high-end physics engine in a game.

 In any other case, I argue that investing in refactoring is the smart choice.

1.4 Tools: How to refactor (safely)

 I like automated tests as much as anybody. However, learning how to test software effectively is a complicated skill in itself. So if you already know how to do automated testing, feel free to use it throughout this book. If you don’t, don’t worry.

 We can think about testing this way: automated testing is to software development what brakes are to cars. Cars don’t have brakes because we want to go slowly—they have brakes so we feel safe going fast. The same is true for software: automated tests make us feel safe going fast. In this book, we are learning a completely new skill, so we don’t need to go fast.

 Instead, I propose relying more heavily on other tools, such as these:

 	
 Detailed, step-by-step, structured refactoring patterns akin to recipes

 	
 Version control

 	
 The compiler

 I believe that if the refactoring patterns are carefully designed and performed in tiny steps, it is possible to refactor without breaking anything. This is especially true in cases where our IDE can perform the refactoring for us.

 To remedy the fact that we don’t talk about testing in this book, we use the compiler and types to catch a lot of the common mistakes we might make. Even so, I recommend that you regularly open the application you are working on and check that it is not completely broken. Whenever we have verified this, or when we know the compiler is happy, we make a commit so that if at some point the application is broken and we don’t know how to immediately fix it, we can easily jump back to the last time it was working.

 If we are working on a real-world system without automated tests, we can still perform refactoring, but we need to get our confidence from somewhere. Confidence can come from using an IDE to perform the refactoring; testing manually; taking truly tiny steps; or something else. However, the extra time we would spend on these activities probably makes it more cost effective to do automated testing.

1.5 Tools you need to get started

 As I said earlier, the types of refactoring discussed in this book need an object-oriented language. That is the primary thing you need in order to read and understand this book. Coding and refactoring are both crafts that we perform with our fingers. Therefore, they are best learned through the fingers by following along with the examples, experimenting, and having fun while your hands learn the routines. To follow along with the book, you need the tools described next. For installation instructions, see the appendix.

1.5.1 Programming language: TypeScript

 All the coding examples presented in this book are written in TypeScript. I chose TypeScript for multiple reasons. Most important, it looks and feels similar to the most commonly used programming languages—Java, C#, C++, and JavaScript—and thus, people familiar with any of those languages should be able to read TypeScript without any problem. TypeScript also provides a way to go from completely “un-object-oriented” code (that is, code without a single class) to highly object-oriented code.

 Note

 To better utilize space in the printed book, this book uses a programming style that avoids line breaks while still being readable. I’m not advocating that you use the same style—unless you are coincidentally also writing a book containing lots of TypeScript code. This is also why indentation and braces are sometimes formatted differently in the book than in the project code.

 If you are unfamiliar with TypeScript, I’ll explain any gotchas as they appear, in boxes like the following.

 In TypeScript ...

 We use identity (===) to check equality, because it acts more like what we expect from equality than double equals (==). Consider the following:

 	
 0 == "" is true.

 	
 0 === "" is false.

 Even though the examples are in TypeScript, all refactoring patterns and rules are general and apply to any object-oriented language. In rare cases, TypeScript helps or hinders us; these cases are explicitly stated, and we discuss how to handle these situations in other common languages.

1.5.2 Editor: Visual Studio Code

 I do not assume that you are using a specific editor; however, if you don’t have a preference, I recommend Visual Studio Code. It works well with TypeScript. Also, it supports running tsc -w in a background terminal that does the compiling so we don’t forget to do it.

 Note

 Visual Studio Code is an entirely different tool than Visual Studio.

1.5.3 Version control: Git

 Although you are not required to use version control to follow along with this book, I strongly recommend it, as it makes it much easier to undo something if you get lost in the middle.

 Resetting to the reference solution

 At any point, you can jump to the code as it should look at the beginning of a major section with a command like

 git reset --hard section-2.1

 Caution: You will lose any changes you have made.

1.6 Overarching example: A 2D puzzle game

 Finally, let’s discuss how I am going to teach all these wonderful rules and amazing refactoring patterns. The book is built around a single overarching example: a 2D block-pushing puzzle game, similar to the classic game Boulder Dash (figure 1.5).

 [image:]

 Figure 1.5 A screenshot of the game out of the box

 This means we have one substantial codebase to play with throughout part 1 of the book. Having one example saves time because we don’t have to become familiar with a new example in every chapter.

 The example is written in a realistic style, similar to what is used in the industry. It is by no means an easy exercise unless you have the skills learned in this book. The code already adheres to the DRY (Don’t Repeat Yourself) KISS (Keep It Simple, Stupid) principles; even so, it is no more pleasant than a dry kiss.

 I chose a computer game because when we test manually, it is easy to spot if something behaves incorrectly: we have an intuition for how it should behave. It is also slightly more fun to test than looking at something like logs from a financial system.

 The user controls the player square using the arrow keys. The objective of the game is to get the box (labeled 2 in figure 1.5) to the lower-right corner. Although the colors don’t appear in the printed book, the game elements are different colors as follows:

 	
 The red square is the player.

 	
 Brown squares are boxes.

 	
 Blue squares are stones.

 	
 Yellow squares are keys or locks—we fix this later.

 	
 Greenish squares are called flux.

 	
 Gray squares are walls.

 	
 White squares are air (empty).

 If a box or stone is not supported by anything, it falls. The player can push one stone or box at a time, provided it is not obstructed or falling. The path between the box and the lower-right corner is initially obstructed by a lock, so the player has to get a key to remove it. Flux can be “eaten” (removed) by the player by stepping on it.

 Now would be a great time to get the game and play around with it:

 	
 Open a console where you want the game to be stored.

 	
 git clone https://github.com/thedrlambda/five-lines downloads the source code for the game.

 	
 tsc -w compiles the TypeScript to JavaScript every time it changes.

 	
 Open index.html in a browser.

 It is possible to change the level in the code, so feel free to have fun creating your own maps by updating the array in the map variable (for an example, see the appendix):

 	
 Open the folder in Visual Studio Code.

 	
 Select Terminal and then New Terminal.

 	
 Run the command tsc -w.

 	
 TypeScript is now compiling your changes in the background, and you can close the terminal.

 	
 Every time you make a change, wait for a moment while TypeScript compiles, and then refresh your browser.

 This is the same procedure you’ll use when coding along with the examples in part 1. Before we get to that, though, we build a more detailed foundation of refactoring in the next chapter.

1.6.1 Practice makes perfect: A second codebase

 As I am a strong believer in practice, I have made another project, provided without a solution. You can use this project on rereading, if you want a challenge; or as exercises for students, if you are a teacher. This project is a 2D action game. Both codebases use the same style and structure, they have the same elements, and it takes the same steps to refactor them. Although this second codebase is slightly more advanced, carefully following the rules and refactoring patterns should yield the desired result. To get this project, use the same steps as described with the URL https:/ /github .com/thedrlambda/bomb-guy.

1.7 A note on real-world software

 It is important to reiterate that the focus of this book is introducing refactoring. The focus is not on providing specific rules that you can apply to production code in all circumstances. The way to use the rules is to first learn their names and follow them. Once this is easy for you, learn the descriptions with their exceptions; finally, use this to build an understanding of the underlying code smell. This journey is illustrated in figure 1.6.

 [image:]

 Figure 1.6 How to use the rules

 This also answers why we cannot make an automatic refactoring program. (We might be able to make a plugin to highlight possibly problematic areas in the code, based on the rules.) The purpose of the rules is to build understanding. In short: follow the rules until you know better.

 Also note that because we focus only on learning refactoring, and we have a safe environment, we can get away without automated tests—but this probably is not true for real systems. We do so because it is much easier to learn automated testing and refactoring separately.

Summary

 	
 Executing refactoring requires a combination of skills to know what to refactor, culture to know when to refactor, and tools to know how to refactor.

 	
 Conventionally, code smells are used to describe what to refactor. These are difficult for junior programmers to internalize because they are fuzzy. This book provides concrete rules to replace code smells while learning. The rules have three levels of abstraction: very concrete names, descriptions that add nuance in the form of exceptions, and, finally, the intention of the smells they are derived from.

 	
 I believe that automated testing and refactoring can be learned separately to further lower the barrier to entry. Instead of automated testing, we utilize the compiler, version control, and manual testing.

 	
 The workflow of refactoring is connected with test-driven development in the red-green-refactor loop. But this again implies a dependency on automated testing. Instead, I suggest using a six-step workflow (explore, specify, implement, test, refactor, deliver) for new code or doing refactoring right before changing code.

 	
 Throughout part 1 of this book, we use Visual Studio Code, TypeScript, and Git to transform the source code of a 2D puzzle game.

2 Looking under the hood of refactoring

 This chapter covers

 	
Using readability to communicate intent

 	
Localizing invariants to improve maintainability

 	
Enabling change by addition to speed up development

 	
Making refactoring part of daily work

 In the last chapter, we took a look at the different elements involved in refactoring. In this chapter, we dive into the technical details to form a solid foundation of what refactoring is and why it is important from a technical perspective.

2.1 Improving readability and maintainability

 We start by reiterating the definition of refactoring that we use in this book: refactoring is making code better without changing what it does. Let’s break down the two main components of this definition: making code better and without changing what it does.

2.1.1 Making code better

 We already saw that better code excels in readability and maintainability and why that matters. But we did not discuss what readability and maintainability are, or how refactoring affects them.

 Readability

 Readability is the code’s aptitude for communicating its intent. This means that if we assume the code works as intended, it is very easy to figure out what the code does. There are many ways to communicate intent in code: having and following conventions; writing comments; variable, method, class, and file naming; using whitespace; and so on.

 These techniques can be more or less effective, and we discuss them in detail later. For now, let’s look at a simple artificial function that breaks all the communication methods I just described. On the right is the same method without breaking them. One version is hard to read, and the other is easy to read.

 	
 Listing 2.1 Example of really unreadable code

 	
 Listing 2.2 Same code written more readably

 	
 function checkValue(str: boolean) { ❶
 // Check value ❷

 if (str !== false) ❸
 // return ❹
 return true;

 else; // otherwise ❺
 return str; ❻

}

 ❶ Bad method name: a parameter named str that is a boolean

 ❷ Comment that just repeats a name

 ❸ Double negation is hard to read.

 ❹ Comment that just repeats the code

 ❺ Easy-to-miss semicolon (;) and a trivial comment

 ❻ Misleading indentation; and at this point, str can only be false, so it’s clearer to just put that.

 	
 function isTrue(bool: boolean) {

 if (bool)
 return true;

 else
 return false;

}

 Cleaned up like this, it is clear that we could have simply written the following.

 Listing 2.3 Same code, simplified

 function isTrue(bool: boolean) {
 return bool;
}

 Maintainability

 Whenever we need to change some functionality, whether to fix a bug or add a feature, we often start by investigating the context of where we suspect the new code should go. We try to assess what the code is currently doing and how we can safely, quickly, and easily modify it to accommodate our new goal. Maintainability is an expression of how much we need to investigate.

 It is easy to see that the more code we need to read and include in our investigation, the longer it takes—and the more likely we are to miss something. Therefore, maintainability is closely tied to the risk that is inherent any time we make a change.

 Many programmers at every level are deliberate and careful during the investigation phase. Everyone has accidentally missed something at some point and seen the consequences. Being careful also means that if we cannot readily determine whether something is important, we usually err on the side of caution. Having a long investigation phase is a symptom that code maintainability is bad, and we should strive to improve it.

 In some systems, when we change something in one location, something breaks somewhere seemingly unrelated. Imagine an online store where making a change to the recommendation feature breaks the payment subsystem. We call such systems fragile.

 The root of this fragility is usually global state. Here, global means outside the scope we are considering. From the perspective of a method, fields are global. The concept of state is a bit more abstract; it is anything that can change while our program is running. This includes all the variables, but also the data in a database, the files on the hard drive, and the hardware itself. (Technically, even the user’s intention and all of reality are state in some sense, but they’re unimportant for our purposes.)

 A useful trick to help think about global state is to look for braces: { ... }. Everything outside the braces is considered global state for everything inside the braces.

 The problem with global state is that we often associate properties with our data. The danger is that when data is global, it can be accessed or modified by someone who associates different properties with it, thereby inadvertently breaking our properties. Properties that we do not explicitly check in the code (or check only with assertions) are called invariants. “This number will never be negative” and “This file definitely exists” are examples of invariants. Unfortunately, it is nearly impossible to ensure that invariants remain valid, especially as the system changes, programmers forget, and new people are added to the team.

 How nonlocal invariants corrupt

 Say we are working on an application for a grocery store. The store sells fruits and vegetables, so in our system, all items have a daysUntilExpiry property. We implement a feature that runs every day, subtracts one from daysUntilExpiry, and automatically removes items if the value reaches zero. We now have an invariant that daysUntilExpiry is always positive.

 In our system, we also want an urgency property to show how important it is to sell each item. Items with higher value should have higher urgency, and so should items with fewer daysUntilExpiry. We therefore implement urgency = value / daysUntilExpiry. This cannot go wrong since we know that daysUntilExpiry is always positive.

 Two years later, we are asked to update the system because the store has started selling light bulbs. We quickly add light bulbs. Light bulbs do not have an expiry date, and we remember the feature that subtracts days and removes items if their daysUntilExpiry reaches zero—but we completely forget the invariant. We decide to set daysUntilExpiry to zero to start with; this way, it will not be zero after the function subtracts one.

 We have violated the invariant, and this results in the system crashing when it tries to calculate the urgency of any light bulb: Error: Division by zero.

 We can improve maintainability by explicitly checking properties, thereby removing invariants. However, doing so changes what the code does, which refactoring is not allowed to do, as we will see in the next section. Instead, refactoring tends to improve maintainability by moving the invariants closer together so they are easier to see. This is called localizing invariants : things that change together should be together.

2.1.2 Maintaining code . . . without changing what it does

 “What does the code do?” is an interesting, albeit somewhat metaphysical, question. Our first instinct is to think of code as a black box and say that we may change whatever goes on inside as long as it is indistinguishable from the outside. If we put a value in, we should get the same result before and after a refactoring—even if the result is an exception.

 This is mostly true, with one notable exception: we may change performance. Specifically, we rarely care if the code gets slower while refactoring. There are multiple reasons for this. First, in most systems, performance is less valuable than readability and maintainability. Second, if performance is important, it should be handled in a separate phase from refactoring, guided by profiling tools or performance experts. We discuss optimization in much more detail in chapter 12.

 When we refactor, we need to consider the boundaries of our black box. How much code do we intend to change? The more code we include, the more things we can change. This is especially important when working with other people, because if someone makes changes to code we are refactoring, we can end up with nasty merge conflicts. We essentially need to reserve the code we are refactoring so no one else changes it. The less code we reserve, the lower the risk of our changes conflicting. As such, determining the appropriate scope of our refactoring is a difficult and important balancing act.

 To sum up, the three pillars of refactoring are

 	
 Improving readability by communicating intent

 	
 Improving maintainability by localizing invariants

 	
 Doing 1 and 2 without affecting any code outside our scope

2.2 Gaining speed, flexibility, and stability

 I already mentioned the advantages of working in a clean codebase: we are more productive, we make fewer mistakes, and it is more fun. Higher maintainability comes with a few extra perks, which we discuss in this section.

 There are several levels of refactoring patterns, from concrete and local (like variable renaming) to abstract and global (like introducing design patterns). While I agree that variable naming can add to or subtract from readability, I believe the most significant impact on code quality comes from architectural changes. In this book, the closest we come to intra-method-level refactoring is discussing good method naming.

2.2.1 Favoring composition over inheritance

 The fact that nonlocal invariants are hard to maintain is not new. The endearingly named Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides) published the book Design Patterns (Addison-Wesley) back in 1994, and all those years ago, they recommended against a common way to accidentally introduce nonlocal invariants: inheritance. Their most famous sentence even tells us how to avoid it: “Favor object composition over inheritance.”

 That advice is at the center of this book, and most of the refactoring patterns and rules we describe exist specifically to help with object composition: that is, objects having references to other objects. Here is a tiny library for birds (the ornithological details are not important). On the left, it uses inheritance; and on the right, it uses composition.

 	
 Listing 2.4 Using inheritance

 	
 Listing 2.5 Using composition

 	
 interface Bird {
 hasBeak(): boolean;
 canFly(): boolean;
}
class CommonBird implements Bird {
 hasBeak() { return true; }
 canFly() { return true; }
}
class Penguin extends CommonBird { ❶
 canFly() { return false; }
}

 ❶ Inheritance

 	
 interface Bird {
 hasBeak(): boolean;
 canFly(): boolean;
}
class CommonBird implements Bird {
 hasBeak() { return true; }
 canFly() { return true; }
}
class Penguin implements Bird {
 private bird = new CommonBird(); ❷
 hasBeak() { return bird.hasBeak(); } ❸
 canFly() { return false; }
}

 ❷ Composition

 ❸ We have to manually forward calls.

 In this book, we talk a lot more about the advantages of the right side. But to give a bit of foreshadowing, imagine adding a new method to Bird called canSwim. In both cases, we add this method to CommonBird.

 Listing 2.6 Using inheritance

 class CommonBird implements Bird {
 // ...
 canSwim() { return false; }
}

 In listing 2.5, the example with composition, we still have a compiler error in Penguin because it does not implement the new canSwim method, so we have to manually add it and decide whether a penguin can swim or not. In the case where we simply want Penguin to behave like other birds, this is trivial to implement, like hasBeak. Conversely, the inheritance example silently assumes that a Penguin cannot swim, so we have to remember to override canSwim. Human memory has often proven to be a fragile dependency, especially when our focus is consumed by the new feature we are working on.

 Flexibility

 A system that is built around composition allows us to combine and reuse code in a much more fine-grained manner than we could otherwise. Working with systems that use composition heavily is like playing with LEGO blocks. When everything is built to fit together, it is amazingly fast to swap out parts or build new things by combining existing components. This flexibility becomes more important when we realize that most systems end up being used in ways the original programmers didn’t imagine.

2.2.2 Changing code by addition rather than modification

 Perhaps the greatest advantage of composition is that it enables change by addition. This means it is possible to add or change functionality without affecting other existing functionality—in some cases, without even changing any existing code. We return to how this is technically possible throughout the book; here, we consider some of the implications of change by addition. This property is also sometimes referred to as the open-closed principle, which means components should be open for extension (addition) but closed for modification.

 Programming speed

 As described earlier, one of the first things we do when we need to implement something new or fix a bug is consider the surrounding code, to ensure that we do not break anything. However, if we can make our changes without touching any of the other code, we can save all that time.

 Of course, if we just keep adding code, our codebase quickly grows, which can also be a problem. We need to pay extra attention to which code is being used and which is not. We should delete unused code as quickly as possible. We will return to this point also throughout the book.

 Stability

 When we follow a change-by-addition mindset, it is always possible to preserve the existing code. It is easy to implement functionality to fall back on the old functionality if the new code fails. This way, we can ensure that we never introduce new errors in existing functionality. Adding that on top of making fewer errors due to localizing invariants leads to much more stable systems.

2.3 Refactoring and your daily work

 I said in the introduction that refactoring should be part of any programmer’s daily routine. If we deliver unrefactored code, we are only borrowing time from the next programmer. Even worse, due to the negative factors described up to this point, there is an interest rate on poor software architecture. Therefore, we usually call it technical debt ; we discuss this concept in greater detail in chapter 9. I already stated the two variants of daily refactoring that I recommend:

 	
 In a legacy system, start by refactoring before making any changes. Then follow the regular workflow.

 	
 After making any changes to the code, refactor.

 Making sure you refactor before you deliver code is also sometimes referred to as

 Always leave a place better than you found it.

 —The Boy Scout rule

2.3.1 Refactoring as a method for learning

 A final point about refactoring is that, like many things, it takes time to learn; but eventually, it becomes automatic. Seeing and experiencing the advantages of better code changes the way we write and think about code. Once we have a little more stability, we start thinking about how we can exploit this stability. One example is increasing our deployment frequency, which usually gives even more stability. With flexibility, it is possible to build configuration management or feature-toggling systems, the maintenance of which would be infeasible without the flexibility.

 Refactoring is a completely different way to study code. It gives us a unique perspective. Sometimes we’re given code that would take hours or days to understand. The next chapter demonstrates that refactoring allows us to improve code even without understanding it. This way, we can digest small portions while we are working on the code until the final result is very easy to understand.

 Refactoring as an intro task

 Refactoring is often used as an introductory task for new team members, so they can work with the code and learn in a safe environment without having to deal with customers right away. While this is a nice practice, it is only possible if we have neglected our daily due diligence—which I, of course, do not condone.

 As I have said, there are many advantages to both learning and practicing refactoring. I hope you are excited to go on this journey with me into the world of refactoring!

2.4 Defining the “domain” in a software context

 Software is a model of specific aspects of real life, whether it is code to automate a process, track or simulate real-world events, or do something else. There is always a real-world counterpart to software. We call this real-world component the domain of software. This domain typically comes with users and experts, its own language, and its own culture.

 In part 1 of the book, the domain is the 2D puzzle game. The users are players, and the domain experts are the game or level designers. We have already seen how the game uses its own language by introducing words such as “flux” that the player can “eat.” Finally, video games come with a lot of culture in the form of expectations for how we can interact with them. An example is that people familiar with video games readily accept that some game objects are subject to gravity (stones and boxes) while others are not (keys and the player).

 When developing software, we often have to work closely with domain experts, which means we must learn their language and culture. Programming languages do not allow for any ambiguity; therefore, we sometimes have to explore new corner cases unfamiliar even to the experts. As a result, programming is primarily about learning and communicating.

Summary

 	
 Refactoring is about making the code communicate its intention and localizing invariants without changing the functionality.

 	
 Favoring composition over inheritance leads to change by addition, by which we gain developer speed, flexibility, and stability.

 	
 We should make refactoring part of our daily work to prevent accumulating technical debt.

 	
 Practicing refactoring gives us a unique perspective on code, which leads us to come up with better solutions.

Part 1. Learn by refactoring a computer game

 In part 1, we go through a reasonable-looking codebase and improve it step by step. While doing so, we introduce a set of rules and build a small catalog of powerful refactoring patterns.

 We improve the code in four phases, each with a dedicated chapter: shattering long functions, making type codes work, fusing similar code together, and, finally, defending the data. Each chapter builds on the previous one, so some transformations are temporary. If the code or an instruction feels weird or looks ugly, be patient; it will probably change.

 Don’t panic.

 —Douglas Adams, The Hitchhiker’s Guide to the Galaxy

3 Shatter long functions

 This chapter covers

 	
Identifying overly long methods with Five lines

 	
Working with code without looking at the specifics

 	
Breaking up long methods with Extract method

 	
Balancing abstraction levels with Either call or pass

 	
Isolating if statements with if only at the start

 Code can easily get messy and confusing, even when following the Don’t Repeat Yourself (DRY) and Keep It Simple, Stupid (KISS) guidelines. Some strong contributors to this messiness are as follows:

 	
 Methods are doing multiple different things.

 	
 We use low-level primitive operations (array accesses, arithmetic operations, etc.).

 	
 We lack human-readable text, like comments and good method and variable naming.

 Unfortunately, knowing these issues is not enough to determine exactly what is wrong, let alone how to deal with it.

 In this chapter, we describe a concrete way to identify methods that likely have too many responsibilities. As an example, we look at a specific method in our 2D puzzle game that is doing too much: draw. We show a structured, safe way to improve the method while eliminating comments. Then, we generalize this process to a reusable refactoring pattern: Extract method (P3.2.1). Continuing with the same example draw method, we learn how to identify another problem of mixing different levels of abstraction and how Extract method can also alleviate this issue. In the process, we learn about good method-naming habits.

 After concluding our work with draw, we continue with another example—the update method—and repeat the process, refining how we work with the code without diving into the details of it. This example teaches us to identify a different symptom that a method is doing too much; and through Extract method, we learn how to improve readability by renaming variables.

 We should also note that we often distinguish between methods (defined on objects) and functions (static or outside classes). This can be a little confusing. Luckily, TypeScript helps us because we have to put function when we define functions and not when we define methods. If you still find this distinction distracting, you can simply replace function with method, as all rules and refactorings apply equally to both.

 Assuming you have set up the tools and downloaded the code as described in the appendix, let’s jump into the code in the file index.ts. Remember, you can always check whether your code is up to date with any top-level section in the book by running, for instance, git diff section-3.1. If you get lost, you can use, for instance, git reset --hard section-3.1 to get a clean copy of the code at a top-level section. Once we have the code in front of us, we want to improve its quality. But where do we begin?

3.1 Establishing our first rule: Why five lines?

 To answer this question, we introduce the most fundamental rule in this book: Five lines. This is a simple rule stating that no method should have more than five lines. In this book, Five lines is the ultimate goal, because adhering to this rule is a huge improvement all on its own.

3.1.1 Rule: Five lines

 Statement

 A method should not contain more than five lines, excluding { and }.

 Explanation

 A line, sometimes called a statement, refers to an if, a for, a while, or anything ending with a semicolon: that is, assignments, method calls, return, and so on. We discount whitespace and braces: { and }.

 We can transform any method so it adheres to this rule. Here’s an easy way to see how this is possible: if we have a method with 20 lines, we can create a helper method with the first 10 lines and a method with the last 10 lines. The original method is now 2 lines: one calling the first helper and one calling the second. We can repeat this process until we have as few as 2 lines in each method.

 The specific limit is less important than having a limit. In my experience, it works to set the limit to whatever value is required to implement a pass through your fundamental data structure.

 In this book, we are working in a 2D setting, which means our fundamental data structure is a 2D array. The following two functions do a pass through a 2D array: one checks whether the array contains an even number, and the other finds the array’s minimum element, each in exactly five lines.

 Listing 3.1 Function to check whether a 2D array contains an even number

 function containsEven(arr: number[][]) {
 for (let x = 0; x < arr.length; x++) {
 for (let y = 0; y < arr[x].length; y++) {
 if (arr[x][y] % 2 === 0) {
 return true;
 }
 }
 }
 return false;
}

 In TypeScript ...

 We do not have different types for integers and floating points. We have only one type to cover both: number.

 Listing 3.2 Function to find the minimum element in a 2D array

 function minimum(arr: number[][]) {
 let result = Number.POSITIVE_INFINITY;
 for (let x = 0; x < arr.length; x++) {
 for (let y = 0; y < arr[x].length; y++) {
 result = Math.min(arr[x][y], result);
 }
 }
 return result;
}

 In TypeScript ...

 We use let to declare variables. let tries to infer the type, but we can specify it with, for example, let a: number = 5;. We never use var, due to its weird scoping rules: we can define variables after their use. Here, the code on the left is valid, but probably not what we meant. The code on the right gives an error, as we expect.

 	
 Bad

 	
 Good

 	
 a = 5;
var a: number;

 	
 a = 5;
let a: number;

 To clarify how we count lines, here is the same example we saw at the beginning of chapter 2. We count four lines: one for each if (including else) and one for each semicolon.

 Listing 3.3 Four-line method from chapter 2

 function isTrue(bool: boolean) {
 if (bool)
 return true;
 else return false;
}

 Smell

 Having long methods is a smell in itself. This is because long methods are difficult to work with; you have to keep all of a method’s logic in your head at once. But “long methods” begs the question: what is long?

 To answer this question, we draw from another smell: Methods should do one thing. If Five lines is exactly what is necessary to do one meaningful thing, then this limit also prevents us from breaking that smell. We sometimes work in settings where the fundamental data structure is different in different places in the code. Once we are comfortable with this rule, we can start varying the number of lines to fit specific examples. This is fine; but in practice, the number of lines often ends up being around five.

 Intent

 Left unchecked, methods tend to grow over time as we add more and more functionality to them. This makes them increasingly difficult to understand. Imposing a size limit on our methods prevents us from sliding into this bad territory.

 I argue that four methods, each with 5 lines of code, can be much more quickly and easily understood than one method with 20 lines. This is because each method’s name is an opportunity to communicate the intent of the code. Essentially, method naming is equivalent to putting a comment at least every 5 lines. Plus, if small methods are properly named, finding a good name for a big function is easier, too.

 References

 To help achieve this rule, see the refactoring Extract method. You can read more about the smell “Methods should do one thing” in Robert C. Martin’s book Clean Code (Pearson, 2008) and the “Long methods” smell in Martin Fowler’s book Refactoring (Addison-Wesley Professional, 1999).

3.2 Introducing a refactoring pattern to break up functions

 While the Five lines rule is easy to understand, achieving it isn’t always. Therefore we return to it many times, tackling increasingly difficult examples throughout this part of the book.

 With the rule in hand, we are ready to dive into the code. We start with a function named draw. Our first stab at understanding the code should always be to consider the function name. The danger is getting bogged down trying to understand every single line—that would take a lot of time and be unproductive. Instead, we begin by looking at the “shape” of the code.

 We are trying to identify groups of lines related to the same thing. To make these groups clear, we add blank lines where we think the group should be. Sometimes we add comments to help us remember what the grouping is related to. In general, we strive to avoid comments, as they tend to go out of date, or they are used like deodorant on bad code; but in this case, the comments are temporary, as we’ll see in a moment.

 Often, the original programmers had groupings in mind and inserted blank lines. Sometimes they included comments. At this point, it is tempting to look at what the code is doing—but since the code is not in a pristine state, that would be counterproductive! You may have heard the saying “The best way to eat an elephant is one bite at a time.” This is what we are doing now. Without digesting the entire function, we cut it up and process each piece while it is small and easy to understand.

 In figure 3.1, to help avoid getting distracted by the details, we have blurred out all the nonessential lines so we can focus on the structure. (We only do this here in the beginning.) Even without being able to see any specifics, we notice the two groupings, each starting with a comment: // Draw map and // Draw player.

 We can take advantage of those comments by doing the following:

 	
 Create a new (empty) method, drawMap.

 	
 Where the comment is, put a call to drawMap.

 	
 Select all the lines in the group we identified, and then cut them and paste them as the body of drawMap.

 [image:]

 Figure 3.1 Initial draw function

 Repeating the same process for drawPlayer results in the transformation shown in figures 3.2 and 3.3.

 	
 Figure 3.2 Before

 	
 Figure 3.3 After

 	
 [image:]

 	
 [image:]

 Now let’s take a look at how that works with actual code. We begin with the code in listing 3.4; notice that we can see the same structure, still without looking at what any individual line does.

 Listing 3.4 Initial

 function draw() {
 let canvas = document.getElementById("GameCanvas") as HTMLCanvasElement;
 let g = canvas.getContext("2d");

 g.clearRect(0, 0, canvas.width, canvas.height);

 // Draw map ❶
 for (let y = 0; y < map.length; y++) {
 for (let x = 0; x < map[y].length; x++) {
 if (map[y][x] === Tile.FLUX)
 g.fillStyle = "#ccffcc";
 else if (map[y][x] === Tile.UNBREAKABLE)
 g.fillStyle = "#999999";
 else if (map[y][x] === Tile.STONE || map[y][x] === Tile.FALLING_STONE)
 g.fillStyle = "#0000cc";
 else if (map[y][x] === Tile.BOX || map[y][x] === Tile.FALLING_BOX)
 g.fillStyle = "#8b4513";
 else if (map[y][x] === Tile.KEY1 || map[y][x] === Tile.LOCK1)
 g.fillStyle = "#ffcc00";
 else if (map[y][x] === Tile.KEY2 || map[y][x] === Tile.LOCK2)
 g.fillStyle = "#00ccff";

 if (map[y][x] !== Tile.AIR && map[y][x] !== Tile.PLAYER)
 g.fillRect(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE);
 }
 }

 // Draw player ❶
 g.fillStyle = "#ff0000";
 g.fillRect(playerx * TILE_SIZE, playery * TILE_SIZE, TILE_SIZE, TILE_SIZE);
}

