

 [image: manning]

 Apache Kafka in Action

 From basics to production

 Anatoly Zelenin, Alexander Kropp

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964 

   Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Connor O’Brien
 Technical editor: Purushotham Chikkanayakanhalli Krishnegowda
 Review editor: Kishor Rit
 Production editor: Kathy Rossland
 Copy editor: Julie McNamee
 Proofreader: Keri Hales
 Technical proofreader: Purushotham Chikkanayakanhalli Krishnegowda
 Typesetter: Tamara Švelić Sabljić
 Cover designer: Marija Tudor

 ISBN 9781633437593
 Printed in the United States of America

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1 Getting started

 1 Introduction to Apache Kafka

 1.1 What is Apache Kafka, and how does it solve our problems?

 1.2 Kafka in enterprise ecosystems

 1.3 Architectural overview of Kafka

 1.4 Running and using Kafka

 1.5 Our learning path

 2 First steps with Kafka

 2.1 Introducing our use case

 2.2 Producing messages

 2.3 Consuming messages

 2.4 Consuming and producing messages in parallel

 2.5 Graphical user interfaces for Kafka

 Part 2 Concepts

 3 Exploring Kafka topics and messages

 3.1 Topics

 3.1.1 Viewing topics

 3.1.2 Create, customize, and delete topics

 3.2 Messages

 3.2.1 Message types

 3.2.2 Data formats

 3.2.3 Message structure

 4 Kafka as a distributed log

 4.1 Logs

 4.1.1 What exactly is a log?

 4.1.2 Basic properties of a log

 4.1.3 Kafka as a log

 4.2 Kafka as a distributed system

 4.2.1 Partitioning and keys

 4.2.2 Consumer groups

 4.2.3 Replication

 4.3 Components of Kafka

 4.3.1 Coordination cluster

 4.3.2 Broker

 4.3.3 Clients

 4.4 Kafka in corporate use

 5 Reliability

 5.1 Acknowledgments

 5.1.1 ACK strategies in Kafka

 5.1.2 ACKs and ISRs

 5.1.3 Message delivery guarantees in Kafka

 5.2 Transactions

 5.2.1 Transactions in databases

 5.2.2 Transactions in Kafka

 5.2.3 Transactions and consumers

 5.3 Replication and the leader-follower principle

 6 Performance

 6.1 Configuring topics for performance

 6.1.1 Scaling and load balancing

 6.1.2 Determining how many partitions are needed

 6.1.3 Changing the number of partitions

 6.2 Producer performance

 6.2.1 Producer configuration

 6.2.2 Producer performance test

 6.3 Broker configuration and optimization

 6.3.1 Optimizing brokers

 6.3.2 Determining broker count and sizing

 6.4 Consumer performance

 6.4.1 Consumer configuration

 6.4.2 Consumer performance test

 Part 3 Kafka deep dive

 7 Cluster management

 7.1 Apache Kafka Raft cluster management

 7.2 ZooKeeper Cluster Management

 7.3 Migrating from ZooKeeper to KRaft

 7.4 Connection to Kafka

 8 Producing and persisting messages

 8.1 Producer

 8.1.1 Producing messages

 8.1.2 Production process for messages

 8.1.3 Producer and ACKs

 8.2 Broker

 8.2.1 Receiving and persisting messages

 8.2.2 Brokers and ACKs

 8.3 Data and file structures

 8.3.1 Metadata, checkpoints, and topics

 8.3.2 Partitions directory

 8.3.3 Log data and indices

 8.3.4 Segments

 8.3.5 Deleted topics

 8.4 Replication

 8.4.1 In-sync replicas

 8.4.2 High Watermark

 8.4.3 Effects of delays during replication

 9 Consuming messages

 9.1 Fetching messages

 9.1.1 Fetch requests

 9.1.2 Fetch from the closest replica

 9.2 Broker handling of consumer fetch requests

 9.3 Offsets and Consumer

 9.3.1 Offset management

 9.3.2 Understanding offsets in Kafka

 9.4 Understanding and managing Kafka consumer groups

 9.4.1 Consumer group management

 9.4.2 Distribution of partitions to consumers

 9.4.3 Static memberships

 10 Cleaning up messages

 10.1 Why clean up messages?

 10.2 Kafka’s cleanup methods

 10.3 Log retention

 10.3.1 When is a log cleaned up via retention?

 10.3.2 Offset retention

 10.4 Log compaction

 10.4.1 When is a log cleaned up via compaction?

 10.4.2 How the log cleaner works

 10.4.3 Tombstones

 Part 4 Kafka in enterprise use

 11 Integrating external systems with Kafka Connect

 11.1 What is Kafka Connect?

 11.2 Kafka Connect cluster: Distributed Mode

 11.2.1 Configuring a Kafka Connect cluster

 11.2.2 Creating a connector

 11.2.3 Testing the connector

 11.3 Scalability and fault tolerance of Kafka Connect

 11.4 Worker configuration

 11.5 The Kafka Connect REST API

 11.5.1 Status of a Kafka Connect cluster

 11.5.2 Creating, modifying, and deleting connectors

 11.6 Connector configuration

 11.6.1 General connector configuration

 11.6.2 Error handling in Kafka Connect

 11.7 Single message transformations

 11.8 Kafka Connect example: JDBC Source Connector

 11.8.1 Preparing the JDBC Source Connector

 11.8.2 Configuring the JDBC Source Connector

 11.8.3 Testing the JDBC Source Connector

 11.9 Kafka Connect example: Change data capture connector

 11.9.1 Preparing the Debezium connector for PostgreSQL

 11.9.2 Configuring the Debezium connector for PostgreSQL

 11.9.3 Testing the Debezium connector for PostgreSQL

 12 Stream processing

 12.1 Stream processing overview

 12.1.1 Stream-processing libraries

 12.1.2 Processing data

 12.2 Stream processors

 12.2.1 Processor types

 12.2.2 Processor topologies

 12.3 Stream processing using SQL

 12.4 Stream states

 12.4.1 Streams and tables

 12.4.2 Aggregations

 12.4.3 Streaming joins

 12.4.4 Use case: Notifications

 12.5 Streaming and time

 12.5.1 Time is relative

 12.5.2 Time windows

 12.5.3 Use case: Fraud detection

 12.6 Scaling Kafka Streams

 13 Governance

 13.1 Schema management

 13.1.1 Why do we need schemas?

 13.1.2 Compatibility levels

 13.1.3 Schema registries

 13.1.4 Avro

 13.2 Security

 13.2.1 Transport encryption

 13.2.2 Authentication

 13.2.3 Authorization

 13.2.4 Encryption at rest

 13.2.5 End-to-end encryption

 13.2.6 ZooKeeper security

 13.2.7 Securing an unsecured Kafka cluster

 13.3 Quotas in Kafka: Protecting the cluster from overload

 14 Kafka reference architecture

 14.1 Useful components and tools

 14.1.1 kcat

 14.1.2 Graphical user interfaces

 14.1.3 Managing Kafka resources

 14.1.4 Cruise Control for Apache Kafka

 14.2 Deployment environments

 14.2.1 Kafka on a company’s own hardware

 14.2.2 Kafka in virtualized environments

 14.2.3 Kafka in Kubernetes: Strimzi

 14.2.4 Running Kafka in the public cloud

 14.3 Hardware requirements

 14.3.1 Brokers

 14.3.2 Coordination cluster

 15 Kafka monitoring and alerting

 15.1 Infrastructure metrics

 15.2 Broker metrics

 15.2.1 Kafka server metrics

 15.2.2 Kafka log metrics

 15.2.3 Kafka network metrics

 15.2.4 Kafka controller metrics

 15.3 Client metrics

 15.3.1 General client metrics

 15.3.2 Producer metrics

 15.3.3 Consumer metrics

 15.3.4 Kafka Connect and Kafka Streams metrics

 15.4 Alerting

 15.4.1 From metrics to alerts

 15.4.2 From alerts to problem solving

 15.5 Kafka deployment environments and their monitoring challenges

 15.5.1 Kafka on a company’s own hardware

 15.5.2 Kafka on virtual machines

 15.5.3 Kafka in the public cloud

 15.5.4 Kafka in Kubernetes

 15.5.5 Kafka as a managed services

 15.5.6 Security considerations across environments

 16 Disaster management

 16.1 What could possibly go wrong?

 16.1.1 Network failures

 16.1.2 Compute failures

 16.1.3 Storage failures

 16.1.4 Data center failures

 16.2 Backing up Kafka

 16.3 Mirroring Kafka clusters with MirrorMaker

 16.3.1 Active-passive cluster

 16.3.2 Active-active cluster

 16.3.3 Hub-and-spoke topology

 17 Comparison with other technologies

 17.1 Data on the outside vs. data on the inside

 17.2 Classic messaging systems vs. Kafka

 17.2.1 Kafka is agnostic

 17.2.2 Operational complexity in classic messaging systems

 17.2.3 Governance of classic messaging systems

 17.3 REST vs. Kafka

 17.3.1 Challenges of synchronous communication

 17.3.2 Alternative communication strategies

 17.4 Relational databases vs. Kafka

 17.4.1 Strengths and weaknesses of relational databases

 17.4.2 Complementary roles of Kafka and relational databases in modern data architectures

 17.5 Kafka is the core of a streaming platform

 18 Kafka’s role in modern enterprise architectures

 18.1 Kafka as the core of a data mesh

 18.1.1 The challenges of traditional data management

 18.1.2 Principles of a data mesh

 18.1.3 Data mesh vs. traditional approaches

 18.1.4 Kafka’s role and responsibilities in implementing a data mesh

 18.2 Liberating data from core systems with Kafka

 18.3 Kafka for big data

 18.4 Kafka for the Industrial Internet of Things

 18.4.1 Use cases for Kafka in the IIoT

 18.4.2 Data storage and retention challenges

 18.4.3 Data integration and access management

 18.4.4 When to use multiple Kafka clusters

 18.5 What Kafka is not

 18.5.1 Kafka isn’t a relational database

 18.5.2 Kafka isn’t a synchronous communication interface

 18.5.3 Kafka isn’t a file exchange platform

 18.5.4 Kafka for small applications is questionable

 18.5.5 Kafka isn’t a substitute for good architecture

 appendix A  Setting up a Kafka test environment

 A.1 Operating systems

 A.2 Downloading Kafka

 A.3 Configuring Kafka

 A.4 Preparing the data directories

 A.5 Starting Kafka

 A.6 Stopping Kafka

 appendix B  Monitoring setup

 B.1 Prometheus

 B.2 Prometheus Exporter

 B.3 Prometheus Alertmanager

 B.4 Grafana

 index

 foreword

 I started with Apache Kafka back in early 2015 with version 0.8.2, and as a longtime user, occasional contributor, and active observer, I’ve been fortunate enough to see countless organizations build, iterate, and succeed with Apache Kafka. Now, a decade later, Kafka is markedly different from how it began. There’s a whole range of different deployment options, designed and implemented by a community that has lived and toiled in the problem space. Real-world experience has led to real-world capabilities, baked into the core Kafka project.

 In this book, Apache Kafka in Action, authors Anatoly Zelenin and Alexander Kropp share their many years of real-world Kafka experience. Anatoly is an instructor and founder of the DataFlow Academy, teaching people worldwide the best ways to not only use Kafka, but how to integrate all the various supporting components: Kafka Connect, MirrorMaker, schema registries, monitoring solutions, and more.

 Alex is a seasoned hands-on practitioner. A regular consultant, he helps businesses set up cloud-based data streaming platforms with modern data toolsets. He is an expert in Kubernetes and infrastructure as code deployments.

 Together, Anatoly and Alex have written an excellent work on Apache Kafka. Their first book, written in 2021, may have slipped under your radar as it did mine—unless you’re a German-speaker. But Anatoly and Alex have returned with this latest edition, updated and edited to take into account the wealth of changes that have visited Apache Kafka in the past few years.

 One of the great things about this book is that it starts out at the very beginning of your Kafka journey. The first few sections will introduce you to event streaming and why it matters in today’s world. There are a lot of benefits to reacting to changes in your business just moments after they occur, and it’ll unlock a lot of powerful new architectural patterns and capabilities for you to explore. If you’ve never used Apache Kafka before, then this book is for you.

 If you’re a seasoned expert, then good news—this book is also for you. Anatoly and Alex cover many of the more complex aspects of managing and running not only one cluster, but multiples, spread all over the world. Data replication, disaster recovery, and preventative monitoring are just some of the subjects they cover. And finally, they’ll also provide you with a host of useful tips and tricks to optimize your clusters and applications, reduce costs, and keep your event streams healthy. I’m sure you’ll find it an essential manual for your Apache Kafka journey.
—Adam Bellemare
Author of Building Event-Driven Microservices

 preface

 Our journey with Apache Kafka began years ago—Anatoly as a trainer and practitioner, Alex as a Kafka consultant—when the German publisher Hanser approached us about writing a book on the subject. “Sure, why not?” we thought. “How hard could it be?” Little did we know that it would take almost two years of intensive research into architectural patterns, technical details, and crafting a compelling narrative before we’d complete the first edition—in German.

 The readers’ responses exceeded our expectations. As first-time authors, we were overwhelmed by the fantastic feedback and the meaningful connections we made with our readers. However, these questions kept recurring: “Why did you write this book in German?” “When will there be an English edition?” Moreover, we felt the book wasn’t quite complete. We hadn’t had enough time to thoroughly address a crucial aspect: how to successfully integrate Kafka into an organization. Questions about the bigger picture of Kafka in organizations, architectural adaptations, and implementation strategies remained unexplored.

 When Manning reached out to us about collaborating on Apache Kafka in Action, we saw a perfect opportunity. We proposed translating and enhancing our German edition rather than working with the existing book Manning had published previously. This way, we saw the opportunity to not only update the book to the current state of Kafka but also make the book available worldwide and add the missing pieces. Once again, we underestimated the scope of the project!

 Now, after considerable effort, you’re holding the fully revised and enhanced version of Apache Kafka in Action. We hope you find it valuable for your real-time data projects. If you encounter us at conferences or online, please say hello and connect with us. We always enjoy exchanging ideas with the Kafka community.

 acknowledgments

 First and foremost, we thank our families and friends for their unwavering support throughout this project. Your encouragement and assistance over the years have been invaluable.

 We’re deeply grateful to the Kafka community for making this book possible. Your collective efforts have shaped Kafka into the remarkable project it is today.

 Our training participants and customers deserve special recognition. Your support, both through shared experiences and, of course, your financial support, has been crucial to this book’s development.

 We extend our gratitude to everyone who supported the first German edition with Hanser, particularly Sylvia Hasselbach, whose patience and fantastic cooperation over the years were instrumental to our success.

 The Manning team has been exceptional, especially our development editor Connor O’Brien, whose discussions, comments, and suggestions significantly improved the book. We also thank Purushotham Chikkanayakanhalli Krishnegowda, seasoned IT professional with more than 21 years of experience with technologies such as Apache Kafka, Java, Spring, and microservices, who served as our technical editor and technical proofreader on this book. His thorough reviews and attention to detail has enhanced the book’s technical precision and clarity.

 We would like to express our sincere thanks to Adam Bellemare for writing the fantastic foreword to this book.

 We must also thank the editorial and production teams at Manning, who helped make this book possible. Their attention to detail and patience in answering our questions helped focus our attention on many improvements in this edition.

 Finally, we’re indebted to all reviewers of both the German first edition and this book. Your hard work and invaluable feedback have enhanced the quality of this work for all readers: Inga Blundell, Walter Forkel, Daniela Griesinger, Tobias Heller, Vincent Latzko, Andrej Olunczek, Elin Rixmann, Thomas Trepper, and David Weber. To all Manning reviewers, your suggestions helped make this a better book: Afshin Paydar, AJ Bhandal, Al Pezewski, Alexey Artemov, Alireza Aghamohammadi, Anandaganesh Balakrishnan, André Schäfer, Andres Sacco, Anthony Nandaa, Asif Iqbal, Bassam Ismail, Christian Thoudahl, David Gloyn-Cox, Gabor Laszlo Hajba, Ganesh Swaminathan, Gatikrushna Sahu, Gilberto Taccari, Glumov Konstantin, Jeremy Chen, Jim Whitfield, Jorge Bo, Joseph Pachod, Justin Reiser, Kristina Kasanicova, Lakshminarayanan A.S, Maddula Arathi, Manuel Rebello de Andrade, Mark Dechamps, Matthias J. Sax, Maxim Volgin, Michael Heil, Mikhail Malev, Milorad Imbra, Onofrei George, Peter Szabo, Rajdeep Gurmeet, Rambabu Posa, Richard Meinsen, Ronald Haring, Sharath Chandra Parashara, Simon Verhoeven, Simone Sguazza, Srihari Sridharan, Steve Goodman, Sumit Pal, Toby Lazar, Venkata Yanamadala, Viktoria Dolzhenko, Vinicios Wentz, Vivek Lakhanpal, William Jamir Silva, William Walsh, Yogesh Shetty, and Zorodzayi Mukuya.

 about this book

 We wrote Apache Kafka in Action to share our hands-on experience and make your journey with Kafka both effective and enjoyable. Through our years of training professionals and implementing Kafka in organizations, we’ve learned what works and what doesn’t. While we focus on building practical knowledge—from your first steps with Kafka through to running production systems—we also dive deep into the theoretical foundations that are crucial for success with Kafka. Think of this book as the guide we wish we had when we started our own Kafka journey, combining essential theory with real-world expertise. Throughout the book, you’ll find illustrative diagrams, practical tips, and easy-to-follow code examples that you can quickly implement yourself.

 Who should read this book

 We wrote this book for IT professionals who want to grow their Kafka expertise, whether they’re just starting out or already working with Kafka systems. While a general understanding of modern IT architectures and distributed systems is helpful, you don’t need any prior Kafka experience. Our goal is to meet you where you are and build your knowledge step by step. Whether you’re a developer, system administrator, architect, or technical team lead looking to enhance your data infrastructure, you’ll find practical guidance throughout the book. Even if you’re a seasoned Kafka expert, you’ll likely discover new insights and “Aha!” moments as we explore advanced patterns, organizational challenges, and lesser-known features.

 How this book is organized: A road map

 Apache Kafka in Action is organized into four parts comprising 18 chapters, each building upon the previous to create a comprehensive understanding of Kafka from basics to enterprise implementation:

 	Part 1: Getting started (chapters 1–2) introduces you to the world of Apache Kafka. We begin by explaining what Kafka is, its architecture, and its role in modern data architectures. Through practical examples using a running Kafka cluster, you’ll learn how to work with basic Kafka operations, gaining hands-on experience with topics, producers, and consumers.

 	Part 2: Concepts (chapters 3–6) delves into the essential building blocks of Kafka. We explore the details of topics and messages, examine Kafka’s role as a distributed log, and investigate how Kafka achieves reliability through replication and transactions. The section concludes with a deep dive into performance optimization, covering crucial aspects such as partitioning strategies and configuration tuning.

 	Part 3: Kafka deep dive (chapters 7–10) takes you behind the scenes of Kafka’s operations. You’ll learn the intricacies of cluster management, discover how messages are produced and persisted, understand the mechanics of message consumption, and master message cleanup strategies. This section provides the technical depth needed to troubleshoot problems and optimize your Kafka deployment.

 	Part 4: Kafka in enterprise use (chapters 11–18) bridges the gap between theory and real-world implementation. We cover essential enterprise topics such as system integration with Kafka Connect, stream processing, governance, and reference architectures. You’ll learn practical skills for monitoring, performing disaster recovery, and choosing between different technologies. The section concludes with guidance on avoiding common pitfalls and implementing Kafka successfully in modern architectures.

 While the book is designed to be read sequentially, experienced practitioners may choose different paths. If you’re already familiar with Kafka basics, you might skim part 1, but we recommend reviewing part 2 as it contains insights that even experienced users often find valuable. Technical leaders focusing on architectural decisions might prefer to concentrate on parts 1, 2, and 4, using part 3’s technical deep-dive as a reference when needed. Throughout the book, you’ll find numerous practical examples that demonstrate real-world applications of the concepts being discussed.

 For those new to Kafka or needing guidance on setup, appendix A provides detailed instructions for creating a test environment, while appendix B covers monitoring setup procedures. These appendixes serve as practical references you can return to whenever needed.

 About the code

 This book contains many examples of source code listings in line with normal text. Source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this wasn’t enough, and listings include line-continuation markers (➥). Code annotations accompany many of the listings, highlighting important concepts. You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/apache-kafka-in-action.

 liveBook discussion forum

 Purchase of Apache Kafka in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/apache-kafka-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the authors

 [image:]

 Alexander Kropp has dedicated his focus to Apache Kafka and Kubernetes, actively shaping cloud platform designs and ensuring efficient monitoring systems. With extensive experience as an architect and trainer in communication networks and cloud computing, his creative approach to solution design underscores his excellence in the field.

 Anatoly Zelenin is a renowned expert and trainer in Apache Kafka. He is known for his interactive and engaging workshops, which attract customers from various industries across Europe, particularly banking and manufacturing. In addition to his role as an IT consultant and trainer, Anatoly is an avid adventurer, exploring different parts of our planet.

 Together, they are part of the DataFlow Academy, a leading European training and consulting company. The academy specializes in real-time data technologies, focusing on hands-on, interactive learning experiences.

 about the cover illustration

 The figure on the cover of Apache Kafka in Action is “La Nocellara,” or “The Nocellara,” taken from Uses and costumes of Naples and surroundings described and painted, a literary work by Francesco de Bourcard published in 1853 and related to the customs and traditions of the Kingdom of Naples in the 19th century.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Getting started

 In the ever-evolving world of data processing and system integration, Apache Kafka stands as a foundational technology. But how do we get started with Kafka? What does it take for us to unlock Kafka’s full potential in our applications and workflows?

 In this first part of the book, we’ll guide you through the essential building blocks to get up and running with Kafka. Starting with an introduction to Kafka, we’ll explore its core concepts and components, as well as its role within modern enterprise ecosystems. We’ll discover what Kafka is, where it fits, and the power it brings to data-driven architectures.

 In chapter 1, we lay the groundwork by explaining Kafka’s architecture, including how its components—producers, consumers, topics, and brokers—work together to facilitate scalable, fault-tolerant messaging. In chapter 2, we dive into Kafka’s core operations by creating topics, producing and consuming messages, and using command-line tools. By the end, we’ll have hands-on experience with a basic Kafka setup, preparing us for more advanced topics ahead.

1 Introduction to Apache Kafka

This chapter covers

 	What Apache Kafka is and its use cases

 	How Kafka fits into enterprise ecosystems

 	Architectural overview of Kafka

 	Running and using Kafka

 Modern enterprise applications are often built from independent components and services that communicate by exchanging messages. Managing this flow of messages becomes increasingly complex as systems scale across multiple servers, data centers, cloud platforms, and geographic regions. The challenge is further heightened by the need for reliability, fault tolerance, and near-real-time performance. Apache Kafka was designed specifically to address these demands, providing a high-throughput, distributed messaging platform capable of handling massive streams of data efficiently.

 In this first chapter, we’ll learn what Apache Kafka is, dive into its basic components and their purpose, and discuss where it can be used. More importantly, we’ll look at how Kafka fits into broader enterprise ecosystems. Finally, we’ll cover what is required to use Kafka in terms of hardware, tools, and programming languages.

1.1 What is Apache Kafka, and how does it solve our problems?

 Our world runs in real time. When we make a purchase, we expect immediate confirmation. When we order parcels, we expect real-time tracking. When our credit card is used suspiciously, we want to know now, not tomorrow. As customers, we have come to expect organizations to process and react to data as fast as life happens.

 This real-time expectation, combined with an explosion in data volume—from Internet of Things (IoT) sensors streaming data to customers interacting across many digital touchpoints—creates many challenges for IT teams. Traditional batch-oriented architectures, designed for end-of-day processing, struggle to adapt to this new reality in which every second counts.

 Especially for established organizations with complex legacy systems, it has become a critical challenge to transform their architecture to handle real-time data flows while maintaining system reliability. As they break down monolithic applications into distributed services, the complexity grows drastically. Teams need to evolve their services independently while ensuring reliable data flow across the organization. How do you maintain system stability when dozens of services need to communicate? How do you ensure teams can deploy changes without breaking other services? And, how do you handle these massive streams of data flowing between systems without creating a tangled web of point-to-point integrations?

 Kafka provides an architectural pattern that addresses these challenges by serving as the core of a central nervous system for data. It’s no coincidence that, according to the Kafka community, over 80% of Fortune 100 companies rely on Kafka to solve these exact problems. From enabling independent service evolution to preventing system-wide failures through asynchronous communication, and transforming batch-oriented systems into real-time streams, Kafka has become the backbone of modern distributed architectures.

 Kafka is a robust, open source, distributed streaming platform that fundamentally changes how organizations can handle their data flows. At its core, Kafka acts as a persistent, distributed log of all your organization’s data events. Think of it as a central backbone where every significant piece of information—from customer interactions to system state changes—can be reliably stored and processed in real time. This architectural approach provides key advantages:

 	By persisting data streams, Kafka enables both real-time processing and reliable replay of data. When a consuming system fails, it can simply pick up where it left off. When you develop a new service that needs historical data, it can process past events just as easily as new ones.

 	Kafka’s distributed nature means it scales horizontally to handle massive data volumes while maintaining fault tolerance. A single Kafka cluster can handle millions of events per second while ensuring no data is lost, even if parts of the system fail.

 These capabilities have made Kafka essential across industries. Financial institutions use it to process millions of transactions in real time while ensuring every system—from fraud detection to customer notifications—stays in sync. Manufacturers stream sensor data from thousands of IoT devices through Kafka to enable predictive maintenance and real-time monitoring. Retailers use its capabilities for inventory management and order processing.

 Kafka achieves this through a publish-subscribe model, or as the Kafka community phrases it, a producer-consumer model. Producers send messages to specific topics, and consumers process these messages as needed. But what sets Kafka apart from traditional messaging systems is its persistence layer—data written to Kafka can be stored and read multiple times, for hours, days, or even months.

 This persistence, combined with Kafka’s distributed nature and rich ecosystem of tools such as Kafka Connect and Kafka Streams, has transformed Kafka from its origins as LinkedIn’s high-throughput messaging system into something much more powerful: the central nervous system for enterprise data.

 This book is designed for a broad range of IT professionals who want to gain a solid understanding of Kafka and its integration into existing IT infrastructures. Whether you’re an architect, a system administrator, a developer, or a data engineer, this book provides a comprehensive starting point with Kafka.

 You shouldn’t expect a developer handbook filled with dozens of Java examples. Instead, we aim to offer clear, practical insights and guidance that will enable you to effectively use Kafka in your projects. Our goal is to equip you with the knowledge and skills needed to use Kafka for data streaming and real-time processing in a variety of IT environments.

1.2 Kafka in enterprise ecosystems

 What do we mean by saying that Kafka can be the central nervous system for data? The vision is that every event (see figure 1.1), a significant occurrence or incident within an enterprise that generates data and carries important information, is stored in Kafka. In the context of enterprise systems and Kafka, an event typically represents various activities, changes, or transactions happening in different parts of the organization, such as user interactions, system updates, financial transactions, or any other relevant business operation.

 In the context of event-driven architectures and Kafka, an event is often a piece of data that encapsulates the details of a specific occurrence, providing a structured representation of the incident. These events are typically produced by various components or applications within the enterprise and are then published to a Kafka topic, which is a structural unit to organize data streams. Subsequently, other systems or applications can subscribe to these topics to consume and process the events, enabling real-time data flow and communication between different parts of the enterprise ecosystem.

 In many companies, there’s a growing separation between legacy systems, which are essential for current business processes and models, and newer systems built using modern development practices. The new world refers to the approach of developing innovative services and solutions using contemporary methodologies. While Kafka isn’t strictly necessary to serve as an interface between old and new systems (this can often be handled by adapters or anti-corruption patterns), it plays a crucial role in enabling communication between these systems. Kafka facilitates the seamless exchange of messages, connecting established legacy systems with the dynamic, evolving world of modern software services. By doing so, it ensures smooth integration without requiring significant changes to the existing systems.

 [image: A screenshot of a computer AI-generated content may be incorrect.]

 Figure 1.1 Kafka as the central nervous system for data in a company. Every event that takes place in the enterprise is stored in Kafka. Other services can react to these events asynchronously and process them further.

 Legacy systems often fall short of meeting the modern demands of both internal and external customers. These systems often rely on batch processing, where data is handled in large chunks at set intervals. However, in today’s fast-paced world, immediate access to information is essential. For instance, no one wants to wait a week or even a day for their account balance to update after a credit card transaction. We now expect real-time parcel tracking and instant data updates. Modern cars, for example, generate huge amounts of data that need to be sent to corporate headquarters for analysis, especially when preparing for autonomous driving. Kafka can help businesses transition from batch-oriented processing to real-time data handling. It acts as a powerful bridge between older systems and the real-time data processing model, helping companies respond to the growing need for instant information and adapt to changing customer expectations and industry trends. While Kafka is designed for real-time processing, it can still be used in situations where messages are processed less frequently, such as once a day, depending on the use case.

 The way we write software is also changing. Instead of putting more and more functionality into monolithic services and then connecting these few monoliths to each other via integration, we’re breaking our services into microservices. In the microservices software architectural style, applications are composed of small, independently deployable services that communicate over well-defined APIs. This approach aims to reduce dependency between teams, enhance scalability, and enable more flexibility in software development and deployment. To access the benefits of microservices, asynchronous data exchange must occur. Even if one microservice is undergoing maintenance, others can continue to function independently. Additionally, microservices require communication methods that allow data formats in one service to evolve independently of other services. Kafka provides valuable support in this context, offering a robust platform for asynchronous communication and data streaming, allowing microservices to operate independently and seamlessly exchange information in a decoupled way.

 Another trend, largely driven by virtualization and the growing adoption of cloud architectures, is the declining need for specialized hardware. Unlike some other messaging systems, Kafka doesn’t require dedicated appliances. It runs on standard, off-the-shelf hardware and doesn’t rely on fail-safe systems. Kafka is designed to handle subsystem failures gracefully. As a result, even in the event of problems within the data center, message delivery remains reliable.

 So, how does Kafka achieve this reliability and performance? How can we use Kafka for our use cases, and what needs to be considered when operating Kafka? We’ll give you the answers to these questions and much more on our journey through this book.

1.3 Architectural overview of Kafka

 Kafka’s architecture isn’t just a basic framework; it’s a well-thought-out system that makes the smooth transmission, storage, and processing of data possible. Let’s take a closer look at Kafka’s architecture, shown in figure 1.2, to understand the key components that make it a fundamental tool for distributed streaming applications.

 Whether you’re a developer looking for a comprehensive understanding or you’re simply curious about how it all works, this exploration of the following components will shed light on how Kafka’s architecture is organized and its crucial role in shaping the future of data streaming:

 [image: A screenshot of a computer game AI-generated content may be incorrect.]

Figure 1.2 The components and data flow of Kafka

 	
Messages make up the payload, also called records. They are sent as byte arrays and, under the hood, are typically grouped into batches before being sent.

 	
Producers send messages to the leader of a partition and select the partition
themselves with the help of a partitioner.

 	
Topics are used to bundle messages of a business topic. They are comparable to tables in a database.

 	
Partitions are the backbone of Kafka’s performance. Topics are divided into par­titions to parallelize and scale processes. To ensure fault tolerance and high availability, partitions are replicated across brokers.

 	
Consumers receive and process messages from Kafka and can read from multiple partitions, as well as from multiple topics.

 	
Consumer groups allow parallel processing and scalable message consumption by dividing partitions and messages among consumers. If one consumer fails, the others in the group take over its tasks, ensuring fault tolerance.

 	
Brokers are Kafka servers. They share replicas and tasks evenly among themselves, which improves performance. If one broker fails, another takes over, increasing reliability.

 	
Leaders are the brokers responsible for read and write operations of a partition. Leaders are distributed as evenly as possible among all brokers.

 	
Followers are the brokers to which the partitions are copied from the leader to increase resilience.

 	
Coordination cluster (Kafka Raft [KRaft], previously ZooKeeper ensemble) is used by Kafka to coordinate itself.

 Let’s dive into an example to explore how Kafka’s components work together. Picture a scenario where a bank is handling fund transfers Imagine the bank transfer application as the producer. Its role is to generate messages for each fund transfer event. These messages are like packets of information containing details such as source account, destination account, amount, and timestamp.

 Now, these messages aren’t sent directly to their destination. Instead, they are directed to a Kafka topic named bank-transfers. Think of a topic as a category where related messages are grouped together.

 Within this topic, there are multiple partitions. Each partition handles a subset of messages, allowing for parallel processing. In our case, partitions might manage different types or groups of fund transfers.

 The Kafka cluster, composed of brokers, is the backbone of this operation. Brokers are servers that store and manage the data. They work together to form a resilient and scalable Kafka cluster. Each broker oversees one or more partitions of each topic, ensuring efficient data distribution.

 In traditional Kafka setups, ZooKeeper was used to coordinate brokers and manage metadata, and it played an essential role in ensuring Kafka’s distributed nature. However, in more recent versions, Kafka has moved away from ZooKeeper and now uses the KRaft protocol, as mentioned in the preceding list, for internal coordination. This change allows Kafka to manage coordination directly without the need for an external system.

 Note The details of this shift from ZooKeeper to KRaft will be covered in more depth in a later chapter, but for now, it’s enough to know that Kafka has transitioned to KRaft for improved scalability and simplicity.

 Now let’s talk about consumers. These are applications or services responsible for reading messages from Kafka topics. To handle this reading efficiently, consumers are organized into consumer groups. Each group can have multiple consumers, and each partition is consumed by only one consumer within a group. This parallel processing ensures that messages are processed swiftly.

 Each partition has a leader broker and multiple followers. The leader takes charge of handling reads and writes, while followers replicate the data for fault tolerance. If a leader fails, a follower steps in to maintain a smooth flow of data.

 Bringing it all together, as fund transfer messages traverse through Kafka, they are efficiently processed by consumer groups, ensuring that accounts are updated accurately and in a timely fashion. The Kafka cluster, with its distributed architecture and fault tolerance mechanisms, forms the backbone of this reliable and scalable data flow. Whether it’s managing leaders and followers, partitioning messages, or coordinating brokers, Kafka orchestrates this symphony of data seamlessly.

1.4 Running and using Kafka

 To effectively run Kafka, several components and prerequisites are essential. First, you need a reliable and properly configured set of servers to host the Kafka cluster. Each server in the cluster acts as a broker and collaborates to manage the distributed processing of data streams. Additionally, adequate network infrastructure with low latency and high bandwidth is necessary to facilitate seamless communication between Kafka brokers. Users must have a clear understanding of their data requirements and design appropriate topics and partitions within Kafka to organize and distribute data effectively. It’s also essential to have well-designed producer and consumer applications that interact with Kafka, allowing for the ingestion and processing of real-time data. Lastly, a comprehensive monitoring and management strategy is vital to keep track of Kafka’s performance and troubleshoot any problems promptly. Running Kafka successfully demands a combination of well-configured infrastructure, robust network capabilities, and a deep understanding of Kafka’s architecture and associated components.

 Managing Kafka yourself is doable but shouldn’t be underestimated. If you want to use Kafka in a cloud environment, multiple vendors offer managed Kafka services. Some cloud providers, such as AWS with Amazon Managed Streaming for Apache Kafka (Amazon MSK) and Azure HDInsight, offer Kafka solutions. Additionally, there are specialized Kafka vendors such as Confluent and Aiven. Besides these classical Kafka vendors, other competitors in this space offer Kafka-compatible services such as Redpanda and WarpStream, promising better performance, reduced costs, or additional features. Although many of these offerings sound interesting, we don’t have enough experience with them to give a recommendation. We want to emphasize that managing the Kafka infrastructure itself is just one part of a successful streaming architecture, so even if you use a managed service, you need expertise in your team and company to make the most out of it.

 TIP We recommend both Confluent and Aiven, as we’ve had good experiences with both.

 In addition to the infrastructure components mentioned earlier, running Kafka involves specific programming languages and tools. Kafka itself is implemented in Scala and Java, so a Java Runtime Environment (JRE) is required on the servers hosting Kafka brokers. To interact with Kafka and develop producer and consumer applications, users typically use programming languages such as Java, Scala, Python, or others supported by Kafka clients. Kafka provides official client libraries for various programming languages, enabling developers to integrate Kafka seamlessly into their applications.

1.5 Our learning path

 Throughout the upcoming chapters, we’ll embark on a comprehensive journey to understand Kafka, progressing seamlessly from fundamental concepts to a deep dive into its intricate workings. The learning experience is enhanced with a wealth of graphics that visually illustrate key Kafka principles, architecture, and processes, facilitating a clearer grasp of the underlying concepts. Whether exploring Kafka’s distributed architecture or delving into the intricacies of topics, partitions, and brokers, you can rely on visual aids in this book to deepen your understanding.

 The learning approach is hands-on, with simple yet effective examples that allow us to dive right in and start working with Kafka. Through practical scenarios and step-by-step instructions, we’ll explore how to apply what we’ve learned to build and run Kafka applications. From producing and consuming messages to setting up and managing Kafka clusters, the examples are designed to be accessible, encouraging you to experiment and strengthen your skills through real-world use. With clear graphics and practical examples, we’ll guide you through Kafka’s complexities in a way that’s both enlightening and directly applicable to your own work.

 Summary

 	Kafka is a powerful distributed streaming platform operating on a publish-subscribe model, allowing seamless data flow between producers and consumers.

 	Widely adopted across industries, Kafka excels in real-time analytics, event sourcing, log aggregation, and stream processing, supporting organizations in making informed decisions based on up-to-the-minute data.

 	Kafka’s architecture prioritizes fault tolerance, scalability, and durability, ensuring reliable data transmission and storage even in the face of system failures.

 	From finance to retail and telecommunications, Kafka finds applications in real-time fraud detection, transaction processing, inventory management, order processing, network monitoring, and large-scale data stream processing.

 	Beyond its core messaging system, Kafka offers an ecosystem with tools such as Kafka Connect and Kafka Streams, providing connectors to external systems and facilitating the development of stream processing applications, enhancing its overall utility.

 	Kafka can serve as a central hub for diverse system integration.

 	Producers send messages to Kafka for distribution.

 	Consumers receive and process messages from Kafka.

 	Topics organize messages into channels or categories.

 	Partitions divide topics to parallelize and scale processes.

 	Brokers are Kafka servers managing storage, distribution, and retrieval.

 	KRaft/ZooKeeper coordinates and manages tasks in a Kafka cluster.

 	Kafka ensures data resilience through replication.

 	Kafka scales horizontally by adding more brokers to the cluster.

 	Kafka can run on general-purpose hardware.

 	Kafka is implemented in Java and Scala, but there are clients for other programming languages as well, for example, Python.

2 First steps with Kafka

This chapter covers

 	Introducing the book’s use case

 	
Creating a topic with the kafka-topics.sh command

 	
Producing messages with the kafka-console -producer.sh command

 	
Consuming messages with the kafka-console -consumer.sh command

 In this chapter, we’ll delve into the realm of Apache Kafka, gaining our initial insights into its functionality. Our journey begins with the creation of a primary topic, followed by the production of messages directed to this topic. Ultimately, we’ll complete the loop by consuming these messages once more, providing a comprehensive exploration of Kafka’s fundamental operations. We assume that Kafka is already installed. We’ve described the exact installation instructions to create a Kafka cluster with three brokers in appendix B.

2.1 Introducing our use case

 Throughout this book, we’ll use a consistent use case to illustrate how Kafka can be effectively used in real-world scenarios. Our chosen use case revolves around an e-commerce platform, as shown in figure 2.1, which serves as a practical example to demonstrate Kafka’s capabilities.

 [image: A group of colorful rectangular buttons AI-generated content may be incorrect.]

Figure 2.1 The high-level IT architecture for our online shopping platform

 While our focus isn’t on teaching how to build the e-commerce platform itself, this example will help contextualize Kafka’s key concepts and techniques. We’ll cover various functionalities such as user management, product management, order processing, and payment integration, showing how Kafka can enhance data streaming, real-time processing, and system scalability in these areas.

2.2 Producing messages

 Let’s take a closer look at our product management system. We aim to record all product price updates in Kafka, starting by creating a dedicated topic. Recording these price updates is crucial for maintaining an accurate history of pricing changes, enabling real-time monitoring, performing analytics, and making decisions based on current and historical pricing data. To begin, we’ll initiate the process by creating a dedicated Kafka topic. Topics are similar to tables in databases in that we store a collection of data on a certain subject in topics. Following the usual naming conventions of using lowercase letters and separating components with dots for clarity and consistency, we name our topic products.prices.changelog. Here’s how to create the topic:

 $ kafka-topics.sh \

 --create \

 --topic products.prices.changelog \

 --partitions 1 \

 --replication-factor 1 \

 --bootstrap-server localhost:9092

Created topic products.prices.changelog.

 We use the kafka-topics.sh command to manage our topics in Kafka. This script and many more, which we’ll use in our examples, are shipped with Kafka itself. Here, we tell Kafka to create the topic products.prices.changelog (--topic products.prices.changelog) with the --create argument. First, we start with one partition (--partitions 1) and without replicating the data (--replication-factor 1) to keep it simple for now. Last, we specify the Kafka cluster we want to connect to. In our case, we use our local cluster, which by default listens on port 9092 (--bootstrap-server localhost:9092). The command confirms the successful creation of the topic. If we get errors here, it’s often because Kafka hasn’t been started and thus is inaccessible or because the topic already exists.

 NOTE Confluent Kafka scripts don’t have the .sh extension. For Windows users, .bat versions of these scripts are available; however, we strongly recommend using Windows Subsystem for Linux (WSL) for an improved experience.

 So, now we have a place to store our price updates. Whenever a price for a product has changed, we produce a new message to that topic. For our practical exercise, we’ll use the kafka-console-producer.sh command-line tool. The producer connects to Kafka, takes data from the command line, and sends it as messages to a topic (configurable via the --topic parameter). Let’s write the message coffee pads 10 into our topic products.prices.changelog:

 $ echo "coffee pads 10" | kafka-console-producer.sh \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

 NOTE The Kafka console producer doesn’t print a confirmation message upon successfully sending a message. Because we’re piping the output of echo directly into the producer, there’s no interactive input mode, and no feedback is displayed.

 NOTE If you’re a coffee lover, you might notice “coffee pad” in the code listings versus the more often used “coffee pod.” While they do have their differences, both pad and pod result in coffee in our cups—and isn't that what matters?

2.3 Consuming messages

 Our analysis component now needs to read this data. This component could analyze the effect of price changes on orders in real time, enabling timely adjustments to pricing strategies and inventory management. To retrieve the message we just sent, we’ll initiate kafka-console-consumer.sh, an integral member of the Kafka command-line toolkit:

 $ kafka-console-consumer.sh \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

Press Ctrl-C to cancel

Processed a total of 0 messages

 When we start kafka-console-consumer.sh, it continues to run by default until we actively cancel it (e.g., with Ctrl-C). For consumer, we have to specify again which topic it should use (--topic products.prices.changelog).

 Somewhat surprisingly, no message is displayed. This is because, by default, kafka-console-consumer.sh starts reading at the end of the topic and only prints new messages. To display already written data we have to use the flag --from-beginning:

 $ kafka-console-consumer.sh \

 --topic products.prices.changelog \

 --from-beginning \

 --bootstrap-server localhost:9092

coffee pads 10

Press Ctrl-C to cancel

Processed a total of 1 messages

 This time, we see the message coffee pads 10! What happened? We used the kafka-topics.sh command to create the topic products.prices.changelog in Kafka and used the kafka-console-producer.sh command to produce the message coffee pads 10. We then read this message again with kafka-console-consumer.sh. This data flow is shown in figure 2.2. Without anything else, kafka-console-consumer.sh always starts reading at the end, which means that if we want to read all messages, we have to use the --from-beginning flag.

 [image: A blue and white sign AI-generated content may be incorrect.]

Figure 2.2 In our example, we produce data with the kafka-console-producer.sh command to be stored in the products.prices.changelog topic, and then we can read this data again with the kafka-console-consumer.sh command.

2.4 Consuming and producing messages in parallel

 Interestingly, unlike many messaging systems, in Kafka, we have the flexibility to read messages multiple times as needed. This capability allows us to connect several independent consumers (representing separate systems) to the same topic, enabling them to access the data concurrently. For instance, we can have both an analysis system and an inventory management system consuming the price changes, as shown in figure 2.3. Moreover, there might be occasions where we need to analyze sales retrospectively, necessitating access to historical prices. In such cases, we can rerun the consumer multiple times, retrieving the same data each time for further evaluation.

 However, we now want to see the current price in our inventory management system in such a way that the price is updated immediately when there’s new data. To do this, we start kafka-console-consumer.sh in a terminal window to simulate our inventory management system. As soon as new data is available, the consumer fetches it from Kafka and displays it on the command line:

 # Don't forget: use Ctrl-C to stop the consumer

$ kafka-console-consumer.sh \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

 [image: A close-up of several labels AI-generated content may be incorrect.]

 Figure 2.3 The price changes for our products can be consumed by multiple systems.

 To simulate the price changes, we now start kafka-console-producer.sh. The command doesn’t stop until we press Ctrl-D, sending the EOF (End of File) signal to the producer:

 # Don't forget: use Ctrl-D to stop the producer

$ kafka-console-producer.sh \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

 The kafka-console-producer.sh command sends one message to Kafka per line we write. That means we can now type messages into the terminal with the producer:

 # Producer window

> coffee pads 11

> coffee pads 12

> coffee pads 10

 We should also see these promptly in the consumer window:

 # Consumer window

coffee pads 11

coffee pads 12

coffee pads 10

 Now, we also want to consume those messages with our sales analysis tool, which independently starts its consumer. We can simulate this by starting a kafka-console-consumer.sh in another terminal window, which displays all data from the beginning. Therefore, we’re seeing coffee pads 10 twice as this was also our first message produced at the beginning of this chapter:

 # Consumer 2 window

$ kafka-console-consumer.sh \

 --topic products.prices.changelog \

 --from-beginning \

 --bootstrap-server localhost:9092

coffee pads 10

coffee pads 11

coffee pads 12

coffee pads 10

 We see here that once data is written, it can be read in parallel by multiple consumers without the consumers having to talk to each other. Kafka keeps data for seven days by default, but we can also set it to not delete the data. This way, we can still start a consumer later that needs historical data.

 Let’s consider a scenario where price changes can be triggered by different departments that are responsible for different product categories. Kafka seamlessly handles this variability and efficiently processes data from multiple producers simultaneously, each representing a different product category, shown in figure 2.4. To demonstrate this capability, let’s initiate another producer in a separate terminal window:

 # Producer 2 window

$ kafka-console-producer.sh \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

> pillow 30

> blanket 40

 We see all the messages from all the producers show up in all our consumers in the order the messages were produced:

 # Consumer 1 window

[...]

pillow 30

blanket 40

Consumer 2 window

[...]

pillow 30

blanket 40

 [image: Several colored labels with text AI-generated content may be incorrect.]

 Figure 2.4 Multiple producers representing different departments are writing in parallel to the products.prices .changelog topic.

 We’ve now successfully completed our first Kafka use case, which involved both writing and reading data to and from Kafka. Initially, we created a topic named products.prices.changelog using the kafka-topics.sh command-line tool, where we stored all the price changes for our products. Next, we used the kafka-console-producer.sh command to write data into this topic, capturing the price updates. Subsequently, we were able to read and display this data using the kafka-console-consumer.sh command. Furthermore, we advanced our exploration by producing data in parallel using multiple producers and simultaneously reading data using multiple consumers. By employing the --from-beginning flag in kafka-console-consumer.sh, we accessed historical data. Through this process, we’ve gained familiarity with both writing and reading data to and from Kafka by using its command-line tools.

 After gaining this experience, we can now close all open terminals. We close producers with Ctrl-D and consumers with Ctrl-C. This example shouldn’t hide the fact that Kafka is used wherever larger amounts of data are processed (in the order of several dozens of gigabytes per second).

2.5 Graphical user interfaces for Kafka

 Kafka GUIs play a crucial role in simplifying the management and monitoring of Kafka clusters. For example, the open source Kafbat UI (https://github.com/kafbat/kafka-ui; shown in figure 2.5) or Kadeck (www.kadeck.com; proprietary license) provide intuitive interfaces for interacting with Kafka. These GUIs enable users to visualize data streams; monitor and manage topics, partitions, and consumer groups; and perform administrative tasks with ease. The Kafbat UI, in particular, offers a comprehensive view of Kafka clusters, simplifying the process of tracking message flow, inspecting audit logs, and configuring system settings. This accessibility enhances the overall user experience, making it easier for developers and administrators to ensure the efficient operation of their Kafka ecosystems.

 WARNING We strongly advise against using GUIs for writing data or modifying configurations in a production environment. Producing messages via a GUI in production can lead to inconsistencies, insufficient error handling, and poor scalability. Kafka is designed for system-to-system data exchange, not human interaction. Humans should only produce or consume data in production as administrators in absolute emergencies.

 After getting an initial overview of Kafka in this chapter and going through a practical scenario, we’ll go deeper in the next chapter and examine the Kafka architecture in more detail. We’ll look at how Kafka messages are structured and how exactly they are organized into topics. In this context, we’ll also look at the scalability and reliability of Kafka. We’ll also learn more about producer, consumer, and the Kafka cluster itself.

 [image: A screenshot of a computer AI-generated content may be incorrect.]

Figure 2.5 This Kafbat UI screenshot displays the messages within a specific topic, providing a clear view of the data being produced and consumed. This UI allows users to inspect individual messages, including their key, value, and timestamp, facilitating real-time monitoring and troubleshooting of data streams.

 Summary

 	Kafka includes many useful scripts for managing topics and producing or consuming messages.

 	Kafka topics can be created with the kafka-topics.sh command.

 	Messages can be produced with the kafka-console-producer.sh command.

 	Topics can be consumed with the kafka-console-consumer.sh command.

 	We can consume topics again from the beginning.

 	Multiple consumers can consume topics independently and at the same time.

 	Multiple producers can produce into topics in parallel.

 	Kafka GUIs enable users to view real-time messages within a topic, displaying details such as message key, value, and timestamp.

 	These GUIs aid in effective monitoring and troubleshooting of Kafka data streams.

Part 2 Concepts

 In part 2, we dive into key concepts of Apache Kafka, focusing on how its architecture and core features empower efficient, scalable data streaming. This part provides a detailed examination of Kafka topics, messages, distributed logs, reliability, and performance optimization.

 Chapter 3 explores Kafka topics and messages, including their structure, flow, and data formats. Chapter 4 examines Kafka as a distributed log, highlighting its partitioning and replication mechanisms while exploring its real-world applications. Chapter 5 discusses Kafka’s reliability, focusing on acknowledgment settings, data durability, and fault tolerance, including its transactional capabilities. Chapter 6 focuses on performance optimization, covering partitioning strategies, producer and consumer tuning, and broker configurations.

3 Exploring Kafka topics and messages

This chapter covers

 	Working with Kafka topics

 	How topics structure the flow of data in Kafka

 	Messages, the basic units of data in Kafka

 In this chapter, we’ll delve into the foundational elements of Apache Kafka: topics and the intricacies of messages. Kafka topics are the channels through which data is organized and distributed, while messages are the individual units of data that flow through these channels. We’ll explore the various types of messages, their structures, and data formats, as well as understand how these elements contribute to efficient data streaming and processing. By the end of this chapter, you’ll have a comprehensive understanding of how to effectively manage Kafka topics and the detailed composition of Kafka messages.

3.1 Topics

 Kafka topics are key to organizing data flow, much like tables in a database. They help manage different types and amounts of information in an orderly way. Complex data might be spread across multiple topics, so it’s important to manage them efficiently for smooth streaming and processing.

3.1.1 Viewing topics

 The creator of a Kafka topic is seldom its sole user. In scenarios where multiple users interact with the same topic, it becomes valuable for others to gain insights into the topic’s general configuration. Understanding these configurations can enhance collaboration and ensure that all users are aligned on essential parameters governing the topic’s behavior. For instance, let’s take a closer look at the topic products.prices.changelog from the preceding chapter:

 $ kafka-topics.sh \

 --describe \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

Topic: products.prices.changelog TopicId: GGYA9u_aRPSd0JRaGn2eBA

PartitionCount: 1 ReplicationFactor: 1 Configs:

 Topic: products.prices.changelog Partition: 0 Leader: 3 Replicas: 3

 Isr: 3 Elr: LastKnownElr:

 We use the kafka-topics.sh command to manage our topics in Kafka. With the argument --describe, we can take a closer look at topics. The --topic and --bootstrap-server arguments are also familiar from the previous chapter and are used to select the topic products.prices.changelog (--topic products.prices.changelog) on our local Kafka cluster (--bootstrap-server localhost:9092).

 Now let’s take a look at the output. In the first line, we find general information about our products.prices.changelog topic. The field TopicId contains a unique identifier, which Kafka automatically creates for every topic. PartitionCount indicates the number of partitions in our topic and corresponds to the value set when the topic was created (--partitions 1). Partitions in Kafka serve as a means to parallelize data processing and enhance the scalability and throughput of the system by allowing multiple producers to write to different partitions concurrently and allowing consumers to read from them concurrently. The ReplicationFactor defines how often messages are stored redundantly. A replication factor of 1 means that messages are not replicated, so there is no failover. Both partitions and replication will be covered in detail in later chapters.

 Further configuration settings for the topic can be found under Configs. In our example, the field is empty because we didn’t change anything in the default configuration. Configs will also be covered in more detail in the course of the book. The last line contains information about the single partition and its replicas (only one here). If we had more than one partition, the output would be one line per partition.

 To understand what the other numbers are all about, we have to take a short detour via the architecture of Kafka. So far, we’ve always talked about our Kafka cluster. What do we actually mean by this? Kafka consists of several components, which are shown in figure 3.1.

 [image: A screenshot of a computer screen AI-generated content may be incorrect.]

Figure 3.1 A typical Kafka environment consists of the Kafka cluster itself and the producers and consumers that write and read data to Kafka. This is joined by a coordination cluster based on Apache Kafka Raft (KRaft).

 We learned about producers and consumers in the previous chapter. Brokers are responsible for processing and storing messages in the Kafka cluster. The coordination cluster is responsible for managing our brokers, but we’ll ignore this for now.

 The other numbers in the last line of the output (Topic: products.prices.changelog Partition: 0 Leader: 3 Replicas: 3 Isr: 3, Elr:, astKnownElr:) each refer to the ID of one of our three brokers. Replicas indicate on which brokers the partition is replicated. In this case, it’s only available on the broker with ID 3. The abbreviation ISR stands for in-sync replicas and indicates which brokers are up-to-date for this partition. The field Leader indicates which broker has primary responsibility for the partition. Because we only have a ReplicationFactor of 1 and therefore the partition isn’t replicated, the respective entries also only contain the ID of one of our three brokers. When creating a new topic, Kafka tries to distribute the partitions and replicas evenly among all brokers to ensure an even load distribution. Because we’ve only created one topic so far, the choice of broker is arbitrary. In our example, the broker with ID 3 was selected.

 ELR stands for eligible leader replicas and contains the list of brokers that are also ISR eligible to become the leader for that partition if the current leader fails. LastKnownElr contains the list of previously eligible replicas that had an unclean shutdown. We’ll explain the concepts of ISR and ELR in more detail in chapters 5 and 8.

 NOTE We’ll omit some fields of the –-describe command in the future to shorten the output if they aren’t needed for explanation.

 So far, we’ve ignored one important question. How do we know which topics exist in our Kafka cluster? For our example, the question is relatively easy to answer because we’ve only created the topic products.prices.changelog so far. In practice, a Kafka cluster can consist of many topics created by different people. To keep track of them, we can use the command kafka-topics.sh to display all topics in our Kafka cluster:

 $ kafka-topics.sh \

 --list \

 --bootstrap-server localhost:9092

__consumer_offsets

products.prices.changelog

 For this, we use the --list argument and again specify a Kafka broker (--bootstrap-server localhost:9092). It doesn’t matter which broker actually manages the topic. So, alternatively, we could talk to our other two brokers (--bootstrap-server localhost:9093 and --bootstrap-server localhost:9094, respectively). As a result, the topic __consumer_offsets stands out. This topic was created automatically by Kafka, which can be seen by the double underscores at the beginning of its name. This topic stores the current reading position for each consumer. We can use offsets as a kind of bookmark for our consumers. In fact, we already used offsets in our first example, as displayed again here:

 # Window Consumer 2

$ kafka-console-consumer.sh \

 --topic products.prices.changelog \

 --from-beginning \

 --bootstrap-server localhost:9092

coffee pads 10

coffee pads 11

coffee pads 12

coffee pads 10

 By default, the kafka-console-consumer.sh starts reading from the end of a topic, that is, it reads only new messages. By using the flag --from-beginning, we start reading from the earliest offset instead, which also reads all messages already produced.

 Warning While theoretically the manual creation of topics with double underscores is possible, we strongly advise against doing so. Kafka reserves topic names with double underscores for internal topics and special purposes. Using such a naming convention for your own topics can lead to conflicts with Kafka’s internal topics, future compatibility problems, and administrative confusion.

3.1.2 Create, customize, and delete topics

 Now that we’ve learned how to view topics and their properties, let’s take a closer look at how to create and customize topics. To start fresh, we first delete our topic products.prices.changelog by using the command kafka-topics.sh with the argument --delete:

 $ kafka-topics.sh \

 --delete \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

 If we now display the topics in our Kafka cluster, we notice that the topic products.prices.changelog is no longer present:

 $ kafka-topics.sh \

 --list \

 --bootstrap-server localhost:9092

__consumer_offsets

 NOTE The offsets for the deleted topic inside the __consumer_offsets topic have been cleaned up after deleting the products.prices.changelog topic.

 After our Kafka cluster is empty again, except for the __consumer_offsets topic, we can re-create our products.prices.changelog topic:

 $ kafka-topics.sh \

 --create \

 --topic products.prices.changelog \

 --replication-factor 2 \

 --partitions 2 \

 --bootstrap-server localhost:9092

Created topic procuts.prices.changelog.

 We again use the well-known command kafka-topics.sh in combination with the argument --create. However, the ReplicationFactor and the number of partitions are interesting. Compared to our introductory example, we choose a value of 2 instead of 1, which on the one side, increases reliability (replication factor), and on the other side, increases parallel processing (partitions). We’ll dive into all the details about reliability and performance later on. Now, let’s take a closer look at our new topic products.prices.changelog using --describe:

 $ kafka-topics.sh \

 --describe \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

Topic: products.prices.changelog TopicId: 2VvA24HxRwqhF-znSY1tAQ

PartitionCount: 2 ReplicationFactor: 2 Configs:

 Topic: products.prices.changelog Partition: 0 Leader: 3

 Replicas: 3,2 Isr: 3,2

 Topic: products.prices.changelog Partition: 1 Leader: 1

 Replicas: 1,3 Isr: 1,3

 Not surprisingly, we now see a PartitionCount and a ReplicationFactor of 2, and a new TopicId. More interesting are the following two lines. Each line represents a partition, and the partitions are numbered starting with 0. Partition 0 is on the brokers with the IDs 3 and 2 (Replicas: 3,2), whereby broker 3 takes the role of the leader (Leader: 3) and thus the main responsibility for partition 0. Partition 1 is also located on Broker 3 and additionally on Broker 1 (Replicas: 1,3), whereby Broker 1 has the role of the leader this time (Leader: 1), as shown in figure 3.2.

 [image: A red rectangle with black text AI-generated content may be incorrect.]

Figure 3.2 The replicas and partitions of the product.prices.changelog topic are distributed among our brokers. Broker 3 is the leader of partition 0, and broker 1 is the leader of partition 1.

 The distribution of the individual partitions and replicas isn’t pure chance because Kafka tries to distribute the load evenly among all brokers. No matter how many times we delete and re-create the topic in our small example, the same broker will never be leader of both partitions at the same time. However, which broker leads which partition may change. The distribution of replicas among brokers is similar. With three brokers, all four replicas wouldn’t be distributed on only two brokers. Only the exact distribution among the brokers can change.

 But what happens if we find out afterward that we need to change the number of partitions and replicas because, for example, performance is no longer sufficient or reliability is insufficient? Deleting and re-creating the topic each time is, apart from being impractical, not always possible, because we would lose all the data. Fortunately, Kafka has a solution for this as well. Let’s first increase the number of partitions to three:

 $ kafka-topics.sh \

 --alter \

 --topic products.prices.changelog \

 --partitions 3 \

 --bootstrap-server localhost:9092

 To customize the topic, we use the kafka-topics.sh command with the --alter argument. We select the topic products.prices.changelog (--topic products.prices.changelog) and set the number of partitions to 3 (--partition 3). After running the command, we can take a closer look at the changes:

 $ kafka-topics.sh \

 --describe \

 --topic products.prices.changelog \

 --bootstrap-server localhost:9092

Topic: products.prices.changelog PartitionCount: 3 ReplicationFactor: 2

Configs:

 Topic: products.prices.changelog Partition: 0 Leader: 3

 Replicas: 3,2 Isr: 3,2

 Topic: products.prices.changelog Partition: 1 Leader: 1

 Replicas: 1,3 Isr: 1,3

 Topic: products.prices.changelog Partition: 2 Leader: 2

 Replicas: 2,3 Isr: 2,3

 We can see that the PartitionCount has been increased to three. We also see a new line at the end of the output, which contains information about the newly created partition 2. The selection of leaders and replicas of the already-existing partitions isn’t changed by --alter. In our example, Broker 2 was selected as the leader for the new partition, and Broker 3 was selected as another replica, as shown in figure 3.3.

 [image: A screen shot of a screen AI-generated content may be incorrect.]

Figure 3.3 The replicas and partitions of the product.prices.changelog topic after we increased the partitions to three. Broker 2 is now the leader of the additional partition 2.

 Because we already have another topic, the __consumer_offsets topic, which contains 50 partitions, one broker was assigned as leader for 17 partitions, while the other two brokers were assigned as leaders for 16 partitions each. Due to this existing distribution, the first two partitions of our products.prices.changelog topic were assigned to the brokers with fewer leader partitions. However, any of the brokers could have been assigned as the leader for partition 3. If we had increased the number of partitions to five (adding three partitions), each broker would have been assigned as leader for one additional partition, resulting in a more balanced distribution.

OEBPS/Images/cover.jpg
From basics to production

Apache

Kaf

INACTI

Anatoly Zelenin
Alexander Kropp

Fareword by Adam Bellemare

m MANNING

OEBPS/Images/Manning_M_small.png

OEBPS/Images/manning_m.jpg

OEBPS/Images/CH02_F04_Zelenin.jpg
pricing svc

lproduct catalog)

inventory svc

L

OEBPS/Images/CH01_F02_Zelenin.png
Producer? <
send Bl X

Producer | /o

end(@)

Topic A
ritil @
VTP alr]t 3

Consumer Group A
phidepptiialin i

——L\Consumer i

C&sﬁeﬁ@p}
H] \ Ear i A St
‘@ g {
[P2] l Consumer| !

|

OEBPS/Images/CH01_F01_Zelenin.png
Backend
Services Analytics Apps i);tlimal

9 = ¥/

AN

—-— Data
Web Apps Warehouse

OEBPS/Images/CH03_F03_Zelenin.png
Broker | Broker 2 Broker 3
\Partition ;b ‘ ! .‘.IP
partition B | | parstion 0

partion2 |

[—

OEBPS/Images/CH03_F02_Zelenin.png
Broker | Broker 2 Broker 3

Partition 0¢ @ J @

[Partitivn _é[

| B B

OEBPS/Images/00_Authors_RGB.png

OEBPS/Images/CH02_F03_Zelenin.jpg
Sales Analysis

Inventory

i

Checkout

OEBPS/Images/CH02_F01_Zelenin.png
H

7

i

[N

Payment
Intégration

OEBPS/Images/CH03_F01_Zelenin.png
=R

o] o]

g

/\
L

OEBPS/Images/CH02_F02_Zelenin.png
kafka-console- 3’ W Topic.
producer.sh _— products, prlces ——1
L b Changelog

OEBPS/Images/CH02_F05_Zelenin.png
Y vitor Apsche katka 8305280 10 o~

Deshboard Topics | products.prices.changelog
local -
o Overview Messages Consumers Settngs Statstcs
akTypo paritions oy Serte
Topics i v
oftser v | offset Alitems are seectad. || String -
Consumers
vawe Sade
sting v s submit Ousstrirst
Q o + AddFilters.
DONE ©ioms $2K6 W 20messages consumes
Ottt pattion Timestamp Key Preview vaue Preview
61512024, e 1030,
B o Sls0z t0se 1034, name
Ky Vabe Hescers Timestamp 6/5/2024,15:34:53
t Keysards sting

d": 1034,
": “Smartphone Model X",

price”: 299.99, Value Serde String

‘department”: "Electronics”

¥

sfs/2020, (i 1089, "name": “Orgaric Almc
0o o G202 g cia 1089, Organic Al
R o/SI20%4 o, {1021, "name*: "Electric Kettle

