

 [image:]

 GitHub Actions in Action

 Continuous integration and delivery for DevOps

 Michael Kaufmann, Rob Bos, and Marcel de Vries

 Foreword by Scott Hanselman

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Technical editor:

 	
 James Michael Gousset

 	
 Review editor:

 	
 Kishor Rit

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Mike Beady

 	
 Technical proofreader:

 	
 Trevoir Williams

 	
 Typesetter:

 	
 Mara Torbica

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633437302

 contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. Action fundamentals

 1 Introduction to GitHub Actions

 1.1 An introduction to the GitHub universe

 1.2 What are GitHub Actions and workflows?

 1.3 GitHub Actions: More than CI/CD pipelines

 1.4 Hosting and pricing for GitHub and GitHub Actions

 GitHub Enterprise Cloud

 GitHub Enterprise Server

 GitHub pricing

 GitHub Actions pricing

 1.5 Conclusion

 2 Hands-on: My first Actions workflow

 2.1 Creating a new workflow

 2.2 Using the workflow editor

 2.3 Using actions from the marketplace

 2.4 Running the workflow

 2.5 Conclusion

 3 Workflows

 3.1 YAML

 YAML basics

 Data types

 3.2 The workflow syntax

 3.3 Events and triggers

 Webhook triggers

 Scheduled triggers

 Manual triggers

 3.4 Workflow jobs and steps

 Workflow jobs

 Workflow steps

 Using GitHub actions

 The matrix strategy

 3.5 Expressions and contexts

 3.6 Workflow commands

 Writing a debug message

 Creating error or warning messages

 Passing an output to subsequent steps and jobs

 Environment files

 Job summaries

 3.7 Secrets and variables

 3.8 Workflow permissions

 3.9 Authoring and debugging workflows

 3.10 Conclusion

 4 GitHub Actions

 4.1 Types of actions

 Docker container actions

 JavaScript actions

 Composite actions

 4.2 Authoring actions

 Getting started

 Storing actions in GitHub

 Compatibility with GitHub Enterprise Server

 Release management

 4.3 Hands-on lab: My first Docker container action

 Using the template to create a new repository

 Creating the Dockerfile for the action

 Creating the action.yml file

 Creating the entrypoint.sh script

 Create a workflow to test the container

 4.4 Sharing actions

 Sharing actions in your organization

 Sharing actions publicly

 4.5 Advanced action development

 4.6 Best practices

 4.7 Conclusion

 Part 2. Workflow runtime

 5 Runners

 5.1 Targeting a runner

 5.2 Queuing jobs

 5.3 The runner application

 5.4 GitHub-hosted runners

 5.5 Hosted operating systems

 5.6 Installed software

 5.7 Default shells

 5.8 Installing extra software

 5.9 Location and hardware specifications of the hosted runners

 5.10 Concurrent jobs

 5.11 Larger GitHub-hosted runners

 5.12 GitHub-hosted runners in your own Azure Virtual Network

 5.13 Billing GitHub-hosted runners

 5.14 Analyzing the usage of GitHub-hosted runners

 5.15 Self-hosted runners

 6 Self-hosted runners

 6.1 Setting up self-hosted runners

 Runner communication

 Queued jobs

 Updating self-hosted runners

 Available runners

 Downloading actions and source code

 Runner capabilities

 Self-hosted runner behind a proxy

 Usage limits of self-hosted runners

 Installing extra software

 Runner service account

 Pre- and post-job scripts

 Adding extra information to your logs

 Customizing the containers during a job

 6.2 Security risks of self-hosted runners

 6.3 Single-use runners

 Ephemeral runners

 Just-in-time runners

 6.4 Disabling self-hosted runner creation

 6.5 Autoscaling options

 Autoscaling with Actions Runner Controller

 Communication in ARC

 ARC monitoring

 7 Managing your self-hosted runners

 7.1 Runner groups

 Assigning a runner to a runner group

 7.2 Monitoring your runners

 What to monitor

 Monitoring available runners using GitHub Actions

 Building a custom solution

 Using a monitoring solution

 7.3 Runner utilization and capacity needs

 7.4 Monitoring network access

 Monitor and limit network access

 Recommended setup

 7.5 Internal billing for action usage

 Part 3. CI/CD with GitHub Actions

 8 Continuous integration

 8.1 GloboTicket: A sample application

 8.2 Why continuous integration?

 8.3 Types of CI

 Using a branching strategy: GitHub Flow

 CI for integration

 CI for quality control

 CI for security testing

 CI for packaging

 8.4 Generic CI workflow steps

 Getting the sources

 Building the sources into artifacts

 Testing the artifacts

 Test result reporting

 Using containers for jobs

 Multiple workflows vs. multiple jobs: Which to choose?

 Parallel execution of jobs

 8.5 Preparing for deployment

 Traceability of source to artifacts

 Ensuring delivery integrity: The software bill of materials

 Versioning

 Testing for security with container scanning

 Using GitHub package management and container registry

 Using the upload/download capability to store artifacts

 Preparing deployment artifacts

 Creating a release

 8.6 The CI workflows for GloboTicket

 The integration CI for APIs and frontends

 CI workflows for quality control

 The CI workflow for security testing

 The CI workflows for container image creation and publishing

 Creating a release

 8.7 Conclusion

 9 Continuous delivery

 9.1 CD workflow steps

 Steps to deploy our GloboTicket application

 Triggering the deployment

 Getting the deployment artifacts

 Deployment

 Verifying the deployment

 9.2 Using environments

 What is an environment?

 Manual approval

 Environment variables

 Dealing with secrets

 9.3 Deployment strategies

 Deploying on premises

 Deploying to cloud

 OpenID Connect (OIDC)

 Using health endpoints

 Deployment vs. release

 Zero-downtime deployments

 Red–green deployments

 Ring-based deployments

 10 Security

 10.1 Preventing pwn requests

 10.2 Managing untrusted input

 10.3 GitHub Actions security

 The principle of least privileged

 Referencing actions

 10.4 Supply chain security

 Dependabot version updates for actions

 Code scanning actions

 11 Compliance

 11.1 How to ensure traceability of work

 How to ensure commits are traceable

 11.2 How to enforce the four-eyes principle

 Enforcing segregation of duties with CODEOWNERS file

 Showing end-to-end traceability

 11.3 Mandatory workflows

 Summary

 12 Improving workflow performance and costs

 12.1 Dealing with high-volume builds

 Concurrency groups

 Merge queues

 12.2 Reducing the costs of maintaining artifacts

 12.3 Improving performance

 Using a sparse checkout

 Adding caching

 Detecting a cache hit and skipping the work

 Selecting other runners

 12.4 Optimizing your jobs

 index

 front matter

 foreword

 With the introduction of GitHub Actions, the GitHub universe has quickly expanded from a place that we go to get open source code to one where we build, create, and release open source binary artifacts. It is truly the hub where our coding adventures begin. This book that Michael, Marcel, and Rob have written together here is a brilliant introduction to not just GitHub Actions but the larger GitHub ecosystem.

 In this book, the authors will walk you through a complete understanding of how GitHub Actions can be utilized and how surprisingly powerful it is. Certainly, Actions can build source code, and it is a fantastic tool for continuous integration and continuous deployment. But you’ll soon realize that Actions is far more than just a build tool—it’s actually an incredibly capable and complete automation platform you can use to run automations and workflows of any kind!

 You might think a book like this is just for the most advanced and senior engineers. However, what they’ve put together is a gentle introduction that will take you from a complete beginner to an advanced GitHub Actions connoisseur. I love that the book includes real-world examples. I especially enjoyed how much I learned about self-hosted runners that allow you to run your own Actions environments on your own locally supported systems. These runners are open source and a testament to the GitHub ecosystem and how it all snaps together.

 By the end, you will have expanded your understanding of how Actions works, you’ll have written and deployed your own workflows and actions, and you might even have set up your own self-hosted runners. You’ll have a secure and compliant continuous integration and continuous delivery pipeline that you can implement not only at work but also on your own personal projects and (ideally!) you’ll be able to help open source teams take their workflows to the next level.

 I hope you enjoy reading GitHub Actions in Action as much as I did. Welcome to open source!

 —Scott Hanselman, vice president developer community, Microsoft

 preface

 In our opinion, GitHub Actions is the best workflow solution for continuous delivery and all kinds of automation—and it is disrupting the market. With AI-assisted development, like GitHub Copilot, it is more important than ever to automate manual tasks in engineering to participate in the enormous productivity gains that can be achieved.

 We give GitHub Actions training and boot camps around the globe, and we often find that people are already using GitHub Actions but that they started it in a trial-and-error fashion without really learning. This can be done, as GitHub Actions is quite easy to use, and the documentation is good—but it is not optimal. Learning how GitHub actions work and the best practices for using them is a much simpler approach that will save a lot of time and frustration, as there is normally a simple way to achieve great results.

 We also realized that all other books out there either cover the basics or cover some parts of automation but not the full end-to-end story in a simple and ready-to-use form. This realization sparked the idea for the book to provide a comprehensive guide that covers the basics, explains why things work the way they do by explaining the underlying technology, and gives practical guidance on using the tool for real-world continuous delivery scenarios.

 We use Azure and .NET as illustrative examples in our examples in part 3 because they are commonly used and easy to understand. However, the principles can easily be applied to other languages and cloud platforms as well.

 acknowledgments

 We would like to thank everybody involved in the process of publishing this book: our editors at Manning for being always so patient, Jonathan Gennick for always bringing everything back on track, our technical reviewers for the great feedback, and the readers that took the time to provide their feedback in the early access program. A special thanks goes to Doug Rudder, for always supporting us and providing so much valuable feedback, and our technical editor, Mickey Gousset, a Staff DevOps Architect on the GitHub FastTrack team, who is also an international speaker, a published author, and also runs a YouTube channel focused on GitHub.

 To all the reviewers, your suggestions helped make this a better book. Thank you, Aleksandar Nikolic, Alessandro Campeis, Allan Makura, Bobby Lin, Craig Treptow, Francis Edwards, Giuliano Latini, Giuseppe Maxia, Glen Yu, Hariskumar Panakkal, Henry Stamerjohann, Jakub Morawski, Jan Vinterberg, Jasmeet Singh, Jon Humphrey, José Alberto Reyes Quevedo, Leonardo Taccari, Marcus Geselle, Mario-Leander Reimer, Paul Zuradzki, Peter Sellars, Sally K. Tsung, Sandeep Manchella, Seungjin Kim, Sriram Macharla, Steve Goodman, Sumit Singh, and William Jamir Silva.

 about this book

 GitHub Actions is the workflow engine of GitHub. With over 15,000 actions in the marketplace, it is a big ecosystem that allows you to automate everything. You can use it to build and test software for any platform and deploy it to any cloud—but you can also use it to automate everything in your software delivery process, from ChatOps to IssueOps to GitOps.

 GitHub Actions is a lightweight, pipeline-as-code (YAML) workflow engine that is optimized for easy sharing of functionality and that allows easy integration for partners. This book provides guidance and insights on how to use GitHub Actions, an integral part of GitHub, to ensure a secure and compliant software delivery process without the need of additional tools.

 Who should read this book?

 This book is for software engineers who want to streamline their work or the software delivery process with automation to deliver new features faster and make the process less error prone. It is also relevant for DevOps engineers who want to automate infrastructure and configuration as code for all kinds of cloud environments.

 This book caters to beginners just learning about GitHub Actions and advanced users with plenty of experience. We also dive into the GitHub Actions runtime, show the differences between GitHub-hosted and self-hosted runners, and configure self-hosted runners as either a single runner or scaling up with GitHub’s recommended solution. We expect readers to have some basic programming skills to understand the simple code examples we use in the book as well as a basic knowledge of Git and GitHub.

 How this book is organized: A roadmap

 This book has 12 chapters and is divided into three parts. In part 1, you will learn the basics of GitHub Actions through some simple, hands-on exercises that will prepare you for the more complex, in-depth, and practical examples in part 3.

 	
 Chapter 1 introduces you to the vast GitHub ecosystem, which you can automate using GitHub Actions workflows. You will learn why GitHub Actions is more than just continuous integration/continuous delivery (CI/CD), and you will learn about the different hosting and pricing options.

 	
 Chapter 2 gives you your first hands-on experience writing workflows, using the workflow editor, incorporating actions from the marketplace, and executing your workflow.

 	
 Chapter 3 covers everything you need to know about GitHub Action workflows. You will learn YAML and the workflow syntax, workflow triggers, expressions, contexts, workflow commands, and how to author and debug workflows.

 	
 Chapter 4 explains the different types of GitHub actions, how to author GitHub actions, and how to share actions using the GitHub marketplace.

 Part 2 explains the GitHub Actions runtime. When you finish this part of the book, you will know all about the runtime for GitHub Actions.

 	
 Chapter 5 shows the different hosting types for executing your workflows on either GitHub-hosted or self-hosted runners. You will learn how to find preinstalled software on hosted runners and locate operating system information from the logs.

 	
 Chapter 6 shows all the intricacies of installing the runner yourself and all the security aspects you need to be responsible for. Self-hosting runners on a large scale for enterprises using GitHub’s recommended setup is also explained.

 	
 Chapter 7 explains how to manage your self-hosted runners, from restricting access to the runners using runner groups to monitoring the usage of runners and checking capacity needs.

 Part 3 shows a practical way to use GitHub actions to implement CI/CD. When you finish this part, you will be able to build a fully secure and compliant CI/CD process that is fully automated, using GitHub actions.

 	
 Chapter 8 shows how to implement continuous integration and how to practically implement it, using the most common branching and collaboration strategy: GitHub Flow.

 	
 Chapter 9 is about implementing CI/CD. The chapter starts with the CI part, delivering the deployable artifacts with a release, and shows how to implement CD strategies, like zero downtime, blue/green deployment, and ring-based deployment. It then covers how to practically use various GitHub capabilities together with GitHub Actions to create a fully traceable deployment.

 	
 Chapter 10 addresses ensuring your workflows are trustworthy and shows practical ways to avoid security issues.

 	
 Chapter 11 explains how to ensure your full delivery process can adhere to compliance frameworks common in various industries by ensuring the traceability and authenticity of changes during the entire delivery cycle.

 	
 Chapter 12, the final chapter of this book, briefly addresses some tips and tricks to improve the performance and costs of your action workflows.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/github-actions-in-action. The complete code for the examples in the book is available for download from the Manning website at www.manning.com and from the book’s GitHub repository at https://github.com/GitHubActionsInAction/. Links to the correct repositories are in the README on the front page.

 liveBook discussion forum

 Purchase of GitHub Actions in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/github-actions-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

 about the authors

 [image:]

 Michael Kaufmann believes developers and engineers can be happy and productive at work. He loves DevOps, GitHub, Azure, and modern software engineering. Microsoft has awarded him the titles Microsoft regional director (RD) and Microsoft Most Valuable Professional (MVP)—the latter in the category of DevOps and GitHub. Michael is also the founder and managing director of Xebia Germany. He shares his knowledge in books and training and is a frequent speaker at international conferences.

 [image:]

 Rob Bos strongly focuses on ALM and DevOps, automating manual tasks and helping teams deliver value to the end user faster, using DevOps techniques. This is applied to anything Rob comes across, whether it’s an application, infrastructure, or a serverless or training environment. A lot of his focus goes to GitHub and GitHub Actions, improving the security of applications and DevOps pipelines. He regularly shares his knowledge through blog posts, online videos, and international conferences, like Techorama and GitHub Universe. Rob is a trainer (Azure and GitHub), a Microsoft MVP, and a LinkedIn learning instructor.

 [image:]

 Marcel de Vries is the cofounder and global managing director and chief technology officer of the Xebia Microsoft service line, a company that is driving the DevOps way of work in software delivery. He has a passion for technology and empowers organizations to drive innovation and productivity. Marcel always focused on application lifecycle management, even before the platforms that supported this entered the market. He spends a lot of his time helping organizations implement DevOps practices, using platforms like Azure DevOps and now GitHub. Marcel is a frequently requested public speaker at well-known industry events, such as Microsoft Build, Microsoft Ignite, Visual Studio Live!, and Techorama, to name a few. As a Microsoft MVP for over 17 years consecutively and a Microsoft regional director since 2008, you can always contact him to talk about subjects like cloud adoption strategies, business development, DevOps, cloud computing, microservices, containers, IaaS, PaaS, and SaaS. Marcel is also the author of many courses on DevOps, cloud-native software development, and testing for Pluralsight.

 about the cover illustration

 The figure on the cover of GitHub Actions in Action is captioned “Trompetadgi, musicien turc, jouant la trompette,” or “Trompetadgi, Turkish musician, playing the trumpet,” taken from the collection Illustrations of Ottomans circa 1790, provided by the British Museum. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1. Action fundamentals

 In part 1, you will learn the basics of GitHub Actions. Chapter 1 will introduce you to the vast GitHub ecosystem, which you can automate using GitHub Actions workflows. You will learn why GitHub Actions is more than just continuous integration/continuous delivery (CI/CD), and you will learn about the different hosting and pricing options. In chapter 2, you will get your first hands-on experience in writing workflows, using the workflow editor, incorporating Actions from the marketplace, and executing your workflow. Chapter 3 covers everything you need to know about GitHub Action workflows; you will learn YAML and the workflow syntax, workflow triggers, expressions, contexts, workflow commands, and how to author and debug workflows. Finally, in chapter 4, you will learn about the different types of GitHub Actions, how to author GitHub Actions, and how to share actions using the GitHub marketplace. The first part teaches you the basics, and it has some simple, hands-on exercises that will prepare you for the more complex, in-depth, and practical examples in part 3.

 1 Introduction to GitHub Actions

 This chapter covers

 	Introducing the GitHub universe

 	Understanding GitHub Actions and their workflows

 	Learning about the possibilities for GitHub Actions beyond CI/CD pipelines

 	Understanding licenses and pricing for GitHub and GitHub Actions

 GitHub (https://github.com) is more than just a platform for hosting and sharing code. It has become the beating heart of the open source community, with millions of developers from all over the world collaborating on projects of every type and size. Founded in 2008, GitHub has since grown to host over 200 million repositories and 100 million users, with a staggering 3.5 billion contributions made in the last year alone.

 And now, with GitHub Actions, developers have access to a powerful and flexible toolset for automating their workflows, from continuous integration (CI) and continuous deployment (CD) to custom automation tasks and beyond. GitHub Actions is much more than just a CI/CD tool—it’s a comprehensive automation platform that can help streamline your entire development workflow.

 This book will show you how to make the most of GitHub Actions and take your development process to the next level. It is for everyone who wants to learn more about GitHub Actions—from complete beginners to already-advanced users who want to take their knowledge to the next level. You will learn how to use Actions effectively and securely, with several real-world examples showing how it can be applied in a variety of CI/CD scenarios.

 1.1 An introduction to the GitHub universe

 At the core of GitHub lies the essential component of version control, namely Git. This system has played a significant role in transforming the way software is developed and is widely considered the standard for the versioning of code—which, in this case, does not just refer to program code. It includes infrastructure, configuration, documentation, and many other types of files. Git has risen to prominence due to its remarkable flexibility, which stems from its classification as a distributed version control system rather than a central one. As a result, developers can work while disconnected from the central repository, utilizing the full functionality of the version control system, and then later synchronize changes with another repository. The efficacy of Git’s distributed architecture is attributed to its ability to store snapshots of files with changes in its database.

 GitHub has extended beyond its function as a hosting platform for Git and has evolved into a comprehensive DevOps platform that supports collaborative coding through asynchronous means, such as pull requests and issues. The platform’s capabilities have expanded into six broad categories:

 	
 Collaborative coding

 	
 Planning and tracking

 	
 Workflows and CI/CD

 	
 Developer productivity

 	
 Client applications

 	
 Security

 These categories encapsulate the key features GitHub offers, making it a versatile and comprehensive DevOps platform that supports various stages of software development.

 From its inception, GitHub has prioritized a developer-centric approach, resulting in a platform that places utmost importance on webhooks and APIs. Developers can use either the REST API or the Graph API to manipulate all aspects of the GitHub platform. Authentication is also a straightforward process, and developers can use GitHub as an identity provider to access their applications. This user-friendly approach facilitates seamless integration with other tools and platforms, making GitHub a versatile option for open source projects and commercial products. GitHub’s extensive ecosystem comprises the entire open source community, boasting over 100 million users, who collaborate to expand and enrich its functionality.

 So, to understand the vastness of the GitHub ecosystem, one must also consider its various integrations:

 	
 Planning and tracking—In addition to issues and milestones, GitHub offers GitHub Discussions, a forum dedicated to collaboration on ideas. Furthermore, GitHub Projects is a flexible planning solution that is fully integrated with issues and pull requests, which supports nested backlogs, boards, and road maps. Additionally, GitHub integrates seamlessly with other popular planning and tracking solutions, such as Azure Boards and Jira.

 	
 Client applications—GitHub provides a fully featured code editor that can be accessed directly in the browser. It also offers mobile applications for both iOS and Android platforms, enabling teams to collaborate from anywhere. Additionally, a cross-platform desktop application and an extensible command line interface (CLI) are available. GitHub also integrates smoothly with popular client applications, such as Visual Studio, Visual Studio Code, and Eclipse. Moreover, it seamlessly integrates with popular chat platforms, such as Slack and Teams.

 	
 Security—GitHub provides a comprehensive solution for ensuring software supply-chain security, which includes several key features. For example, it generates software bills of material (SBoMs) to keep track of all the components included in your software. And with its Dependabot functionality, GitHub can alert you whenever vulnerabilities are detected in any of the dependencies you’re using. Furthermore, GitHub can scan your repository to detect secrets, and it boasts a sophisticated code analysis engine called CodeQL. The platform also supports integrations with other security tools, like Snyk, Veracode, and Checkmarx, and it can be integrated into Microsoft Defender for DevOps.

 	
 Developer productivity—In GitHub, developers can quickly create a customized, containerized development environment using GitHub Codespaces. This allows new developers to be productive right away. Additionally, Copilot, an AI-powered assistant, can generate code based on the context of comments or other code. This can significantly increase productivity, with reports of up to 50% gains. GitHub also offers code search, a command palette, and other features that can further enhance developer productivity.

 	
 Workflows and CI/CD—In the world of continuous integration and continuous delivery (CI/CD), GitHub is a popular platform with widespread support from most CI/CD tools on the market. Furthermore, GitHub provides a secure integration with all the major cloud providers for CI/CD workflows using Open ID Connect (OIDC). This ensures a secure and streamlined experience for developers who rely on cloud-based services. Additionally, GitHub Packages is equipped with a robust package registry that supports a wide range of package formats, providing a powerful and versatile tool for developers to manage and distribute their code packages.

 GitHub Actions serves as the automation engine for the GitHub ecosystem (see figure 1.1). It allows users to automate various tasks, with a vast library of over 18,000 actions available in the marketplace. From issue triaging to automatic documentation generation, there is a building block—called Action—available to address nearly any task. With GitHub Actions, users can easily and securely automate their workflows.

 [image:]

 Figure 1.1 The GitHub ecosystem has thousands of integrations.

 That’s why GitHub Actions is more than just CI/CD. It is an automation engine that can be used to automate any kind of manual tasks in engineering, and it is already used by millions of developers worldwide. It can be used to automate not only GitHub but the entire GitHub universe.

 1.2 What are GitHub Actions and workflows?

 GitHub Actions is both the name of the workflow engine and the name of an individual, reusable, and easily sharable workflow step within GitHub. This can lead to confusion. Workflows are composed of YAML files that are stored in a specific repository location (.github/workflows). In chapter 3, you will gain a comprehensive understanding of GitHub Action workflows and the YAML syntax. Triggers initiate the workflow, and one or more jobs are included in the workflow. Jobs are executed on a workflow runner, which can be a machine or container with an installed runner service. GitHub offers runners with Linux, macOS, and Windows operating systems in various machine sizes, but you can also host your own runners. In part 2 of the book, you will learn about runners and the essential security measures to consider when hosting your own runners. Jobs execute in parallel by default, but the needs property can be used to chain jobs together. This enables you to fan out your workflow and run multiple jobs in parallel while waiting for all parallel jobs to complete before proceeding.

 Environments in GitHub Actions provide a way to protect jobs by defining protection rules, such as manual approvals, wait timers, and protected secrets. With this, you can create visual workflows that track, for example, your entire release pipeline, giving you complete control over your deployment process. Figure 1.2 shows an example of a workflow with environments and approvals.

 [image:]

 Figure 1.2 A GitHub workflow with environments and approvals

 A job is composed of one or more steps that are executed sequentially. A step can take the form of a command line, script, or reusable step that is easily shareable, known as a GitHub Action. These actions can be authored in JavaScript or TypeScript and executed in a NodeJS environment. Additionally, it is possible to run containers as Actions or create composite Actions that serve as a wrapper for one or multiple other Actions. Actions are covered in greater depth in chapter 4. Figure 1.3 provides an overview of the basic elements that make up a workflow and their syntax.

 [image:]

 Figure 1.3 The basic syntax and elements that make up a GitHub Actions workflow

 1.3 GitHub Actions: More than CI/CD pipelines

 GitHub workflows are intended to automate various tasks. In addition to pushing code, there are numerous triggers available. A workflow can be activated when a label is added to an issue, when a pull request is opened, or when a repository is starred. The following listing provides an example workflow that applies labels to opened or edited issues based on the content of the body of the issue.

 Listing 1.1 A sample GitHub Actions workflow to triage GitHub issues

 name: Issue triage
on:
 issues:
 types: [opened, edited]

jobs:
 triage:
 runs-on: ubuntu-latest
 steps:
 - name: Label issue
 run: |
 if (contains(github.event.issue.body, 'bug')) {
 echo '::add-labels: bug';
 } else if (contains(github.event.issue.body, 'feature')) {
 echo '::add-labels: feature';
 } else {
 echo 'Labeling issue as needs-triage';
 echo '::add-labels: needs-triage';
 }

 This is just one example of the power of GitHub Actions.

 GitHub does not automatically download or clone your repository when a workflow is executed. In many automation scenarios, the repository’s code or files may not be required, and the workflow can be completed much faster without cloning the repository. If you intend to utilize GitHub Actions for CI/CD purposes, the first step in a job should be to download the code by utilizing the Checkout action:

 steps:
- name: Checkout repository
 uses: actions/checkout@v3

 This action will clone your repository, allowing you to build and test your solution. In part 3 of the book, you will learn the details on how to use GitHub Actions for CI/CD in a secure and compliant way.

 1.4 Hosting and pricing for GitHub and GitHub Actions

 GitHub is hosted in data centers located in the United States. Signing up for GitHub is free and provides users with unlimited private and public repositories. While many features on GitHub are available for free on open source projects, they may not be available for private repositories. Enterprises have a variety of options for hosting GitHub (see figure 1.4).

 [image:]

 Figure 1.4 GitHub Enterprise Cloud, GitHub Enterprise Server, and GitHub Connect

 1.4.1 GitHub Enterprise Cloud

 GitHub Enterprise Cloud (GHEC) is a software as a service (SaaS) offering from GitHub, and it is fully hosted on its cloud infrastructure in the United States. GHEC provides additional security features and supports single sign-on for users. With GHCE, users can host private and public repositories, including open source projects within their enterprise environment. GHEC guarantees a monthly uptime service-level agreement (SLA) of 99.9%, which translates to a maximum downtime of 45 minutes per month.

 1.4.2 GitHub Enterprise Server

 The GitHub Enterprise Server (GHES) is a system that can be hosted anywhere, either in a private data center or in a cloud environment like Azure, AWS, or GCP. Using GitHub Connect, it is possible to connect to GitHub.com, which enables the sharing of licenses and the use of open source on the server.

 GHES is based on the same source as GHEC, which means all features eventually, usually within a few months, become available on the server. However, some features provided in the cloud must be managed independently on GHES. For instance, runners in GitHub Actions require self-hosted solutions, whereas the cloud provides GitHub-hosted runners.

 Managed services that provide hosting for GHES are also available, including in an Azure data center within the user’s region. This approach ensures full data residency and eliminates the need to manage the servers personally. Some managed services also include hosting for managed GitHub Actions runners.

 1.4.3 GitHub pricing

 It is important to understand the pricing model of GitHub and GitHub Actions when you start playing around with them so that you don’t accidentally burn through all your free minutes. GitHub’s pricing model is based on a monthly per-user billing system and consists of three tiers: Free, Team, and Enterprise (see figure 1.5).

 [image:]

 Figure 1.5 Overview of GitHub pricing triers

 Public repositories, and therefore open source projects, are entirely free of charge and offer many features, such as Actions, Packages, and various security features. Private repositories are also free but with limited functionality, including 2,000 Action minutes and 500 MB of storage per month.

 A team license is required to collaborate on private repositories with advanced features, such as protected branches, CODEOWNERS, and enhanced pull request features. This license also includes access to Codespaces, although this feature requires a separate payment. Additionally, the team tier provides 3,000 free Action minutes per month and 2 GB of monthly storage for packages.

 Free and Team tiers are only available on GitHub.com. If users require GitHub Enterprise Cloud or Server, the GitHub enterprise license must be purchased. This license includes all enterprise features, such as single sign-on, user management, auditing, and policies, along with 50,000 Actions minutes and 50 GB of storage for packages per month. It also allows for the purchase of additional add-ons, such as GitHub Advanced Security and premium support.

 1.4.4 GitHub Actions pricing

 Hosted runners are provided for free to users with public repositories. The amount of storage and monthly build minutes available to users depends on their GitHub edition, as shown in table 1.1.

 Table 1.1 Included storage and minutes for the different GitHub editions

 	
 GitHub edition

 	
 Storage

 	
 Minutes

 	
 Maximum concurrent jobs

 	
 GitHub Free

 	
 500 MB

 	
 2,000

 	
 20 (5 for macOS)

 	
 GitHub Pro

 	
 1 GB

OEBPS/OEBPS/Images/CH01_F05_Kaufmann.png
Free

$ 0 per user/month

+ Unlimited public and private
repositories
v Public repositories:
v Actions free
+/ Packages free
V Private repositories:
V2,000 GitHub
Actions minutes
V500 MB Package storage
+ Dependency graph
+ Dependabot

Team

s 4 per user/month

v 3,000 GitHub Actions minutes

v 2 GB Package storage

V Access to Codespaces

v Protected branches

v CODEOWNERS

V Advances pull request
features

Enterprise

$21 per user/month

v 50,000 GitHub Actions
minutes

v 50 GB Package storage

 Server and Cloud

V GitHub Connect

v Single sign-on (SAML, LDAP)

v IP allow list

 Enterprise Managed Users

v SCIM

v Auditing / Policies

Available add-ons:
¥ Premium support
v Advanced Security

OEBPS/OEBPS/Images/CH01_F04_Kaufmann.png
GHEC

GitHub Enterprise Cloud

GitHub

(https://github.com)

GHES

GitHub Enterprise Server

OEBPS/OEBPS/Images/Author_Marcel-De_Vries.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F01_Kaufmann.png
Planning and tracking

OEBPS/OEBPS/Images/Author_Rob-Bos.png

OEBPS/OEBPS/Images/CH01_F02_Kaufmann.png
« Staged Deployment

© Staged Deployment #25

@ summary.

© suis

© st

© LosdTest
© sugng
© production

Rundetsi

© usage
2 wWorklow fle

Manusty rggersa immtosg0 St T duaton

2 wultand < 2cscz0 Queued - -

StagedDeploymentymi

© suia

Doployment protection rules.
Reviewor, timors, and otho s protocing deployments n this un

fuont Emionments
witang
b oo s

it
[N s

Cancel workton
70 @ sming G o © procucton e
[reTAS—— Oupeyingtoprod
we
comment
Looks good

OEBPS/OEBPS/Images/CH01_F03_Kaufmann.png
Name of the workflow ~ v name: Build and Publish Package

Events that trigger the workflow — on:
(with filters) release:

types: [created]

jobs

—w jobs:
build:

The runner that executes the job ———y runs-on: ubuntu-latest

steps:
- uses: actions/checkoutev3
- uses: actions/setup-node@v3
with:
node-version: 16

Steps

Actions with input parameters — ——

- run: npm ci
- run: npm test
—y- run: npm publish
env:
NODE_AUTH_TOKEN: ${{secrets.np_token}}

Shell execution with secrets as
environment variables

OEBPS/cover.jpeg
R pl £ Nl
(ontinuous Integration and delive y for DevUps

Michael Kaufmann
Rob Bos

Marcel de Vries
Foreword by Scott Hanselman

/'l MANNING

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/Author_Michael-Kaufmann.png

