

 [image: cover]

MongoDB in Action, Second Edition: Covers MongoDB version 3.0

 Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett, and Tim Hawkins

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Susan Conant, Jeff Bleiel
Technical development editors: Brian Hanafee, Jürgen Hoffman, Wouter Thielen
 Copyeditors: Liz Welch, Jodie Allen
 Proofreader: Melody Dolab
 Technical proofreader: Doug Warren
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781617291609

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Dedication

 This book is dedicated to peace and human dignity and to all those who work for these ideals

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. A database for the modern web

 Chapter 2. MongoDB through the JavaScript shell

 Chapter 3. Writing programs using MongoDB

 2. Application development in MongoDB

 Chapter 4. Document-oriented data

 Chapter 5. Constructing queries

 Chapter 6. Aggregation

 Chapter 7. Updates, atomic operations, and deletes

 3. MongoDB mastery

 Chapter 8. Indexing and query optimization

 Chapter 9. Text search

 Chapter 10. WiredTiger and pluggable storage

 Chapter 11. Replication

 Chapter 12. Scaling your system with sharding

 Chapter 13. Deployment and administration

 Appendix A. Installation

 Appendix B. Design patterns

 Appendix C. Binary data and GridFS

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. A database for the modern web

 1.1. Built for the internet

 1.2. MongoDB’s key features

 1.2.1. Document data model

 1.2.2. Ad hoc queries

 1.2.3. Indexes

 1.2.4. Replication

 1.2.5. Speed and durability

 1.2.6. Scaling

 1.3. MongoDB’s core server and tools

 1.3.1. Core server

 1.3.2. JavaScript shell

 1.3.3. Database drivers

 1.3.4. Command-line tools

 1.4. Why MongoDB?

 1.4.1. MongoDB versus other databases

 1.4.2. Use cases and production deployments

 1.5. Tips and limitations

 1.6. History of MongoDB

 Version 1.8.x (no longer officially supported)

 Version 2.0.x (no longer officially supported)

 Version 2.2.x (no longer officially supported)

 Version 2.4.x (oldest stable release)

 Version 2.6.x (stable release)

 Version 3.0.x (newest stable release)

 1.7. Additional resources

 1.8. Summary

 Chapter 2. MongoDB through the JavaScript shell

 2.1. Diving into the MongoDB shell

 2.1.1. Starting the shell

 2.1.2. Databases, collections, and documents

 2.1.3. Inserts and queries

 2.1.4. Updating documents

 2.1.5. Deleting data

 2.1.6. Other shell features

 2.2. Creating and querying with indexes

 2.2.1. Creating a large collection

 2.2.2. Indexing and explain()

 2.3. Basic administration

 2.3.1. Getting database information

 2.3.2. How commands work

 2.4. Getting help

 2.5. Summary

 Chapter 3. Writing programs using MongoDB

 3.1. MongoDB through the Ruby lens

 3.1.1. Installing and connecting

 3.1.2. Inserting documents in Ruby

 3.1.3. Queries and cursors

 3.1.4. Updates and deletes

 3.1.5. Database commands

 3.2. How the drivers work

 3.2.1. Object ID generation

 3.3. Building a simple application

 3.3.1. Setting up

 3.3.2. Gathering data

 3.3.3. Viewing the archive

 3.4. Summary

 2. Application development in MongoDB

 Chapter 4. Document-oriented data

 4.1. Principles of schema design

 4.2. Designing an e-commerce data model

 4.2.1. Schema basics

 4.2.2. Users and orders

 4.2.3. Reviews

 4.3. Nuts and bolts: On databases, collections, and documents

 4.3.1. Databases

 4.3.2. Collections

 4.3.3. Documents and insertion

 4.4. Summary

 Chapter 5. Constructing queries

 5.1. E-commerce queries

 5.1.1. Products, categories, and reviews

 5.1.2. Users and orders

 5.2. MongoDB’s query language

 5.2.1. Query criteria and selectors

 5.2.2. Query options

 5.3. Summary

 Chapter 6. Aggregation

 6.1. Aggregation framework overview

 6.2. E-commerce aggregation example

 6.2.1. Products, categories, and reviews

 6.2.2. User and order

 6.3. Aggregation pipeline operators

 6.3.1. $project

 6.3.2. $group

 6.3.3. $match, $sort, $skip, $limit

 6.3.4. $unwind

 6.3.5. $out

 6.4. Reshaping documents

 6.4.1. String functions

 6.4.2. Arithmetic functions

 6.4.3. Date functions

 6.4.4. Logical functions

 6.4.5. Set Operators

 6.4.6. Miscellaneous functions

 6.5. Understanding aggregation pipeline performance

 6.5.1. Aggregation pipeline options

 6.5.2. The aggregation framework’s explain() function

 6.5.3. allowDiskUse option

 6.5.4. Aggregation cursor option

 6.6. Other aggregation capabilities

 6.6.1. .count() and .distinct()

 6.6.2. map-reduce

 6.7. Summary

 Chapter 7. Updates, atomic operations, and deletes

 7.1. A brief tour of document updates

 7.1.1. Modify by replacement

 7.1.2. Modify by operator

 7.1.3. Both methods compared

 7.1.4. Deciding: replacement vs. operators

 7.2. E-commerce updates

 7.2.1. Products and categories

 7.2.2. Reviews

 7.2.3. Orders

 7.3. Atomic document processing

 7.3.1. Order state transitions

 7.3.2. Inventory management

 7.4. Nuts and bolts: MongoDB updates and deletes

 7.4.1. Update types and options

 7.4.2. Update operators

 7.4.3. The findAndModify command

 7.4.4. Deletes

 7.4.5. Concurrency, atomicity, and isolation

 7.4.6. Update performance notes

 7.5. Reviewing update operators

 7.6. Summary

 3. MongoDB mastery

 Chapter 8. Indexing and query optimization

 8.1. Indexing theory

 8.1.1. A thought experiment

 8.1.2. Core indexing concepts

 8.1.3. B-trees

 8.2. Indexing in practice

 8.2.1. Index types

 8.2.2. Index administration

 8.3. Query optimization

 8.3.1. Identifying slow queries

 8.3.2. Examining slow queries

 8.3.3. Query patterns

 8.4. Summary

 Chapter 9. Text search

 9.1. Text searches—not just pattern matching

 9.1.1. Text searches vs. pattern matching

 9.1.2. Text searches vs. web page searches

 9.1.3. MongoDB text search vs. dedicated text search engines

 9.2. Manning book catalog data download

 9.3. Defining text search indexes

 9.3.1. Text index size

 9.3.2. Assigning an index name and indexing all text fields in a collection

 9.4. Basic text search

 9.4.1. More complex searches

 9.4.2. Text search scores

 9.4.3. Sorting results by text search score

 9.5. Aggregation framework text search

 9.5.1. Where’s MongoDB in Action, Second Edition?

 9.6. Text search languages

 9.6.1. Specifying language in the index

 9.6.2. Specifying the language in the document

 9.6.3. Specifying the language in a search

 9.6.4. Available languages

 9.7. Summary

 Chapter 10. WiredTiger and pluggable storage

 10.1. Pluggable Storage Engine API

 10.1.1. Why use different storages engines?

 10.2. WiredTiger

 10.2.1. Switching to WiredTiger

 10.2.2. Migrating your database to WiredTiger

 10.3. Comparison with MMAPv1

 10.3.1. Configuration files

 10.3.2. Insertion script and benchmark script

 10.3.3. Insertion benchmark results

 10.3.4. Read performance scripts

 10.3.5. Read performance results

 10.3.6. Benchmark conclusion

 10.4. Other examples of pluggable storage engines

 10.5. Advanced topics

 10.5.1. How does a pluggable storage engine work?

 10.5.2. Data structure

 10.5.3. Locking

 10.6. Summary

 Chapter 11. Replication

 11.1. Replication overview

 11.1.1. Why replication matters

 11.1.2. Replication use cases and limitations

 11.2. Replica sets

 11.2.1. Setup

 11.2.2. How replication works

 11.2.3. Administration

 11.3. Drivers and replication

 11.3.1. Connections and failover

 11.3.2. Write concern

 11.3.3. Read scaling

 11.3.4. Tagging

 11.4. Summary

 Chapter 12. Scaling your system with sharding

 12.1. Sharding overview

 12.1.1. What is sharding?

 12.1.2. When should you shard?

 12.2. Understanding components of a sharded cluster

 12.2.1. Shards: storage of application data

 12.2.2. Mongos router: router of operations

 12.2.3. Config servers: storage of metadata

 12.3. Distributing data in a sharded cluster

 12.3.1. Ways data can be distributed in a sharded cluster

 12.3.2. Distributing databases to shards

 12.3.3. Sharding within collections

 12.4. Building a sample shard cluster

 12.4.1. Starting the mongod and mongos servers

 12.4.2. Configuring the cluster

 12.4.3. Sharding collections

 12.4.4. Writing to a sharded cluster

 12.5. Querying and indexing a shard cluster

 12.5.1. Query routing

 12.5.2. Indexing in a sharded cluster

 12.5.3. The explain() tool in a sharded cluster

 12.5.4. Aggregation in a sharded cluster

 12.6. Choosing a shard key

 12.6.1. Imbalanced writes (hotspots)

 12.6.2. Unsplittable chunks (coarse granularity)

 12.6.3. Poor targeting (shard key not present in queries)

 12.6.4. Ideal shard keys

 12.6.5. Inherent design trade-offs (email application)

 12.7. Sharding in production

 12.7.1. Provisioning

 12.7.2. Deployment

 12.7.3. Maintenance

 12.8. Summary

 Chapter 13. Deployment and administration

 13.1. Hardware and provisioning

 13.1.1. Cluster topology

 13.1.2. Deployment environment

 13.1.3. Provisioning

 13.2. Monitoring and diagnostics

 13.2.1. Logging

 13.2.2. MongoDB diagnostic commands

 13.2.3. MongoDB diagnostic tools

 13.2.4. MongoDB Monitoring Service

 13.2.5. External monitoring applications

 13.3. Backups

 13.3.1. mongodump and mongorestore

 13.3.2. Data file–based backups

 13.3.3. MMS backups

 13.4. Security

 13.4.1. Secure environments

 13.4.2. Network encryption

 13.4.3. Authentication

 13.4.4. Replica set authentication

 13.4.5. Sharding authentication

 13.4.6. Enterprise security features

 13.5. Administrative tasks

 13.5.1. Data imports and exports

 13.5.2. Compaction and repair

 13.5.3. Upgrading

 13.6. Performance troubleshooting

 13.6.1. Working set

 13.6.2. Performance cliff

 13.6.3. Query interactions

 13.6.4. Seek professional assistance

 13.7. Deployment checklist

 13.8. Summary

 Appendix A. Installation

 A.1. Installation

 A.1.1. Production deployments

 A.1.2. 32-bit vs. 64-bit

 A.2. MongoDB on Linux

 A.2.1. Installing with precompiled binaries

 A.2.2. Using a package manager

 A.3. MongoDB on Mac OS X

 A.3.1. Precompiled binaries

 A.3.2. Using a package manager

 A.4. MongoDB on Windows

 A.4.1. Precompiled binaries

 A.5. Compiling MongoDB from source

 A.6. Troubleshooting

 A.6.1. Wrong architecture

 A.6.2. Nonexistent data directory

 A.6.3. Lack of permissions

 A.6.4. Unable to bind to port

 A.7. Basic configuration options

 A.8. Installing Ruby

 A.8.1. Linux and Mac OS X

 A.8.2. Windows

 Appendix B. Design patterns

 B.1. Embed vs. reference

 B.2. One-to-many

 B.3. Many-to-many

 B.4. Trees

 B.5. Worker queues

 B.6. Dynamic attributes

 B.7. Transactions

 B.8. Locality and precomputation

 B.9. Antipatterns

 B.9.1. Careless indexing

 B.9.2. Motley types

 B.9.3. Bucket collections

 B.9.4. Large, deeply nested documents

 B.9.5. One collection per user

 B.9.6. Unshardable collections

 Appendix C. Binary data and GridFS

 C.1. Simple binary storage

 C.1.1. Storing a thumbnail

 C.1.2. Storing an MD5

 C.2. GridFS

 C.2.1. GridFS in Ruby

 C.2.2. GridFS with mongofiles

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Databases are the workhorses of the information age. Like Atlas, they go largely unnoticed in supporting the digital world
 we’ve come to inhabit. It’s easy to forget that our digital interactions, from commenting and tweeting to searching and sorting,
 are in essence interactions with a database. Because of this fundamental yet hidden function, I always experience a certain
 sense of awe when thinking about databases, not unlike the awe one might feel when walking across a suspension bridge normally
 reserved for automobiles.

 The database has taken many forms. The indexes of books and the card catalogs that once stood in libraries are both databases
 of a sort, as are the ad hoc structured text files of the Perl programmers of yore. Perhaps most recognizable now as databases
 proper are the sophisticated, fortune-making relational databases that underlie much of the world’s software. These relational
 databases, with their idealized third-normal forms and expressive SQL interfaces, still command the respect of the old guard,
 and appropriately so.

 But as a working web application developer a few years back, I was eager to sample the emerging alternatives to the reigning
 relational database. When I discovered MongoDB, the resonance was immediate. I liked the idea of using a JSON-like structure
 to represent data. JSON is simple, intuitive, and human-friendly. That MongoDB also based its query language on JSON lent
 a high degree of comfort and harmony to the usage of this new database. The interface came first. Compelling features like
 easy replication and sharding made the package all the more intriguing. And by the time I’d built a few applications on MongoDB
 and beheld the ease of development it imparted, I’d become a convert.

 Through an unlikely turn of events, I started working for 10gen, the company spearheading the development of this open source
 database. For two years, I’ve had the opportunity to improve various client drivers and work with numerous customers on their
 MongoDB deployments. The experience gained through this process has, I hope, been distilled faithfully into the book you’re
 reading now.

 As a piece of software and a work in progress, MongoDB is still far from perfection. But it’s also successfully supporting
 thousands of applications atop database clusters small and large, and it’s maturing daily. It’s been known to bring out wonder,
 even happiness, in many a developer. My hope is that it can do the same for you.

 This is the second edition of MongoDB in Action and I hope that you enjoy reading the book!

 KYLE BANKER

Acknowledgments

 Thanks are due to folks at Manning for helping make this book a reality. Michael Stephens helped conceive the first edition
 of this book, and my development editors for this second edition, Susan Conant, Jeff Bleiel, and Maureen Spencer, pushed the
 book to completion while being helpful along the way. My thanks go to them.

 Book writing is a time-consuming enterprise. I feel I wouldn’t have found the time to finish this book had it not been for
 the generosity of Eliot Horowitz and Dwight Merriman. Eliot and Dwight, through their initiative and ingenuity, created MongoDB,
 and they trusted me to document the project. My thanks to them.

 Many of the ideas in this book owe their origins to conversations I had with colleagues at 10gen. In this regard, special
 thanks are due to Mike Dirolf, Scott Hernandez, Alvin Richards, and Mathias Stearn. I’m especially indebted to Kristina Chowdorow,
 Richard Kreuter, and Aaron Staple for providing expert reviews of entire chapters for the first edition.

 The following reviewers read the manuscript of the first edition at various stages during its development: Kevin Jackson,
 Hardy Ferentschik, David Sinclair, Chris Chandler, John Nunemaker, Robert Hanson, Alberto Lerner, Rick Wagner, Ryan Cox, Andy
 Brudtkuhl, Daniel Bretoi, Greg Donald, Sean Reilly, Curtis Miller, Sanchet Dighe, Philip Hallstrom, and Andy Dingley. And
 I am also indebted to all the reviewers who read the second edition, including Agustin Treceno, Basheeruddin Ahmed, Gavin
 Whyte, George Girton, Gregor Zurowski, Hardy Ferentschik, Hernan Garcia, Jeet Marwah, Johan Mattisson, Jonathan Thoms, Julia
 Varigina, Jürgen Hoffmann, Mike Frey, Phlippie Smith, Scott Lyons, and Steve Johnson. Special thanks go to Wouter Thielen
 for his work on chapter 10, technical editor Mihalis Tsoukalos, who devoted many hours to whipping the second edition into shape, and to Doug Warren
 for his thorough technical review of the second edition shortly before it went to press.

 My amazing wife, Dominika, offered her patience and support, through the writing of both editions of this book, and to my
 wonderful son, Oliver, just for being awesome.

 KYLE BANKER

About This Book

 This book is for application developers and DBAs wanting to learn MongoDB from the ground up. If you’re new to MongoDB, you’ll
 find in this book a tutorial that moves at a comfortable pace. If you’re already a user, the more detailed reference sections
 in the book will come in handy and should fill any gaps in your knowledge. In terms of depth, the material should be suitable
 for all but the most advanced users. Although the book is about the latest MongoDB version, which at the time of writing is
 3.0.x, it also covers the previous stable MongoDB version that is 2.6.

 The code examples are written in JavaScript, the language of the MongoDB shell, and Ruby, a popular scripting language. Every
 effort has been made to provide simple but useful examples, and only the plainest features of the JavaScript and Ruby languages
 are used. The main goal is to present the MongoDB API in the most accessible way possible. If you have experience with other
 programming languages, you should find the examples easy to follow.

 One more note about languages. If you’re wondering, “Why couldn’t this book use language X?” you can take heart. The officially
 supported MongoDB drivers feature consistent and analogous APIs. This means that once you learn the basic API for one driver,
 you can pick up the others fairly easily.

How to use this book

 This book is part tutorial, part reference. If you’re brand-new to MongoDB, then reading through the book in order makes a
 lot of sense. There are numerous code examples that you can run on your own to help solidify the concepts. At minimum, you’ll
 need to install MongoDB and optionally the Ruby driver. Instructions for these installations can be found in appendix A.

 If you’ve already used MongoDB, then you may be more interested in particular topics. Chapters 8 to 13 and all of the appendixes stand on their own and can safely be read in any order. Additionally, chapters 4 to 7 contain the so-called “nuts and bolts” sections, which focus on fundamentals. These also can be read outside the flow of
 the surrounding text.

Roadmap

 This book is divided into three parts.

 Part 1 is an end-to-end introduction to MongoDB. Chapter 1 gives an overview of MongoDB’s history, features, and use cases. Chapter 2 teaches the database’s core concepts through a tutorial on the MongoDB command shell. Chapter 3 walks through the design of a simple application that uses MongoDB on the back end.

 Part 2 is an elaboration on the MongoDB API presented in part 1. With a specific focus on application development, the four chapters in part 2 progressively describe a schema and its operations for an e-commerce app. Chapter 4 delves into documents, the smallest unit of data in MongoDB, and puts forth a basic e-commerce schema design. Chapters 5, 6, and 7 then teach you how to work with this schema by covering queries and updates. To augment the presentation, each of the chapters
 in part 2 contains a detailed breakdown of its subject matter.

 Part 3 focuses on MongoDB mastery. Chapter 8 is a thorough study of indexing and query optimization. The subject of Chapter 9 is text searching inside MongoDB. Chapter 10, which is totally new in this edition, is about the WiredTiger storage engine and pluggable storage, which are unique features
 of MongoDB v3. Chapter 11 concentrates on replication, with strategies for deploying MongoDB for high availability and read scaling. Chapter 12 describes sharding, MongoDB’s path to horizontal scalability. And chapter 13 provides a series of best practices for deploying, administering, and troubleshooting MongoDB installations.

 The book ends with three appendixes. Appendix A covers installation of MongoDB and Ruby (for the driver examples) on Linux, Mac OS X, and Windows. Appendix B presents a series of schema and application design patterns, and it also includes a list of anti-patterns. Appendix C shows how to work with binary data in MongoDB and how to use GridFS, a spec implemented by all the drivers, to store especially
 large files in the database.

Code conventions and downloads

 All source code in the listings and in the text is presented in a fixed-width font, which separates it from ordinary text.

 Code annotations accompany some of the listings, highlighting important concepts. In some cases, numbered bullets link to
 explanations that follow in the text.

 As an open source project, 10gen keeps MongoDB’s bug tracker open to the community at large. At several points in the book,
 particularly in the footnotes, you’ll see references to bug reports and planned improvements. For example, the ticket for
 adding full-text search to the database is SERVER-380. To view the status of any such ticket, point your browser to http://jira.mongodb.org, and enter the ticket ID in the search box.

 You can download the book’s source code, with some sample data, from the book’s site at http://mongodb-book.com as well as from the publisher’s website at http://manning.com/MongoDBinAction.

Software requirements

 To get the most out of this book, you’ll need to have MongoDB installed on your system. Instructions for installing MongoDB
 can be found in appendix A and also on the official MongoDB website (http://mongodb.org).

 If you want to run the Ruby driver examples, you’ll also need to install Ruby. Again, consult appendix A for instructions on this.

Author Online

 The purchase of MongoDB in Action, Second Edition includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. To access and subscribe to the forum, point your browser to www.manning.com/MongoDBin-Action. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions,
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of MongoDB in Action is captioned “Le Bourginion,” or a resident of the Burgundy region in northeastern
 France. The illustration is taken from a nineteenth-century collection of works by many artists, edited by Louis Curmer and
 published in Paris in 1841. The title of the collection is Les Français peints par eux-mêmes, which translates as The French People Painted by Themselves. Each illustration is finely drawn and colored by hand, and the rich variety of drawings in the collection reminds us vividly
 of how culturally apart the world’s regions, towns, villages, and neighborhoods were just 200 years ago. Isolated from each
 other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by pictures from collections such as this one.

Part 1. Getting started

 Part 1 of this book provides a broad, practical introduction to MongoDB. It also introduces the JavaScript shell and the Ruby driver,
 both of which are used in examples throughout the book.

 We’ve written this book with developers in mind, but it should be useful even if you’re a casual user of MongoDB. Some programming
 experience will prove helpful in understanding the examples, though we focus most on MongoDB itself. If you’ve worked with
 relational databases in the past, great! We compare these to MongoDB often.

 MongoDB version 3.0.x is the most recent MongoDB version at the time of writing, but most of the discussion applies to previous
 versions of MongoDB (and presumably later versions). We usually mention it when a particular feature wasn’t available in previous
 versions.

 You’ll use JavaScript for most examples because MongoDB’s JavaScript shell makes it easy for you to experiment with these
 queries. Ruby is a popular language among MongoDB users, and our examples show how the use of Ruby in real-world applications
 can take advantage of MongoDB. Rest assured, even if you’re not a Ruby developer you can access MongoDB in much the same way
 as in other languages.

 In chapter 1, you’ll look at MongoDB’s history, design goals, and application use cases. You’ll also see what makes MongoDB unique as
 you compare it with other databases emerging in the “NoSQL” space.

 In chapter 2, you’ll become conversant in the language of MongoDB’s shell. You’ll learn the basics of MongoDB’s query language, and you’ll
 practice by creating, querying, updating, and deleting documents. The chapter also features some advanced shell tricks and
 MongoDB commands.

 Chapter 3 introduces the MongoDB drivers and MongoDB’s data format, BSON. Here you’ll learn how to talk to the database through the
 Ruby programming language, and you’ll build a simple application in Ruby demonstrating MongoDB’s flexibility and query power.

 To get the most out of this book, follow along and try out the examples. If you don’t have MongoDB installed yet, appendix A can help you get it running on your machine.

Chapter 1. A database for the modern web

 This chapter covers

 	MongoDB’s history, design goals, and key features

 	A brief introduction to the shell and drivers

 	Use cases and limitations

 	Recent changes in MongoDB

 If you’ve built web applications in recent years, you’ve probably used a relational database as the primary data store. If
 you’re familiar with SQL, you might appreciate the usefulness of a well-normalized[1] data model, the necessity of transactions, and the assurances provided by a durable storage engine. Simply put, the relational
 database is mature and well-known. When developers start advocating alternative datastores, questions about the viability
 and utility of these new technologies arise. Are these new datastores replacements for relational database systems? Who’s
 using them in production, and why? What trade-offs are involved in moving to a nonrelational database? The answers to those questions rest on the answer to this one: why are developers interested
 in MongoDB?

 1

When we mention normalization we’re usually talking about reducing redundancy when you store data. For example, in a SQL database
 you can split parts of your data, such as users and orders, into their own tables to reduce redundant storage of usernames.

 MongoDB is a database management system designed to rapidly develop web applications and internet infrastructure. The data
 model and persistence strategies are built for high read-and-write throughput and the ability to scale easily with automatic
 failover. Whether an application requires just one database node or dozens of them, MongoDB can provide surprisingly good
 performance. If you’ve experienced difficulties scaling relational databases, this may be great news. But not everyone needs
 to operate at scale. Maybe all you’ve ever needed is a single database server. Why would you use MongoDB?

 Perhaps the biggest reason developers use MongoDB isn’t because of its scaling strategy, but because of its intuitive data
 model. MongoDB stores its information in documents rather than rows. What’s a document? Here’s an example:

 {
 _id: 10,
 username: 'peter',
 email: 'pbbakkum@gmail.com'
}

 This is a pretty simple document; it’s storing a few fields of information about a user (he sounds cool). What’s the advantage
 of this model? Consider the case where you’d like to store multiple emails for each user. In the relational world, you might
 create a separate table of email addresses and the users to which they’re associated. MongoDB gives you another way to store
 these:

 {
 _id: 10,
 username: 'peter',
 email: [
 'pbbakkum@gmail.com',
 'pbb7c@virginia.edu'
]
}

 And just like that, you’ve created an array of email addresses and solved your problem. As a developer, you’ll find it extremely
 useful to be able to store a structured document like this in your database without worrying about fitting a schema or adding
 more tables when your data changes.

 MongoDB’s document format is based on JSON, a popular scheme for storing arbitrary data structures. JSON is an acronym for
 JavaScript Object Notation. As you just saw, JSON structures consist of keys and values, and they can nest arbitrarily deep. They’re analogous to the
 dictionaries and hash maps of other programming languages.

 A document-based data model can represent rich, hierarchical data structures. It’s often possible to do without the multitable
 joins common to relational databases. For example, suppose you’re modeling products for an e-commerce site. With a fully normalized relational data model, the information for any one product might be divided among dozens of tables. If you want
 to get a product representation from the database shell, you’ll need to write a SQL query full of joins.

 With a document model, by contrast, most of a product’s information can be represented within a single document. When you
 open the MongoDB JavaScript shell, you can easily get a comprehensible representation of your product with all its information
 hierarchically organized in a JSON-like structure. You can also query for it and manipulate it. MongoDB’s query capabilities
 are designed specifically for manipulating structured documents, so users switching from relational databases experience a
 similar level of query power. In addition, most developers now work with object-oriented languages, and they want a data store
 that better maps to objects. With MongoDB, an object defined in the programming language can often be persisted as is, removing
 some of the complexity of object mappers. If you’re experienced with relational databases, it can be helpful to approach MongoDB
 from the perspective of transitioning your existing skills into this new database.

 If the distinction between a tabular and object representation of data is new to you, you probably have a lot of questions.
 Rest assured that by the end of this chapter you’ll have a thorough overview of MongoDB’s features and design goals. You’ll
 learn the history of MongoDB and take a tour of the database’s main features. Next, you’ll explore some alternative database
 solutions in the NoSQL[2] category and see how MongoDB fits in. Finally, you’ll learn where MongoDB works best and where an alternative datastore might
 be preferable given some of MongoDB’s limitations.

 2

The umbrella term NoSQL was coined in 2009 to lump together the many nonrelational databases gaining in popularity at the
 time, one of their commonalities being that they use a query language other than SQL.

 MongoDB has been criticized on several fronts, sometimes fairly and sometimes unfairly. Our view is that it’s a tool in the
 developer’s toolbox, like any other database, and you should know its limitations and strengths. Some workloads demand relational
 joins and different memory management than MongoDB provides. On the other hand, the document-based model fits particularly
 well with some workloads, and the lack of a schema means that MongoDB can be one of the best tools for quickly developing
 and iterating on an application. Our goal is to give you the information you need to decide if MongoDB is right for you and
 explain how to use it effectively.

1.1. Built for the internet

 The history of MongoDB is brief but worth recounting, for it was born out of a much more ambitious project. In mid-2007, a
 startup in New York City called 10gen began work on a platform-as-a-service (PaaS), composed of an application server and
 a database, that would host web applications and scale them as needed. Like Google’s App Engine, 10gen’s platform was designed
 to handle the scaling and management of hardware and software infrastructure automatically, freeing developers to focus solely
 on their application code. 10gen ultimately discovered that most developers didn’t feel comfortable giving up so much control
 over their technology stacks, but users did want 10gen’s new database technology. This led 10gen to concentrate its efforts solely on the database that became MongoDB.

 10gen has since changed its name to MongoDB, Inc. and continues to sponsor the database’s development as an open source project.
 The code is publicly available and free to modify and use, subject to the terms of its license, and the community at large
 is encouraged to file bug reports and submit patches. Still, most of MongoDB’s core developers are either founders or employees
 of MongoDB, Inc., and the project’s roadmap continues to be determined by the needs of its user community and the overarching
 goal of creating a database that combines the best features of relational databases and distributed key-value stores. Thus,
 MongoDB, Inc.’s business model isn’t unlike that of other well-known open source companies: support the development of an
 open source product and provide subscription services to end users.

 The most important thing to remember from its history is that MongoDB was intended to be an extremely simple, yet flexible,
 part of a web-application stack. These kinds of use cases have driven the choices made in MongoDB’s development and help explain
 its features.

1.2. MongoDB’s key features

 A database is defined in large part by its data model. In this section, you’ll look at the document data model, and then you’ll
 see the features of MongoDB that allow you to operate effectively on that model. This section also explores operations, focusing
 on MongoDB’s flavor of replication and its strategy for scaling horizontally.

 1.2.1. Document data model

 MongoDB’s data model is document-oriented. If you’re not familiar with documents in the context of databases, the concept
 can be most easily demonstrated by an example. A JSON document needs double quotes everywhere except for numeric values. The
 following listing shows the JavaScript version of a JSON document where double quotes aren’t necessary.

 Listing 1.1. A document representing an entry on a social news site

 [image:]

 This listing shows a JSON document representing an article on a social news site (think Reddit or Twitter). As you can see,
 a document is essentially a set of property names and their values. The values can be simple data types, such as strings, numbers, and
 dates. But these values can also be arrays and even other JSON documents [image:]. These latter constructs permit documents to represent a variety of rich data structures. You’ll see that the sample document
 has a property, tags [image:], which stores the article’s tags in an array. But even more interesting is the comments property [image:], which is an array of comment documents.

 Internally, MongoDB stores documents in a format called Binary JSON, or BSON. BSON has a similar structure but is intended
 for storing many documents. When you query MongoDB and get results back, these will be translated into an easy-to-read data
 structure. The MongoDB shell uses JavaScript and gets documents in JSON, which is what we’ll use for most of our examples.
 We’ll discuss the BSON format extensively in later chapters.

 Where relational databases have tables, MongoDB has collections. In other words, MySQL (a popular relational database) keeps its data in tables of rows, while MongoDB keeps its data in
 collections of documents, which you can think of as a group of documents. Collections are an important concept in MongoDB.
 The data in a collection is stored to disk, and most queries require you to specify which collection you’d like to target.

 Let’s take a moment to compare MongoDB collections to a standard relational database representation of the same data. Figure 1.1 shows a likely relational analog. Because tables are essentially flat, representing the various one-to-many relationships
 in your post document requires multiple tables. You start with a posts table containing the core information for each post.
 Then you create three other tables, each of which includes a field, post_id, referencing the original post. The technique of separating an object’s data into multiple tables like this is known as normalization. A normalized data set, among other things, ensures that each unit of data is represented in one place only.

 Figure 1.1. A basic relational data model for entries on a social news site. The line terminator that looks like a cross represents a
 one-to-one relationship, so there’s only one row from the images table associated with a row from the posts table. The line
 terminator that branches apart represents a one-to-many relationship, so there can be many rows in the comments table associated
 with a row from the posts table.

 [image:]

 But strict normalization isn’t without its costs. Notably, some assembly is required. To display the post you just referenced,
 you’ll need to perform a join between the post and comments tables. Ultimately, the question of whether strict normalization
 is required depends on the kind of data you’re modeling, and chapter 4 will have much more to say about the topic. What’s important to note here is that a document-oriented data model naturally
 represents data in an aggregate form, allowing you to work with an object holistically: all the data representing a post,
 from comments to tags, can be fitted into a single database object.

 You’ve probably noticed that in addition to providing a richness of structure, documents needn’t conform to a prespecified
 schema. With a relational database, you store rows in a table. Each table has a strictly defined schema specifying which columns
 and types are permitted. If any row in a table needs an extra field, you have to alter the table explicitly. MongoDB groups
 documents into collections, containers that don’t impose any sort of schema. In theory, each document in a collection can
 have a completely different structure; in practice, a collection’s document will be relatively uniform. For instance, every
 document in the posts collection will have fields for the title, tags, comments, and so forth.

Schema-less model advantages

 This lack of imposed schema confers some advantages. First, your application code, and not the database, enforces the data’s
 structure. This can speed up initial application development when the schema is changing frequently.

 Second, and more significantly, a schema-less model allows you to represent data with truly variable properties. For example,
 imagine you’re building an e-commerce product catalog. There’s no way of knowing in advance what attributes a product will have, so the application will need to
 account for that variability. The traditional way of handling this in a fixed-schema database is to use the entity-attribute-value
 pattern,[3] shown in figure 1.2.

 3

For more information see http://en.wikipedia.org/wiki/Entity-attribute-value_model.

 Figure 1.2. A portion of the schema for an e-commerce application. These tables facilitate dynamic attribute creation for products.

 [image:]

 What you’re seeing is one section of the data model for an e-commerce framework. Note the series of tables that are all essentially
 the same, except for a single attribute, value, that varies only by data type. This structure allows an administrator to define additional product types and their attributes,
 but the result is significant complexity. Think about firing up the MySQL shell to examine or update a product modeled in
 this way; the SQL joins required to assemble the product would be enormously complex. Modeled as a document, no join is required,
 and new attributes can be added dynamically. Not all relational models are this complex, but the point is that when you’re
 developing a MongoDB application you don’t need to worry as much about what data fields you’ll need in the future.

 1.2.2. Ad hoc queries

 To say that a system supports ad hoc queries is to say that it isn’t necessary to define in advance what sorts of queries the system will accept. Relational databases
 have this property; they’ll faithfully execute any well-formed SQL query with any number of conditions. Ad hoc queries are
 easy to take for granted if the only databases you’ve ever used have been relational. But not all databases support dynamic
 queries. For instance, key-value stores are queryable on one axis only: the value’s key. Like many other systems, key-value
 stores sacrifice rich query power in exchange for a simple scalability model. One of MongoDB’s design goals is to preserve
 most of the query power that’s been so fundamental to the relational database world.

 To see how MongoDB’s query language works, let’s take a simple example involving posts and comments. Suppose you want to find
 all posts tagged with the term politics having more than 10 votes. A SQL query would look like this:

 SELECT * FROM posts
 INNER JOIN posts_tags ON posts.id = posts_tags.post_id
 INNER JOIN tags ON posts_tags.tag_id == tags.id
 WHERE tags.text = 'politics' AND posts.vote_count > 10;

 The equivalent query in MongoDB is specified using a document as a matcher. The special $gt key indicates the greater-than condition:

 db.posts.find({'tags': 'politics', 'vote_count': {'$gt': 10}});

 Note that the two queries assume a different data model. The SQL query relies on a strictly normalized model, where posts
 and tags are stored in distinct tables, whereas the MongoDB query assumes that tags are stored within each post document.
 But both queries demonstrate an ability to query on arbitrary combinations of attributes, which is the essence of ad hoc query
 ability.

 1.2.3. Indexes

 A critical element of ad hoc queries is that they search for values that you don’t know when you create the database. As you
 add more and more documents to your database, searching for a value becomes increasingly expensive; it’s a needle in an ever-expanding haystack. Thus, you need
 a way to efficiently search through your data. The solution to this is an index.

 The best way to understand database indexes is by analogy: many books have indexes matching keywords to page numbers. Suppose
 you have a cookbook and want to find all recipes calling for pears (maybe you have a lot of pears and don’t want them to go
 bad). The time-consuming approach would be to page through every recipe, checking each ingredient list for pears. Most people
 would prefer to check the book’s index for the pears entry, which would give a list of all the recipes containing pears. Database
 indexes are data structures that provide this same service.

 Indexes in MongoDB are implemented as a B-tree data structure. B-tree indexes, also used in many relational databases, are optimized for a variety of queries, including
 range scans and queries with sort clauses. But WiredTiger has support for log-structured merge-trees (LSM) that’s expected
 to be available in the MongoDB 3.2 production release.

 Most databases give each document or row a primary key, a unique identifier for that datum. The primary key is generally indexed automatically so that each datum can be efficiently
 accessed using its unique key, and MongoDB is no different. But not every database allows you to also index the data inside
 that row or document. These are called secondary indexes. Many NoSQL databases, such as HBase, are considered key-value stores because they don’t allow any secondary indexes. This is a significant feature in MongoDB; by permitting multiple secondary
 indexes MongoDB allows users to optimize for a wide variety of queries.

 With MongoDB, you can create up to 64 indexes per collection. The kinds of indexes supported include all the ones you’d find
 in an RDMBS; ascending, descending, unique, compound-key, hashed, text, and even geospatial indexes[4] are supported. Because MongoDB and most RDBMSs use the same data structure for their indexes, advice for managing indexes
 in both of these systems is similar. You’ll begin looking at indexes in the next chapter, and because an understanding of
 indexing is so crucial to efficiently operating a database, chapter 8 is devoted to the topic.

 4

Geospatial indexes allow you to efficiently query for latitude and longitude points; they’re discussed later in this book.

 1.2.4. Replication

 MongoDB provides database replication via a topology known as a replica set. Replica sets distribute data across two or more machines for redundancy and automate failover in the event of server and network outages.
 Additionally, replication is used to scale database reads. If you have a read-intensive application, as is commonly the case
 on the web, it’s possible to spread database reads across machines in the replica set cluster.

 Replica sets consist of many MongoDB servers, usually with each server on a separate physical machine; we’ll call these nodes.
 At any given time, one node serves as the replica set primary node and one or more nodes serve as secondaries. Like the master-slave
 replication that you may be familiar with from other databases, a replica set’s primary node can accept both reads and writes,
 but the secondary nodes are read-only. What makes replica sets unique is their support for automated failover: if the primary
 node fails, the cluster will pick a secondary node and automatically promote it to primary. When the former primary comes
 back online, it’ll do so as a secondary. An illustration of this process is provided in figure 1.3.

 Figure 1.3. Automated failover with a replica set

 [image:]

 Replication is one of MongoDB’s most useful features and we’ll cover it in depth later in the book.

 1.2.5. Speed and durability

 To understand MongoDB’s approach to durability, it pays to consider a few ideas first. In the realm of database systems there
 exists an inverse relationship between write speed and durability. Write speed can be understood as the volume of inserts, updates, and deletes that a database can process in a given time frame. Durability refers to level of assurance that these write operations have been made permanent.

 For instance, suppose you write 100 records of 50 KB each to a database and then immediately cut the power on the server.
 Will those records be recoverable when you bring the machine back online? The answer depends on your database system, its
 configuration, and the hardware hosting it. Most databases enable good durability by default, so you’re safe if this happens.
 For some applications, like storing log lines, it might make more sense to have faster writes, even if you risk data loss.
 The problem is that writing to a magnetic hard drive is orders of magnitude slower than writing to RAM. Certain databases,
 such as Memcached, write exclusively to RAM, which makes them extremely fast but completely volatile. On the other hand, few
 databases write exclusively to disk because the low performance of such an operation is unacceptable. Therefore, database
 designers often need to make compromises to provide the best balance of speed and durability.

 	

 Transaction logging

 One compromise between speed and durability can be seen in MySQL’s InnoDB. InnoDB is a transactional storage engine, which
 by definition must guarantee durability. It accomplishes this by writing its updates in two places: once to a transaction
 log and again to an in-memory buffer pool. The transaction log is synced to disk immediately, whereas the buffer pool is only
 eventually synced by a background thread. The reason for this dual write is because generally speaking, random I/O is much
 slower than sequential I/O. Because writes to the main data files constitute random I/O, it’s faster to write these changes
 to RAM first, allowing the sync to disk to happen later. But some sort of write to disk is necessary to guarantee durability
 and it’s important that the write be sequential, and thus fast; this is what the transaction log provides. In the event of
 an unclean shutdown, InnoDB can replay its transaction log and update the main data files accordingly. This provides an acceptable
 level of performance while guaranteeing a high level of durability.

 	

 In MongoDB’s case, users control the speed and durability trade-off by choosing write semantics and deciding whether to enable
 journaling. Journaling is enabled by default since MongoDB v2.0. In the drivers released after November 2012 MongoDB safely
 guarantees that a write has been written to RAM before returning to the user, though this characteristic is configurable.
 You can configure MongoDB to fire-and-forget, sending off a write to the server without waiting for an acknowledgment. You can also configure MongoDB to guarantee that
 a write has gone to multiple replicas before considering it committed. For high-volume, low-value data (like clickstreams
 and logs), fire-and-forget-style writes can be ideal. For important data, a safe mode setting is necessary. It’s important
 to know that in MongoDB versions older than 2.0, the unsafe fire-and-forget strategy was set as the default, because when
 10gen started the development of MongoDB, it was focusing solely on that data tier and it was believed that the application
 tier would handle such errors. But as MongoDB was used for more and more use cases and not solely for the web tier, it was
 deemed that it was too unsafe for any data you didn’t want to lose.

 Since MongoDB v2.0, journaling is enabled by default. With journaling, every write is flushed to the journal file every 100 ms. If the server is ever shut down uncleanly (say, in a power outage),
 the journal will be used to ensure that MongoDB’s data files are restored to a consistent state when you restart the server.
 This is the safest way to run MongoDB.

 It’s possible to run the server without journaling as a way of increasing performance for some write loads. The downside is
 that the data files may be corrupted after an unclean shutdown. As a consequence, anyone planning to disable journaling should
 run with replication, preferably to a second datacenter, to increase the likelihood that a pristine copy of the data will
 still exist even if there’s a failure.

 MongoDB was designed to give you options in the speed-durability tradeoff, but we highly recommend safe settings for essential
 data. The topics of replication and durability are vast; you’ll see a detailed exploration of them in chapter 11.

 1.2.6. Scaling

 The easiest way to scale most databases is to upgrade the hardware. If your application is running on a single node, it’s
 usually possible to add some combination of faster disks, more memory, and a beefier CPU to ease any database bottlenecks.
 The technique of augmenting a single node’s hardware for scale is known as vertical scaling, or scaling up. Vertical scaling has the advantages of being simple, reliable, and cost-effective up to a certain point, but eventually
 you reach a point where it’s no longer feasible to move to a better machine.

 It then makes sense to consider scaling horizontally, or scaling out (see figure 1.4). Instead of beefing up a single node, scaling horizontally means distributing the database across multiple machines. A horizontally
 scaled architecture can run on many smaller, less expensive machines, often reducing your hosting costs. What’s more, the
 distribution of data across machines mitigates the consequences of failure. Machines will unavoidably fail from time to time.
 If you’ve scaled vertically and the machine fails, then you need to deal with the failure of a machine on which most of your
 system depends. This may not be an issue if a copy of the data exists on a replicated slave, but it’s still the case that
 only a single server need fail to bring down the entire system. Contrast that with failure inside a horizontally scaled architecture.
 This may be less catastrophic because a single machine represents a much smaller percentage of the system as a whole.

 Figure 1.4. Horizontal versus vertical scaling

 [image:]

 MongoDB was designed to make horizontal scaling manageable. It does so via a range-based partitioning mechanism, known as
 sharding, which automatically manages the distribution of data across nodes. There’s also a hash- and tag-based sharding mechanism, but it’s just another form of
 the range-based sharding mechanism.

 The sharding system handles the addition of shard nodes, and it also facilitates automatic failover. Individual shards are
 made up of a replica set consisting of at least two nodes, ensuring automatic recovery with no single point of failure. All
 this means that no application code has to handle these logistics; your application code communicates with a sharded cluster
 just as it speaks to a single node. Chapter 12 explores sharding in detail.

 You’ve seen a lot of MongoDB’s most compelling features; in chapter 2, you’ll begin to see how some of them work in practice. But at this point, let’s take a more pragmatic look at the database.
 In the next section, you’ll look at MongoDB in its environment, the tools that ship with the core server, and a few ways of
 getting data in and out.

1.3. MongoDB’s core server and tools

 MongoDB is written in C++ and actively developed by MongoDB, Inc. The project compiles on all major operating systems, including
 Mac OS X, Windows, Solaris, and most flavors of Linux. Precompiled binaries are available for each of these platforms at http://mongodb.org. MongoDB is open source and licensed under the GNU-Affero General Public License (AGPL). The source code is freely available
 on GitHub, and contributions from the community are frequently accepted. But the project is guided by the MongoDB, Inc. core
 server team, and the overwhelming majority of commits come from this group.

 	

 About the GNU-AGPL

 The GNU-AGPL is the subject of some controversy. In practice, this licensing means that the source code is freely available
 and that contributions from the community are encouraged. But GNU-AGPL requires that any modifications made to the source
 code must be published publicly for the benefit of the community. This can be a concern for companies that want to modify
 MongoDB but don’t want to publish these changes to others. For companies wanting to safeguard their core server enhancements,
 MongoDB, Inc. provides special commercial licenses.

 	

 MongoDB v1.0 was released in November 2009. Major releases appear approximately once every three months, with even point numbers
 for stable branches and odd numbers for development. As of this writing, the latest stable release is v3.0.[5]

 5

You should always use the latest stable point release; for example, v3.0.6. Check out the complete installation instructions
 in appendix A.

 What follows is an overview of the components that ship with MongoDB along with a high-level description of the tools and
 language drivers for developing applications with the database.

 1.3.1. Core server

 The core database server runs via an executable called mongod (mongodb.exe on Windows). The mongod server process receives commands over a network socket using a custom binary protocol. All the data files for a mongod process are stored by default in /data/db on Unix-like systems and in c:\data\db on Windows. Some of the examples in this
 text may be more Linux-oriented. Most of our MongoDB production servers are run on Linux because of its reliability, wide
 adoption, and excellent tools.

 mongod can be run in several modes, such as a standalone server or a member of a replica set. Replication is recommended when you’re
 running MongoDB in production, and you generally see replica set configurations consisting of two replicas plus a mongod running in arbiter mode. When you use MongoDB’s sharding feature, you’ll also run mongod in config server mode. Finally, a separate routing server exists called mongos, which is used to send requests to the appropriate shard in this kind of setup. Don’t worry too much about all these options
 yet; we’ll describe each in detail in the replication (11) and sharding (12) chapters.

 Configuring a mongod process is relatively simple; it can be accomplished both with command-line arguments and with a text configuration file.
 Some common configurations to change are setting the port that mongod listens on and setting the directory where it stores its data. To see these configurations, you can run mongod --help.

 1.3.2. JavaScript shell

 The MongoDB command shell is a JavaScript[6]-based tool for administering the database and manipulating data. The mongo executable loads the shell and connects to a specified mongod process, or one running locally by default. The shell was developed to be similar to the MySQL shell; the biggest differences
 are that it’s based on JavaScript and SQL isn’t used. For instance, you can pick your database and then insert a simple document
 into the users collection like this:

 6

If you’d like an introduction or refresher to JavaScript, a good resource is http://eloquentjavascript.net. JavaScript has a syntax similar to languages like C or Java. If you’re familiar with either of those, you should be able
 to understand most of the JavaScript examples.

 > use my_database
> db.users.insert({name: "Kyle"})

 The first command, indicating which database you want to use, will be familiar to users of MySQL. The second command is a
 JavaScript expression that inserts a simple document. To see the results of your insert, you can issue a simple query:

 > db.users.find()
{ _id: ObjectId("4ba667b0a90578631c9caea0"), name: "Kyle" }

 The find method returns the inserted document, with an object ID added. All documents require a primary key stored in the _id field. You’re allowed to enter a custom _id as long as you can guarantee its uniqueness. But if you omit the _id altogether, a MongoDB object ID will be inserted automatically.

 In addition to allowing you to insert and query for data, the shell permits you to run administrative commands. Some examples
 include viewing the current database operation, checking the status of replication to a secondary node, and configuring a
 collection for sharding. As you’ll see, the MongoDB shell is indeed a powerful tool that’s worth getting to know well.

 All that said, the bulk of your work with MongoDB will be done through an application written in a given programming language.
 To see how that’s done, we must say a few things about MongoDB’s language drivers.

 1.3.3. Database drivers

 If the notion of a database driver conjures up nightmares of low-level device hacking, don’t fret; the MongoDB drivers are
 easy to use. The driver is the code used in an application to communicate with a MongoDB server. All drivers have functionality
 to query, retrieve results, write data, and run database commands. Every effort has been made to provide an API that matches
 the idioms of the given language while also maintaining relatively uniform interfaces across languages. For instance, all
 of the drivers implement similar methods for saving a document to a collection, but the representation of the document itself
 will usually be whatever is most natural to each language. In Ruby, that means using a Ruby hash. In Python, a dictionary
 is appropriate. And in Java, which lacks any analogous language primitive, you usually represent documents as a Map object or something similar. Some developers like using an object-relational mapper to help manage representing their data
 this way, but in practice, the MongoDB drivers are complete enough that this isn’t required.

 	

 Language drivers

 As of this writing, MongoDB, Inc. officially supports drivers for C, C++, C#, Erlang, Java, Node.js, JavaScript, Perl, PHP,
 Python, Scala, and Ruby—and the list is always growing. If you need support for another language, there are probably community-supported
 drivers for it, developed by MongoDB users but not officially managed by MongoDB, Inc., most of which are pretty good. If
 no community-supported driver exists for your language, specifications for building a new driver are documented at http://mongodb.org. Because all of the officially supported drivers are used heavily in production and provided under the Apache license, plenty
 of good examples are freely available for would-be driver authors.

 	

 Beginning in chapter 3, we describe how the drivers work and how to use them to write programs.

 1.3.4. Command-line tools

 MongoDB is bundled with several command-line utilities:

 	
mongodump and mongorestore —Standard utilities for backing up and restoring a database. mongodump saves the database’s data in its native BSON format and thus is best used for backups only; this tool has the advantage of
 being usable for hot backups, which can easily be restored with mongorestore.

 	
mongoexport and mongoimport —Export and import JSON, CSV, and TSV[7] data; this is useful if you need your data in widely supported formats. mongoimport can also be good for initial imports of large data sets, although before importing, it’s often desirable to adjust the data
 model to take best advantage of MongoDB. In such cases, it’s easier to import the data through one of the drivers using a
 custom script.

 7

CSV stands for Comma-Separated Values, meaning data split into multiple fields, which are separated by commas. This is a popular
 format for representing tabular data, since column names and many rows of values can be listed in a readable file. TSV stands
 for Tab-Separated Values—the same format with tabs used instead of commas.

 	
mongosniff —A wire-sniffing tool for viewing operations sent to the database. It essentially translates the BSON going over the wire
 to human-readable shell statements.

 	
mongostat —Similar to iostat, this utility constantly polls MongoDB and the system to provide helpful stats, including the number of operations per second
 (inserts, queries, updates, deletes, and so on), the amount of virtual memory allocated, and the number of connections to
 the server.

 	
mongotop —Similar to top, this utility polls MongoDB and shows the amount of time it spends reading and writing data in each collection.

 	
mongoperf —Helps you understand the disk operations happening in a running MongoDB instance.

 	
mongooplog —Shows what’s happening in the MongoDB oplog.

 	
Bsondump —Converts BSON files into human-readable formats including JSON. We’ll cover BSON in much more detail in chapter 2.

1.4. Why MongoDB?

 You’ve seen a few reasons why MongoDB might be a good choice for your projects. Here, we’ll make this more explicit, first
 by considering the overall design objectives of the MongoDB project. According to its creators, MongoDB was designed to combine
 the best features of key-value stores and relational databases. Because of their simplicity, key-value stores are extremely
 fast and relatively easy to scale. Relational databases are more difficult to scale, at least horizontally, but have a rich
 data model and a powerful query language. MongoDB is intended to be a compromise between these two designs, with useful aspects
 of both. The end goal is for it to be a database that scales easily, stores rich data structures, and provides sophisticated
 query mechanisms.

 In terms of use cases, MongoDB is well-suited as a primary datastore for web applications, analytics and logging applications,
 and any application requiring a medium-grade cache. In addition, because it easily stores schema-less data, MongoDB is also
 good for capturing data whose structure can’t be known in advance.

 The preceding claims are bold. To substantiate them, we’re going to take a broad look at the varieties of databases currently
 in use and contrast them with MongoDB. Next, you’ll see some specific MongoDB use cases as well as examples of them in production.
 Then, we’ll discuss some important practical considerations for using MongoDB.

 1.4.1. MongoDB versus other databases

 The number of available databases has exploded, and weighing one against another can be difficult. Fortunately, most of these
 databases fall under one of a few categories. In table 1.1, and in the sections that follow, we describe simple and sophisticated key-value stores, relational databases, and document
 databases, and show how these compare with MongoDB.

 Table 1.1. Database families

 	
 	
 Examples

 	
 Data model

 	
 Scalability model

 	
 Use cases

 	Simple key-value stores
 	Memcached
 	Key-value, where the value is a binary blob.
 	Variable. Memcached can scale across nodes, converting all available RAM into a single, monolithic datastore.
 	Caching. Web ops.

 	Sophisticated key-value stores
 	HBase, Cassandra, Riak KV, Redis, CouchDB
 	Variable. Cassandra uses a key-value structure known as a column. HBase and Redis store binary blobs. CouchDB stores JSON documents.

 	Eventually consistent, multinode distribution for high availability and easy failover.
 	High-throughput verticals (activity feeds, message queues). Caching. Web ops.

 	Relational databases
 	Oracle Database, IBM DB2, Microsoft SQL Server, MySQL, PostgreSQL
 	Tables.
 	Vertical scaling. Limited support for clustering and manual partitioning.
 	System requiring transactions (banking, finance) or SQL. Normalized data model.

Simple key-value stores

 Simple key-value stores do what their name implies: they index values based on a supplied key. A common use case is caching. For instance,
 suppose you needed to cache an HTML page rendered by your app. The key in this case might be the page’s URL, and the value
 would be the rendered HTML itself. Note that as far as a key-value store is concerned, the value is an opaque byte array. There’s no enforced schema, as you’d find in a relational database, nor is
 there any concept of data types. This naturally limits the operations permitted by key-value stores: you can insert a new
 value and then use its key either to retrieve that value or delete it. Systems with such simplicity are generally fast and
 scalable.

 The best-known simple key-value store is Memcached, which stores its data in memory only, so it trades durability for speed. It’s also distributed; Memcached nodes running
 across multiple servers can act as a single datastore, eliminating the complexity of maintaining cache state across machines.

 Compared with MongoDB, a simple key-value store like Memcached will often allow for faster reads and writes. But unlike MongoDB,
 these systems can rarely act as primary datastores. Simple key-value stores are best used as adjuncts, either as caching layers
 atop a more traditional database or as simple persistence layers for ephemeral services like job queues.

Sophisticated key-value stores

 It’s possible to refine the simple key-value model to handle complicated read/write schemes or to provide a richer data model.
 In these cases, you end up with what we’ll term a sophisticated key-value store. One example is Amazon’s Dynamo, described
 in a widely studied white paper titled “Dynamo: Amazon’s Highly Available Key-Value Store” (http://allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf). The aim of Dynamo is to be a database robust enough to continue functioning in the face of network failures, datacenter
 outages, and similar disruptions. This requires that the system always be read from and written to, which essentially requires
 that data be automatically replicated across multiple nodes. If a node fails, a user of the system—perhaps in this case a
 customer with an Amazon shopping cart—won’t experience any interruptions in service. Dynamo provides ways of resolving the
 inevitable conflicts that arise when a system allows the same data to be written to multiple nodes. At the same time, Dynamo
 is easily scaled. Because it’s masterless—all nodes are equal—it’s easy to understand the system as a whole, and nodes can
 be added easily. Although Dynamo is a proprietary system, the ideas used to build it have inspired many systems falling under
 the NoSQL umbrella, including Cassandra, HBase, and Riak KV.

 By looking at who developed these sophisticated key-value stores, and how they’ve been used in practice, you can see where
 these systems shine. Let’s take Cassandra, which implements many of Dynamo’s scaling properties while providing a column-oriented
 data model inspired by Google’s BigTable. Cassandra is an open source version of a datastore built by Facebook for its inbox
 search feature. The system scales horizontally to index more than 50 TB of inbox data, allowing for searches on inbox keywords
 and recipients. Data is indexed by user ID, where each record consists of an array of search terms for keyword searches and
 an array of recipient IDs for recipient searches.[8]

 8

See “Cassandra: A Decentralized Structured Storage System,” at http://mng.bz/5321.

 These sophisticated key-value stores were developed by major internet companies such as Amazon, Google, and Facebook to manage
 cross-sections of systems with extraordinarily large amounts of data. In other words, sophisticated key-value stores manage
 a relatively self-contained domain that demands significant storage and availability. Because of their masterless architecture,
 these systems scale easily with the addition of nodes. They opt for eventual consistency, which means that reads don’t necessarily
 reflect the latest write. But what users get in exchange for weaker consistency is the ability to write in the face of any
 one node’s failure.

 This contrasts with MongoDB, which provides strong consistency, a rich data model, and secondary indexes. The last two of
 these attributes go hand in hand; key-value stores can generally store any data structure in the value, but the database is
 unable to query them unless these values can be indexed. You can fetch them with the primary key, or perhaps scan across all
 of the keys, but the database is useless for querying these without secondary indexes.

Relational databases

 Much has already been said of relational databases in this introduction, so in the interest of brevity, we need only discuss
 what RDBMSs (Relational Database Management Systems) have in common with MongoDB and where they diverge. Popular relational
 databases include MySQL, PostgreSQL, Microsoft SQL Server, Oracle Database, IBM DB2, and so on; some are open-source and some
 are proprietary. MongoDB and relational databases are both capable of representing a rich data model. Where relational databases
 use fixed-schema tables, MongoDB has schema-free documents. Most relational databases support secondary indexes and aggregations.

 Perhaps the biggest defining feature of relational databases from the user’s perspective is the use of SQL as a query language.
 SQL is a powerful tool for working with data; it’s not perfect for every job, but in some cases it’s more expressive and easier
 to work with than MongoDB’s query language. Additionally, SQL is fairly portable between databases, though each implementation
 has its own quirks. One way to think about it is that SQL may be easier for a data scientist or full-time analyst who writes
 queries to explore data. MongoDB’s query language is aimed more at developers, who write a query once to embed it in their
 application. Both models have their strengths and weaknesses, and sometimes it comes down to personal preference.

 There are also many relational databases intended for analytics (or as a “data warehouse”) rather than as an application database.
 Usually data is imported in bulk to these platforms and then queried by analysts to answer business-intelligence questions.
 This area is dominated by enterprise vendors with HP Vertica or Teradata Database, which both offer horizontally scalable
 SQL databases.

 There is also growing interest in running SQL queries over data stored in Hadoop. Apache Hive is a widely used tool that translates
 a SQL query into a Map-Reduce job, which offers a scalable way of querying large data sets. These queries use the relational
 model, but are intended only for slower analytics queries, not for use inside an application.

Document databases

 Few databases identify themselves as document databases. As of this writing, the closest open-source database comparable to
 MongoDB is Apache’s CouchDB. CouchDB’s document model is similar, although data is stored in plain text as JSON, whereas MongoDB
 uses the BSON binary format. Like MongoDB, CouchDB supports secondary indexes; the difference is that the indexes in CouchDB
 are defined by writing map-reduce functions, a process that’s more involved than using the declarative syntax used by MySQL
 and MongoDB. They also scale differently. CouchDB doesn’t partition data across machines; rather, each CouchDB node is a complete
 replica of every other.

 1.4.2. Use cases and production deployments

 Let’s be honest. You’re not going to choose a database solely on the basis of its features. You need to know that real businesses
 are using it successfully. Let’s look at a few broadly defined use cases for MongoDB and some examples of its use in production.[9]

 9

For an up-to-date list of MongoDB production deployments, see http://mng.bz/z2CH.

Web applications

 MongoDB is well-suited as a primary datastore for web applications. Even a simple web application will require numerous data
 models for managing users, sessions, app-specific data, uploads, and permissions, to say nothing of the overarching domain.
 Just as this aligns well with the tabular approach provided by relational databases, so too it benefits from MongoDB’s collection
 and document model. And because documents can represent rich data structures, the number of collections needed will usually
 be less than the number of tables required to model the same data using a fully normalized relational model. In addition,
 dynamic queries and secondary indexes allow for the easy implementation of most queries familiar to SQL developers. Finally,
 as a web application grows, MongoDB provides a clear path for scale.

 MongoDB can be a useful tool for powering a high-traffic website. This is the case with The Business Insider (TBI), which has used MongoDB as its primary datastore since January 2008. TBI is a news site, although it gets substantial traffic,
 serving more than a million unique page views per day. What’s interesting in this case is that in addition to handling the
 site’s main content (posts, comments, users, and so on), MongoDB processes and stores real-time analytics data. These analytics
 are used by TBI to generate dynamic heat maps indicating click-through rates for the various news stories.

Agile development

 Regardless of what you may think about the agile development movement, it’s hard to deny the desirability of building an application
 quickly. A number of development teams, including those from Shutterfly and The New York Times, have chosen MongoDB in part
 because they can develop applications much more quickly on it than on relational databases. One obvious reason for this is
 that MongoDB has no fixed schema, so all the time spent committing, communicating, and applying schema changes is saved.

 In addition, less time need be spent shoehorning the relational representation of data into an object-oriented data model
 or dealing with the vagaries and optimizing the SQL produced by object-relational mapping (ORM) technology. Thus, MongoDB
 often complements projects with shorter development cycles and agile, mid-sized teams.

Analytics and logging

 We alluded earlier to the idea that MongoDB works well for analytics and logging, and the number of applications using MongoDB
 for these is growing. Often, a well-established company will begin its forays into the MongoDB world with special apps dedicated
 to analytics. Some of these companies include GitHub, Disqus, Justin.tv, and Gilt Groupe, among others.

 MongoDB’s relevance to analytics derives from its speed and from two key features: targeted atomic updates and capped collections.
 Atomic updates let clients efficiently increment counters and push values onto arrays. Capped collections are useful for logging
 because they store only the most recent documents. Storing logging data in a database, as compared with the filesystem, provides
 easier organization and greater query power. Now, instead of using grep or a custom log search utility, users can employ the MongoDB query language to examine log output.

Caching

 Many web-applications use a layer of caching to help deliver content faster. A data model that allows for a more holistic
 representation of objects (it’s easy to shove a document into MongoDB without worrying much about the structure), combined
 with faster average query speeds, frequently allows MongoDB to be run as a cache with richer query capabilities, or to do
 away with the caching layer all together. The Business Insider, for example, was able to dispense with Memcached, serving
 page requests directly from MongoDB.

Variable schemas

 You can get some sample JSON data from https://dev.twitter.com/rest/tools/console, provided that you know how to use it. After getting the data and saving it as sample.json, you can import it to MongoDB
 as follows:

 $ cat sample.json | mongoimport -c tweets
2015-08-28T11:48:27.584+0300 connected to: localhost
2015-08-28T11:48:27.660+0300 imported 1 document

 Here you’re pulling down a small sample of a Twitter stream and piping that directly into a MongoDB collection. Because the
 stream produces JSON documents, there’s no need to alter the data before sending it to the database. The mongoimport tool directly translates the data to BSON. This means that each tweet is stored with its structure intact, as a separate
 document in the collection. This makes it easy to index and query its content with no need to declare the structure of the
 data in advance.

 If your application needs to consume a JSON API, then having a system that so easily translates JSON is invaluable. It’s difficult
 to know the structure of your data before you store it, and MongoDB’s lack of schema constraints may simplify your data model.

1.5. Tips and limitations

 For all these good features, it’s worth keeping in mind a system’s trade-offs and limitations. We’d like to note some limitations
 before you start building a real-world application on MongoDB and running it in production. Many of these are consequences
 of how MongoDB manages data and moves it between disk and memory in memory-mapped files.

 First, MongoDB should usually be run on 64-bit machines. The processes in a 32-bit system are only capable of addressing 4
 GB of memory. This means that as soon as your data set, including metadata and storage overhead, hits 4 GB, MongoDB will no
 longer be able to store additional data. Most production systems will require more than this, so a 64-bit system will be necessary.[10]

 10

64-bit architectures can theoretically address up to 16 exabytes of memory, which is for all intents and purposes unlimited.

 A second consequence of using virtual memory mapping is that memory for the data will be allocated automatically, as needed.
 This makes it trickier to run the database in a shared environment. As with database servers in general, MongoDB is best run
 on a dedicated server.

 Perhaps the most important thing to know about MongoDB’s use of memory-mapped files is how it affects data sets that exceed
 the size of available RAM. When you query such a data set, it often requires a disk access for data that has been swapped
 out of memory. The consequence is that many users report excellent MongoDB performance until the working set of their data
 exceeds memory and queries slow significantly. This problem isn’t exclusive to MongoDB, but it’s a common pitfall and something
 to watch.

OEBPS/num-03.jpg

OEBPS/01fig01_alt.jpg
posts

id
author_id
title

url

int(11)
int(11)
varchar (255)
text

3

vote_count _smallint () 5uE s
ia ine(11)
post_id int 1)
tag_id int(11)
Comments
ia inc(11)
post_id int(11)
user_id int(11)
text text
Tmages tags
Ta FPTET) ia inc(1l)
post_td int(11) text varchar (255)
caption int(11)
type varchar (255)
size mediumint (8)
location varchar(255)

OEBPS/num-02.jpg

OEBPS/num-01.jpg

OEBPS/common02.jpg

OEBPS/006fig01_alt.jpg
_id: ObjectID('4bd9esel7cefds44108961bb"),
title: 'Adventures in Databases',

url: 'hetp://example.com/databases.txt ',
author: 'msmith',
vote_count: 20,
tags: ['databases’, ‘mongodb’,
image: {
url: 'http://example.com/db.3pg’,
caption: 'A database.',
type: 'jpg’,
size: 75381,
data: 'Binary'
i
comments: [
{
user: 'bjones’,
text: 'Interesting article.'

'sverch',
'Color me skepticall'

*indexing'],

_id field,
primary key

Tags stored
as array of
strings

Attribute pointing to
another document

Comments stored
as array of
comment objects

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common01.jpg

OEBPS/01fig02.jpg
catalog product entity
entity id int(11)
entity type id int(5)
attribute set id it (5)
type_id varchar (32)
sku ivarchar (64)
Catalog product entity datetime
value 1d int (11)
entity type id smallint (5)
attribute id smallint (5)
store_id smallint (5)
entity id int (10)
value datetime
catalog product entity decimal
value id int(11)
entity type id smallint (5)
attribute id smallint (5)
09 store 14 smallint (5)
entity id int (10)
value decimal (12, 4)
Gatalog product entity int
value id int(11)
entity_type_id smallint (5)
attribute id smallint (5)
09 ctore_ia smallint (5)
entity id int (10)
value int(11)
Gatalog product entity Text
value 1d int (1)
entity type id smallint (5)
attribute id smallint (5)
©< store_ia smallint (5)
entity id int (10)
value text
catalog product entity varchar
value id int(11)
entity type id smallint (5)
attribute id smallint (5)
T °Ystore_ia smallint (5)
entity id int (10)
value varchar (255)

OEBPS/01fig04_alt.jpg
Original database

Scaling outadds more.
‘capacty of a single machine. ‘machines ofsimiar size.

66,68 of RAM 66,68 of RAM 66.GB of RAM
1690 GB ofstorage | | 1690 GB ofstorage | | 1690 GB of strage

OEBPS/01fig03.jpg
1. Aworking replica set

Secondary

2. Original primary node fails and
a secondary is promoted to primary.

Secondary

&S

3. Original primary comes
back online as a secondary.

Secondary

OEBPS/cover.jpg
SECOND EDITION

L | FTTnn Covers MongoDB version 3.C

