

 [image: cover]

 Spring Roo in Action

 Ken Rimple, Srini Penchikala. Foreword by Ben Alex.

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	 Development editor : Sebastian Stirling
Technical proofreaders: Alan Stewart, Andrew Swan
 Copyeditors: Benjamin Berg, Bob Herbtsman,
 Tara McGoldrick Walsh
 Proofreaders: Katie Tennant, Alyson Brener
 Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

Dedication

 To my wife, Kris, and my children, Drew, Miles, Jayna, and Justine

 K.R.

 To my parents, Siva Reddy and Lakshmi

 S.P.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Starting Spring apps rapidly with Roo

 Chapter 1. What is Spring Roo?

 Chapter 2. Getting started with Roo

 2. Databases and entities

 Chapter 3. Database persistence with entities

 Chapter 4. Relationships, JPA, and advanced persistence

 3. Web development

 Chapter 5. Rapid web applications with Roo

 Chapter 6. Advanced web applications

 Chapter 7. RIA and other web frameworks

 Chapter 8. Configuring security

 4. Integration

 Chapter 9. Testing your application

 Chapter 10. Enterprise services—email and messaging

 Chapter 11. Roo add-ons

 Chapter 12. Advanced add-ons and deployment

 5. Roo in the cloud

 Chapter 13. Cloud computing

 Chapter 14. Workflow applications using Spring Integration

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Starting Spring apps rapidly with Roo

 Chapter 1. What is Spring Roo?

 1.1. Configuration is a burden

 1.1.1. Spring reduces the pain

 1.1.2. Shifting from code to configuration

 1.1.3. Spring makes development less painful

 1.1.4. Batteries still required

 1.1.5. Those other guys—RAD frameworks

 1.1.6. Java needs RAD

 1.2. Enter Spring Roo

 1.2.1. Installing the Roo shell

 1.2.2. Launching the shell

 1.3. Roo by example—the Pizza Shop

 1.3.1. The pizzashop.roo sample

 1.3.2. Running the Pizza Shop with Maven

 1.3.3. Creating toppings—forms

 1.3.4. Creating a pizza form—dependencies

 1.3.5. JSON-based web services with the Pizza Shop

 1.3.6. Wrapping up the walk-through

 1.3.7. The Pizza Shop script

 1.4. Roo application architecture models

 1.4.1. The web layer

 1.4.2. Service-and-repository layering in Roo

 1.4.3. Roo’s Active Record architecture

 1.4.4. Which pattern is better?

 1.5. Summary

 1.6. Resources

 Books

 Web

 Chapter 2. Getting started with Roo

 2.1. Working with the Roo shell

 2.1.1. Give me a hint!

 2.1.2. Common Roo commands

 2.1.3. Creating an application

 2.1.4. Adjusting the logging level

 2.1.5. Adding persistence and running the application

 2.1.6. Backup, the Roo log, and scripting

 2.1.7. The Roo shell log file

 2.1.8. A final word on scripting

 2.2. How Roo manages your projects

 2.2.1. The taskmanager project layout

 2.2.2. Adding a service and repository

 2.2.3. The tests and data on demand

 2.2.4. The web layer

 2.2.5. Spring configuration files

 2.2.6. About AspectJ ITDs

 2.2.7. What ITDs did you just generate?

 2.2.8. Exploring an ITD

 2.2.9. Yeah, they handle your dirty work

 2.2.10. Multimodule projects

 2.3. I want my IDE!

 2.3.1. SpringSource Tool Suite

 2.3.2. The Roo context menu

 2.3.3. The Roo shell

 2.3.4. Showing and hiding Roo ITDs

 2.3.5. IntelliJ IDEA and other IDEs

 2.4. Refactoring, Roo ITDs and leaving Roo

 2.4.1. Push-in refactoring

 2.4.2. Verify refactoring

 2.4.3. Pulling code out to ITDs

 2.4.4. Leaving Roo behind

 2.5. Summary

 2.6. Resources

 Books

 Web

 2. Databases and entities

 Chapter 3. Database persistence with entities

 3.1. Your business objects and persistence

 3.1.1. The Java Persistence API

 3.1.2. Setting up JPA in Roo

 3.1.3. Schema management settings

 3.2. Working with entities

 3.2.1. Creating your first entity

 3.2.2. Adding fields to the Course

 3.2.3. Adding the course type enum

 3.2.4. Exercising the Course entity

 3.2.5. Exploring the Course entity API

 3.2.6. Roo’s Active Record entity methods

 3.2.7. Using the entity API

 3.2.8. Writing a JUnit Roo entity test

 3.3. Validating Courses with Bean Validation

 3.3.1. Validating Courses

 3.3.2. Testing Course validations

 3.3.3. Bean Validation annotations

 3.3.4. Using the @AssertTrue annotation

 3.3.5. Bean Validation in review

 3.4. Searching with finders

 3.4.1. A sample Roo finder

 3.4.2. Multifield finder queries

 3.4.3. More complex finders

 3.5. Leaving Active Record—JPA repositories

 3.5.1. The JpaRepository API

 3.5.2. Queries with JpaSpecificationImplementor

 3.5.3. Annotation-driven queries with @Query

 3.5.4. Repository wrap-up

 3.6. Code samples

 3.7. Summary

 3.8. Resources

 Chapter 4. Relationships, JPA, and advanced persistence

 4.1. Object relations: it’s all relative

 4.2. A sample Course Manager database

 4.3. Course Manager relationships

 4.3.1. One to many: training programs to courses

 4.3.2. More on database keys

 4.3.3. Many-to-many relationship: courses to tags

 4.3.4. The inverse many-to-many: courses have tags

 4.3.5. Putting the people in courses...

 4.3.6. People teach and attend courses—inheritance

 4.3.7. Testing your inheritance hierarchy

 4.3.8. JPA providers and your database schema

 4.3.9. The rest of your schema

 4.4. Reverse engineering your database

 4.5. Adding a service layer

 4.5.1. Building services with service create

 4.6. Using JPA directly

 4.7. NoSQL databases with MongoDB

 4.7.1. Persistence with MongoDB

 4.7.2. Setting up MongoDB

 4.7.3. MongoDB and Roo

 4.7.4. A MongoDB Course entity

 4.7.5. Generating a Course MongoDB repository

 4.7.6. Creating a service for your MongoDB repository

 4.8. Summary

 4.9. Resources

 Books

 Web

 3. Web development

 Chapter 5. Rapid web applications with Roo

 5.1. The Spring MVC web framework

 5.2. Roo Spring MVC quick-start

 5.2.1. The web application and first controller

 5.2.2. Creating your first controller

 5.2.3. Views, tags, and templates

 5.2.4. Launching the web application

 5.2.5. Customizing your view

 5.2.6. Customize that message!

 5.3. Web scaffolding for entities

 5.3.1. Creating the course scaffold

 5.3.2. Fetching courses

 5.3.3. Creating a new course

 5.3.4. Updating courses with PUT

 5.3.5. Removing a course with DELETE

 5.3.6. Scaffolding and finders

 5.3.7. Scaffolding wrap-up

 5.4. Accessing other Spring beans

 5.4.1. Automatic detection in scaffolds

 5.4.2. Nonscaffolded controllers and Spring beans

 5.4.3. Multimodule scaffolds

 5.5. Summary

 5.6. Resources

 Books

 Web

 Chapter 6. Advanced web applications

 6.1. Customizing Roo CRUD views

 6.1.1. Element naming conventions

 6.1.2. Scaffold’s magic z attribute

 6.1.3. Modifying list views

 6.1.4. Form view customizations

 6.1.5. Common form field attributes

 6.2. Advanced customization

 6.2.1. Changing field types

 6.2.2. Disabling or hiding features

 6.2.3. Style-based date formatting

 6.2.4. Pattern-based date formatting

 6.2.5. Adjusting date formats in views

 6.2.6. Providing reference data

 6.3. View layouts, theming, and localization

 6.3.1. How Roo resolves scaffold labels

 6.3.2. Configuring additional locales

 6.3.3. Tiles and Roo

 6.3.4. Roo’s tile layouts

 6.3.5. Putting it all together

 6.3.6. Customizing the tiles layout engine

 6.3.7. Theming

 6.4. Summary

 6.5. Resources

 Books

 Web

 Chapter 7. RIA and other web frameworks

 7.1. JavaScript and Ajax

 7.1.1. Spring JavaScript

 7.1.2. Calculating Course cost with Ajax

 7.1.3. The JavaScript event handler

 7.1.4. Easy Ajax with Spring MVC

 7.2. Google Web Toolkit

 7.2.1. The GWT Course Manager

 7.2.2. Supporting browser types

 7.2.3. Summary—GWT

 7.3. Using JavaServer Faces

 7.3.1. Installing JSF

 7.3.2. JSF installation details

 7.3.3. Scaffolding in JSF

 7.3.4. The CourseBean page bean

 7.3.5. The Course page view

 7.3.6. The facelet itself

 7.3.7. JSF developer guidelines

 7.4. Other Roo UI frameworks

 7.5. Summary

 7.6. Resources

 Books

 Web

 Chapter 8. Configuring security

 8.1. Installing Spring Security

 8.1.1. The security context file

 8.1.2. Web configuration elements

 8.2. Securing a sample application

 8.2.1. Restricting URLs

 8.2.2. Storing roles and users in a database

 8.2.3. Database-backed authentication

 8.2.4. LDAP-based authentication

 8.2.5. Handling access denied errors

 8.2.6. Adding login links

 8.3. Testing security setup

 8.4. Adding security event logging

 8.5. Summary

 8.6. Resources

 4. Integration

 Chapter 9. Testing your application

 9.1. Roo testing philosophy

 9.1.1. Layers of testing

 9.1.2. Test-specific shell commands

 9.1.3. The DataOnDemand component

 9.1.4. Key DataOnDemand methods

 9.1.5. Working with the DataOnDemand framework

 9.2. Stubbed unit tests

 9.3. Unit tests using mock objects

 9.3.1. Mocking services with Mockito

 9.3.2. The entity mocking framework

 9.3.3. Creating an entity mock test

 9.3.4. Unit testing the completeRegistration() method

 9.3.5. Mocking with the RegistrationServiceBean

 9.4. Testing in-container with Roo

 9.4.1. Creating entity integration tests

 9.4.2. Testing other Spring beans

 9.5. Web testing with Selenium

 9.5.1. What is Selenium?

 9.5.2. Installing Selenium

 9.5.3. Autogenerated Selenium tests

 9.5.4. Writing your own Selenium test

 9.5.5. Adding JUnit semantics

 9.5.6. The WebDriver API

 9.5.7. Final thoughts on web testing

 9.6. Improving your testing

 9.7. Summary

 9.8. Resources

 Books

 Web

 Chapter 10. Enterprise services—email and messaging

 10.1. Roo integration with enterprise services

 10.1.1. Email support

 10.1.2. Asynchronous messaging

 10.2. Defining the sample Course Manager use cases

 10.2.1. Use case 1: course catalog distribution

 10.2.2. Use case 2: course registration confirmation notification

 10.2.3. Use case 3: course registration wait-list notification

 10.3. Setting up JMS in the Course Manager

 10.3.1. Course catalog updates

 10.3.2. Testing the course catalog distribution use case

 10.4. Adding email support for course registration

 10.4.1. Registration confirmation via email

 10.4.2. Testing the course registration confirmation notification use case

 10.5. Asynchronous messaging for registration confirmation

 10.5.1. JMS configuration

 10.5.2. Testing JMS setup for wait-list notification

 10.5.3. Course completion certificate use case

 10.6. Monitoring messaging activity

 10.6.1. Application monitoring using VisualVM JConsole

 10.6.2. Application monitoring using Spring Insight

 10.7. Summary

 10.8. Resources

 Chapter 11. Roo add-ons

 11.1. Extending Roo with add-ons

 11.2. How add-ons work

 11.3. Working with published Roo add-ons

 11.3.1. Finding the Roo repository add-ons

 11.3.2. Installing with add-on install

 11.3.3. Using the Git add-on

 11.3.4. Upgrading Roo add-ons

 11.3.5. Trusting PGP keys

 11.3.6. Removing add-ons

 11.4. Enough OSGi to be dangerous

 11.4.1. OSGi bundles and manifests

 11.4.2. Bundle lifecycle

 11.4.3. Viewing bundles in the OSGi container

 11.4.4. Starting and uninstalling a bundle

 11.5. Types of Roo add-ons

 11.6. Roo wrapper add-ons

 11.7. Adding a language to Roo with i18n

 11.8. A simple add-on: jQuery UI

 11.8.1. Creating the jQuery UI add-on

 11.8.2. The jQuery UI add-on goals

 11.8.3. Defining the jQuery install operations

 11.8.4. Copying jQuery to the web application

 11.8.5. Installing jQuery in JavaScript

 11.8.6. Defining the availability of the jquery setup

 11.8.7. Installing the jquery UI setup command

 11.8.8. Installing your commands

 11.8.9. Building and installing the add-on

 11.8.10. Installing jQuery in your project

 11.8.11. Using the jQuery UI in your application

 11.9. Summary

 11.10. Resources

 Chapter 12. Advanced add-ons and deployment

 12.1. Advanced add-ons

 12.2. To create an advanced add-on, you need Coffee(Script)

 12.2.1. What is CoffeeScript?

 12.2.2. Creating a CoffeeScript add-on

 12.2.3. Configuring the Maven plug-in

 12.2.4. Creating the setup command

 12.2.5. Setting up the CoffeescriptCommands

 12.2.6. Accessing parameters

 12.2.7. Building and installing the CoffeeScript add-on

 12.2.8. Using the CoffeeScript add-on

 12.2.9. Testing the CoffeeScript add-on

 12.2.10. Removing CoffeeScript from a project

 12.2.11. Detecting setup and remove command availability

 12.3. Key add-on beans and services

 12.3.1. ProjectOperations

 12.3.2. The PathResolver

 12.3.3. The file manager

 12.3.4. Manipulating files transactionally

 12.3.5. Services wrap-up

 12.4. Publishing your add-ons

 12.4.1. Manual distribution

 12.5. Deploying to an OBR

 12.5.1. Generating and using your PGP keys

 12.5.2. Using a version control system

 12.5.3. Releasing the add-on

 12.5.4. Using the OBR to fetch your add-on

 12.6. Submitting your add-on

 12.7. Summary

 12.7.1. Resources

 5. Roo in the cloud

 Chapter 13. Cloud computing

 13.1. What is cloud computing?

 13.1.1. Platform as a service

 13.2. Cloud Foundry

 13.2.1. Hosting

 13.2.2. Database support

 13.2.3. Messaging

 13.3. Roo add-on for Cloud Foundry

 13.3.1. How to install the Cloud Foundry add-on

 13.3.2. Add-on commands

 13.3.3. Cloud Foundry command-line interface

 13.4. Deploying the Course Manager application to the cloud

 13.4.1. Cloud Foundry login

 13.4.2. Deploying the Course Manager application

 13.5. Managing cloud services

 13.5.1. Application statistics

 13.5.2. Binding services

 13.6. Application monitoring in the cloud

 13.6.1. View application logs

 13.6.2. Provisioning memory

 13.7. The road ahead

 13.8. Summary

 13.9. Resources

 Chapter 14. Workflow applications using Spring Integration

 14.1. Workflow applications

 14.1.1. Enterprise application integration

 14.1.2. Event-driven architecture

 14.2. Using the Spring Integration framework

 14.2.1. Spring Batch

 14.3. Adding Spring Integration to your Roo application

 14.3.1. Course registration: a workflow-based approach

 14.3.2. Integration patterns used in the solution

 14.4. Spring Integration add-on for Roo

 14.4.1. How to install the Roo add-on for Spring Integration

 14.4.2. Verifying the add-on installation

 14.5. Course registration workflow components

 14.5.1. Spring Integration flow setup

 14.5.2. Configuring Spring Integration components

 14.5.3. Spring Integration configuration details

 14.5.4. Testing Spring Integration flow

 14.6. Summary

 14.7. Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Java has been the world’s most popular programming language for well over a decade. You can find it running everywhere: on
 super computers, servers, set top boxes, PCs, phones, tablets, routers, and robots. There are millions of expert engineers
 fluent in it, libraries for every conceivable purpose, and unparalleled tooling and management capabilities.

 Despite Java’s success, few people consider it highly productive for quickly developing enterprise applications. Indeed, if
 we step back to the year 2000, the mainstream model revolved around a standard called EJB 2. It promoted patterns that are
 unthinkable in the modern era, including vast deployment descriptors, code that was virtually impossible to unit test, confusing
 lifecycle methods, meaningless layers, excessive redeployment delays, and so on.

 These problems would not remain unchallenged. In the early 2000s, Spring introduced a vastly more productive approach that
 quickly replaced EJB 2 for new applications. It also significantly popularized the use of open source within traditionally
 conservative organizations that had previously only allowed vendor-endorsed products. Today, most developers enjoy considerable
 latitude in their ability to use liberally licensed open source software.

 Convention-over-configuration web frameworks started to gain traction by mid-decade. Ruby on Rails in particular exploited
 a range of dynamic language capabilities to further raise the bar of enterprise application development productivity. Grails
 delivered similar benefits on the JVM by combining Spring’s solid enterprise foundations with Groovy’s dynamic language capabilities.

 Implementing a convention-over-configuration web framework for Java was challenging because of its static typing model, so
 I designed an incremental active code generator that would emit mixins. This allowed multiple compilation units to be woven
 into a single class file. Mixins ensured that generated code would be conveniently managed without developer interaction and
 without losing important Java features such as code assist, debugging, source visibility, profiling, performance, and so on.
 The approach had not been attempted before, but it worked out nicely, and today other code generators also emit mixins (for
 example, Apache Magma).

 One unique benefit of Spring Roo’s convention-over-configuration model is the absence of any runtime component. It operates
 only at development time, just like Maven or Eclipse. This makes Roo completely free of lock-in or runtime expense, such as
 memory or CPU time. Many people use Roo to start a project and then stop using it, while others keep using it indefinitely
 for the same project. Since 2008, there have been tens of thousands of projects built using Spring Roo. It brings you the
 proven productivity benefits of convention over configuration, but with the substantial advantages of Java.

 Spring Roo in Action is an insightful and comprehensive treatment of Spring Roo. Ken Rimple and Srini Penchikala have worked closely with the
 Roo community and engineering team for over two years, with countless emails, tickets, and forum posts that dig deep into
 the Roo internals. They have carefully tracked Roo’s development and inspired multiple improvements. The result is a detailed
 book that is extensively researched, up-to-date, authoritative, and pragmatic. I hope that you enjoy Spring Roo in Action and the significant productivity enhancements it will bring to your application development journey.

 BEN ALEX

 PROJECT FOUNDER

 SPRING ROO, SPRING SECURITY

 AND SPRING UAA

 Twitter @benalexau

Preface

 In the summer of 2009, I learned from Ben Alex about a new technology called Spring Roo. This project, based on a command-line
 shell, promised to bring the agility of other rapid development frameworks, such as Grails and Ruby on Rails, to the native
 Java and Spring platform. Using a shell instead of writing code seemed like a loss of control, but after downloading and experimenting
 with the tool, I started to realize the potential of this project. As you’ll see in the book, the biggest challenge faced
 by Spring developers—beyond writing business logic—is how to build an application architecture and configure various application
 features (for example, installing JMS, email, Spring MVC, JPA, NoSQL databases, and other frameworks). Roo appeared to crack
 that problem and provide an elegant solution.

 With Spring Roo, you issue simple commands, such as jpa setup, web mvc setup, entity jpa, field, service, and repository. Configuration tasks that normally take hours or days are performed instantly. I could see that this was going to be a useful
 tool for the everyday Spring developer. Since my Chariot training colleague and longtime friend Gordon Dickens was also interested
 in Roo, we decided to approach Manning about writing a book. Unlike so many other times in my life, I was able to position
 myself at just the right time to make the pitch. Manning accepted, and you are reading the result.

 In the beginning of 2011, Srini Penchikala, InfoQ author and editor who had been using Roo on various projects, accepted the
 coauthor slot. Srini was a huge help, having penned chapters on Spring Integration, cloud computing, email and JMS, and Spring
 Security. During the spring and summer of 2011 we wrote the majority of these chapters. We then saw a new push for Roo 1.2,
 around the same time that I was working on the add-on chapters, which was exactly what was being refactored by the Roo team
 at the time. So this book has undergone at least three major revisions since the time we started writing it.

 Our pain is your gain, and that includes all of our hard work with code that was written the night before, identifying bugs
 for the Roo team to fix, and working with the fantastic community of readers we have in Manning’s MEAP program, aligned as
 well with completing the manuscript around the time of the Roo 1.2.1 release.

 Our hope is that you glean from this book a sense of how Roo development operates, regardless of which version of Roo you’ll
 be using. We also hope to spur on more developers to start using Roo as a key tool in their arsenal. The Roo community could
 really use some good add-ons, and though this book goes into some detail, we hope people take up the cause and contribute.

 The book has been a long time in development and production, but I think the timing is good. Roo has matured, becoming viable
 for a wide range of projects, having added native support for many enterprise abstractions such as services and repositories,
 and boasting at least three active web frameworks built into the product—Spring MVC, GWT, and JSF.

 KEN RIMPLE

Acknowledgments

 There are many people we want to thank for their help in making this book, starting with the Manning team: Michael Stephens,
 who first discussed the project with us; Christina Rudloff; the inimitable Marjan Bace; marketing genius Candace Gillhoolley;
 and our wonderful editors, in order of appearance: Emily Macel, Sara Onstine, and Sebastian Stirling. They were absolutely
 invaluable in providing advice and critiques, and in revving us up when we were out of juice.

 We wish to thank our production team of Mary Piergies; maestro Troy Mott and his band of merry editors: Ben Berg, Tara McGoldrick,
 and Bob Herbstman; our talented proofreaders: Katie Tennant and Alyson Brener; and others behind the scenes whom we are not
 able to name.

 The reader community also deserves a huge amount of credit. Author Online forum members MikB, carcarx, Javier Beneito Barquero,
 Mike Oliver, Gary White, nancom, delgad9, mexxik, netname, Henry G. Brown, varevadal, Terry Jeske, and Jeff Hall, among others,
 helped us find bugs, from the stupid to the super-complex, and gave us honest feedback when we needed it most. Keep ’em coming,
 and we’ll keep updating our errata and samples.

 The following reviewers read the manuscript at various stages of its development and we thank them for their invaluable input:
 Jeroen Nouws, Deepak Vohra, Richard Freedman, Patrick Steger, Bill LaPrise, Kyle DeaMarais, Joel Schneider, Jeremy Anderson,
 Rizwan Lodhi, Craig Walls, Santosh Shanbhag, Shekhar Gulati, Al Scherer, John J. Ryan III, Kevin Griffin, Doug Warren, and
 Audrey Troutt.

 Finally, we’d like to thank the Roo development team for being there and fixing bugs almost before we thought them up: Dr.
 Ben Alex, Stefan Schmidt, Alan Stewart, and Andrew Swan. Thank you for accepting our JIRA reports and working up fixes so
 we could stay on track. Special thanks to Ben for agreeing to write the foreword to our book, and to Alan and Andrew for a
 final technical proofread of the manuscript just before it went into production.

Ken Rimple

 I would like to thank my wife, four children, and extended family, who deserve a big break after the almost two years I spent
 writing this book. I dedicate the book to my wife, Kris, because without seeing her complete more than nine books while raising
 our boys, I never thought I could finish this project. She can now finally stop saying, “Give the guy room, he’s writing a
 book, you know.”

 Thanks to my college professor, Frank D. Quattrone, who got me started in obsessing over my writing as a literary magazine
 editor. And I absolutely must thank my mother, who always told me that I could do anything.

 I would also like to acknowledge my employer, Chariot Solutions, for their support of the book by giving me a forum for training
 courses (http://chariotsolutions.com/education) and podcasts (http://techcast.chariotsolutions.com), and allowing me to participate in other endeavors, such as the Emerging Technologies for the Enterprise conference (http://phillyemergingtech.com) that also inform my writing.

 A huge expression of gratitude to Srini Penchikala, who came in at the right time and helped me get this project done. His
 contributions in areas such as Spring Integration, JMS, email, cloud computing, and much more make this book extremely comprehensive.

 I would be remiss if I didn’t thank Gordon Dickens for his research and writing contributions during the beginning of this
 book project. He and I are close friends, and without our crazy plan, hatched one day after the interview with Ben Alex, I
 might not have reached out to Manning.

 Finally, I’d like to single out one contributor who must have a special mention: Mete Senocak contributed key early suggestions,
 edits, and frank advice. He also convinced me to roast, grind, and brew my own coffee, and now I am an intolerable coffee
 snob. You’re a good man, Mete, and I’m sure we’ll see each other in a coffee support group soon.

Srini Penchikala

 First of all, I would like to thank Michael Stephens and Christina Rudloff, who were my first contacts at Manning, for giving
 me the opportunity to be part of this book writing project. It’s been a rewarding experience to contribute to the book as
 well as learn from others about authorship.

 I also want to thank Ken Rimple for his guidance and mentoring in my transition from writing articles to writing a book.

 Special thanks to our MEAP readers who provided excellent feedback and suggestions in improving the content as well as the
 sample application discussed in the book.

 I would like to also thank my wife Kavitha and my seven year-old daughter Srihasa for their continued support and patience
 during the writing of this book.

About this Book

 Welcome to Spring Roo in Action! If you’re reading this book, you’re looking for ways to improve your Spring development productivity.

 When we started writing this book, nobody had even considered a book on Roo. The tool had been out in the public sphere for
 only a few months, and, after all, writing a book on any emerging technology is a crazy thing to do. But crazy things are
 usually tried by crazy people, and once we got started there was no turning back.

 This book is your guide to juicing your Spring development productivity, using a tiny, 8-megabyte project known as Spring
 Roo. We start by laying the groundwork for why such a tool is important, and how Roo fills the gap between the developer productivity
 of Spring and the configuration morass you can get into while writing enterprise applications. The writers of this book are
 Spring developers, trainers, mentors, and hobbyists. We develop, train, mentor, and tinker with Spring every day, so when
 we saw what Roo brought to the table we realized the power it represented to the everyday developer.

 Craig Walls’s Spring in Action, also published by Manning, is an excellent companion book for the new Spring developer, and is a good reference to keep
 nearby when you want additional information about a topic in our book.

 Other good references on these topics are Spring Integration in Action and ActiveMQ in Action, also from Manning Publications.

Learning by experimenting

 It’s our hope that you can read this book and get a taste of how to build a Roo application, even without running a single
 sample. That said, the concepts are relatively easy to grasp—using Roo’s TAB completion you can test the various commands
 and generate a working project with the features you’re interested in. Then you can use your editor to review the code and
 test it. Soon you’ll find it easy to try out new frameworks, because the feedback loop is so short.

 Above all, Roo enables experimentation. Combine it with Git for version control, and you can create a branch for your new
 idea, try it out, and merge it back in if you like it. Of course, because branches are cheap, you can remove the branch and
 forget it ever happened. We encourage you to create a lot of throw-away projects with Roo.

Roadmap

 Chapter 1 is a quick introduction to the Roo tool, and we get started creating applications right out of the gate. We begin by making
 the case for Roo and RAD on Java—how Spring makes things better, but how Roo really knocks it out of the park. We create a
 sample project, the Roo Pizza Shop, as a way to get you to kick the tires early, and you’ll see how little you need to do
 to build a full-featured database-backed web application.

 Chapter 2 covers the basics of using the Roo shell, and we walk through configuring a Task Manager project, installing persistence,
 creating an entity, and scaffolding a web application. We then dig into the code behind the application, inter-type declarations
 (ITDs), the various ways to structure your projects, and using an IDE such as SpringSource Tool Suite. We then discuss how
 to use refactoring to push-in or pull-out code, and how to remove Roo entirely if you need to.

 Chapter 3 is an introduction to database persistence in Roo. We detail the options for setting up persistence using JPA, setting up
 a JPA entity, using the Bean Validation framework to provide annotation-driven validations, how to use finders to write simple
 JPA queries, and how to create repositories using the repository command and the Spring Data API.

 Chapter 4 continues the discussion of database persistence and covers relationship mappings, how to write your own JPA persistence
 methods, reverse engineering database tables from an existing database, adding a Spring service layer with the service command,
 and using MongoDB, a NoSQL database supported by Roo 1.2.

 Chapter 5 introduces Spring MVC, which is the base of Roo’s primary web framework. We show you how to install the web framework and
 how to use scaffolding to automatically generate a simple CRUD application with only two commands. We also discuss accessing
 other Spring beans, and how to scaffold in a multimodule project.

 Chapter 6 digs deeply into the scaffolding engine and Roo’s tag libraries. We show you how you can customize the scaffolded web views,
 and how to modify the way fields are displayed. We outline how to display reference data in drop-down lists, customize date
 fields, deal with localization and theming, and we show you how Roo uses Apache Tiles to lay out your user interfaces.

 Chapter 7 switches gears to more advanced web frameworks. We start by showing you how to use Spring MVC and Dojo to provide Ajax support
 for your forms. We then show you how to install two other web frameworks, Google Web Toolkit and JavaServer Faces. We end
 by listing a few other web frameworks and the support that Roo had for them at the time we wrote the book.

 Chapter 8 covers Spring Security, including how to install it, configure it against both a database data store and LDAP, set up a login
 page, test security, and add event logging.

 Chapter 9 is our testing chapter. We cover unit testing and Mockito, mocking the persistence tier, integration testing in-container
 against entities, repositories and services, and how to write functional, black box tests with Selenium, both using Roo’s
 support for HTML table-based tests as well as using the JUnit API.

 Chapter 10 discusses email and JMS, two external integration points that most developers have to work with at some point in their careers.
 We begin by outlining a course management system, and then lay down the JMS and email features required to support that system.
 We cover JMS installation, the JMS template, building a POJO listener, and testing the listener. Then we cover building email
 messages with an email sender, configuring SMTP support, building an email template, and hosting it behind a Spring service.

 Chapter 11 is the introduction to Roo add-ons. We start by showing you how to search for publicly available add-ons and how to install
 and remove them. Because add-ons are OSGi components, we spend time detailing enough of OSGi to be dangerous, and then we
 dive right in and create three add-ons: a Norwegian language addon, a Roo wrapper add-on to expose a non-OSGi JAR to the Roo
 system, and a “Simple” add-on to provide jQuery support.

 Chapter 12 continues our add-on discussion and provides support for CoffeeScript by creating an advanced add-on. We install the Maven
 plug-in for CoffeeScript compilation, build and test it, and show you how to detect the availability of both adding and removing
 the feature from your project. We then wrap up the discussion by detailing how to publish and submit your add-on to the add-on
 community.

 Chapter 13 shows you how to use cloud computing to host your Roo applications. We discuss some of the platforms, including CloudBees
 and Heroku, and then focus on using Cloud Foundry, a VMware hosting offering. We deploy the Course Manager application to
 the cloud and show how to fetch application statistics, as well as how to bind cloud resources to the application.

 Chapter 14 details how to use Spring Integration from a Roo project. We discuss event-driven application architectures, how to add a
 workflow to handle course registration, and how to build and install the Roo integration add-on from source, because it’s
 not yet released for Roo 1.2.

Things you’ll need

 To follow along with the book, you’ll need to download and install Spring Roo, version 1.2.1, from http://springsource.org/spring-roo. We cover installation in chapter 1.

 You’ll also need an IDE; for the new Spring developer, we suggest using Spring-Source Tool Suite. Gordon has written an STS
 RefCard that can be downloaded free (note: registration required) from http://refcardz.dzone.com/refcardz/eclipse-toolsspring. This special version of Eclipse is fully configured to develop Spring-based applications, and can be configured to use your
 Roo shell.

 If you’re partial to IntelliJ IDEA, you can download version 10.5 or higher, though we recommend at least version 11. IntelliJ
 is an excellent alternative IDE, and provides support for many of the same features as SpringSource Tool Suite, the key omission
 being an integrated copy of the Spring tc Server web application server, which comes bundled with STS.

 You’ll also need to install Maven 3.0.3 or higher, because Roo projects are Maven projects. If you’re going to write your
 own add-ons, you’ll need to install GPG, an open source encryption provider. To make these add-ons available to the public,
 you’ll want to install Git and/or Subversion (SVN) to deliver your add-ons to public repositories hosted by Google Code, GitHub,
 or other places where the Roo team can access and index your add-on.

Notes on earlier versions of Roo

 Users of earlier versions of Roo will need to make some adjustments in their shell commands, and the classes will look notably
 different.

 In earlier versions of Roo, the only persistence mechanism is via the Roo Active Record pattern. Only Roo 1.2 and later will
 provide the service and repository commands, which set up layered Spring application objects. This is a topic which we discuss in chapters 3 and 4. Also, earlier versions of the persistence framework configuration use a persistence setup command, which has changed to the newer jpa setup in light of support for configuring non-SQL databases.

 Roo 1.2 introduces the concept of multimodule projects. Roo 1.1 and below have no such features.

 The add-ons chapters are compile-time incompatible with versions of Roo earlier than 1.2.1, because the framework has undergone
 significant refactoring between versions 1.0, 1.1, 1.2, and 1.2.1. Expect additional changes for the better in future versions.
 Concept-wise, the chapters hold up—the concept behind simple and advanced add-ons is the same; but the individual beans, interfaces,
 and techniques will vary.

 NoSQL database support is new in 1.2, and database reverse engineering is new as of Roo 1.1.

 The official Roo documentation discussed upgrading a Roo project. We’ve found the best course of action is to perform the
 upgrade, but then create a brand new scratch Roo project with the features you’re using, and diff the pom.xml file to make
 sure that you’ve been properly upgraded to the most recent version. Refer to the Roo documentation for details for each official
 release.

Code conventions

 We use specially formatted code in non-proportional type to convey symbols, commands, and fragments of source code. Roo (and
 Spring) make it hard to fit code on single lines, due to the fact that Spring developers are long-name happy (consider one
 of the longer class names, ClassPathXmlApplicationContext, to see what gave us many headaches when formatting our listings).

 If you see the line continuation character, it means that the command you’re typing is required to fit on a single line, or
 that the code we’ve reformatted was meant to exist on a single line. For example:

 roo> project --topLevelPackage org.foo.bar.long.project.package --projectName thebigprojectname

 We occasionally use the continuation character to show a long line in a generated artifact as well. This is shown for completeness.
 Other conventions:

	All code is listed in a Courier font.

 	We use Courier to highlight various commands, such as web mvc setup.

 	We skip long lists of Java import statements and nonessential source code fragments to illustrate key features.

 	We use bold code font to emphasize some areas of code examples to show important points.

 	We use italic font for emphasis and to detail new terms.

 	Code annotations are used instead of comments in code samples. Where comments are used, they appear in the code sample as
 a numbered bullet, and may have corresponding discussion points in the manuscript below the sample.

Source code

 The source code for Roo in Action is available at http://github.com/krimple/springroo-in-action-examples. You can also find links to the source code repository and a post-publication errata list on the Manning page for this book,
 http://manning.com/SpringRooinAction.

 As the Roo project progresses rapidly, we’ve constantly been reworking our examples and upgrading them before publication
 of the book. If you find a problem with the samples, please log a bug with the project by creating a GitHub account and clicking
 on the Issues tab. All samples are tested with Roo 1.2.1.

 We’ll also be taking contributions of example code to share with our readers—contact us via GitHub with pull requests to the
 user-contrib directory and we’ll review them. Assume that your samples will be available for use by the public Roo user community,
 and that the code should be freely contributed without additional restrictive source licenses. Any contributions are welcomed
 by the reader community, so feel free to lend your expertise.

Author Online

 The purchase of Spring Roo in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/SpringRooinAction. This page provides information on how to get on the forum after you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 KEN RIMPLE is a trainer, mentor, software developer, and musician who lives in the Philadelphia area. He has had an obsession with creativity
 in music and computers his whole life. His first real computer was a Commodore 64. At the same time he began his lifelong
 love affair with the drums. Today he’s a jazz drummer who plays whenever he can.

 Ken has been active in emerging technologies since he entered the IT sector in 1989, at the dawn of the client/server movement.
 He’s worked on technologies from fat clients to databases to servers, ranging from WebLogic to Tomcat. He is currently immersed
 in Spring technologies, including Roo and Grails.

 Ken runs Chariot’s education services (http://chariotsolutions.com/education) where he teaches Spring-related VMWare courses, including Maven and Hibernate, among others. He also hosts the Chariot TechCast
 (http://techcast.chariotsolutions.com) podcast, and blogs at http://rimple.com.

 SRINI PENCHIKALA works as a security architect at a financial services organization in Austin, Texas. He has over 16 years of experience in
 software architecture, security, and risk management. Srini’s areas of interest are Agile Security and Lean Enterprise Architectures.
 He has presented at conferences like JavaOne, SEI Architecture Technology Conference (SATURN), IT Architect Conference (ITARC),
 No Fluff Just Stuff, NoSQL Now, and the Project World Conference. Srini has published several articles on risk management,
 security architecture, and agile security methodologies on websites like InfoQ, The ServerSide, OReilly Network (ONJava),
 DevX Java, java.net, and JavaWorld. He is also an editor at InfoQ (http://www.infoq.com/author/Srini-Penchikala).

 Srini blogs on Java, software security, lean organizations, and leadership topics at http://srinip2007.blogspot.com/ and on twitter (@srinip).

About the Cover Illustration

 The figure on the cover of Spring Roo in Action is captioned “A man from Sinj, Dalmatia, Croatia.” The illustration is taken from a reproduction of an album of Croatian
 traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia,
 in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in
 the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304.
 The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of
 the costumes and of everyday life.

 Sinj is a small town in Dalmatia, about 25 miles north of Split. The figure on the cover wears black woolen trousers and a
 white linen shirt, over which he dons a black vest and black jacket, richly trimmed with the blue and red embroidery typical
 for this region. A red turban and colorful socks complete the costume. The man is also holding a pipe and has a short sword
 tucked under his belt.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Starting Spring apps rapidly with Roo

 Spring Roo is an excellent framework for the rapid development of Spring-based Java applications. With a simple command-line
 shell, it can create and manage Spring applications, adding and configuring components in all of the application architecture
 layers from SQL to URL, so to say.

 We start exploring Roo with chapter 1, “What is Spring Roo?” explaining how Roo works and how it helps with creating the various configuration files required for
 a typical Spring application. You’ll also learn how to install and launch the Roo shell. We’ll look at a simple application
 by running one of the sample scripts provided in the Roo installation package.

 Chapter 2, “Getting started with Roo,” will show you how to create applications from scratch with the Roo shell. You’ll also learn
 the details of Roo project layout and architecture. We discuss one of the new concepts Roo introduces, called AspectJ ITDs that plays an important role in the overall Roo architecture. As developers, you need tools to take advantage of new technologies
 and frameworks. Roo comes with integration in the form of the SpringSource Tool Suite (STS) IDE tool, which is also discussed
 in this chapter. We wrap up the chapter with a discussion on refactoring Roo code and leaving Roo behind if, for some reason,
 you want to remove Roo from your project.

Chapter 1. What is Spring Roo?

	

 This chapter covers

	
The challenges of Enterprise Java

 	The Spring Framework

 	Roo simplifies it all

 	A sample Roo project

	

You’re about to be introduced to a powerful new tool that makes your life as a Java application developer less stressful and
 more productive. That tool is Spring Roo. With a simple command-line shell, Roo can create and manage Spring-based applications,
 adding and configuring features such as the Java Persistence API (JPA), the Java Message Service (JMS), email, and Spring
 Security. Roo generates Spring MVC web applications. These allow you to manage and edit your database data, configure tests
 using frameworks such as JUnit and Selenium, and choose from a variety of ORM APIs and databases. At the same time, Roo reduces
 the amount of code written by you and rolls out efficient, customizable generated code.

 In this chapter, we discuss the challenges of working with Enterprise Java applications, create a sample application with
 the Roo shell, and take a quick tour of Roo’s features. We then review the Roo sample script file and discuss the architectural
 models available to you when crafting your application.

 By the end of this chapter, you’ll see how Roo helps you get rid of much of the tedium Java EE application development demands.
 You’ll see that you can gain much of the productivity available in dynamic-language, convention-over-configuration platforms
 such as Ruby on Rails and Grails. This all comes without sacrificing the benefits of Java compile-time type safety, compiled
 code, and debuggability.

 Let’s begin our journey by discussing one of the major reasons why Java-based development projects sputter: the complexity
 of configuring an application architecture.

1.1. Configuration is a burden

 Putting together a Java-based application can be a difficult task these days. Where do you start? There are many things to
 consider: build scripts, dependency management, architectural patterns, framework selections, database mapping strategies,
 and much more.

 In traditional Enterprise Java development efforts, architects pull together a hodgepodge of open source technologies and
 standards-driven platforms such as JDBC, the Servlet and JavaServer Pages (JSP) APIs, and Enterprise JavaBeans (EJB) using
 a build tool such as Ant or Maven. If they’re more advanced, they’ll use an application framework such as Struts and EJB,
 Seam, or Spring. Many starting templates, IDE shortcuts, and architectural and/or design patterns can be used to make development
 more efficient, but most of the work involves a lot of coding, physical build configuration, and design work.

 Contrast this with your friends programming in dynamic language platforms, such as Ruby on Rails or Grails, who take about
 15 minutes to get a basic application shell up and running. That shell usually includes a web application, database data and
 validation, and some basic business and navigation logic. Unlike a lot of Java application prototypes, theirs is usually the
 beginning of the final project, whereas Java developers have to try and throw away a fair number of APIs and platforms manually
 until they get to a point where they’re comfortable assigning a team to the project. The bottom line is that it just takes
 a long time to write a Java-based application.

 1.1.1. Spring reduces the pain

 The Spring Framework, a development platform that uses interface-driven development, dependency injection, aspect-oriented
 programming, and a number of helper APIs and services, significantly reduces the complexity of your Enterprise Java code.
 If you haven’t heard of Spring by now, we strongly suggest you put this book down and read up on the framework before you
 dig deeply into Roo. Craig Walls’ excellent Spring in Action is a great companion to this book.

 Spring operates on the principle of making your development less about busy work and more about writing business logic. Spring
 application developers define interface-driven beans that are then implemented as Plain Old Java Objects (POJOs) and mounted
 in a Spring container using XML, annotations, or Java-based configuration directives.

 Here’s an example business interface:

 package org.rooinaction.coursemanager.services;
...
public interface CourseManager {
 void addCourse(Course c);
 List<Course> getAllCourses();
}

 Spring developers then create an implementation class:

 package org.rooinaction.coursemanager.services;
...
public class CourseManagerDefaultImpl {
 public void addCourse(Course c) {
 // some logic here
 }
 public List<Course> getAllCourses() {
 // retrieve logic here
 }
}

 One way you can use this bean is to autowire it as shown next:

 package org.rooinaction.coursemanager.web;
...
public class CourseInputComponent {
 @Autowired
 private CourseManager courseManager;
 public void createACourse(String name) {
 Course c = new Course();
 c.setName(name);
 courseManager.addCourse(c);
 }
}

 We’re leaving out the configuration here, but the basic idea is a simple one: let Spring find and mount your component, deal
 with it at the interface level, and just write a POJO both to expose and use your component.

 You can use any Java API you can think of inside a Spring application, but you’re still required to add dependent JAR files
 and configuration to simplify the programming tasks later.

 1.1.2. Shifting from code to configuration

 Even Spring can’t save you from all of the tedium involved in building an application. There are many decisions that you need
 to make, as shown in figure 1.1.

 Figure 1.1. The number of choices when working in an Enterprise Java application is mind-numbing!

 [image:]

 Spring makes those tasks easier and shifts some of them to configuration, rather than coding, such as these:

	Configuring a web framework such as Spring MVC, JavaServer Faces, GWT, or Flex

 	Configuring a persistence tier

 	Building web components such as forms, menus, templates, localization, and themes

 	Exposing data for Ajax or web service calls

 	Reverse engineering a database model from an existing database

 	Handling messages from a message queue

 	Sending email

 	Integrating a new API or framework

Since Spring is so configurable, it almost provides you with too many choices of how to implement your solution. It’s an extremely
 flexible platform for development, but it can be difficult to make a good decision on how to move forward. The more choices
 developers are faced with when attempting to make a decision, the more difficult that decision becomes. Some developers may
 just begin to select a configuration option at random, or start experimenting with several, comparing the results. All of
 this takes time and can really hold up a project.

 1.1.3. Spring makes development less painful

 Spring can wrap or enable access to other APIs, even though you’re still working with those APIs and platforms to some degree.
 A crucial tenet of Spring is providing template beans for complex APIs in order to help simplify them.

 For example, the Spring JDBC API component, JdbcTemplate, provides method calls to query, insert, update, and delete data, which can be as short as a single line. Rather than writing
 long try... catch... finally... blocks and worrying about whether you should close a connection when faced with an exception, Spring does the setup and tear-down
 work for you.

 Here’s the Spring JDBC template method to fetch a single value from a SQL statement:

 int numSales = jdbcTemplate.queryForString(
 "select sum(price) from sales_order");

 Simple, isn’t it? The JDBC template does all of that boilerplate work for you and throws a translated Spring runtime exception
 if the query fails so that you don’t have to write tedious try... catch statements in your application.

 Spring eliminates the layers of exception hierarchies such as your application data-layer exception, service-layer exception,
 and web-layer exception. Sound familiar? If not, it’s likely because you’ve been working with Spring, which pioneered using
 runtime exceptions over declarative ones.

 Another way Spring helps is by providing factory beans to easily configure enterprise APIs. Those of you who’ve configured Hibernate applications by hand will appreciate Spring’s
 ability to set up Hibernate this way:

 <bean class="org.s.o.jpa.LocalContainerEntityManagerFactoryBean"
 id="entityManagerFactory">
 <property name="dataSource" ref="dataSource"/>
</bean>

	

Book Convention: What’s with the org.s.o.jpa in the Class Name?

 Spring (and Roo) code is a challenge to show in book format because the names of fully qualified classes often run quite long.
 We may abbreviate those names because we know that most developers can use an IDE or even Google to look up the packages of
 well-known classes such as the one above. By the way, it’s LocalContainerEntityManagerFactoryBean, which is located in the org.springframework.orm.jpa package.

	

You can use this entityManagerFactory bean to fetch a JPA entity manager, which is the API used to interact with a JPA-supported database:

 @PersistenceContext
private EntityManager em;
...
public List<Customer> fetchCustomers() {
 List<Customer> results =
 em.createQuery("select c from Customer c")
 .getResultList();
 return results;
}

 Note that you use a Java EE annotation here; @PersistenceContext communicates with the entity manager factory and requests that it fetch or create an entity manager for use by the developer. Spring can use Java EE annotations to expose and consume resources.

 1.1.4. Batteries still required

 From the programmer’s perspective, things are better under Spring. But even Spring applications require hands-on configuration
 activities.

 Somebody still has to configure JPA for the project, come up with a persistence strategy, and show the other developers how
 to use it. Let’s see how much work you would still have to do by hand in a Spring-based application:

 	Include dependent JAR files in the project for the JPA API, as well as a number of ORM vendor JAR files.

