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    foreword


    So, here’s the thing about reinforcement learning. It is difficult to learn and difficult to teach, for a number of reasons. First, it’s quite a technical topic. There is a great deal of math and theory behind it. Conveying the right amount of background without drowning in it is a challenge in and of itself.


    Second, reinforcement learning encourages a conceptual error. RL is both a way of thinking about decision-making problems and a set of tools for solving those problem. By “a way of thinking,” I mean that RL provides a framework for making decisions: it discusses states and reinforcement signals, among other details. When I say “a set of tools,” I mean that when we discuss RL, we find ourselves using terms like Markov decision processes and Bellman updates. It is remarkably easy to confuse the way of thinking with the mathematical tools we use in response to that way of thinking.


    Finally, RL is implementable in a wide variety of ways. Because RL is a way of thinking, we can discuss it by trying to realize the framework in a very abstract way, or ground it in code, or, for that matter, in neurons. The substrate one decides to use makes these two difficulties even more challenging—which bring us to deep reinforcement learning.


    Focusing on deep reinforcement learning nicely compounds all these problems at once. There is background on RL, and background on deep neural networks. Both are separately worthy of study and have developed in completely different ways. Working out how to explain both in the context of developing tools is no easy task. Also, do not forget that understanding RL requires understanding not only the tools and their realization in deep networks, but also understanding the way of thinking about RL; otherwise, you cannot generalize beyond the examples you study directly. Again, teaching RL is hard, and there are so many ways for teaching deep RL to go wrong—which brings us to Miguel Morales and this book.


    This book is very well put together. It explains in technical but clear language what machine learning is, what deep learning is, and what reinforcement learning is. It allows the reader to understand the larger context of where the field is and what you can do with the techniques of deep RL, but also the way of thinking that ML, RL, and deep RL present. It is clear and concise. Thus, it works as both a learning guide and as a reference, and, at least for me, as a source of some inspiration.


    I am not surprised by any of this. I’ve known Miguel for quite a few years now. He went from taking machine learning courses to teaching them. He has been the lead teaching assistant on my Reinforcement Learning and Decision Making course for the Online Masters of Science at Georgia Tech for more semesters than I can count. He’s reached thousands of students during that time. I’ve watched him grow as a practitioner, a researcher, and an educator. He has helped to make the RL course at GT better than it started out, and continues even as I write this to make the experience of grokking reinforcement learning a deeper one for the students. He is a natural teacher.


    This text reflects his talent. I am happy to be able to work with him, and I’m happy he’s been moved to write this book. Enjoy. I think you’ll learn a lot. I learned a few things myself.


    Charles Isbell, Jr.


    Professor and John P. Imlay Jr. Dean


    College of Computing


    Georgia Institute of Technology


    preface


    Reinforcement learning is an exciting field with the potential to make a profound impact on the history of humankind. Several technologies have influenced the history of our world and changed the course of humankind, from fire, to the wheel, to electricity, to the internet. Each technological discovery propels the next discovery in a compounding way. Without electricity, the personal computer wouldn’t exist; without it, the internet wouldn’t exist; without it, search engines wouldn’t exist.


    To me, the most exciting aspect of RL and artificial intelligence, in general, is not so much to merely have other intelligent entities next to us, which is pretty exciting, but instead, what comes after that. I believe reinforcement learning, being a robust framework for optimizing specific tasks autonomously, has the potential to change the world. In addition to task automation, the creation of intelligent machines may drive the understanding of human intelligence to places we have never been before. Arguably, if you can know with certainty how to find optimal decisions for every problem, you likely understand the algorithm that finds those optimal decisions. I have a feeling that by creating intelligent entities, humans can become more intelligent beings.


    But we are far away from this point, and to fulfill these wild dreams, we need more minds at work. Reinforcement learning is not only in its infancy, but it’s been in that state for a while, so there is much work ahead. The reason I wrote this book is to get more people grokking deep RL, and RL in general, and to help you contribute.


    Even though the RL framework is intuitive, most of the resources out there are difficult to understand for newcomers. My goal was not to write a book that provides code examples only, and most definitely not to create a resource that teaches the theory of reinforcement learning. Instead, my goal was to create a resource that can bridge the gap between theory and practice. As you’ll soon see, I don’t shy away from equations; they are essential if you want to grok a research field. And, even if your goal is practical, to build quality RL solutions, you still need that theoretical foundation. However, I also don’t solely rely on equations because not everybody interested in RL is fond of math. Some people are more comfortable with code and concrete examples, so this book provides the practical side of this fantastic field.


    Most of my effort during this three-year project went into bridging this gap; I don’t shy away from intuitively explaining the theory, and I don’t just plop down code examples. I do both, and in a very detail-oriented fashion. Those who have a hard time understanding the textbooks and lectures can more easily grasp the words top researchers use: why those specific words, why not other words. And those who know the words and love reading the equations but have trouble seeing those equations in code and how they connect can more easily understand the practical side of reinforcement learning.


    Finally, I hope you enjoy this work, and more importantly that it does fulfill its goal for you. I hope that you emerge grokking deep reinforcement learning and can give back and contribute to this fantastic community that I’ve grown to love. As I mentioned before, you wouldn’t be reading this book if it wasn’t for a myriad of relatively recent technological innovations, but what happens after this book is up to you, so go forth and make an impact in the world.
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    about this book


    grokking Deep Reinforcement Learning bridges the gap between the theory and practice of deep reinforcement learning. The book’s target audience is folks familiar with machine learning techniques, who want to learn reinforcement learning. The book begins with the foundations of deep reinforcement learning. It then provides an in-depth exploration of algorithms and techniques for deep reinforcement learning. Lastly, it provides a survey of advanced techniques with the potential for making an impact.


    Who should read this book


    Folks who are comfortable with a research field, Python code, a bit of math here and there, lots of intuitive explanations, and fun and concrete examples to drive the learning will enjoy this book. However, any person only familiar with Python can get a lot, given enough interest in learning. Even though basic DL knowledge is assumed, this book provides a brief refresher on neural networks, backpropagation, and related techniques. The bottom line is that this book is self contained, and anyone wanting to play around with AI agents and emerge grokking deep reinforcement learning can use this book to get them there.


    How this book is organized: a roadmap


    This book has 13 chapters divided into two parts.


    In part 1, chapter 1 introduces the field of deep reinforcement learning and sets expectations for the journey ahead. Chapter 2 introduces a framework for designing problems that RL agents can understand. Chapter 3 contains details of algorithms for solving RL problems when the agent knows the dynamics of the world. Chapter 4 contains details of algorithms for solving simple RL problems when the agent does not know the dynamics of the world. Chapter 5 introduces methods for solving the prediction problem, which is a foundation for advanced RL methods.


    In part 2, chapter 6 introduces methods for solving the control problem, methods that optimize policies purely from trial-and-error learning. Chapter 7 teaches more advanced methods for RL, including methods that use planning for more sample efficiency. Chapter 8 introduces the use of function approximation in RL by implementing a simple RL algorithm that uses neural networks for function approximation. Chapter 9 dives into more advanced techniques for using function approximation for solving reinforcement learning problems. Chapter 10 teaches some of the best techniques for further improving the methods introduced so far. Chapter 11 introduces a slightly different technique for using DL models with RL that has proven to reach state-of-the-art performance in multiple deep RL benchmarks. Chapter 12 dives into more advanced methods for deep RL, state-of-the-art algorithms, and techniques commonly used for solving real-world problems. Chapter 13 surveys advanced research areas in RL that suggest the best path for progress toward artificial general intelligence.


    About the code


    This book contains many examples of source code both in boxes titled “I speak Python” and in the text. Source code is formatted in a fixed-width font like this to separate it from ordinary text and has syntax highlighting to make it easier to read.


    In many cases, the original source code has been reformatted; we’ve added line breaks, renamed variables, and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and code includes line-continuation operator in Python, the backslash (\), to indicate that a statement is continued on the next line.


    Additionally, comments in the source code have often been removed from the boxes, and the code is described in the text. Code annotations point out important concepts.


    The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/grokking-deep-reinforcement-learning and from GitHub at https://github.com/mimoralea/gdrl.


    liveBook discussion forum


    Purchase of grokking Deep Reinforcement Learning includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/grokking-deep-reinforcement-learning/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


    Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


    about the author


    Miguel Morales works on reinforcement learning at Lockheed Martin, Missiles and Fire Control, Autonomous Systems, in Denver, Colorado. He is a part-time Instructional Associate at Georgia Institute of Technology for the course in Reinforcement Learning and Decision Making. Miguel has worked for Udacity as a machine learning project reviewer, a Self-driving Car Nanodegree mentor, and a Deep Reinforcement Learning Nanodegree content developer. He graduated from Georgia Tech with a Master’s in Computer Science, specializing in interactive intelligence.

  


    


  
    1 Introduction to deep reinforcement learning


  


  
    In this chapter


    
      	You will learn what deep reinforcement learning is and how it is different from other machine learning approaches.


      	You will learn about the recent progress in deep reinforcement learning and what it can do for a variety of problems.


      	You will know what to expect from this book and how to get the most out of it.

    


    I visualize a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.


    — Claude Shannon Father of the information age and contributor to the field of artificial intelligence


    
      Humans naturally pursue feelings of happiness. From picking out our meals to advancing our careers, every action we choose is derived from our drive to experience rewarding moments in life. Whether these moments are self-centered pleasures or the more generous of goals, whether they bring us immediate gratification or long-term success, they’re still our perception of how important and valuable they are. And to some extent, these moments are the reason for our existence.


      Our ability to achieve these precious moments seems to be correlated with intelligence; “intelligence” is defined as the ability to acquire and apply knowledge and skills. People who are deemed by society as intelligent are capable of trading not only immediate satisfaction for long-term goals, but also a good, certain future for a possibly better, yet uncertain, one. Goals that take longer to materialize and that have unknown long-term value are usually the hardest to achieve, and those who can withstand the challenges along the way are the exception, the leaders, the intellectuals of society.


      In this book, you learn about an approach, known as deep reinforcement learning, involved with creating computer programs that can achieve goals that require intelligence. In this chapter, I introduce deep reinforcement learning and give suggestions to get the most out of this book.


      What is deep reinforcement learning?


      Deep reinforcement learning (DRL) is a machine learning approach to artificial intelligence concerned with creating computer programs that can solve problems requiring intelligence. The distinct property of DRL programs is learning through trial and error from feedback that’s simultaneously sequential, evaluative, and sampled by leveraging powerful non-linear function approximation.


      I want to unpack this definition for you one bit at a time. But, don’t get too caught up with the details because it’ll take me the whole book to get you grokking deep reinforcement learning. The following is the introduction to what you learn about in this book. As such, it’s repeated and explained in detail in the chapters ahead.


      If I succeed with my goal for this book, after you complete it, you should understand this definition precisely. You should be able to tell why I used the words that I used, and why I didn’t use more or fewer words. But, for this chapter, simply sit back and plow through it.


      Deep reinforcement learning is a machine learning approach to artificial intelligence


      artificial intelligence (AI) is a branch of computer science involved in the creation of computer programs capable of demonstrating intelligence. Traditionally, any piece of software that displays cognitive abilities such as perception, search, planning, and learning is considered part of AI. Several examples of functionality produced by AI software are


      
        	The pages returned by a search engine


        	The route produced by a GPS app


        	The voice recognition and the synthetic voice of smart-assistant software


        	The products recommended by e-commerce sites


        	The follow-me feature in drones

      


      [image: ]


      Subfields of artificial intelligence


      All computer programs that display intelligence are considered AI, but not all examples of AI can learn. machine learning (ML) is the area of AI concerned with creating computer programs that can solve problems requiring intelligence by learning from data. There are three main branches of ML: supervised, unsupervised, and reinforcement learning.


      [image: ]


      Main branches of machine learning


      supervised learning (SL) is the task of learning from labeled data. In SL, a human decides which data to collect and how to label it. The goal in SL is to generalize. A classic example of SL is a handwritten-digit-recognition application: a human gathers images with handwritten digits, labels those images, and trains a model to recognize and classify digits in images correctly. The trained model is expected to generalize and correctly classify handwritten digits in new images.


      unsupervised learning (UL) is the task of learning from unlabeled data. Even though data no longer needs labeling, the methods used by the computer to gather data still need to be designed by a human. The goal in UL is to compress. A classic example of UL is a customer segmentation application; a human collects customer data and trains a model to group customers into clusters. These clusters compress the information, uncovering underlying relationships in customers.


      reinforcement learning (RL) is the task of learning through trial and error. In this type of task, no human labels data, and no human collects or explicitly designs the collection of data. The goal in RL is to act. A classic example of RL is a Pong-playing agent; the agent repeatedly interacts with a Pong emulator and learns by taking actions and observing their effects. The trained agent is expected to act in such a way that it successfully plays Pong.


      A powerful recent approach to ML, called deep learning (DL), involves using multi-layered non-linear function approximation, typically neural networks. DL isn’t a separate branch of ML, so it’s not a different task than those described previously. DL is a collection of techniques and methods for using neural networks to solve ML tasks, whether SL, UL, or RL. DRL is simply the use of DL to solve RL tasks.
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      Deep learning is a powerful toolbox


      The bottom line is that DRL is an approach to a problem. The field of AI defines the problem: creating intelligent machines. One of the approaches to solving that problem is DRL. Throughout the book, will you find comparisons between RL and other ML approaches, but only in this chapter will you find definitions and a historical overview of AI in general. It’s important to note that the field of RL includes the field of DRL, so although I make a distinction when necessary, when I refer to RL, remember that DRL is included.


      Deep reinforcement learning is concerned with creating computer programs


      At its core, DRL is about complex sequential decision-making problems under uncertainty. But, this is a topic of interest in many fields; for instance, control theory (CT) studies ways to control complex known dynamic systems. In CT, the dynamics of the systems we try to control are usually known in advance. Operations research (OR), another instance, also studies decision-making under uncertainty, but problems in this field often have much larger action spaces than those commonly seen in DRL. psychology studies human behavior, which is partly the same “complex sequential decision-making under uncertainty” problem.
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      The synergy between similar fields


      The bottom line is that you have come to a field that’s influenced by a variety of others. Although this is a good thing, it also brings inconsistencies in terminologies, notations, and so on. My take is the computer science approach to this problem, so this book is about building computer programs that solve complex decision-making problems under uncertainty, and as such, you can find code examples throughout the book.


      In DRL, these computer programs are called agents. An agent is a decision maker Only and nothing else. That means if you’re training a robot to pick up objects, the robot arm isn’t part of the agent. Only the code that makes decisions is referred to as the agent.


      Deep reinforcement learning agents can solve problems that require intelligence


      On the other side of the agent is the environment. The environment is everything outside the agent; everything the agent has no total control over. Again, imagine you’re training a robot to pick up objects. The objects to be picked up, the tray where the objects lay, the wind, and everything outside the decision maker are part of the environment. That means the robot arm is also part of the environment because it isn’t part of the agent. And even though the agent can decide to move the arm, the actual arm movement is noisy, and thus the arm is part of the environment.


      This strict boundary between the agent and the environment is counterintuitive at first, but the decision maker, the agent, can only have a single role: making decisions. Everything that comes after the decision gets bundled into the environment.
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      Boundary between agent and environment


      Chapter 2 provides an in-depth survey of all the components of DRL. The following is a preview of what you’ll learn in chapter 2.


      The environment is represented by a set of variables related to the problem. For instance, in the robotic arm example, the location and velocities of the arm would be part of the variables that make up the environment. This set of variables and all the possible values that they can take are referred to as the state space. A state is an instantiation of the state space, a set of values the variables take.


      Interestingly, often, agents don’t have access to the actual full state of the environment. The part of a state that the agent can observe is called an Observation. Observations depend on states but are what the agent can see. For instance, in the robotic arm example, the agent may only have access to camera images. While an exact location of each object exists, the agent doesn’t have access to this specific state. Instead, the observations the agent perceives are derived from the states. You’ll often see in the literature states being used interchangeably, including in this book. I apologize in advance for the inconsistencies. Simply know the differences and be aware of the lingo; that’s what matters.
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      States vs. observations


      At each state, the environment makes available a set of actions the agent can choose from. The agent influences the environment through these actions. The environment may change states as a response to the agent’s action. The function that’s responsible for this mapping is called the transition function. The environment may also provide a reward signal as a response. The function responsible for this mapping is called the reward function. The set of transition and reward functions is referred to as the model of the environment.
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      The reinforcement learning cycle


      The environment commonly has a well-defined task. The goal of this task is defined through the reward function. The reward-function signals can be simultaneously sequential, evaluative, and sampled. To achieve the goal, the agent needs to demonstrate intelligence, or at least cognitive abilities commonly associated with intelligence, such as long-term thinking, information gathering, and generalization.


      The agent has a three-step process: the agent interacts with the environment, the agent evaluates its behavior, and the agent improves its responses. The agent can be designed to learn mappings from observations to actions called policies. The agent can be designed to learn the model of the environment on mappings called models. The agent can be designed to learn to estimate the reward-to-go on mappings called value functions.


      Deep reinforcement learning agents improve their behavior through trial-and-error learning


      The interactions between the agent and the environment go on for several cycles. Each cycle is called a time step. At each time step, the agent observes the environment, takes action, and receives a new observation and reward. The set of the state, the action, the reward, and the new state is called an experience. Every experience has an opportunity for learning and improving performance.
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      Experience tuples


      The task the agent is trying to solve may or may not have a natural ending. Tasks that have a natural ending, such as a game, are called episodic tasks. Conversely, tasks that don’t are called continuing tasks, such as learning forward motion. The sequence of time steps from the beginning to the end of an episodic task is called an episode. Agents may take several time steps and episodes to learn to solve a task. Agents learn through trial and error: they try something, observe, learn, try something else, and so on.


      You’ll start learning more about this cycle in chapter 4, which contains a type of environment with a single step per episode. Starting with chapter 5, you’ll learn to deal with environments that require more than a single interaction cycle per episode.


      Deep reinforcement learning agents learn from sequential feedback


      The action taken by the agent may have delayed consequences. The reward may be sparse and only manifest after several time steps. Thus the agent must be able to learn from sequential feedback. Sequential feedback gives rise to a problem referred to as the temporal credit assignment problem. The temporal credit assignment problem is the challenge of determining which state and/or action is responsible for a reward. When there’s a temporal component to a problem, and actions have delayed consequences, it’s challenging to assign credit for rewards.
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      The difficulty of the temporal credit assignment problem


      In chapter 3, we’ll study the ins and outs of sequential feedback in isolation. That is, your programs learn from simultaneously sequential, supervised (as opposed to evaluative), and exhaustive (as opposed to sampled) feedback.


      Deep reinforcement learning agents learn from evaluative feedback


      The reward received by the agent may be weak, in the sense that it may provide no supervision. The reward may indicate goodness and not correctness, meaning it may contain no information about other potential rewards. Thus the agent must be able to learn from evaluative feedback. Evaluative feedback gives rise to the need for exploration. The agent must be able to balance the gathering of information with the exploitation of current information. This is also referred to as the exploration versus exploitation trade-off.
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      The difficulty of the exploration vs. exploitation trade-off


      In chapter 4, we’ll study the ins and outs of evaluative feedback in isolation. That is, your programs will learn from feedback that is simultaneously one-shot (as opposed to sequential), evaluative, and exhaustive (as opposed to sampled).


      Deep reinforcement learning agents learn from sampled feedback


      The reward received by the agent is merely a sample, and the agent doesn’t have access to the reward function. Also, the state and action spaces are commonly large, even infinite, so trying to learn from sparse and weak feedback becomes a harder challenge with samples. Therefore, the agent must be able to learn from sampled feedback, and it must be able to generalize.
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      The difficulty of learning from sampled feedback


      Agents that are designed to approximate policies are called policy-based; agents that are designed to approximate value functions are called value-based; agents that are designed to approximate models are called model-based; and agents that are designed to approximate both policies and value functions are called actor-critic. Agents can be designed to approximate one or more of these components.


      Deep reinforcement learning agents use powerful non-linear function approximation


      The agent can approximate functions using a variety of ML methods and techniques, from decision trees to SVMs to neural networks. However, in this book, we use only neural networks; this is what the “deep” part of DRL refers to, after all. Neural networks aren’t necessarily the best solution to every problem; neural networks are data hungry and challenging to interpret, and you must keep these facts in mind. However, neural networks are among the most potent function approximations available, and their performance is often the best.
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      A simple feed-forward neural network


      artificial neural networks (ANN) are multi-layered non-linear function approximators loosely inspired by the biological neural networks in animal brains. An ANN isn’t an algorithm, but a structure composed of multiple layers of mathematical transformations applied to input values.


      From chapter 3 through chapter 7, we only deal with problems in which agents learn from exhaustive (as opposed to sampled) feedback. Starting with chapter 8, we study the full DRL problem; that is, using deep neural networks so that agents can learn from sampled feedback. Remember, DRL agents learn from feedback that’s simultaneously sequential, evaluative, and sampled.


      The past, present, and future of deep reinforcement learning


      History isn’t necessary to gain skills, but it can allow you to understand the context around a topic, which in turn can help you gain motivation, and therefore, skills. The history of AI and DRL should help you set expectations about the future of this powerful technology. At times, I feel the hype surrounding AI is actually productive; people get interested. But, right after that, when it’s time to put in work, hype no longer helps, and it’s a problem. Although I’d like to be excited about AI, I also need to set realistic expectations.


      Recent history of artificial intelligence and deep reinforcement learning


      The beginnings of DRL could be traced back many years, because humans have been intrigued by the possibility of intelligent creatures other than ourselves since antiquity. But a good beginning could be Alan Turing’s work in the 1930s, 1940s, and 1950s that paved the way for modern computer science and AI by laying down critical theoretical foundations that later scientists leveraged.


      The most well-known of these is the Turing Test, which proposes a standard for measuring machine intelligence: if a human interrogator is unable to distinguish a machine from another human on a chat Q&A session, then the computer is said to count as intelligent. Though rudimentary, the Turing Test allowed generations to wonder about the possibilities of creating smart machines by setting a goal that researchers could pursue.


      The formal beginnings of AI as an academic discipline can be attributed to John McCarthy, an influential AI researcher who made several notable contributions to the field. To name a few, McCarthy is credited with coining the term “artificial intelligence” in 1955, leading the first AI conference in 1956, inventing the Lisp programming language in 1958, cofounding the MIT AI Lab in 1959, and contributing important papers to the development of AI as a field over several decades.


      Artificial intelligence winters


      All the work and progress of AI early on created a great deal of excitement, but there were also significant setbacks. Prominent AI researchers suggested we would create human-like machine intelligence within years, but this never came. Things got worse when a well-known researcher named James Lighthill compiled a report criticizing the state of academic research in AI. All of these developments contributed to a long period of reduced funding and interest in AI research known as the first AI winter.


      The field continued this pattern throughout the years: researchers making progress, people getting overly optimistic, then overestimating—leading to reduced funding by government and industry partners.


      [image: ]


      Al funding pattern through the years


      The current state of artificial intelligence


      We are likely in another highly optimistic time in AI history, so we must be careful. Practitioners understand that AI is a powerful tool, but certain people think of AI as this magic black box that can take any problem in and out comes the best solution ever. Nothing can be further from the truth. Other people even worry about AI gaining consciousness, as if that was relevant, as Edsger W. Dijkstra famously said: “The question of whether a computer can think is no more interesting than the question of whether a submarine can swim.”


      But, if we set aside this Hollywood-instilled vision of AI, we can allow ourselves to get excited about the recent progress in this field. Today, the most influential companies in the world make the most substantial investments to AI research. Companies such as Google, Facebook, Microsoft, Amazon, and Apple have invested in AI research and have become highly profitable thanks, in part, to AI systems. Their significant and steady investments have created the perfect environment for the current pace of AI research. Contemporary researchers have the best computing power available and tremendous amounts of data for their research, and teams of top researchers are working together, on the same problems, in the same location, at the same time. Current AI research has become more stable and more productive. We have witnessed one AI success after another, and it doesn’t seem likely to stop anytime soon.


      Progress in deep reinforcement learning


      The use of artificial neural networks for RL problems started around the 1990s. One of the classics is the backgammon-playing computer program, TD-Gammon, created by Gerald Tesauro et al. TD-Gammon learned to play backgammon by learning to evaluate table positions on its own through RL. Even though the techniques implemented aren’t precisely considered DRL, TD-Gammon was one of the first widely reported success stories using ANNs to solve complex RL problems.
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      TD-Gammon architecture


      In 2004, Andrew Ng et al. developed an autonomous helicopter that taught itself to fly stunts by observing hours of human-experts flights. They used a technique known as inverse reinforcement learning, in which an agent learns from expert demonstrations. The same year, Nate Kohl and Peter Stone used a class of DRL methods known as policy-gradient methods to develop a soccer-playing robot for the RoboCup tournament. They used RL to teach the agent forward motion. After only three hours of training, the robot achieved the fastest forward-moving speed of any robot with the same hardware.


      There were other successes in the 2000s, but the field of DRL really only started growing after the DL field took off around 2010. In 2013 and 2015, Mnih et al. published a couple of papers presenting the DQN algorithm. DQN learned to play Atari games from raw pixels. Using a convolutional neural network (CNN) and a single set of hyperparameters, DQN performed better than a professional human player in 22 out of 49 games.
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      Atari DQN network architecture


      This accomplishment started a revolution in the DRL community: In 2014, Silver et al. released the deterministic policy gradient (DPG) algorithm, and a year later Lillicrap et al. improved it with deep deterministic policy gradient (DDPG). In 2016, Schulman et al. released trust region policy optimization (TRPO) and generalized advantage estimation (GAE) methods, Sergey Levine et al. published Guided Policy Search (GPS), and Silver et al. demoed AlphaGo. The following year, Silver et al. demonstrated AlphaZero. Many other algorithms were released during these years: double deep Q-networks (DDQN), prioritized experience replay (PER), proximal policy optimization (PPO), actor-critic with experience replay (ACER), asynchronous advantage actor-critic (A3C), advantage actor-critic (A2C), actor-critic using Kronecker-factored trust region (ACKTR), Rainbow, Unicorn (these are actual names, BTW), and so on. In 2019, Oriol Vinyals et al. showed the AlphaStar agent beat professional players at the game of StarCraft II. And a few months later, Jakub Pachocki et al. saw their team of Dota-2-playing bots, called Five, become the first AI to beat the world champions in an e-sports game.


      Thanks to the progress in DRL, we’ve gone in two decades from solving backgammon, with its 1020 perfect-information states, to solving the game of Go, with its 10170 perfect-information states, or better yet, to solving StarCraft II, with its 10270 imperfect-information states. It’s hard to conceive a better time to enter the field. Can you imagine what the next two decades will bring us? Will you be part of it? DRL is a booming field, and I expect its rate of progress to continue.
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      Game of Go: enormous branching factor


      Opportunities ahead


      I believe AI is a field with unlimited potential for positive change, regardless of what fear-mongers say. Back in the 1750s, there was chaos due to the start of the industrial revolution. Powerful machines were replacing repetitive manual labor and mercilessly displacing humans. Everybody was concerned: machines that can work faster, more effectively, and more cheaply than humans? These machines will take all our jobs! What are we going to do for a living now? And it happened. But the fact is that many of these jobs were not only unfulfilling, but also dangerous.


      One hundred years after the industrial revolution, the long-term effects of these changes were benefiting communities. People who usually owned only a couple of shirts and a pair of pants could get much more for a fraction of the cost. Indeed, change was difficult, but the long-term effects benefited the entire world.


      The digital revolution started in the 1970s with the introduction of personal computers. Then, the internet changed the way we do things. Because of the internet, we got big data and cloud computing. ML used this fertile ground for sprouting into what it is today. In the next couple of decades, the changes and impact of AI on society may be difficult to accept at first, but the long-lasting effects will be far superior to any setback along the way. I expect in a few decades humans won’t even need to work for food, clothing, or shelter because these things will be automatically produced by AI. We’ll thrive with abundance.
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      Workforce revolutions


      As we continue to push the intelligence of machines to higher levels, certain AI researchers think we might find an AI with intelligence superior to our own. At this point, we unlock a phenomenon known as the singularity; an AI more intelligent than humans allows for the improvement of AI at a much faster pace, given that the self-improvement cycle no longer has the bottleneck, namely, humans. But we must be prudent, because this is more of an ideal than a practical aspect to worry about.
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      Singularity could be a few decades away


      While one must be always aware of the implications of AI and strive for AI safety, the singularity isn’t an issue today. On the other hand, many issues exist with the current state of DRL, as you’ll see in this book. These issues make better use of our time.


      The suitability of deep reinforcement learning


      You could formulate any ML problem as a DRL problem, but this isn’t always a good idea for multiple reasons. You should know the pros and cons of using DRL in general, and you should be able to identify what kinds of problems and settings DRL is good and not so good for.


      What are the pros and cons?


      Beyond a technological comparison, I’d like you to think about the inherent advantages and disadvantages of using DRL for your next project. You’ll see that each of the points highlighted can be either a pro or a con depending on what kind of problem you’re trying to solve. For instance, this field is about letting the machine take control. Is this good or bad? Are you okay with letting the computer make the decisions for you? There’s a reason why DRL research environments of choice are games: it could be costly and dangerous to have agents training directly in the real world. Can you imagine a self-driving car agent learning not to crash by crashing? In DRL, the agents will have to make mistakes. Can you afford that? Are you willing to risk the negative consequences—actual harm—to humans? Considered these questions before starting your next DRL project.
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      Deep reinforcement learning agents will explore! Can you afford mistakes?


      You’ll also need to consider how your agent will explore its environment. For instance, most value-based methods explore by randomly selecting an action. But other methods can have more strategic exploration strategies. Now, there are pros and cons to each, and this is a trade-off you’ll have to become familiar with.


      Finally, training from scratch every time can be daunting, time consuming, and resource intensive. However, there are a couple of areas that study how to bootstrap previously acquired knowledge. First, there’s transfer learning, which is about transferring knowledge gained in tasks to new ones. For example, if you want to teach a robot to use a hammer and a screwdriver, you could reuse low-level actions learned on the “pick up the hammer” task and apply this knowledge to start learning the “pick up the screwdriver” task. This should make intuitive sense to you, because humans don’t have to relearn low-level motions each time they learn a new task. Humans seem to form hierarchies of actions as we learn. The field of Hierarchical reinforcement learning tries to replicate this in DRL agents.


      Deep reinforcement learning’s strengths


      DRL is about mastering specific tasks. Unlike SL, in which generalization is the goal, RL is good at concrete, well-specified tasks. For instance, each Atari game has a particular task. DRL agents aren’t good at generalizing behavior across different tasks; it’s not true that because you train an agent to play Pong, this agent can also play Breakout. And if you naively try to teach your agent Pong and Breakout simultaneously, you’ll likely end up with an agent that isn’t good at either. SL, on the other hand, is pretty good a classifying multiple objects at once. The point is the strength of DRL is well-defined single tasks.


      In DRL, we use generalization techniques to learn simple skills directly from raw sensory input. The performance of generalization techniques, new tips, and tricks on training deeper networks, and so on, are some of the main improvements we’ve seen in recent years. Lucky for us, most DL advancements directly enable new research paths in DRL.


      Deep reinforcement learning’s weaknesses


      Of course, DRL isn’t perfect. One of the most significant issues you’ll find is that in most problems, agents need millions of samples to learn well-performing policies. Humans, on the other hand, can learn from a few interactions. Sample efficiency is probably one of the top areas of DRL that could use improvements. We’ll touch on this topic in several chapters because it’s a crucial one.
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      Deep reinforcement learning agents need lots of interaction samples!


      Another issue with DRL is with reward functions and understanding the meaning of rewards. If a human expert will define the rewards the agent is trying to maximize, does that mean that we’re somewhat “supervising” this agent? And is this something good? Should the reward be as dense as possible, which makes learning faster, or as sparse as possible, which makes the solutions more exciting and unique?


      We, as humans, don’t seem to have explicitly defined rewards. Often, the same person can see an event as positive or negative by simply changing their perspective. Additionally, a reward function for a task such as walking isn’t straightforward to design. Is it the forward motion that we should target, or is it not falling? What is the “perfect” reward function for a human walk?!


      There’s ongoing interesting research on reward signals. One I’m particularly interested in is called intrinsic motivation. Intrinsic motivation allows the agent to explore new actions just for the sake of it, out of curiosity. Agents that use intrinsic motivation show improved learning performance in environments with sparse rewards, which means we get to keep exciting and unique solutions. The point is if you’re trying to solve a task that hasn’t been modeled or doesn’t have a distinct reward function, you’ll face challenges.


      Setting clear two-way expectations


      Let’s now touch on another important point going forward. What to expect? Honestly, to me, this is very important. First, I want you to know what to expect from the book so there are no surprises later on. I don’t want people to think that from this book, they’ll be able to come up with a trading agent that will make them rich. Sorry, I wouldn’t be writing this book if it was that simple. I also expect that people who are looking to learn put in the necessary work. The fact is that learning will come from the combination of me putting in the effort to make concepts understandable and you putting in the effort to understand them. I did put in the effort. But, if you decide to skip a box you didn’t think was necessary, we both lose.


      What to expect from the book?


      My goal for this book is to take you, an ML enthusiast, from no prior DRL experience to capable of developing state-of-the-art DRL algorithms. For this, the book is organized into roughly two parts. In chapters 3 through 7, you learn about agents that can learn from sequential and evaluative feedback, first in isolation, and then in interplay. In chapters 8 through 12, you dive into core DRL algorithms, methods, and techniques. Chapters 1 and 2 are about introductory concepts applicable to DRL in general, and chapter 13 has concluding remarks.


      My goal for the first part (chapters 3 through 7) is for you to understand “tabular” RL. That is, RL problems that can be exhaustively sampled, problems in which there’s no need for neural networks or function approximation of any kind. Chapter 3 is about the sequential aspect of RL and the temporal credit assignment problem. Then, we’ll study, also in isolation, the challenge of learning from evaluative feedback and the exploration versus exploitation trade-off in chapter 4. Last, you learn about methods that can deal with these two challenges simultaneously. In chapter 5, you study agents that learn to estimate the results of fixed behavior. Chapter 6 deals with learning to improve behavior, and chapter 7 shows you techniques that make RL more effective and efficient.


      My goal for the second part (chapters 8 through 12) is for you to grasp the details of core DRL algorithms. We dive deep into the details; you can be sure of that. You learn about the many different types of agents from value- and policy-based to actor-critic methods. In chapters 8 through 10, we go deep into value-based DRL. In chapter 11, you learn about policy-based DRL and actor-critic, and chapter 12 is about deterministic policy gradient (DPG) methods, soft actor-critic (SAC) and proximal policy optimization (PPO) methods.


      The examples in these chapters are repeated throughout agents of the same type to make comparing and contrasting agents more accessible. You still explore fundamentally different kinds of problems, from small, continuous to image-based state spaces, and from discrete to continuous action spaces. But, the book’s focus isn’t about modeling problems, which is a skill of its own; instead, the focus is about solving already modeled environments.
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      Comparison of different algorithmic approaches to deep reinforcement learning


      How to get the most out of this book


      There are a few things you need to bring to the table to come out grokking deep reinforcement learning. You need to bring a little prior basic knowledge of ML and DL. You need to be comfortable with Python code and simple math. And most importantly, you must be willing to put in the work.


      I assume that the reader has a solid basic understanding of ML. You should know what ML is beyond what’s covered in this chapter; you should know how to train simple SL models, perhaps the Iris or Titanic datasets; you should be familiar with DL concepts such as tensors and matrices; and you should have trained at least one DL model, say a convolutional neural network (CNN) on the MNIST dataset.


      This book is focused on DRL topics, and there’s no DL in isolation. There are many useful resources out there that you can leverage. But, again, you need a basic understanding; If you’ve trained a CNN before, then you’re fine. Otherwise, I highly recommend you follow a couple of DL tutorials before starting the second part of the book.


      Another assumption I’m making is that the reader is comfortable with Python code. Python is a somewhat clear programming language that can be straightforward to understand, and people not familiar with it often get something out of merely reading it. Now, my point is that you should be comfortable with it, willing and looking forward to reading the code. If you don’t read the code, then you’ll miss out on a lot.


      Likewise, there are many math equations in this book, and that’s a good thing. Math is the perfect language, and there’s nothing that can replace it. However, I’m asking people to be comfortable with math, willing to read, and nothing else. The equations I show are heavily annotated so that people “not into math” can still take advantage of the resources.


      Finally, I’m assuming you’re willing to put in the work. By that I mean you really want to learn DRL. If you decide to skip the math boxes, or the Python snippets, or a section, or one page, or chapter, or whatever, you’ll miss out on a lot of relevant information. To get the most out of this book, I recommend you read the entire book front to back. Because of the different format, figures and sidebars are part of the main narrative in this book.


      Also, make sure you run the book source code (the next section provides more details on how to do this), and play around and extend the code you find most interesting.


      Deep reinforcement learning development environment


      Along with this book, you’re provided with a fully tested environment and code to reproduce my results. I created a Docker image and several Jupyter Notebooks so that you don’t have to mess around with installing packages and configuring software, or copying and pasting code. The only prerequisite is Docker. Please, go ahead and follow the directions at https://github.com/mimoralea/gdrl on running the code. It’s pretty straightforward.


      The code is written in Python, and I make heavy use of NumPy and PyTorch. I chose PyTorch, instead of Keras, or TensorFlow, because I found PyTorch to be a “Pythonic” library. Using PyTorch feels natural if you have used NumPy, unlike TensorFlow, for instance, which feels like a whole new programming paradigm. Now, my intention is not to start a “PyTorch versus TensorFlow” debate. But, in my experience from using both libraries, PyTorch is a library much better suited for research and teaching.


      DRL is about algorithms, methods, techniques, tricks, and so on, so it’s pointless for us to rewrite a NumPy or a PyTorch library. But, also, in this book, we write DRL algorithms from scratch; I’m not teaching you how to use a DRL library, such as Keras-RL, or Baselines, or RLlib. I want you to learn DRL, and therefore we write DRL code. In the years that I’ve been teaching RL, I’ve noticed those who write RL code are more likely to understand RL. Now, this isn’t a book on PyTorch either; there’s no separate PyTorch review or anything like that, just PyTorch code that I explain as we move along. If you’re somewhat familiar with DL concepts, you’ll be able to follow along with the PyTorch code I use in this book. Don’t worry, you don’t need a separate PyTorch resource before you get to this book. I explain everything in detail as we move along.


      As for the environments we use for training the agents, we use the popular OpenAI Gym package and a few other libraries that I developed for this book. But we’re also not going into the ins and outs of Gym. Just know that Gym is a library that provides environments for training RL agents. Beyond that, remember our focus is the RL algorithms, the solutions, not the environments, or modeling problems, which, needless to say, are also critical.


      Since you should be familiar with DL, I presume you know what a graphics processing unit (GPU) is. DRL architectures don’t need the level of computation commonly seen on DL models. For this reason, the use of a GPU, while a good thing, is not required. Conversely, unlike DL models, some DRL agents make heavy use of a central processing unit (CPU) and thread count. If you’re planning on investing in a machine, make sure to account for CPU power (well, technically, number of cores, not speed) as well. As you’ll see later, certain algorithms massively parallelize processing, and in those cases, it’s the CPU that becomes the bottleneck, not the GPU. However, the code runs fine in the container regardless of your CPU or GPU. But, if your hardware is severely limited, I recommend checking out cloud platforms. I’ve seen services, such as Google Colab, that offer DL hardware for free.


      Summary


      Deep reinforcement learning is challenging because agents must learn from feedback that is simultaneously sequential, evaluative, and sampled. Learning from sequential feedback forces the agent to learn how to balance immediate and long-term goals. Learning from evaluative feedback makes the agent learn to balance the gathering and utilization of information. Learning from sampled feedback forces the agent to generalize from old to new experiences.


      Artificial intelligence, the main field of computer science into which reinforcement learning falls, is a discipline concerned with creating computer programs that display human-like intelligence. This goal is shared across many other disciplines, such as control theory and operations research. Machine learning is one of the most popular and successful approaches to artificial intelligence. Reinforcement learning is one of the three branches of machine learning, along with supervised learning, and unsupervised learning. Deep learning, an approach to machine learning, isn’t tied to any specific branch, but its power helps advance the entire machine learning community.


      Deep reinforcement learning is the use of multiple layers of powerful function approximators known as neural networks (deep learning) to solve complex sequential decision-making problems under uncertainty. Deep reinforcement learning has performed well in many control problems, but, nevertheless, it’s essential to have in mind that releasing human control for critical decision making shouldn’t be taken lightly. Several of the core needs in deep reinforcement learning are algorithms with better sample complexity, better-performing exploration strategies, and safe algorithms.


      Still, the future of deep reinforcement learning is bright, and there are perhaps dangers ahead as the technology matures, but more importantly, there’s potential in this field, and you should feel excited and compelled to bring your best and embark on this journey. The opportunity to be part of a potential change this big happens only every few generations. You should be glad you’re living during these times. Now, let’s be part of it.


      By now, you


      
        	Understand what deep reinforcement learning is and how it compares with other machine learning approaches


        	Are aware of the recent progress in the field of deep reinforcement learning, and intuitively understand that it has the potential to be applied to a wide variety of problems


        	Have a sense as to what to expect from this book, and how to get the most out of it
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            Tweetable Feat


            Work on your own and share your findings

          
        


        
          	
              

          

          	
            At the end of every chapter, I’ll give several ideas on how to take what you’ve learned to the next level. If you’d like, share your results with the rest of the world, and make sure to check out what others have done, too. It’s a win-win situation, and hopefully, you’ll take advantage of it.


            
              	
#gdrl_ch01_tf01: Supervised, unsupervised, and reinforcement learning are essential machine learning branches. And while it’s crucial to know the differences, it’s equally important to know the similarities. Write a post analyzing how these different approaches compare and how they could be used together to solve an AI problem. All branches are going after the same goal: to create artificial general intelligence, it’s vital for all of us to better understand how to use the tools available.


              	
#gdrl_ch01_tf02: I wouldn’t be surprised if you don’t have a machine learning or computer science background, yet are still interested in what this book has to offer. One essential contribution is to post resources from other fields that study decision-making. Do you have an operations research background? Psychology, philosophy, or neuroscience background? Control theory? Economics? How about you create a list of resources, blog posts, YouTube videos, books, or any other medium and share it with the rest of us also studying decision-making?


              	
#gdrl_ch01_tf03: Part of the text in this chapter has information that could be better explained through graphics, tables, and other forms. For instance, I talked about the different types of reinforcement learning agents (value-based, policy-based, actor-critic, model-based, gradient-free). Why don’t you grab text that’s dense, distill the knowledge, and share your summary with the world?


              	
#gdrl_ch01_tf04: In every chapter, I’m using the final hashtag as a catchall hashtag. Feel free to use this one to discuss anything else that you worked on relevant to this chapter. There’s no more exciting homework than that which you create for yourself. Make sure to share what you set yourself to investigate and your results.

            


            Write a tweet with your findings, tag me @mimoralea (I’ll retweet), and use the particular hashtag from this list to help interested folks find your results. There are no right or wrong results; you share your findings and check others’ findings. Take advantage of this to socialize, contribute, and get yourself out there! We’re waiting for you!


            Here is a tweet example:


            “Hey, @mimoralea. I created a blog post with a list of resources to study deep reinforcement learning. Check it out at <link>. #gdrl_ch01_tf01”


            I’ll make sure to retweet and help others find your work.

          
        

      

    

  


    


  
    2 Mathematical foundations of reinforcement learning


  


  
    In this chapter


    
      	You will learn about the core components of reinforcement learning.


      	You will learn to represent sequential decision-making problems as reinforcement learning environments using a mathematical framework known as Markov decision processes.


      	You will build from scratch environments that reinforcement learning agents learn to solve in later chapters.

    


    Mankind’s history has been a struggle against a hostile environment. We finally have reached a point where we can begin to dominate our environment. ... As soon as we understand this fact, our mathematical interests necessarily shift in many areas from descriptive analysis to control theory.


    — Richard Bellman American applied mathematician, an IEEE medal of honor recipient


    
      You pick up this book and decide to read one more chapter despite having limited free time. A coach benches their best player for tonight’s match ignoring the press criticism. A parent invests long hours of hard work and unlimited patience in teaching their child good manners. These are all examples of complex sequential decision-making under uncertainty.


      I want to bring to your attention three of the words in play in this phrase: complex sequential decision-making under uncertainty. The first word, complex, refers to the fact that agents may be learning in environments with vast action spaces. In the coaching example, even if you discover that your best player needs to rest every so often, perhaps resting them in a match with a specific opponent is better than with other opponents. Learning to generalize accurately is challenging because we learn from sampled feedback.


      The second word I used is sequential, and this one refers to the fact that in many problems, there are delayed consequences. In the coaching example, again, let’s say the coach benched their best player for a seemingly unimportant match midway through the season. But, what if the action of resting players lowers their morale and performance that only manifests in finals? In other words, what if the actual consequences are delayed? The fact is that assigning credit to your past decisions is challenging because we learn from sequential feedback.


      Finally, the word uncertainty refers to the fact that we don’t know the actual inner workings of the world to understand how our actions affect it; everything is left to our interpretation. Let’s say the coach did bench their best player, but they got injured in the next match. Was the benching decision the reason the player got injured because the player got out of shape? What if the injury becomes a team motivation throughout the season, and the team ends up winning the final? Again, was benching the right decision? This uncertainty gives rise to the need for exploration. Finding the appropriate balance between exploration and exploitation is challenging because we learn from evaluative feedback.


      In this chapter, you’ll learn to represent these kinds of problems using a mathematical framework known as markov decision processes (MDPs). The general framework of MDPs allows us to model virtually any complex sequential decision-making problem under uncertainty in a way that RL agents can interact with and learn to solve solely through experience.


      We’ll dive deep into the challenges of learning from sequential feedback in chapter 3, then into the challenges of learning from evaluative feedback in chapter 4, then into the challenges of learning from feedback that’s simultaneously sequential and evaluative in chapters 5 through 7, and then chapters 8 through 12 will add complex into the mix.


      Components of reinforcement learning


      The two core components in RL are the agent and the environment. The agent is the decision maker, and is the solution to a problem. The environment is the representation of a problem. One of the fundamental distinctions of RL from other ML approaches is that the agent and the environment interact; the agent attempts to influence the environment through actions, and the environment reacts to the agent’s actions.


      [image: ]


      The reinforcement learning-interaction cycle


      
        
          	
            [image: ]

          

          	
            Miguel's Analogy


            The parable of a Chinese farmer

          
        


        
          	
              

          

          	
            There’s an excellent parable that shows how difficult it is to interpret feedback that’s simultaneously sequential, evaluative, and sampled. The parable goes like this:


            A Chinese farmer gets a horse, which soon runs away. A neighbor says, “So, sad. That’s bad news.” The farmer replies, “Good news, bad news, who can say?”


            The horse comes back and brings another horse with him. The neighbor says, “How lucky. That’s good news.” The farmer replies, “Good news, bad news, who can say?”


            The farmer gives the second horse to his son, who rides it, then is thrown and badly breaks his leg. The neighbor says, “So sorry for your son. This is definitely bad news.” The farmer replies, “Good news, bad news, who can say?”


            In a week or so, the emperor’s men come and take every healthy young man to fight in a war. The farmer’s son is spared.


            So, good news or bad news? Who can say?


            Interesting story, right? In life, it’s challenging to know with certainty what are the long-term consequences of events and our actions. Often, we find misfortune responsible for our later good fortune, or our good fortune responsible for our later misfortune.


            Even though this story could be interpreted as a lesson that “beauty is in the eye of the beholder,” in reinforcement learning, we assume there’s a correlation between actions we take and what happens in the world. It’s just that it’s so complicated to understand these relationships, that it’s difficult for humans to connect the dots with certainty. But, perhaps this is something that computers can help us figure out. Exciting, right?


            Have in mind that when feedback is simultaneously evaluative, sequential, and sampled, learning is a hard problem. And, deep reinforcement learning is a computational approach to learning in these kinds of problems.


            Welcome to the world of deep reinforcement learning!

          
        

      


      Examples of problems, agents, and environments


      The following are abbreviated examples of RL problems, agents, environments, possible actions, and observations:


      
        	
Problem You’re training your dog to sit. Agent: The part of your brain that makes decisions. Environment Your dog, the treats, your dog’s paws, the loud neighbor, and so on. Actions: Talk to your dog. Wait for dog’s reaction. Move your hand. Show treat. Give treat. Pet. Observations: Your dog is paying attention to you. Your dog is getting tired. Your dog is going away. Your dog sat on command.


        	
Problem: Your dog wants the treats you have. Agent: The part of your dog’s brain that makes decisions. Environment: You, the treats, your dog’s paws, the loud neighbor, and so on. Actions: Stare at owner. Bark. Jump at owner. Try to steal the treat. Run. Sit. Observations: Owner keeps talking loud at dog. Owner is showing the treat. Owner is hiding the treat. Owner gave the dog the treat.


        	
Problem: A trading agent investing in the stock market. Agent: The executing DRL code in memory and in the CPU. Environment: Your internet connection, the machine the code is running on, the stock prices, the geopolitical uncertainty, other investors, day traders, and so on. Actions: Sell n stocks of y company. Buy n stocks of y company. Hold. Observations: Market is going up. Market is going down. There are economic tensions between two powerful nations. There’s danger of war in the continent. A global pandemic is wreaking havoc in the entire world.


        	
Problem You’re driving your car. Agent: The part of your brain that makes decisions. Environment: The make and model of your car, other cars, other drivers, the weather, the roads, the tires, and so on. Actions: Steer by x, accelerate by y. Break by z. Turn the headlights on. Defog windows. Play music. Observations: You’re approaching your destination. There’s a traffic jam on Main Street. The car next to you is driving recklessly. It’s starting to rain. There’s a police officer driving in front of you.

      


      As you can see, problems can take many forms: from high-level decision-making problems that require long-term thinking and broad general knowledge, such as investing in the stock market, to low-level control problems, in which geopolitical tensions don’t seem to play a direct role, such as driving a car.


      Also, you can represent a problem from multiple agents’ perspectives. In the dog training example, in reality, there are two agents each interested in a different goal and trying to solve a different problem.


      Let’s zoom into each of these components independently.


      The agent: The decision maker


      As I mentioned in chapter 1, this whole book is about agents, except for this chapter, which is about the environment. Starting with chapter 3, you dig deep into the inner workings of agents, their components, their processes, and techniques to create agents that are effective and efficient.


      For now, the only important thing for you to know about agents is that they are the decision-makers in the RL big picture. They have internal components and processes of their own, and that’s what makes each of them unique and good at solving specific problems.


      If we were to zoom in, we would see that most agents have a three-step process: all agents have an interaction component, a way to gather data for learning; all agents evaluate their current behavior; and all agents improve something in their inner components that allows them to improve (or at least attempt to improve) their overall performance.
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      The three internal steps that every reinforcement learning agent goes through


      We’ll continue discussing the inner workings of agents starting with the next chapter. For now, let’s discuss a way to represent environments, how they look, and how we should model them, which is the goal of this chapter.


      The environment: Everything else


      Most real-world decision-making problems can be expressed as RL environments. A common way to represent decision-making processes in RL is by modeling the problem using a mathematical framework known as Markov decision processes (MDPs). In RL, we assume all environments have an MDP working under the hood. Whether an Atari game, the stock market, a self-driving car, your significant other, you name it, every problem has an MDP running under the hood (at least in the RL world, whether right or wrong).


      The environment is represented by a set of variables related to the problem. The combination of all the possible values this set of variables can take is referred to as the state space. A state is a specific set of values the variables take at any given time.


      Agents may or may not have access to the actual environment’s state; however, one way or another, agents can observe something from the environment. The set of variables the agent perceives at any given time is called an Observation.


      The combination of all possible values these variables can take is the Observation space. Know that state and observation are terms used interchangeably in the RL community. This is because often agents are allowed to see the internal state of the environment, but this isn’t always the case. In this book, I use state and observation interchangeably as well. But you need to know that there might be a difference between states and observations, even though the RL community often uses the terms interchangeably.


      At every state, the environment makes available a set of actions the agent can choose from. Often the set of actions is the same for action space.


      The agent attempts to influence the environment through these actions. The environment may change states as a response to the agent’s action. The function that is responsible for this transition is called the transition function.


      After a transition, the environment emits a new observation. The environment may also provide a reward signal as a response. The function responsible for this mapping is called the reward function. The set of transition and reward function is referred to as the model of the environment.
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            A Concrete Example


            The bandit walk environment

          
        


        
          	
              

          

          	
            Let’s make these concepts concrete with our first RL environment. I created this very simple environment for this book; I call it the bandit walk (BW).


            BW is a simple grid-world (GW) environment. GWs are a common type of environment for studying RL algorithms that are grids of any size. GWs can have any model (transition and reward functions) you can think of and can make any kind of actions available.


            But, they all commonly make move actions available to the agent: Left, Down, Right, Up (or West, South, East, North, which is more precise because the agent has no heading and usually has no visibility of the full grid, but cardinal directions can also be more confusing). And, of course, each action corresponds with its logical transition: Left goes left, and Right goes right. Also, they all tend to have a fully observable discrete state and observation spaces (that is, state equals observation) with integers representing the cell id location of the agent. A “walk” is a special case of grid-world environments with a single row. In reality, what I call a “walk” is more commonly referred to as a “Corridor.” But, in this book, I use the term “walk” for all the grid-world environments with a single row.


            The bandit walk (BW) is a walk with three states, but only one non-terminal state. Environments that have a single non-terminal state are called “bandit” environments. “Bandit” here is an analogy to slot machines, which are also known as “one-armed bandits”; they have one arm and, if you like gambling, can empty your pockets, the same way a bandit would.


            The BW environment has just two actions available: a right. The reward signal is a +1 when landing on the rightmost cell, 0 otherwise. The agent starts in the middle cell.


            [image: ]

          
        

      


      A graphical representation of the BW environment would look like the following.


      [image: ]


      Bandit walk graph


      I hope this raises several questions, but you’ll find the answers throughout this chapter. For instance, why do the terminal states have actions that transition to themselves: seems wasteful, doesn’t? Any other questions? Like, what if the environment is stochastic? What exactly is an environments that is “stochastic”?! Keep reading.


      We can also represent this environment in a table form.


      
        
          
          
          
          
          
        

        
          
            	
              State

            

            	
              Action

            

            	
              Next state

            

            	
              Transition probability

            

            	
              Reward signal

            
          


          
            	
              0 (Hole)

            

            	
              0 (Left)

            

            	
              0 (Hole)

            

            	
              1.0

            

            	
              0

            
          


          
            	
              0 (Hole)

            

            	
              1 (Right)

            

            	
              0 (Hole)

            

            	
              1.0

            

            	
              0

            
          


          
            	
              1 (Start)

            

            	
              0 (Left)

            

            	
              0 (Hole)

            

            	
              1.0

            

            	
              0

            
          


          
            	
              1 (Start)

            

            	
              1 (Right)

            

            	
              2 (Goal)

            

            	
              1.0

            

            	
              +1

            
          


          
            	
              2 (Goal)

            

            	
              0 (Left)

            

            	
              2 (Goal)

            

            	
              1.0

            

            	
              0

            
          


          
            	
              2 (Goal)

            

            	
              1 (Right)

            

            	
              2 (Goal)

            

            	
              1.0

            

            	
              0

            
          

        
      


      Interesting, right? Let’s look at another simple example.
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            A Concrete Example


            The bandit slippery walk environment

          
        


        
          	
              

          

          	
            Okay, so how about we make this environment stochastic?


            Let’s say the surface of the walk is slippery and each action has a 20% chance of sending the agent backwards.I call this environment the bandit slippery walk (BSW).


            BSW is still a one-row-grid world, a walk, a corridor, with only Left and Right actions available. Again, three states and two actions. The reward is the same as before, -from itself), and zero otherwise.


            However, the transition function is different: 80% of the time the agent moves to the intended cell, and 20% of time in the opposite direction.


            A depiction of this environment would look as follows.


            [image: ]


            The bandit slippery walk (BSW) environment


            Identical to the BW environment! Interesting ...


            How do we know that the action effects are stochastic? How do we represent the “slippery” part of this problem? The table representations can help us with that.

          
        

      


      A graphical representation of the bSW environment would look like the following.


      [image: ]


      Bandit slippery walk graph


      See how the transition function is different now? The BSW environment has a stochastic transition function. Let’s now represent this environment in a table form as well.


      
        
          
          
          
          
          
        

        
          
            	
              State

            

            	
              Action

            

            	
              Next state

            

            	
              Transition probability

            

            	
              Reward signal

            
          


          
            	
              0 (Hole)

            

            	
              0 (Left)

            

            	
              0 (Hole)

            

            	
              1.0

            

            	
              0

            
          


          
            	
              0 (Hole)

            

            	
              1 (Right)

            

            	
              0 (Hole)

            

            	
              1.0

            

            	
              0

            
          


          
            	
              1 (Start)

            

            	
              0 (Left)

            

            	
              0 (Hole)

            

            	
              0.8

            

            	
              0

            
          


          
            	
              1 (Start)

            

            	
              0 (Left)

            

            	
              2 (Goal)

            

            	
              0.2

            

            	
              +1

            
          


          
            	
              1 (Start)

            

            	
              1 (Right)

            

            	
              2 (Goal)

            

            	
              0.8

            

            	
              +1

            
          


          
            	
              1 (Start)

            

            	
              1 (Right)

            

            	
              0 (Hole)

            

            	
              0.2

            

            	
              0

            
          


          
            	
              2 (Goal)

            

            	
              0 (Left)

            

            	
              2 (Goal)

            

            	
              1.0

            

            	
              0

            
          


          
            	
              2 (Goal)

            

            	
              1 (Right)

            

            	
              2 (Goal)

            

            	
              1.0

            

            	
              0

            
          

        
      


      And, we don’t have to limit ourselves to thinking about environments with discrete state and action spaces or even walks (corridors) or bandits (which we discuss in-depth in the next chapter) or grid worlds. Representing environments as MDPs is a surprisingly powerful and straightforward approach to modeling complex sequential decision-making problems under uncertainty.


      Here are a few more examples of environments that are powered by underlying MDPs.


      
        
          
          
          
          
          
          
        

        
          
            	
              Description

            

            	
              Observation space

            

            	
              Sample observation

            

            	
              Action space

            

            	
              Sample action

            

            	
              Reward function

            
          


          
            	
              Hotter, colder: Guess a randomly selected number using hints.

            

            	
              Int range 0–3.


              0 means no guess yet submitted, 1 means guess is lower than the target, 2 means guess is equal to the target, and 3 means guess is higher than the target.

            

            	
              2

            

            	
              Float from –2000.0–2000.0.


              The float number the agent is guessing.

            

            	
              –909.37

            

            	
              The reward is the squared percentage of the way the agent has guessed toward the target.

            
          


          
            	
              Cart pole: Balance a pole in a cart.

            

            	
              A four-element vector with ranges: from [–4.8, –Inf, –4.2, –Inf] to [4.8, Inf, 4.2, Inf].


              First element is the cart position, second is the cart velocity, third is pole angle in radians, fourth is the pole velocity at tip.

            

            	
              [–0.16, –1.61, 0.17, 2.44]

            

            	
              Int range 0–1.


              0 means push cart left, 1 means push cart right.

            

            	
              0

            

            	
              The reward is 1 for every step taken, including the termination step.

            
          


          
            	
              Lunar lander: Navigate a lander to its landing pad.

            

            	
              An eight-element vector with ranges: from [–Inf, –Inf, –Inf, –Inf, –Inf, –Inf, 0, 0] to [Inf, Inf, Inf, Inf, Inf, Inf, 1, 1].


              First element is the x position, the second the y position, the third is the x velocity, the fourth is the y velocity, fifth is the vehicle’s angle, sixth is the angular velocity, and the last two values are Booleans indicating legs contact with the ground.

            

            	
              [0.36 , 0.23, –0.63, –0.10, –0.97, –1.73, 1.0, 0.0]

            

            	
              Int range 0–3.


              No-op (do nothing), fire left engine, fire main engine, fire right engine.

            

            	
              2

            

            	
              Reward for landing is 200. There’s a reward for moving from the top to the landing pad, for crashing or coming to rest, for each leg touching the ground, and for firing the engines.

            
          


          
            	
              Pong: Bounce the ball past the opponent, and avoid letting the ball pass you.

            

            	
              A tensor of shape 210, 160, 3.


              Values ranging 0–255.


              Represents a game screen image.

            

            	
              [[[246, 217, 64], [ 55, 184, 230], [ 46, 231, 179], ..., [ 28, 104, 249], [ 25, 5, 22], [173, 186, 1]], ...]]

            

            	
              Int range 0–5.


              Action 0 is No-op, 1 is Fire, 2 is up, 3 is right, 4 is Left, 5 is Down.


              Notice how some actions don’t affect the game in any way. In reality the paddle can only move up or down, or not move.

            

            	
              3

            

            	
              The reward is a 1 when the ball goes beyond the opponent, and a –1 when your agent’s paddle misses the ball.

            
          


          
            	
              Humanoid: Make robot run as fast as possible and not fall.

            

            	
              A 44-element (or more, depending on the implementation) vector.


              Values ranging from –Inf to Inf.


              Represents the positions and velocities of the robot’s joints.

            

            	
              [0.6, 0.08, 0.9, 0. 0, 0.0, 0.0, 0.0, 0.0, 0.045, 0.0, 0.47, ... , 0.32, 0.0, –0.22, ... , 0.]

            

            	
              A 17-element vector.


              Values ranging from –Inf to Inf.


              Represents the forces to apply to the robot’s joints.

            

            	
              [–0.9, –0.06, 0.6, 0.6, 0.6, –0.06, –0.4, –0.9, 0.5, –0.2, 0.7, –0.9, 0.4, –0.8, –0.1, 0.8, –0.03]

            

            	
              The reward is calculated based on forward motion with a small penalty to encourage a natural gait.

            
          

        
      


      Notice I didn’t add the transition function to this table. That’s because, while you can look at the code implementing the dynamics for certain environments, other implementations are not easily accessible. For instance, the transition function of the cart pole environment is a small Python file defining the mass of the cart and the pole and implementing basic physics equations, while the dynamics of Atari games, such as Pong, are hidden inside an Atari emulator and the corresponding game-specific ROM file.


      Notice that what we’re trying to represent here is the fact that the environment “reacts” to the agent’s actions in some way, perhaps even by ignoring the agent’s actions. But at the end of the day, there’s an internal process that’s uncertain (except in this and the next chapter). To represent the ability to interact with an environment in an MDP, we need states, observations, actions, a transition, and a reward function.


      [image: ]


      Process the environment goes through as a consequence of agent’s actions


      Agent-environment interaction cycle


      The environment commonly has a well-defined task. The goal of this task is defined through the reward signal. The reward signal can be dense, sparse, or anything in between. When you design environments, reward signals are the way to train your agent the way you want. The more dense, the more supervision the agent will have, and the faster the agent will learn, but the more bias you’ll inject into your agent, and the less likely the agent will come up with unexpected behaviors. The more sparse, the less supervision, and therefore, the higher the chance of new, emerging behaviors, but the longer it’ll take the agent to learn.


      The interactions between the agent and the environment go on for several cycles. Each cycle is called a time step. A time step is a unit of time, which can be a millisecond, a second, 1.2563 seconds, a minute, a day, or any other period of time.


      At each time step, the agent observes the environment, takes action, and receives a new observation and reward. Notice that, even though rewards can be negative values, they are still called rewards in the RL world. The set of the observation (or state), the action, the reward, and the new observation (or new state) is called an experience tuple.


      The task the agent is trying to solve may or may not have a natural ending. Tasks that have a natural ending, such as a game, are called episodic tasks. Tasks that don’t, such as learning forward motion, are called continuing tasks. The sequence of time steps from the beginning to the end of an episodic task is called an episode. Agents may take several time steps and episodes to learn to solve a task. The sum of rewards collected in a single episode is called a return. Agents are often designed to maximize the return. A time step limit is often added to continuing tasks, so they become episodic tasks, and agents can maximize the return.


      Every experience tuple has an opportunity for learning and improving performance. The agent may have one or more components to aid learning. The agent may be designed to learn mappings from observations to actions called policies. The agent may be designed to learn mappings from observations to new observations and/or rewards called models. The agent may be designed to learn mappings from observations (and possibly actions) to reward-to-go estimates (a slice of the return) called value functions.


      For the rest of this chapter, we’ll put aside the agent and the interactions, and we’ll examine the environment and inner MDP in depth. In chapter 3, we’ll pick back up the agent, but there will be neural networks for learning.


      MDPs: The engine of the environment


      Let’s build MDPs for a few environments as we learn about the components that make them up. We’ll create Python dictionaries representing MDPs from descriptions of the problems. In the next chapter, we’ll study algorithms for planning on MDPs. These methods can devise solutions to MDPs and will allow us to find optimal solutions to all problems in this chapter.


      The ability to build environments yourself is an important skill to have. However, often you find environments for which somebody else has already created the MDP. Also, the dynamics of the environments are often hidden behind a simulation engine and are too complex to examine in detail; certain dynamics are even inaccessible and hidden behind the real world. In reality, RL agents don’t need to know the precise MDP of a problem to learn robust behaviors, but knowing you because agents are commonly designed with the assumption that an MDP, even if inaccessible, is running under the hood.
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            A Concrete Example


            The frozen lake environment

          
        


        
          	
              

          

          	
            This is another, more challenging problem for which we will build an MDP in this chapter. This environment is called the frozen lake (FL).


            FL is a simple discrete state and action spaces. However, this time, four actions are available: move Left, Down, Right, or Up.


            The task in the FL environment is similar to the task in the BW and BSW environments: to go from a start location to a goal location while avoiding falling into holes. The challenge is similar to the bSW, in that the surface of the FL environment is slippery, it’s a frozen lake after all. But the environment itself is larger. Let’s look at a depiction of the FL.


            [image: ]


            The frozen lake (FL) environment


            The FL is a 4 × 4 grid (it has 16 cells, ids 0–15). The agent shows up in the START cell every new episode. Reaching the GOAL cell gives a +1 reward; anything else is a 0. Because the surface are slippery, the agent moves only a third of the time as intended. The other two-thirds are split evenly in orthogonal directions. For example, if the agent chooses to move down, there’s a 33.3% chance it moves down, 33.3% chance it moves left, and 33.3% chance it moves right. There’s a fence around the lake, so if the agent tries to move out of the grid world, it will bounce back to the cell from which it tried to move. There are four holes in the lake. If the agent falls into one of these holes, it’s game over.


            Are you ready to start building a representation of these dynamics? We need a Python dictionary representing the MDP as described here. Let’s start building the MDP.

          
        

      


      States: Specific configurations of the environment


      A state is a unique and self-contained configuration of the problem. The set of all possible states, the state space, is defined as the set s. The state space can be finite or infinite. But notice that the state space is different than the set of variables that compose a single state. This other set must always be finite and of constant size from state to state. In the end, the state space is a set of sets. The inner set must be of equal size and finite, as it contains the number of variables representing the states, but the outer set can be infinite depending on the types of elements of the inner sets.


      [image: ]


      State space: A set of sets


      For the BW, BSW, and FL environments, the state is composed of a single variable containing the id of the cell where the agent is at any given time. The agent’s location cell id is a discrete variable. But state variables can be of any kind, and the set of variables can be larger than one. We could have the Euclidean distance that would be a continuous variable and an infinite state space; for example, 2.124, 2.12456, 5.1, 5.1239458, and so on. We could also have multiple variables defining the state, for instance, the number of cells away from the goal in the x- and y-axis. That would be two variables representing a single state. Both variables would be discrete, therefore, the state space finite. However, we could also have variables of mixed types; for instance, one could be discrete, another continuous, another Boolean.


      With this state representation for the BW, BSW, and FL environments, the size of the state space is 3, 3, and 16, respectively. Given we have 3, 3, or 16 cells, the agent can be at any given time, then we have 3, 3, and 16 possible states in the state space. We can set the ids of each cell starting from zero, going left to right, top to bottom.


      In the FL, we set the ids from zero to 15, left to right, top to bottom. You could set the ids in any other way: in a random order, or group cells by proximity, or whatever. It’s up to you; as long as you keep them consistent throughout training, it will work. However, this representation is adequate, and it works well, so it’s what we’ll use.


      [image: ]


      States in the FL contain a single variable indicating the id of the cell in which the agent is at any given time step


      In the case of MDPs, the states are fully observable: we can see the internal state of the environment at each time step, that is, the observations and the states are the same. partially observable Markov decision processes (POMDPs) is a more general framework for modeling environments in which observations, which still depend on the internal state of the environment, are the only things the agent can see instead of the state. Notice that for the BW, BSW, and FL environments, we’re creating an MDP, so the agent will be able to observe the internal state of the environment.


      States must contain all the variables necessary to make them independent of all other states. In the FL environment, you only need to know the current state of the agent to tell its next possible states. That is, you don’t need the history of states visited by the agent for anything. You know that from state 2 the agent can only transition to states 1, 3, 6, or 2, and this is true regardless of whether the agent’s previous state was 1, 3, 6, or 2.


      The probability of the next state, given the current state and action, is independent of the history of interactions. This memoryless property of MDPs is known as the markov property: the probability of moving from one state s to another state s on two separate occasions, given the same action a, is the same regardless of all previous states or actions encountered before that point.
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            Show Me The Math


            The Markov property
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      But why do you care about this? Well, in the environments we’ve explored so far it’s not that obvious, and it’s not that important. But because most RL (and DRL) agents are designed to take advantage of the Markov assumption, you must make sure you feed your agent the necessary variables to make it hold as tightly as possible (completely keeping the Markov assumption is impractical, perhaps impossible).


      For example, if you’re designing an agent to learn to land a spacecraft, the agent must receive all variables that indicate velocities along with its locations. Locations alone are not sufficient to land a spacecraft safely, and because you must assume the agent is memoryless, you need to feed the agent more information than just its x, y, z coordinates away from the landing pad.


      But, you probably know that acceleration is to velocity what velocity is to position: the derivative. You probably also know that you can keep taking derivatives beyond acceleration. To make the MDP completely Markovian, how deep do you have to go? This is more of an art than a science: the more variables you add, the longer it takes to train an agent, but the fewer variables, the higher the chance the information fed to the agent is not sufficient, and the harder it is to learn anything useful. For the spacecraft example, often locations and velocities are adequate, and for grid-world environments, only the state id location of the agent is sufficient.


      The set of all states in the MDP is denoted si from a probability distribution. This distribution can be anything, but it must be fixed throughout training: that is, the probabilities must be the same from the first to the last episode of training and for agent evaluation.


      There’s a unique state called the absorbing or terminal state, and the set of all non-terminal states is denoted s. Now, while it’s common practice to create a single terminal state (a sink state) to which all terminal transitions go, this isn’t always implemented this way. What you’ll see more often is multiple terminal states, and that’s okay. It doesn’t really matter under the hood if you make all terminal states behave as expected.


      As expected? Yes. A terminal state is a special state: it must have all available actions transitioning, with probability 1, to itself, and these transitions must provide no reward. Note that I’m referring to the transitions from the terminal state, not to the terminal state.


      It’s very commonly the case that the end of an episode provides a non-zero reward. For instance, in a chess game you win, you lose, or you draw. A logical reward signal would be +1, –1, and 0, respectively. But it’s a compatibility convention that allows for all algorithms to converge to the same solution to make all actions available in a terminal state transition from that terminal state to itself with probability 1 and reward 0. Otherwise, you run the risk of infinite sums and algorithms that may not work altogether. Remember how the BW and BSW environments had these terminal states?


      In the FL environment, for instance, there’s only one starting state (which is state 0) and five terminal states (or five states that transition to a single terminal state, whichever you prefer). For clarity, I use the convention of multiple terminal states (5, 7, 11, 12, and 15) for the illustrations and code; again, each terminal state is a separate terminal state.


      [image: ]


      States in the frozen lake environment


      Actions: A mechanism to influence the environment


      MDPs make available a set of actions A that depends on the state. That is, there might be actions that aren’t allowed in a state—in fact, A is a function that takes a state as an argument; that is, A(s). This function returns the set of available actions for state s. If needed, you can define this set to be constant across the state space; that is, all actions are available at every state. You can also set all transitions from a state-action pair to zero if you want to deny an action in a given state. You could also set all transitions from state s and action a to the same state s to denote action a as a no-intervene or no-op action.


      Just as with the state, the action space may be finite or infinite, and the set of variables of a single action may contain more than one element and must be finite. However, unlike the number of state variables, the number of variables that compose an action may not be constant. The actions available in a state may change depending on that state. For simplicity, most environments are designed with the same number of actions in all states.


      The environment makes the set of all available actions known in advance. Agents can select actions either deterministically or stochastically. This is different than saying the environment reacts deterministically or stochastically to agents’ actions. Both are true statements, but I’m referring here to the fact that agents can either select actions from a lookup table or from per-state probability distributions.


      In the BW, BSW, and FL environments, actions are singletons representing the direction the agent will attempt to move. In FL, there are four available actions in all states: Up, Down, Right, or Left. There’s one variable per action, and the size of the action space is four.


      [image: ]


      The frozen lake environment has four simple move actions


      Transition function: Consequences of agent actions


      The way the environment changes as a response to actions is referred to as the state-transition probabilities, or more simply, the transition function, and is denoted by t(s, a, s'). The transition function t maps a transition tuple s, a, s' to a probability; that is, you pass in a state s, an action a, and a next state s', and it’ll return the corresponding probability of transition from state s to state s' when taking action a. You could also represent it as t(s, a) and return a dictionary with the next states for its keys and probabilities for its values.


      Notice that t also describes a probability distribution p( · | s, a) determining how the system will evolve in an interaction cycle from selecting action a in state s. When integrating over the next states s', as any probability distribution, the sum of these probabilities must equal one.
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      The BW environment was deterministic; that is, the probability of the next state s' given the current state s and action a was always 1. There was always a single possible next state s'. The BSW and FL environments are stochastic; that is, the probability of the next state s' given the current state s and action a is less than 1. There are more than one possible next state s's.


      One key assumption of many RL (and DRL) algorithms is that this distribution is stationary. That is, while there may be highly stochastic transitions, the probability distribution may not change during training or evaluation. Just as with the Markov assumption, the stationarity assumption is often relaxed to an extent. However, it’s important for most agents to interact with environments that at least appear to be stationary.


      In the FL environment, we know that there’s a 33.3% chance we’ll transition to the intended cell (state) and a 66.6% chance we’ll transition to orthogonal directions. There’s also a chance we’ll bounce back to the state we’re coming from if it’s next to the wall.


      For simplicity and clarity, I’ve added to the following image only the transition function for all actions of states 0, 2, 5, 7, 11, 12, 13, and 15 of the FL environment. This subset of states allows for the illustration of all possible transitions without too much clutter.


      [image: ]


      The transition function of the frozen lake environment


      It might still be a bit confusing, but look at it this way: for consistency, each action in non-terminal states has three separate transitions (certain actions in corner states could be represented with only two, but again, let me be consistent): one to the intended cell and two to the cells in orthogonal directions.


      Reward signal: Carrots and sticks


      The reward function r maps a transition tuple s, a, s' to a scalar. The reward function gives a numeric signal of goodness to transitions. When the signal is positive, we can think of the reward as an income or a reward. Most problems have at least one positive signal—winning a chess match or reaching the desired destination, for example. But, rewards can also be negative, and we can see these as cost, punishment, or penalty. In robotics, adding a time step cost is a common practice because we usually want to reach a goal, but within a number of time steps. One thing to clarify is that whether positive or negative, the scalar coming out of the reward function is always referred to as the reward. RL folks are happy folks.


      It’s also important to highlight that while the reward function can be represented as r(s,a,s'), which is explicit, we could also use r(s,a), or even r(s), depending on our needs. Sometimes rewarding the agent based on state is what we need; sometimes it makes more sense to use the action and the state. However, the most explicit way to represent the reward function is to use a state, action, and next state triplet. With that, we can compute the marginalization over next states in r(s,a,s') to obtain r(s,a), and the marginalization over actions in r(s,a) to get r(s). But, once we’re in r(s) we can’t recover r(s,a) or r(s,a,s'), and once we’re in r(s,a) we can’t recover r(s,a,s').
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            The reward function

          
        

      


      In the FL environment, the reward function is +1 for landing in state 15, 0 otherwise. Again, for clarity to the following image, I’ve only added the reward signal to transitions that give a non-zero reward, landing on the final state (state 15.)


      There are only three ways to land on 15. (1) Selecting the down action from state 14 will unintentionally also transition the agent there with 33.3% probability for each action. See the difference between actions and transitions? It’s interesting to see how stochasticity complicates things, right?
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      Reward signal for states with non-zero reward transitions


      Expanding the transition and reward functions into a table form is also useful. The following is the format I recommend for most problems. Notice that I’ve only added a subset of the transitions (rows) to the table to illustrate the exercise. Also notice that I’m being explicit, and several of these transitions could be grouped and refactored (for example, corner cells).


      
        
          
          
          
          
          
        

        
          
            	
              State

            

            	
              Action

            

            	
              Next state

            

            	
              Transition probability

            

            	
              Reward signal

            
          

        

        
          
            	
              0

            

            	
              Left

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Left

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Left

            

            	
              4

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Down

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Down

            

            	
              4

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Down

            

            	
              1

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Right

            

            	
              4

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Right

            

            	
              1

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Right

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Up

            

            	
              1

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Up

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              0

            

            	
              Up

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Left

            

            	
              1

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Left

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Left

            

            	
              5

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Down

            

            	
              0

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Down

            

            	
              5

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Down

            

            	
              2

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Right

            

            	
              5

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Right

            

            	
              2

            

            	
              0.33

            

            	
              0

            
          


          
            	
              1

            

            	
              Right

            

            	
              1

            

            	
              0.33

            

            	
              0

            
          


          
            	
              2

            

            	
              Left

            

            	
              1

            

            	
              0.33

            

            	
              0

            
          


          
            	
              2

            

            	
              Left

            

            	
              2

            

            	
              0.33

            

            	
              0

            
          


          
            	
              2

            

            	
              Left

            

            	
              6

            

            	
              0.33

            

            	
              0

            
          


          
            	
              2

            

            	
              Down

            

            	
              1

            

            	
              0.33

            

            	
              0

            
          


          
            	
              ...

            

            	
              ...

            

            	
              ...

            

            	
              ...

            

            	
              ...

            
          


          
            	
              14

            

            	
              Down

            

            	
              14

            

            	
              0.33

            

            	
              0

            
          


          
            	
              14

            

            	
              Down

            

            	
              15

            

            	
              0.33

            

            	
              1

            
          


          
            	
              14

            

            	
              Right

            

            	
              14

            

            	
              0.33

            

            	
              0

            
          


          
            	
              14

            

            	
              Right

            

            	
              15

            

            	
              0.33

            

            	
              1

            
          


          
            	
              14

            

            	
              Right

            

            	
              10

            

            	
              0.33

            

            	
              0

            
          


          
            	
              14

            

            	
              Up

            

            	
              15

            

            	
              0.33

            

            	
              1

            
          


          
            	
              14

            

            	
              Up

            

            	
              10

            

            	
              0.33

            

            	
              0

            
          


          
            	
              ...

            

            	
              ...

            

            	
              ...

            

            	
              ...

            

            	
              ...

            
          


          
            	
              15

            

            	
              Left

            

            	
              15

            

            	
              1.0

            

            	
              0

            
          


          
            	
              15

            

            	
              Down

            

            	
              15

            

            	
              1.0

            

            	
              0

            
          


          
            	
              15

            

            	
              Right

            

            	
              15

            

            	
              1.0

            

            	
              0

            
          


          
            	
              15

            

            	
              Up

            

            	
              15

            

            	
              1.0

            

            	
              0

            
          

        
      


      Horizon: Time changes what’s optimal


      We can represent time in MDPs as well. A time step, also referred to as epoch, cycle, iteration, or even interaction, is a global clock syncing all parties and discretizing time. Having a clock gives rise to a couple of possible types of tasks. An episodic task is a task in which there’s a finite number of time steps, either because the clock stops or because the agent reaches a terminal state. There are also continuing tasks, which are tasks that go on forever; there are no terminal states, so there’s an infinite number of time steps. In this type of task, the agent must be stopped manually.


      Episodic and continuing tasks can also be defined from the agent’s perspective. We call it the planning horizon. On the one hand, a finite horizon is a planning horizon in which the agent knows the task will terminate in a finite number of time steps: if we forced the agent to complete the frozen lake environment in 15 steps, for example. A special case of this kind of planning horizon is called a greedy horizon, of which the planning horizon is one. The BW and BSW have both a greedy planning horizon: the episode terminates immediately after one interaction. In fact, all bandit environments have greedy horizons.


      On the other hand, an infinite horizon is when the agent doesn’t have a predetermined time step limit, so the agent plans for an infinite number of time steps. Such a task may still be episodic and therefore terminate, but from the perspective of the agent, its planning horizon is infinite. We refer to this type of infinite planning horizon task as an indefinite horizon task. The agent plans for infinite, but interactions may be stopped at any time by the environment.


      For tasks in which there’s a high chance the agent gets stuck in a loop and never terminates, it’s common practice to add an artificial terminal state based on the time step: a hard time step limit using the transition function. These cases require special handling of the time step limit terminal state. The environment for chapters 8, 9, and 10, the cart pole environment, has this kind of artificial terminal step, and you’ll learn to handle these special cases in those chapters.


      The BW, BSW, and FL environment are indefinite planning horizon; the agent plans for infinite number of steps, but interactions may stop at any time. We won’t add a time step limit to the FL environment because there’s a high chance the agent will terminate naturally; the environment is highly stochastic. This kind of task is the most common in RL.


      We refer to the sequence of consecutive time steps from the beginning to the end of an episodic task as an episode, trial, period, or stage. In indefinite planning horizons, an episode is a collection containing all interactions between an initial and a terminal state.


      Discount: The future is uncertain, value it less


      Because of the possibility of infinite sequences of time steps in infinite horizon tasks, we need a way to discount the value of rewards over time; that is, we need a way to tell the agent that getting +1’s is better sooner than later. We commonly use a positive real value less than one to exponentially discount the value of future rewards. The further into the future we receive the reward, the less valuable it is in the present.


      This number is called the discount factor, or gamma. The discount factor adjusts the importance of rewards over time. The later we receive rewards, the less attractive they are to present calculations. Another important reason why the discount factor is commonly used is to reduce the variance of return estimates. Given that the future is uncertain, and that the further we look into the future, the more stochasticity we accumulate and the more variance our value estimates will have, the discount factor helps reduce the degree to which future rewards affect our value function estimates, which stabilizes learning for most agents.


      [image: ]


      Effect of discount factor and time on the value of rewards


      Interestingly, gamma is part of the MDP definition: the problem, and not the agent. However, often you’ll find no guidance for the proper value of gamma to use for a given environment. Again, this is because gamma is also used as a hyperparameter for reducing variance, and therefore left for the agent to tune.


      You can also use gamma as a way to give a sense of “urgency” to the agent. To wrap your head around that, imagine that I tell you I’ll give you $1,000 once you finish reading this book, but I’ll discount (gamma) that reward by 0.5 daily. This means that every day I cut the value that I pay in half. You’ll probably finish reading this book today. If I say gamma is 1, then it doesn’t matter when you finish it, you still get the full amount.


      For the BW and BSW environments, a gamma of 1 is appropriate; for the FL environment, however, we’ll use a gamma of 0.99, a commonly used value.
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            The discount factor (gamma)
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      Extensions to MDPs


      There are many extensions to the MDP framework, as we’ve discussed. They allow us to target slightly different types of RL problems. The following list isn’t comprehensive, but it should give you an idea of how large the field is. Know that the acronym MDPs is often used to refer to all types of MDPs. We’re currently looking only at the tip of the iceberg:


      
        	): When the agent cannot fully observe the environment state


        	Factored Markov decision process (FMDP): Allows the representation of the transition and reward function more compactly so that we can represent large MDPs


        	Continuous [Time|Action|State] Markov decision process: When either time, action, state or any combination of them are continuous


        	Relational Markov decision process (RMDP): Allows the combination of probabilistic and relational knowledge


        	Semi-Markov decision process (SMDP): Allows the inclusion of abstract actions that can take multiple time steps to complete


        	Multi-agent Markov decision process (MMDP): Allows the inclusion of multiple agents in the same environment


        	): Allows for multiple agents to collaborate and maximize a common reward
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            The bandit walk (BW) MDP

          
        


        
          	
              

          

          	
            P = {
     0: {                               ①
         0: [(1.0, 0, 0.0, True)],      ②
         1: [(1.0, 0, 0.0, True)]       ③
     },
     1: {
         0: [(1.0, 0, 0.0, True)],
         1: [(1.0, 2, 1.0, True)]
     },
     2: {
         0: [(1.0, 2, 0.0, True)],      ④
         1: [(1.0, 2, 0.0, True)]       ④
     }
}
# import gym, gym_walk                  ⑤
# P = gym.make('BanditWalk-v0').env.P


            ① The outer dictionary keys are the states.


            ② The inner dictionary keys are the actions.


            ③ The value of the inner dictionary is a list with all possible transitions for that state-action pair.


            ④ The transition tuples have four values: the probability of that transition, the next state, the reward, and a flag indicating whether the next state is terminal.


            ⑤ You can also load the MDP this way.
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            The bandit slippery walk (BSW) MDP

          
        


        
          	
              

          

          	
            P = {
     0: {                                                ①
         0: [(1.0, 0, 0.0, True)],
         1: [(1.0, 0, 0.0, True)]
     },
     1: {
         0: [(0.8, 0, 0.0, True), (0.2, 2, 1.0, True)],  ②
         1: [(0.8, 2, 1.0, True), (0.2, 0, 0.0, True)]   ③
     },
     2: {
         0: [(1.0, 2, 0.0, True)],
         1: [(1.0, 2, 0.0, True)]
     }
}
# import gym, gym_walk
# P = gym.make('BanditSlipperyWalk-v0').env.P            ④


            ① Look at the terminal states. States 0 and 2 are terminal.


            ② This is how you build stochastic transitions. This is state 1, action 0.


            ③ These are the transitions after taking action 1 in state 1.


            ④ This is how you can load the Bandit Slippery Walk in the Notebook; make sure to check them out!
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            The frozen lake (FL) MDP

          
        


        
          	
              

          








































































































