

 inside front cover

 [image:]

 [image:]

 Logging in Action

 With Fluentd, Kubernetes and more

 Phil Wilkins

 Foreword by Christian Posta and Anurag Gupta

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Katie Sposato Johnson

 	
 Technical development editor:

 	
 Sam Zaydel

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Carrie Andrews

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Kerry Koitzsch

 	
 Typesetter and cover designer

 	
 Marija Tudor

 ISBN: 9781617298356

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. From zero to “Hello World”

 1 Introduction to Fluentd

 1.1 Elevator pitch for Fluentd

 What is a log event?

 Fluentd compared to middleware

 1.2 Why do we produce logs?

 1.3 Evolving ideas

 Four golden signals

 Three pillars of observability

 1.4 Log unification

 Unifying logs vs. log analytics

 1.5 Software stacks

 ELK stack

 Comparing Fluentd and Logstash

 The relationship between Fluentd and Fluent Bit

 The relationship between Logstash and Beats

 1.6 Log routing as a vehicle for security

 1.7 Log event life cycle

 1.8 Evolution of Fluentd

 Treasure Data

 CNCF

 Relationship to major cloud vendors PaaS/IaaS

 1.9 Where can Fluentd and Fluent Bit be used?

 Platform constraints

 1.10 Fluentd UI-based editing

 1.11 Plugins

 1.12 How Fluentd can be used to make operational tasks easier

 Actionable log events

 Making logs more meaningful

 Polyglot environments

 Multiple targets

 Controlling log data costs

 Logs to metrics

 Rapid operational consolidation

 2 Concepts, architecture, and deployment of Fluentd

 2.1 Architecture and core concepts

 The makeup of a log event

 Handling time

 Architecture of Fluentd

 Fluent configuration execution order

 Directives

 Putting timing requirements into action

 2.2 Deployment of Fluentd

 Deploying Fluentd for the book’s examples

 Deployment considerations for Fluentd

 Fluentd minimum footprint

 Simple deployment of Ruby

 Simple deployment of Fluentd

 Deploying a log generator

 Installing Postman

 2.3 Bringing Fluentd to life with “Hello World”

 “Hello World” scenario

 “Hello World” configuration

 Starting Fluentd

 2.4 “Hello World” with Fluent Bit

 Starting Fluent Bit

 Alternate Fluent Bit startup options

 Fluent Bit configuration file comparison

 Fluent Bit configuration file in detail

 Putting the dummy plugin into action

 2.5 Fluentd deployment with Kubernetes and containers

 Fluentd DaemonSet

 Dockerized Fluentd

 2.6 Using Fluentd UI

 Installing Fluentd with UI

 Part 2. Fluentd in depth

 3 Using Fluentd to capture log events

 3.1 Dry running to check a configuration

 Putting validating Fluentd configuration into action

 3.2 Reading log files

 Putting the adaption of a Fluentd configuration to Fluent Bit into action

 Rereading and resuming reading of log files

 Configuration considerations for tracking position

 Wildcards in the path attribute

 Expressing time

 Controlling the impact of wildcards in filenames

 Replacing wildcards with delimited lists in action

 Handling log rotation

 3.3 Self-monitoring

 HTTP interface check

 3.4 Imposing structure on log events

 Standard parsers

 Third-party parsers

 Applying a Regex parser to a complex log

 Putting parser configuration into action

 4 Using Fluentd to output log events

 4.1 File output plugin

 Basic file output

 Basics of buffering

 Chunks and Controlling Buffering

 Retry and backoff

 Putting configuring buffering size settings into action

 4.2 Output formatting options

 out_file

 json

 ltsv

 csv

 msgpack

 Applying formatters

 Putting JSON formatter configuration into action

 4.3 Sending log events to MongoDB

 Deploying MongoDB Fluentd plugin

 Configuring the Mongo output plugin for Fluentd

 Putting MongoDB connection configuration strings into action

 4.4 Actionable log events

 Actionable log events through service invocation

 Actionable through user interaction tools

 4.5 Slack to demonstrate the social output

 Handling tokens and credentials more carefully

 Externalizing Slack configuration attributes in action

 4.6 The right tool for the right job

 5 Routing log events

 5.1 Reaching multiple outputs by copying

 Copy by reference or by value

 Handling errors when copying

 5.2 Configuration reuse and extension through inclusion

 Place holding with null output

 Putting inclusions with a MongoDB output into action

 5.3 Injecting context into log events

 Extraction of values

 5.4 Tag-based routing

 Using exec output plugin

 Putting tag naming conventions into action

 Putting dynamic tagging with extract into action

 5.5 Tag plugins

 5.6 Labels: Taking tags to a new level

 Using a stdout filter to see what is happening

 Illustrating label and tag routing

 Connecting pipelines

 Label sequencing

 Special labels

 Putting a common pipeline into action

 6 Filtering and extrapolation

 6.1 Application of filters

 All is well events do not need to be distributed

 Spotting the needle in a haystack

 False urgency

 Releveling

 Unimplemented housekeeping

 6.2 Why change log events?

 Easier to process meaning downstream

 Add context

 Record when we have reacted to a log event

 Data redaction/masking

 6.3 Applying filters and parsers

 Filter plugins

 Applying grep filters

 Changing log events with the record_transformer plugin

 Filter parser vs. record transformer

 6.4 Demonstrating change impact with stdout in action

 A solution demonstrating change impact with stdout in action

 6.5 Extract to set key values

 6.6 Deriving new data values with the record_transformer

 Putting the incorporation of calculations into a log event transformation into action

 6.7 Generating simple Fluentd metrics

 Putting log event counting into action

 Part 3. Beyond the basics

 7 Performance and scaling

 7.1 Threading and processes to scale with workers

 Seeing workers in action

 Worker constraints

 Controlling output plugin threads

 Memory management optimization

 7.2 Scaling and moving workloads

 Fan-in/log aggregation and consolidation

 Fan-out and workload distribution

 High availability

 Putting a high-availability comparison into action

 7.3 Fluentd scaling in containers vs. native and virtual environments

 Kubernetes worker node configuration

 Per-cluster configuration

 Container as virtualization

 Sidecar pattern

 Options comparison

 7.4 Securing traffic between Fluentd nodes

 TLS configuration

 TLS not just for encryption

 Certificate and private key storage

 Security is more than certificates

 7.5 Credentials management

 Simple credentials use case

 Putting certification into action

 8 Driving logs with Docker and Kubernetes

 8.1 Fluentd out of the box from Docker Hub

 Official Docker images

 Docker log drivers

 Getting set up for Docker log drivers

 8.2 Using Docker log drivers

 Docker drivers via the command line

 A quick check of network connections

 Running Docker command line

 Switching to driver configuration through a configuration file

 8.3 Kubernetes components logging and the use of Fluentd

 Kubernetes components and structured logging

 Kubernetes default log retention and log rotation

 kubectl with logging

 8.4 Demonstrating logging with Kubernetes

 Kubernetes setup

 Creating logs to capture

 Understanding how Fluentd DaemonSets are put together

 8.5 Getting a peek at host logs

 8.6 Configuring a Kubernetes logging DaemonSet

 Getting the Fluentd configuration ready to be used

 Creating our Kubernetes deployment configuration

 Putting the implementation of a Fluentd for Kubernetes into action

 Deploying to minikube

 Tidying up

 8.7 Kubernetes configuration in action

 Answer

 8.8 More Kubernetes monitoring and logging to watch for

 Node monitoring

 Termination messages

 9 Creating custom plugins

 9.1 Plugin source code

 9.2 What is Redis, and why build a plugin with the Redis list capability?

 Redis list over RedisTimeSeries

 9.3 Illustrating our objective using Redis CLI

 9.4 Preparing for development

 9.5 Plugin frameworks

 Creating the skeleton plugin

 Plugin life cycle

 9.6 Implementing the plugin core

 How configuration attributes work

 Starting up and shutting down

 Getting the plugin to work with our Fluentd installation

 Putting additional configuration validation into action

 Implementing the Redis output logic

 Putting the testing of synchronous output into action

 9.7 Implementing the Redis input plugin

 Testing input and output plugin execution

 9.8 Extending output with buffering

 Improving our scenario by putting maintainability into action

 9.9 Unit testing

 9.10 Putting the development of unit tests into action

 Answer

 9.11 Package and deployment

 Documentation

 Complete metadata aka manifest

 Building the gem package

 Rerun without the plugin paths

 9.12 Extending to be an enterprise-class solution

 Part 4. Good logging practices and frameworks to maximize log value

 10 Logging best practices

 10.1 Audit events vs. log events

 10.2 Log levels and severities

 Trace

 Debug

 Info(rmation)

 Warn(ing)

 Error

 Fatal

 Extending or creating your own log levels

 10.3 Clear language

 10.4 Human and machine-readable

 10.5 Context is key

 Context: What

 Context: When

 Context: Where

 Context: Why

 Context: Who

 A practical checklist for capturing context

 10.6 Error codes

 Using standard errors

 Codes can be for more than errors

 10.7 Too little logging or too much?

 What qualifies as sensitive?

 GDPR is only the start

 10.8 Log structure and format

 Putting making log entries ready for application shipping into action

 10.9 Use frameworks if you can

 10.10 Development practices

 Rethrowing exceptions

 Using standard exceptions and error structures

 String construction as a reason not to log

 11 Logging frameworks

 11.1 Value of logging frameworks

 11.2 Typical structure of a logging framework

 Logger context

 Appender

 Logger

 Filter

 Formatter

 Configuration

 Logger config

 11.3 Appender structures

 11.4 Logging framework landscape

 11.5 Choosing a framework

 Putting optimizing application logging into action

 11.6 Fluentd’s own logging and appenders

 11.7 Illustrations of an application logging directly to Fluentd

 Python with logging framework: Using the Fluentd library

 Invoking Fluentd appender directly

 Illustration with only Python’s logging

 Illustration without Python’s logging or Fluentd library

 Porting the Fluentd calls to another language into action

 Using generic appenders: The takeaways

 Appendix A. Installation of additional tools and services

 Appendix B. Processing times and dates, regular expressions, and other configuration values

 Appendix C. Plugins summary

 Appendix D. Real-world use case

 Appendix E. Useful resources

 index

 front matter

foreword

 Software is the lifeblood of most industries today and can be a differentiator for those companies that can iterate quickly and find customer value before their competitors. Some of the recent trends that allow large organizations to move fast include the adoption of cloud platforms and microservice architectures. While some of the trends have evolved, one thing has remained constant: when things go wrong, we need to quickly understand where to look to fix the problem. Microservices and ephemeral cloud infrastructure (containers, etc.) exacerbate this problem.

 I vividly remember working on a particularly nasty distributed problem for a client a few years back wherein a set of services would communicate with each other to provide some business function, and after six days (almost on the dot!), the set of services would all come crashing down. The resulting outage caused significant revenue loss for this client. The client decided to restart all of the services one by one after four days to avoid the problem.

 After observing the system for a few days, I noticed that the memory usage of all of the services involved in the call graph was growing significantly, so I worked with the client to safely capture memory and thread dumps to understand what was happening. I determined that a particular buffer was getting filled, but when looking through the code it was very difficult to identify why this was happening. The system included both blocking and nonblocking code on various threads, which made it difficult to work with. I had to turn to a tried-and-true foundation of working with distributed systems to help diagnose the issue: logging events.

 After a few days spent diligently poring over many hundreds of thousands of log lines across the various services, I was able to see that a certain combination of messages that flowed through the system triggered a memory leak in all of the services, which would eventually cause an “OOM” or out-of-memory event in the services.

 Although logging helped significantly in this endeavor, it was not easy. The logging was not consistent across the services, the timestamps were wrong, and the technology used to pull the logs from the machines would sometimes fail, crash, or corrupt the log files. We also lost valuable log data as the services were restarted after four days because the client could not take an outage. If the client had a better logging and observability architecture, a lot of this would have been simplified and would have reduced the time to pinpoint the OOM issue.

 In this book, Phil Wilkins does an amazing job of conveying the principles of good logging patterns and demonstrates this with concrete technology and examples using a ubiquitous log collection and aggregation technology called Fluentd. Fluentd is used to collect, unify, and stream logging data from a variety of systems to a centralized data store, which can then be used for proper analysis. Phil walks the reader through building a logging system, taking into account such things as timestamps, structured human-readable data, and more complex things such as routing and massaging the logging data.

 If you’re building distributed systems such as microservices architectures, you will want to seriously consider your logging and observability architecture to support your day-to-day operations. This book will be a useful companion as you embark on your journey.

 —Christian Posta, VP, Global Field CTO at Solo.io

 I started my Fluentd journey seven years ago by integrating the project as the core piece of Microsoft Azure’s Log Analytic Linux agent. The initial learning curve was challenging; however, the benefits we received from a growing community, plugin ecosystem, and ease of extensibility made the project a favorite within Azure environments. I then jumped to Treasure Data, where I managed the project, and afterward joined Elastic, where I learned of other logging toolsets. After admiring Fluentd from afar, I finally left Elastic, started Calyptia, a company built around the Fluentd ecosystem, and became a project maintainer.

 When starting as a maintainer, I immersed myself in the community, surveying users about their pains and where we could do better. The community highlighted their knowledge gaps on getting started and where to find in-depth explanations of certain topics, and asked for more concrete examples.

 In a happy coincidence, I also met Phil Wilkins while chatting with the community and had the opportunity to read his work Logging in Action. Phil has immense talent for deciphering complex topics and providing easy-to-understand visuals and instruction. Logging in Action fills many of the community’s gaps with architecture details and deep step-by-step explanations.

 Users who are brand-new to the observability space or already running Fluentd in production will gain value from maximizing Fluentd’s performance with a deep dive on Fluentd’s plugin architecture and on multiworker/multithread architecture. All of these examples accompany simple configuration and line-by-line explanations to customize in your environment.

 Beyond the basics of getting started, Logging in Action goes into important real-world use cases and business value. Some of my favorites include reducing log volume, which can reduce costs for users who are using expensive backends, as well as how to use Fluentd to route and send data to multiple destinations. Both use case examples would have made my role much easier in previous years.

 With Fluentd in its tenth year of development and users deploying the ecosystem’s projects over 2 million times a day with Docker, it is hard to find a modern-day Kubernetes service or cloud provider without reference to these essential tools. I highly recommend using Logging in Action as a getting-started guide or refresher, or as a way to optimize your logging journey.

 —Anurag Gupta, Fluent maintainer and Co-Founder, Calyptia

preface

 In some ways, this book has been in development for as long as I have worked in the software industry. This may sound odd, given that my career in IT started in the early ’90s. I learned early on the importance of logging and translating error events into diagnoses and problem resolution. Lessons came from being a young lead developer on a critical product development running round-the-clock system testing. If something wasn’t shown on the displays, it was assumed to be a presentation system problem, so get Phil—he needs to fix things now, even if it is some antisocial time of day or night. The reality was that the presentation subsystem was rarely at fault. The error originating from one of many complex backend systems sent erroneous data or tried to communicate using the wrong version of the interface. The better I made the logging to help show what had or had not been sent to the display system, the fewer the calls received.

 Over the years, I’ve seen the constant drive to deliver functionality and features over giving the nonfunctional aspects the attention sometimes needed. Functional goals will always override the nonfunctional considerations. As software developers, we can be our own worst enemies when it comes to monitoring and logging. Writing logging events isn’t that exciting when our code runs sweetly and passes all our unit tests. The functionality is complete and within the agreed time as far as the decision-makers are concerned, so why spend more time on the solution?

 The reality is that we often collect logs and stick them in a dark place until something starts to go wrong. Logging will never be a sexy subject, but it is essential, and when done well, it can allow us to do some clever stuff. Good logging makes it possible for machine learning and artificial intelligence to be used for pattern recognition or to directly notify the right person to address the issue. You could go as far as detecting a log event and then trigger housekeeping processes to avoid a problem. IBM used to call the ideas of self-protecting and self-healing processes autonomics—sound more fun now?

 My open source background started about the same time as I switched to using Java (release 1.4 had just come out), starting with libraries such as Log4J. This progressed to larger open source solutions like JBoss v3 application server, and then working with Fuse (Apache CXF, Camel, ServiceMix, and ActiveMQ) before RedHat acquired the businesses, building and providing services for these frameworks. One of the great things about truly open-source solutions are the vendor-agnostic characteristics, which means it can have adaptors and plugins covering a diverse set of sources, making it easy to integrate. An architecture that lends itself well to integrating things will encourage such an ecosystem to thrive, and that’s what Fluentd has.

 The last thread of the story comes from my views on knowledge sharing. I’ve seen people use the idea of “knowledge is power” as a reason to withhold as much as possible, forcing people to go to individuals who make themselves indispensable. I’ve always interpreted this idea in an almost diametrically opposite way. I don’t want to be indispensable, as it means you’re back to being called upon day and night. Better to share your knowledge with all. Make your investment in developing knowledge worthwhile; people are far more likely to appreciate it and come back to you in the future (on your terms). It wasn’t until I got involved with Oracle middleware and its user community, and later partner community, that I found a like-minded group of people who encouraged my writing and sharing. My journey as an author really got going.

 My initial “serious” encounters with Fluentd occurred when I looked at the CNCF ecosystem to see what solutions were in the incubator. CNCF-incubated projects suggest possible future technology evolution. In Fluentd, I found a tool that offered far more than just letting Splunk hoover up log files. Fluentd creates opportunities to move log management to exciting places and address many significant log management challenges in a hybrid and multicloud space. However, I felt it was underrepresented in terms of explaining and illustrating Fluentd’s capability and potential in a cohesive way, and thus this book was born. This might suggest that the Fluentd documentation is terrible, but far from it. The online documentation is, however, a dictionary, not a guide. It doesn’t address the questions of what to look for when applying configuration and why.

acknowledgments

 This book has been my first solo writing adventure and my first with Manning, and it has reminded me that there is a lot more effort that goes into a good book than meets the eye. But I hope you’ll agree that the prodding and encouragement from the Manning editorial team means this is a book that will deliver for you.

 I’d like to thank everyone at Manning for their support, particularly Katie Sposato Johnson and Andrew Waldron, who have been with me all the way through this adventure, and Carrie Andrews for finally whipping the content into shape.

 In writing this book, we’ve had the support of volunteer reviewers and MEAP readers. Their feedback has been of great help and insight. Along the way, Anurag Gupta and Eduardo Silva Pereira, as technical and product leads for Fluentd and Fluent Bit, have reached out and taken the time to discuss Fluentd and Fluent Bit with me and contribute to the reviewing process. Thank you all for the time and feedback.

 My journey as an author wouldn’t have started without support and encouragement over the years. Those involved in my journey to becoming an Oracle Ace Director (think Java Rock Stars or Microsoft MVPs for, in my case, Oracle Integration and Cloud) have been central to this journey. By extension, to friends and colleagues past and present at Capgemini and Oracle—as always, many thanks, and I hope we’ll get a chance to enjoy food and drink together again as it becomes safe to travel again.

 Lastly, and most importantly, this book would have never happened without the support and understanding from my wife, Catherine, and our two sons, Christopher and Aaron, when I’ve spent evenings and weekends at the computer rather than in their company. All my love to you.

 To all the reviewers: Alex Saez, Andrea C. Granata, Andres Sacco, Clifford Thurber, Conor Redmond, Elias Rangel, George Thomas, Joel Holmes, John Guthrie, Kanak Kshetri, Kent R. Spillner, Kerry E. Koitzsch, Mario-Leander Reimer, Michael Bright, Michal Rutka, Raymond Cheung, Satej Kumar Sahu, Sau Fai Fong, Sidharth Masaldaan, Simeon Leyzerzon, Stefan Hellweger, Suresh Koya, Trent Whiteley, Vamsi Krishna, and Zoheb Ainapore, your suggestions made this a better book.

about this book

 Logging in Action was written to help people get the most out of Fluentd and think about how logging can make our lives easier. Yes, the book focuses on Fluentd, but it is one of the most influential logging tools, as you will see.

 The time spent developing software is such a small fraction of the life of the code that we produce and that needs to be kept operating. The weaker the logging, the harder it will be to understand and care for these systems in 20 or 30 years. Consider this: in 2020, Reuters has been quoted as stating that there are about 220 billion lines of COBOL code (www.bmc.com/blogs/cobol-trends); the Linux kernel was released in 1991, so software hangs around. Well-written logs and maximizing the logging tools and frameworks can make an enormous contribution to helping. You don’t need to be a superstar hotshot developer or a sysadmin versed in the dark arts of kernel configuration to benefit from this book; as the author, I don’t consider myself to be either of these.

 Fluentd and various other technologies, such as Prometheus, are strongly associated with cloud-native solutions. But don’t let this put you off; even if you’re working with COBOL 77 on a mainframe, you still need to know what is going on. Tools like Fluentd have simply approached the same problems of monitoring, measuring, and alerting in a manner that can also address the demands that cloud-native can add (integration into containers, hyper scaling, and very highly distributed solutions crossing data centers and hosting vendors). Given this, much of the book focuses on the problem of logging regardless of location. Fluentd addresses the challenges of containers, hyper scaling, and so on, so we engage with these problems in the most advanced part of the book.

 Everyone comes with preconceived ideas about what logging and monitoring is and how it should be used. Those preconceptions are influenced by our day jobs as a developer, sysadmin, database admin, security specialist, and so on. I hope this book helps you see other perspectives you’ve not considered. For example, when looking at logs, we often think about a cure rather than prevention. I hope this book will get you considering ideas that will help adopt preventative, or at least more responsive, approaches when handling log events.

Who should read this book

 Logging in Action is for anyone involved in the practical tasks of developing, configuring, or running IT solutions, such as those on the support team battling to keep an archaic piece of undocumented software that no one dares touch running through the day. For the architect who is thinking about reducing the run costs for a system to release future funding on the next cool enhancement. For the developer writing code who doesn’t want to be called at 3:00 a.m. to sort out a problem because logs aren’t clear about what is going wrong and causing code to fail. For anyone in the IT industry who recognizes that it’s time to “pay it forward” and try to ease the pain of understanding or preventing IT problems. Ultimately, if you want to get more out of your logging, this book should provide you with something.

How this book is organized

 The book has four parts that cover eleven chapters and five appendices. The chapters take you through how to do things, and the appendices provide lots of reference material and additional supporting resources and tools.

 Part 1

 Part 1 lays out the big ideas, detailing the architecture of Fluentd and the use cases and opportunities Fluentd can support, as well as the prerequisites for deploying Fluentd. We conclude with the section with the classic hands-on “Hello World” example:

 	
 Chapter 1 starts with the basics of the elevator pitch for logging unification, touring through the background and fundamental ideas behind logging and Fluentd. We explore the different use cases and the different perspectives on logging, and examine ELF and EFK software stacks, as well as the differences and commonalities among these things.

 	
 Chapter 2 goes through the makeup of a log event, how time is important (particularly for distributed solutions), the architecture of Fluentd, and how this influences decisions. Next, we cover the footprint needed to deploy and run a basic Fluentd configuration. We conclude by following the tradition of creating the Fluentd equivalent of a “Hello World” program.

 Part 2

 Part 2 gets down to the details of working with Fluentd, illustrating the mechanics around capturing log events, routing, filtering, and outputting events. We provide the practical steps that turn the handling of log events from shifting data to making the logs more meaningful and, crucially, actionable and/or measurable:

 	
 Chapter 3 is all about capturing log events. We look at the most common sources, such as log files, and illustrate the nuances of processing such data. How can we extract more meaning from log events using parsers? And, of course, if we are monitoring everything else, how do we monitor the monitor?

 	
 Chapter 4 explores this question: Having captured events, what are we going to do with them? We examine buffers to help with I/O performance but ultimately put the log events into storage, such as structured files or repositories like a NoSQL database. We then look at approaches that support post-event analysis (e.g., mining events within Elasticsearch), and also explore how to be more proactive, spotting important events and being notified about them through Slack the moment they occur.

 	
 Chapter 5 covers who wants the log events, and how we get the events to the right places? Security people want all the data in their specialist data mining toolkit. Operations do not want the logs clogging up the environment, but they want anything that helps them see production issues and get meaningful data to the right people.

 	
 Chapter 6 looks at getting more meaning from logs. Let’s turn logs from data to information. Do we need to inject additional information into a log event to give it valuable context? If so, how?

 Part 3

 Part 3 takes us into the most advanced aspects of Fluentd, looking at deployment, performance, and scaling in both classic deployment scenarios and containerized environments. We address the challenge of building our own plugins to handle the niche situations where an existing plugin doesn’t meet our needs:

 	
 Chapter 7 addresses how Fluentd can be applied to scale (either statically or dynamically) and how it can operate in distributed multiserver and clustered environments, including on-premises only, hybrid, and multicloud factors. We also look at how to incorporate resilience into a deployment so log events continue to flow.

 	
 Chapter 8 looks at configuring Fluentd within Kubernetes and Docker to capture events from the applications and listen to the log events generated by these platform technologies themselves.

 	
 Chapter 9 addresses those who wish to add to Fluentd’s community with their own plugins or need to develop something to deal with their own niche problem that doesn’t have a plugin to help already. This is the one chapter where having some development experience will be beneficial.

 Part 4

 Part 4 explores the issue that Fluentd, and what it can do with logs, is only as good as the log events that are created. We examine what makes good log events. Producing log events to file systems is not the optimal solution, so we explore different ways to get log events to Fluentd more effectively:

 	
 Chapter 10 describes the effective use of log classification, the kinds of information that can increase the value and use of log events, and how we make the information available. This includes taking into account the implications of logging sensitive data.

 	
 Chapter 11 looks at logging frameworks and how they can simplify handling log events in different languages. The chapter examines how log events can be sent to Fluentd using techniques that are more direct than log files. Avoiding this step gains efficiency and flexibility in our setup. We take a tour of how many logging frameworks are organized and connect such frameworks directly to Fluentd rather than stepping via log files, including how this can be done without the application getting locked into using Fluentd.

 Appendices

 The appendices contain the content that will be helpful for quick reference when working with Fluentd, along with many resources to help you learn more about related subjects and helpful tools. Outside of Fluentd and the LogSimulator, we cover the installation of the products used to help demonstrate various aspects of Fluentd. We cover this in the appendices to avoid any disruption to the book’s flow:

 	
 Appendix A takes you through installing the different tools and the configuration needed to run all the examples, scenarios, and exercises in the book if you want to get down and dirty.

 	
 Appendix B helps with manipulating times and dates and formulating regular expressions that can differ because of programming language differences. This appendix provides handy lookups to address these issues.

 	
 Appendix C addresses the fact that Fluentd lives in a world of plugins, and this should help you identify plugins that can help but haven’t been used in the chapters. This isn’t an exhaustive list, but it calls out some plugins that are likely to be handy sooner or later.

 	
 Appendix D tells a story of how we’ve applied logging management to deliver significant improvements to large organizations. To protect the innocent, I’ve fudged some details. However, if you’re trying to help your organization adopt better logging and monitoring practices, this should offer some ideas.

 	
 Appendix E addresses the reality that logging and Fluentd touch on many aspects of IT. Rather than trying to cover everything in detail, as that would result in a book so big we’d never be able to pick it up, we’ve identified a variety of external resources we think can help.

About the code

 This book contains many examples of Fluentd configuration and source code, both in numbered listings and in line with standard text. In both cases, the source code is formatted in a fixed-width font like this to separate it from ordinary text.

 We’ve restricted the book to showing only the relevant sections of a configuration file in most cases. All the listing titles provide a reference to the complete code or configuration. The book doesn’t include configuration or code annotations, but we have left them in the original source files to make the code compact and easy to read on the page. In rare cases, even this was not enough, and listings include line-continuation markers (➥).

 Source code for the examples in this book is available for download from the publisher’s website at www.manning.com/books/logging-in-action or via the GitHub repository at https://github.com/mp3monster/LoggingInActionWithFluentd. I hope that over time we’ll get to add additional examples into this repository.

liveBook discussion forum

 Purchase of Logging in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/#!/book/logging-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 	
 [image:]

 	
 Phil Wilkins has spent over 30 years in the software industry working for and with a diverse range of businesses and environments, from multinationals to software startups, from radar to retail, and commercial health care. He started out as a developer on real-time solutions and has worked through technical leadership roles, primarily in Java-based environments.

 Phil has joined Oracle as a Technology Evangelist having previously worked for Capgemini as a Consulting Architect and Technology Evangelist specializing in cloud integration, API design, and non-functional considerations such as logging and monitoring. He was part of a multi-award-winning PaaS team in the UK using vendor-specific and open-source technologies; his client-facing role with well-known UK and international brands, where he provided internal support to delivery teams. His work with delivery teams focused on technical expertise, developing and defining best practices, and leading innovation initiatives. He is TOGAF certified.

 Outside of his daily commitments, Phil actively works to support the developer community in various ways, including as a co-organizer of the London Oracle Developer Meetup, author of journal articles and blogs, and presenter at conferences in the UK and around the world. Phil’s contributions to the community for open source and PaaS have been recognized since 2019 by Oracle with the accreditation as an Oracle Ace Director.

about the cover illustration

 The figure on the cover of Logging in Action is “Fille Bratzke à Udinskoi Ostrog,” or a Bratzke girl in Udinskoi Ostrog, from a book by Jacques Grasset de Saint-Sauveur published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of today’s computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. From zero to “Hello World”

 Any good thriller starts by introducing its primary protagonists. Their motivations, backgrounds, and strengths and weaknesses are presented. The environment in which the key players operate is shown in the first 20 minutes.

 This is what the first part of the book is about. The first chapter introduces our hero, Fluentd (and sibling Fluent Bit); we set the scene with the context, the use cases, and so on. If you are still in the process of discovering what Fluentd is about or thinking about the things that will help you make a case to your colleagues for adopting Fluentd, there is plenty of fuel for thought here.

 If chapter 1 is about our principal player, then chapter 2 looks at the environments in which Fluentd can operate. We will progress through the first practical steps by installing Fluentd and keep with the time-honored tradition established by Brian Kernighan, with the first solution being “Hello World.”

1 Introduction to Fluentd

 This chapter covers

 	
Examining use cases for logs and log events

 	
Identifying the value of log unification

 	
Differentiating between log analytics and unified logging

 	
Understanding monitoring concepts

 	
Understanding Fluentd and Fluent Bit

 Before getting into the details of Fluentd, we should first focus on the motivations for using a tool such as Fluentd. How can logging help us? What are log analytics, and why is log unification necessary? These are among the questions we will work to answer in this chapter. We’ll highlight the kinds of activities logging can help or enable us to achieve.

 Let’s also take a step back and understand some contemporary thinking around how systems are measured and monitored; understanding these ideas will mean we can use our tools more effectively. After all, a tool is only as good as the user creating the configuration or generating log events to be used.

 As we do this, it is worth exploring how Fluentd has evolved and understanding why it holds its position within the industry. If you are considering Fluentd as a possible tool or looking to make a case for its adoption, then it is helpful to understand its “origin story,” as this will inform how Fluentd may be perceived.

1.1 Elevator pitch for Fluentd

 Given that you’re looking at this book, we presume you have at least heard of Fluentd and probably have a vague sense of what it is. Let’s start with the “elevator pitch” as to what Fluentd and Fluent Bit are.

 The primary purpose of Fluentd and its sibling Fluent Bit is to capture log events from a diverse range of possible sources (infrastructure such as network switches, OS, custom applications, and prebuilt applications, including Platform as a Service and Software as a Service). It then gets those events to an appropriate tool where the log events can be processed to extract meaning and insight, and possibly trigger actions. Fluentd’s primary job is not to perform detailed log analytics itself, although it can derive meaning, and deeper analysis could be incorporated into its configuration if needed.

 By unifying the log events from all the sources of logs impacting the operation of our solution, we have the opportunity to see the big picture. For example, was the error in the database the cause of an error returned to a user by the application, or was the database error a symptom of the operating system not being able to write to storage?

1.1.1 What is a log event?

 We’ve described Fluentd in terms of log events, so what qualifies as a log event? A log event is best described as the following:

 	
 Log events are humanly readable information that is primarily textual in nature. The textual information can range from unstructured to highly structured.

 	
 Each log event has a place in time, defined with a timestamp (usually absolute 01:00:00 1 Jan 1970, but could be relative +0.60), or time can be inferred by the log event’s position in a series of events.

 	
 Each event also has an explicit or implicit association to a location that can be associated with a component running in a location that may be physical or logical.

 Let’s illustrate the point. Anyone with some coding experience will probably recognize the screenshot shown in figure 1.1 as an extract of log output. In this case, the output is generated by Fluentd. As you can see, there is a timestamp for the event; a location, which comes from the host the events are occurring on; and some additional semistructured content.

 [image:]

 Figure 1.1 Log output from Fluentd

1.1.2 Fluentd compared to middleware

 Those who have worked with middleware (e.g., Apache Camel, MuleSoft, Oracle SOA Suite) will appreciate the idea of describing Fluentd as an enterprise service bus specialized in logs. Figure 1.2 suggests this, with the concept of input and output and capabilities to route and transform the log events. This will become ever more apparent as the book progresses.

 [image:]

 Figure 1.2 Illustration showing different types of Fluentd plugins and their relationship to the core

 NOTE If you’d like to explore this analogy further, you might consider reading the liveBook version of Open-Source ESBs in Action by Tijs Rademakers and Jos Dirksen (Manning, 2008) at http://mng.bz/Nx6n.

 Definition Middleware is a generic term covering software that provides services to software applications beyond those available from the operating system. Often this entails connecting different pieces of software. It can sometimes be described as “software glue.”

 Definition An enterprise service bus is a specific category of middleware for passing data in a near-real-time manner between pieces of software. This usually includes the sequencing of the execution of the different software components as well.

1.2 Why do we produce logs?

 We create log entries for a wide range of reasons. Some of the use cases for logs are only needed a fraction of the time but are invaluable when needed. Nearly every use case we can think of will fall into one of the following categories:

 	
 Debugging —Knowing which parts of the code are being executed in a scenario makes it easy to isolate a bug. Yes, we have debuggers, and so on, but often it’s just as easy to drop a few log lines in to help. Some of these log messages will be left in to provide assurance that things are running fine during production. Other lines of log messages may be disabled while we’re not developing and testing software. Note that we would never recommend trying to connect to a production environment with a debugger. Allowing a production system to log information intended for debugging should be done with an understanding of the possible consequences (later in the book, we’ll explore why this is so).

 	
 Unexpected data values or abnormal conditions occurring —When code encounters data values that are out of bounds, sometimes it is better to flag and keep going, as you would see when

 	
 Using the default condition in a switch statement, when the code should have a value you have allowed for in the switch. But as a result of a change or bug elsewhere, your code needs to gracefully handle the situation and make it known (e.g., the classic problem of a presentation layer [UI] differing from the backend supported data values):
 switch (caseSwitch)
 {
 case 1:
 // do something expected
 break;
 case 2:
 // do something expected
 break;
 default:
 System.Diagnostics.Debug.Write("Unexpected " + caseSwitch);
 // unexpected path – log this as it may be indicative
 // of a bug
 break;
 }

 	
Applying defensive coding. For example, before using an object variable, checking that it isn’t null—a standard action when first loading configuration data to ensure everything is as expected.

 	
Reporting when the code handling connection issues experiences an error, and you’re going to fall back and try again. This is so we can understand the cause of a slow response that impacts user experience from the logs.

 	
 Audit and security—We live in a world where internal and external actors try to get hold of data for illegitimate use. To help us watch for misuse, we need to know what is going on. Events need to be recorded, if not reported. Sometimes this is to search for abnormal behavior patterns, and other times to show that the system did everything as it should. We often see this kind of use case referred to as forensic logging or application security monitoring and security information and event management (SIEM). Bringing log events together that can create an audit trail is important. A single out-of-norm event may be insignificant. But when you can see the same kind of event reoccurring regularly in an unusual manner, over time it may point to something more suspicious.

 Logging, security, and log forensics

 For further insight into forensic logging, this article provides some insights into the realities of using logs: http://bit.ly/Fluentd-ForensicLogging. And this Gartner article adds additional color to this landscape: http://bit.ly/AppSecurityMonitoring.

 The National Institute of Standards and Technology (NIST) also provides an excellent guide on logging for security purposes in “Guide to Computer Security Log Management” (http://mng.bz/ExWd). While the title may suggest that the content is for a security specialist, it does offer a good entry into this application of logging for anyone in the IT industry.

 	
 Root cause analysis—Sometimes we see a problem, but the cause isn’t apparent. Often this is because we are looking only at the logs from a small set of components. For example, an application based on its logs appears to slow down over time, but there is no evidence of a memory leak. Only when we bring logs together from all the sources can we identify a cause and separate other problems as side effects. For example, our application could be fine. Still, we use another service on the same server, which never releases CPU threads properly, resulting in the server slowly running out of resources to run all applications. But this can’t be seen until all the information is presented together.

 	
 Determining the cause of performance issues—Tools such as Prometheus (https://prometheus.io/) and Grafana (https://grafana.com/) are well known for gathering metric data to provide insight into the performance of software being run. While the data may show you what is happening, it doesn’t necessarily tell you why. It is textual logs that describe what is happening—whether that is database query logs or application thread traces.

 	
 Anomaly detection—While a system may appear to operate perfectly fine and yields the expected results when a solution is tested, anomalies occur in the results during the system’s regular operation. Logging can facilitate the detection of such issues by helping to find correlations in the log events when anomalies arise, providing an indicator of the cause.

 An example of this was the occurrence of the Intel Pentium FDIV bug in the 1990s, where an error in the design of specific Pentium processors meant that while the software ran perfectly, some calculations in specific conditions produced an incorrect result. If we log events such as the outcomes of important calculations even when the software is running as expected, it becomes easier to spot any possible anomalies and examine activities to identify the origin of the anomaly (for more detail, see https://en.wikipedia.org/wiki/Pentium_FDIV_bug).

 Another example of an anomaly that can be seen is running our apps in production environments where we share resources with other processes. Our test environments show that everything is fine, but in production, we experience out-of-memory errors. These scenarios can result from test conditions being subtly different than production, where we may have been able to use more memory than is available in production conditions. Seeing what else is running and the details around the errors can help diagnose resource conflict issues. Not as high profile as a chip flaw, but still an issue that can be challenging to isolate.

 	
 Operational effectiveness and troubleshooting—Mature, well-produced log events can include the use of error codes. An error code can be linked to a particular problem and guidance on how to resolve the issue.

 	
 Determine when to trigger subsequent actions —Use log events to recognize specific needs and initiate processes automatically instead of requiring manual intervention.

 This can be particularly helpful for legacy states where the software and hardware environments are fragile and poorly understood but operationally critical; people become risk-averse to change (or may not even be able to implement change for off-the-shelf solutions). Therefore, to implement tasks like preventive measures for errors, we need to implement solutions outside the application being monitored. This could be simply watching for completion messages reporting success, at which point the next operation or error prevention can be started.

1.3 Evolving ideas

 Ideas around log management and the application of logging have been evolving a fair bit over the last four or five years; this is partly driven by the rapid progression of containerization. Docker and Kubernetes and the effective growth in individual small services (microservices/macroservices/mini-services) to support dynamic and hyper-scaling mean environments and deployed applications are far more transient in nature. Other factors such as broader adoption to varying degrees of DevOps have also evolved. The net result is that a couple of concepts have developed that are worth noting.

1.3.1 Four golden signals

 Observability was probably the first of the modern monitoring concepts to develop. Discussions around observability started to gain mainstream recognition around 2016 and showed up in what have become referential texts, such as Google’s site reliability engineering (SRE) guide (available at https://landing.google.com/sre/sre-book/toc/). The idea isn’t new; it’s just been well defined.

 Observability essentially states that we should track or observe and measure what software is doing to manage and understand a system. Industry thinking has evolved this premise to the tracking of four specific signals, often referred to as the four golden signals of SRE: latency, errors, traffic, and saturation. These four signals are sometimes referred to as metrics, measures, or indicators (the language is used interchangeably; personally, the term signal feels very binary, and life is rarely that). Here is what the signals mean:

 	
 Latency —How long it’s taking to address a request. A growing latency indicates potential performance issues from the increasing demand of need, or lack of performance tuning, for software or configuration.

 	
 Errors —Problems that can impact the service and the frequency, and whether they are self-recovered (e.g., not getting a DB connection means fall back and try again). Fluentd will come into its own handling errors, as we will see as we progress through the book.

 	
 Traffic —Increased traffic can indicate growing demand or malicious intent, depending on the gain or loss of effectiveness if traffic drops.

 	
 Saturation —Reflects how full or heavily used a system is (e.g., CPU and disk utilization). Once a system passes a certain saturation threshold, performance degradation will be experienced as the operating system has to dedicate more effort to manage its limited resources.

 While deriving all four signals from logs alone is not desirable (e.g., service degradation would require us to hold multiple performance measures over time and compare them), halfway-decent logging can yield the signals given the use of timestamping. Latency could be derived by the time difference between the first and last log events occurring; for example, throughput could be indicated through volumes of log entries.

1.3.2 Three pillars of observability

 Another perspective of observability that has become popular in the industry relates to the character of the things we monitor. The type of information gathered when monitoring can be described by one of several definitions. As a result, observability is made up of three pillars, or core ideas:

 	
 Metrics —Typically numerical and quantify the state of things. We then regularly sample the data points in the environment (e.g., CPU utilization).

 	
 Logs —Primarily textual but event-based, therefore having characteristics of time and description (e.g., Simple Network Management Protocol [SNMP] traps).

 	
 Traces —Tracking execution flows and the time it takes for transactions and subtransactions to execute different steps. Trace logs are largely numerical, being made up of timestamps as code executions enter and leave different parts of the solution. To provide these times with context, identifiers, such as transaction ID and the entry and exit points, are identified.

 Everyone will be familiar with metrics, as we have all at some point needed to see how hard a CPU is working or have experienced constraints because of a lack of memory or how much storage is available on our hard disks.

 Tracing is probably most strongly associated with the OpenTracing initiative (https://opentracing.io/) and the Cloud Native Computing Foundation (CNCF) project Jaeger (https://jaegertracing.io/). OpenTracing has combined with a project called OpenCensus (https://opencensus.io/) to form OpenTelemetry (https://opentelemetry.io/). Yet logging may contribute to this space, as specific log entries may act as a measuring point within a trace—particularly within legacy solutions. There is the risk that people will merge thinking about tracing with logging. It is often desirable to correlate trace performance information back to logs, so logs can be used as a key diagnostic tool in determining where the low performance occurs. However, the tooling available to each pillar has distinct differences and strengths. We can see this by considering Jaeger’s visualization of execution paths (traces) versus Fluentd’s ability to parse log events and trigger actions. While these CNCF projects have brought tracing to the fore, the idea isn’t new, and many service bus solutions (such as Oracle SOA Suite and MuleSoft) have some sort of mechanism for tracing. The difference is that OpenTracing and OpenTelemetry are trying to drive standardization.

 We are seeing signs that these standards are being adopted by open source implementation frameworks and commercial solutions. How does this relate to Fluentd? Depending upon the log output, it can represent a means to trace execution (e.g., record a transaction, an identifier, an execution point in the codebase, and a time). In other words, a trace is a specialized log. This relationship and the deployment models being supported make Fluentd and Fluent Bit capable of being part of an OpenTelemetry solution. As a result, the OpenTelemetry Protocol (OTLP) is being incorporated into Fluentd. All these measures play a part at different levels of a solution (infrastructure to business logic), as figure 1.3 illustrates.

 [image:]

 Figure 1.3 Three pillars of observability as applied to a solution stack

 The definitions for the layers are as follows:

 	
 Business application monitoring—This presents pure abstracted business application monitoring or business activity monitoring (BAM) and relates to the measurement of application/business tasks described by things like Business Process Execution Language (BPEL).

 	
 Application monitoring—This reflects traditional monitoring of applications and middleware/workflow technologies such as Oracle’s SOA Suite or Microsoft’s BizTalk underpinning BPEL implementations.

 	
 Virtual machine/container monitoring—This measures whether the engine that shares host computing services gives appropriate levels of resources to the guest environment(s). It monitors to ensure that the virtualized hardware is running smoothly.

 	
 Host/infrastructure monitoring—This detects hardware problems, such as storage capacity, overheating CPUs, fan failures, and so on.

 NOTE More information about BAM can be found in the liveBook version of Activiti in Action by Tijs Rademakers (Manning, 2012) at http://mng.bz/DxgR.

 Of these two concepts, I believe the four signals are better considered as measures. By measuring the data that each signal describes, the signal will indicate whether something is right or wrong. More importantly, do the changes in the signals being received show a trend or pattern that at least means that the solution being monitored is not degrading anymore? Ideally, we want a trend indicating continued improvement. Regardless, this information will not give you information on the root problem. For example, signals showing a highly saturated system won’t tell you why the system is saturated, which can occur if code is stuck in an infinite loop. For this, you still need to understand what the software is doing. This is not to say signals are wrong; they are, without a doubt, the best way to provide a cue that there’s an issue. But it is through the lens of the three pillars, I believe, that a deeper appreciation of what is or isn’t happening can be achieved with the sight of cause and effect in the way software is behaving.

 You may have observed that, in the reasons for logging (for debugging, audit, etc.), various activities will be handled by more than one or two individuals in an organization. Once an organization grows beyond a certain size, we have specialists working in different areas. The specialization of roles brings pressure for different tooling. While many monitoring tools have plugin features, and so on, they may not support every individual need. This can mean we end up with multiple tools in an Enterprise IT landscape, and in some organizations, people and organization politics will further complicate the IT tooling landscape. Yet, they all need a blend of data from the same source systems.

1.4 Log unification

 Fluentd, Logstash, and other related tools are sometimes referred to as log unification tools. But what is meant by this, and what value(s) should a unification tool have? Let’s look more closely at the value of unification and differentiate it from some other associated ideas.

 The Cambridge English Dictionary describes unification as “the act or process of bringing together or combining things or people” (http://mng.bz/lax2). This is what we use Fluentd for—collecting log events from diverse sources and bringing them together with a single tool so the log events can be processed and sent to the appropriate endpoint solutions(s).

 This ability is essential, as it provides many significant benefits; we have touched on some of these when looking at the application of logs. As we bring these value points together, we can roughly group them into log sourcing and log-based insights.

 The log sourcing benefits include the following:

 	
 It eases the task of locating and retrieving logs and log events. Through a single platform, locating relevant log events becomes far easier. We can route the log events to a convenient location/tool, rather than needing to access multiple platforms with potentially many different locations and ways of accessing the log events.

 	
 With virtualization, containerization, and more recently functions as a service, the hosting of logic becomes transient, so the means to easily gather log information before it is lost is more critical than ever. Using Fluentd, we can configure lightweight processes into these transient environments that push log events to a durable location.

 	
 A single technology brings logs events together regardless of the source or target. As a result, log event management becomes easier and more accessible. We don’t have to master how all the different ways to log events can be captured and stored (e.g., Syslog, SNMP, Log4J, and the many other log forms and protocols), as Fluentd makes this easier.

 	
 Operating systems are complex, made up of many discrete processes and applications. Often, discrete components come with their own logs. We need to bring these together to trace an event through the different components. Some of this has been solved with operating systems and network equipment adopting a small group of standards like Syslog and SNMP traps.

 It would be easy to think that Syslog and SNMP can meet all our logging needs. But software is more than a bunch of OS components that can use SNMP or Syslog, so we need to bring these sources together at another level of unification. For example, Syslog is predominantly a Linux solution; its use of UDP means there is a risk of event loss, and UDP has size limits. The data structures and predefined values are infrastructure-centric, to name a few of the Syslog constraints.

 	
 In the era of the network and the internet, our applications pass events through many different managed devices, creating a real change in the number of places where our communications could be disrupted. Unifying the log events at this scale of distribution brings the problem to manageable proportions.

 The log-based insights include the following:

 	
 It is easier to create holistic view(s) of log events, allowing us to see the cause and effect more easily.

 	
 With logs unified into an analytics platform, the data can be capitalized on with processes such as

 	
Searching across all the logs in one accessible location

 	
Identifying trends and patterns in the production environment

 	
Extracting analytical data enabling forecasting future likely behavior

 	
Looking at user behavior to determine if the systems are subject to misuse or patterns of malicious actions

 	
 A unification platform creates the opportunity for us to move from a reactive, post-event analysis approach to identifying issues and then proactively acting on them as they occur. This potentially can extend to a position where we identify warning signs and proactively perform actions to avoid a problem. The ability to become proactive comes from the unification tool’s ability to filter, route, and apply meaning to log events.

 	
 Infrastructure as a Service and Platform as a Service have brought whole new levels of dynamic change and routing complexity. As a result, the unifying of logs reduces the scale of the challenge of tracking what could be impacting our solution.

 While we have discussed the why and what of log unification, we should also differentiate it from other concepts associated with processing log events, particularly log analytics.

 Note For more information about SNMP, see the liveBook version of Software Telemetry by Jamie Riedesel (Manning, 2021) at https://livebook.manning.com/book/software-telemetry/chapter-2/155.

1.4.1 Unifying logs vs. log analytics

 Many tools in the logging space come into the category of log analytics, where the focus is on applying data-analysis techniques such as pattern searching, using complex rules across many data records. Such processing is often associated with big data and search engine technologies. The best known of these is probably Splunk, as a purely commercial product, and Elasticsearch, as an open source solution with commercial options.

 The log events need to be ingested into an analytics engine to enable log analysis to be performed. Such analytical processes may include event correlation (e.g., determining which systems or components generate the most errors or when the fault frequency relates to a particular event during the day). Getting log events into the engine can be done manually if necessary. Typically, analytics products like Splunk have tools to harvest or aggregate the log events using one of the more common protocols in the analytics engine. These services are then deployed to multiple locations to gather different log sources. This is a simple act of aggregation, as the harvesting is not intelligent; there is no possibility of handling the log events effectively until they are in the analytics engine. Harvesters typically don’t have the same levels of connectivity and configuration seen with unification tools.

 The differentiator is that a log analytics engine’s strength is applying search and computational science to many logs, not the gathering and routing of log events. Whereas the strength of unification tools is sourcing and delivering the log events, it typically has relatively simplistic analytical capabilities such as event counts over time.

 Both technologies have some standard capabilities, regarding the transformation/application of meaning to the data (i.e., the process of data becoming usable information). Without these abilities, neither solution can be very effective. Both technologies have strong event-filtering capabilities, but are applied in different ways.

 definition Log routing is when log events are taken and then directed through a middleware tool, such as Fluentd, to the applications that need those log events.

 Definition Log aggregation means log events are taken and sent to a central location to be processed.

1.5 Software stacks

 The industry has been talking about software stacks since 2000 (some have attributed this term to David Axmark and Michael “Monty” Widenius, cofounders of MySQL), when the best-known stack was named: the LAMP (Linux, Apache, MySQL, PHP) stack. By software stack, we mean a standard combination of products (typically open source) used together to deliver software solutions. Another well-known stack is MEAN (MongoDB, Express, AngularJS, Node.js). A complete list of stacks can be found at https://en.wikipedia.org/wiki/Solution_stack.

 Software stacks or solution stacks

 It is worth noting that people often use the terms software stack and solution stack interchangeably. In most cases, this is reasonable; the stack provides a complete solution, such as log management; we just need to apply the configuration.

 But it isn’t valid in cases where the stack provides all the elements on which a solution can be built; the MEAN stack contains all the components to build a lot of solutions, but you have to add your own software to the MEAN stack to deliver a solution.

1.5.1 ELK stack

 The best-known stack within the software landscape for log processing is ELK (Elasticsearch, Logstash, Kibana). This combination of products provides the ability to perform log analytics with Elasticsearch, visualization through Kibana, and log routing and aggregation with Logstash. The ELK stack has fitted together so well because all three components, while open source, have been developed by Elastic (www.elastic.co), which has been successful, like Red Hat, with an open source–based business model.

 While a single vendor for these components leads to them being neatly integrated and complementing each other’s features, it also means that development effort can be heavily influenced by the vendor’s business model and objectives. For Elastic, this is to sell more services and enterprise extensions to the different parts of the ELK stack. This issue can be addressed by the open source product being governed by an external and neutral organization such as Apache, CNCF, or the Linux Foundation. But ELK is not subject to such governance.

 Unfortunately, Logstash, as part of this stack, has been impacted by the perception that it is biased to Elasticsearch as a target solution for log events (which may or may not be valid). Logstash does have plugins for products other than Elasticsearch. However, it could be argued that these plugins have had to come from vendors wanting to compete with Elasticsearch in the ELK stack, or Elastic has had to implement them to remain competitive. In comparison to Elastic, the founders of Fluentd didn’t have their own analytics product as a preferred location for log events to be sent. We could also consider the adoption of Fluentd by CNCF as an implicit recognition of being free from these biases. It also helps that the community around Fluentd has produced more plugins, making it more flexible than Logstash.

 This has led to a variant stack known as EFK that is gaining traction (Elasticsearch, Fluentd, Kibana). As Fluentd has plugins for Elasticsearch and Kibana, this alternate stack is viewed as equally capable but with greater flexibility for unification. OpenShift, for example, adopted EFK to manage log events (see http://mng.bz/YwDj).

 As shown in figure 1.4, both ELK and EFK have lightweight, smaller variants of the unification capability. Beat’s relationship to Logstash is the same as Fluent Bit’s relationship to Fluentd (more on Beats and Fluent Bit later in this chapter).

 [image:]

 Figure 1.4 ELK vs. EFK software stacks, illustrating how the stacks differ and which products are involved in each stack

1.5.2 Comparing Fluentd and Logstash

 In table 1.1, we have tried to draw out the differentiators of the two products. Both have a lot in common, which is why it is possible to replace Logstash with Fluentd in the stack. However, there are differences worth highlighting.

 Table 1.1 Fluentd and Logstash comparison

 	
 Aspect

 	
 Fluentd

 	
 Logstash

 	
 Primary contributor and product governance

 	
 Treasure Data governed by CNCF

 	
 Elastic

 	
 Commercially supported versions

 	
 Yes

 	
 Yes (more robust option, as support can cover the full stack)

 	
 Plugins available

 	
 ~500

 	
 ~200

 	
 Configuration style

 	
 Declarative—use of tags

 	
 Procedural—use of if-then-else constructs.

 	
 Performance

 	
 Comparatively (to Logstash) lower memory footprint

 	
 Comparatively (to Fluentd) higher memory footprint

 	
 Caching

 	
 Highly configurable cache options with file and memory caching out the box

 	
 In-memory queue with a fixed size

 	
 Language/run-time machine

 	
 CRuby—no run time required for core

 	
 JRuby with dependency on Java run time (JVM)

1.5.3 The relationship between Fluentd and Fluent Bit

 Fluentd has a small C-based kernel, but the bulk of the product is built using Ruby. This brings a bit of a tradeoff. The core tradeoff with Ruby is that it runs on an interpreter (although several variants utilize the Java Virtual Machine, Truffle, and so on, instead of the original interpreter, such as JRuby, used by Logstash). Ruby uses a packaging tool known as Gems to provide additional libraries and even applications. To enable Fluentd to be used in Internet of Things (IoT) situations, a smaller resource footprint is needed for devices like a smart meter or Raspberry Pi. The objective of creating a minimal footprint version of Fluentd led to the creation of Fluent Bit. Fluent Bit provides a subset of the Fluentd features, focusing on taking log events and routing them to a more centralized location. The log events can then be processed (filtered, transformed, enriched, etc.) more effectively—as you would expect of Fluentd. Table 1.2 the differences between Fluentd and Fluent Bit.

 Table 1.2 Fluentd vs. Fluent Bit

 	
 Aspect

 	
 Fluentd

 	
 Fluent Bit

 	
 Development language

 	
 Written using C & Ruby

 	
 Written using C to minimize the deployment footprint

 	
 Dependencies

 	
 Dependency upon RubyGems

 	
 No dependencies (unless customized)

 	
 Storage and memory footprint

 	
 Memory requirements ~20 MB, depending upon configuration and plugins

 	
 ~150 Kb

 	
 Plugins available

 	
 Able to leverage approximately 300 prebuilt and third-party plugins

 	
 Restricted to the in-built plugins and 30 other extensions.

 Input Output

 CPU stats FluentdTreasure

 Kernel messages HTTP

 Memory stats Library

 Serial interfaces Elasticsearch

 TCP InfluxDB

 Log Files NATS

 Docker Statistics

 MQTT Treasure Data Service

 	
 OS support

 	
 Prebuilt installers for a wide range of OSes covering most flavors of Windows, OS X, Linux

 	
 A number of small-footprint Linux variants based on CentOS, Debian (and derivatives, such as Raspbian), and Ubuntu for x86 and AArch processors have been built.

 Other OSes such as BSD-based Unixes may be supported, but there are no guarantees for plugins.

 Despite these differences, Fluent Bit and Fluentd are more than capable of working together, as we’ll see later in the book. IoT isn’t the only use case that lends itself well to the use of Fluent Bit. When considering microservices, small footprints and rapid startup times are highly desirable for some containers. We’ll explore the deployment possibilities later in the book for microservices and the use of Fluentd or Fluent Bit.

1.5.4 The relationship between Logstash and Beats

 The relationship between Beats and Logstash does differ a bit from that between Fluentd and Fluent Bit. For a start, the Beats are actually a set of individual small footprint components collecting data for one thing. Each individual Beat solution is built upon a Go library called libbeat, compared with Logstash’s use of Java. The Beats family are made up of the following:

 	
 Filebeat—Collects log files (with specific modules to handle Apache, server logs, etc.)

 	
 Packetbeat—Collects network packet data (DNS, HTTP, ICMP, etc.)

 	
 Metricbeat—Collects server metrics

 	
 Heartbeat —Provides an uptime monitor

 	
 Auditbeat —Collects audit events to monitor activities through systemd (http://mng.bz/6Z9o) and Auditd (http://mng.bz/oa5d) on Linux

 	
 Winlogbeat—Integrates into Windows OS to run PowerShell scripts and Sysmon, among others

 	
 Functionbeat—Works with serverless solutions, currently just on AWS (Amazon Web Services)

 The libbeat library has been made available as open source. It has made it a lot easier (and given the assurance of code independence) for third parties, including the open source community, to build more Beat solutions using the framework. All the beats use a shared data structure definition to communicate the data collected.

1.6 Log routing as a vehicle for security

 With infrastructure becoming increasingly configuration-driven rather than being physical boxes and cables, the points where data can have ingress and egress to an environment can increase quickly, as it is simply a case of configuring new points where data can come and go. It is preferable that the number of points at which data passes between public and private networks be limited—this is just one of many reasons for having backend (or reverse) proxies. With logging agents in the pure aggregation model, each node wants to talk directly to the point of aggregation. This can be mitigated if the solution can tolerate network proxies. But would it not be better to use a proxy that better understands what is being routed, such as Fluentd?

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/Wilkins_AuthorPhoto_FM.png

OEBPS/OEBPS/Images/CH01_F02_Wilkins.png

OEBPS/OEBPS/Images/CH01_F03_Wilkins.png

OEBPS/OEBPS/Images/CH01_F04_Wilkins.png

OEBPS/OEBPS/Images/IFC_F01_Wilkins.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F01_Wilkins.png

