

 [image: cover]

 Open-Source ESBs in Action: Example Implementations in Mule and
 ServiceMix

 Tijs Rademakers & Jos Dirksen

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 Sound View Court 3B Fax: (609) 877-8256
 Greenwich, CT 06830 Email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed elemental chlorine-free

 [image:]

 Development Editor: Jeff Bleil
Manning Publications Co. Copyeditors: Liz Welch, Tiffany Taylor
Sound View Court 3B Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 12 11 10 09 08

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Understanding ESB functionality

 Chapter 1. The world of open source ESBs

 Chapter 2. Architecture of Mule and ServiceMix

 Chapter 3. Setting up the Mule and ServiceMix environments

 Chapter 4. The foundation of an integration solution

 2. Using ESB core functionalities

 Chapter 5. Working with messages

 Chapter 6. Connectivity options

 Chapter 7. Web services support

 Chapter 8. Implementing enterprise-quality message flows

 3. ESB case studies

 Chapter 9. Implementing a case study using patterns

 Chapter 10. Managing and monitoring the ESB

 Chapter 11. Implementing a process engine in the ESB

 Appendix A. ServiceMix 4.0

 Appendix B. Differences between Mule 1.4.x and Mule 2.0.x

 Appendix C. Graphical tool support

 Appendix D. Mule component overview

 Appendix E. ServiceMix component overview

 Appendix F. The Swing test client

 Appendix G. Overview of tools and libraries

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Understanding ESB functionality

 Chapter 1. The world of open source ESBs

 1.1. Why do you need an ESB?

 1.1.1. Benefits of an ESB

 1.1.2. Using an ESB from an application perspective

 1.2. Explaining the core functionalities of an ESB

 1.2.1. Location transparency

 1.2.2. Transport protocol conversion

 1.2.3. Message transformation

 1.2.4. Message routing

 1.2.5. Message enhancement

 1.2.6. Security

 1.2.7. Monitoring and management

 1.2.8. Core functionality overview

 1.3. Researching the open source ESB market

 1.3.1. Demystifying the open source ESB

 1.3.2. Overview of open source ESBs

 1.4. Why did we choose Mule and ServiceMix?

 1.4.1. Defining selection criteria

 1.4.2. Assessing the open source ESBs

 1.5. Hello world with Mule and ServiceMix

 1.5.1. Taking a donkey ride with Mule

 1.5.2. Taking a JBI dive with ServiceMix

 1.6. Summary

 Chapter 2. Architecture of Mule and ServiceMix

 2.1. Mule architecture and components

 2.1.1. Mule components overview

 2.1.2. Mule endpoints

 2.1.3. Transformers

 2.1.4. Routers

 2.1.5. Component

 2.1.6. Mule deployment models

 2.1.7. Mule wrap-up

 2.2. JBI, the foundation for ServiceMix

 2.2.1. Service engines and binding components

 2.2.2. Services and endpoints

 2.2.3. Normalized message router

 2.2.4. Service description, invocation, and message exchanges

 2.2.5. Service unit and service assembly

 2.2.6. JBI wrap-up

 2.3. ServiceMix architecture and components

 2.3.1. ServiceMix overview

 2.3.2. Routing and transformations in ServiceMix

 2.3.3. ServiceMix deployment models

 2.3.4. ServiceMix wrap-up

 2.4. Summary

 Chapter 3. Setting up the Mule and ServiceMix environments

 3.1. Three technologies enhancing the ESB functionality

 3.1.1. Using Spring as an object container

 3.1.2. XML marshaling with JiBX

 3.1.3. Using JMS with the ActiveMQ broker

 3.2. Preparing the development environment

 3.2.1. Setting up ESBs, tools, and required libraries

 3.2.2. Running examples from Eclipse

 3.3. Inaugurate the Mule environment

 3.3.1. Writing and configuring the Mule components

 3.3.2. Running the Mule example

 3.4. Inaugurate the ServiceMix environment

 3.4.1. Select the necessary JBI components

 3.4.2. Configuring the ServiceMix example implementation

 3.4.3. Running the ServiceMix example

 3.5. Summary

 Chapter 4. The foundation of an integration solution

 4.1. Implementing integration logic with Mule

 4.1.1. Creating a logging solution with Mule

 4.1.2. Developing a custom transformer with Mule

 4.1.3. Integrating Mule and Spring

 4.2. Implementing integration logic with ServiceMix

 4.2.1. Creating a logging service assembly for ServiceMix

 4.2.2. Creating service units and a service assembly

 4.2.3. Integrating ServiceMix and Spring

 4.3. Constructing message flows with an ESB

 4.3.1. What is a message flow?

 4.3.2. A message flow case study

 4.4. Implementing a message flow with Mule

 4.4.1. Implementing the request flow with Mule

 4.4.2. Implementing the response flow with Mule

 4.5. Implementing a message flow with ServiceMix

 4.5.1. Implementing the request flow with ServiceMix

 4.5.2. Implementing the response flow with ServiceMix

 4.6. Interlude: Spring Integration

 4.6.1. A quick example with Spring Integration

 4.7. Summary

 2. Using ESB core functionalities

 Chapter 5. Working with messages

 5.1. Routing messages

 5.1.1. Fixed router

 5.1.2. Content-based router

 5.2. Validating messages

 5.2.1. Validating messages with Mule

 5.2.2. Validating messages with ServiceMix

 5.2.3. An alternative way to perform message validation using Synapse

 5.3. Transforming messages

 5.3.1. Implementing message transformation in Mule

 5.3.2. Implementing message transformation in ServiceMix

 5.4. Summary

 Chapter 6. Connectivity options

 6.1. File connectivity

 6.1.1. Mule File transport

 6.1.2. ServiceMix file transport

 6.2. Connecting to JMS

 6.2.1. Connecting Mule to JMS

 6.2.2. Connecting ServiceMix to JMS

 6.3. Connecting to a database using JDBC

 6.3.1. Connecting Mule to JDBC

 6.3.2. Connecting ServiceMix to JDBC

 6.4. Connecting to mail servers

 6.4.1. Connecting Mule to POP3 and SMTP

 6.4.2. Connecting ServiceMix to POP3 and SMTP

 6.5. FTP connectivity

 6.5.1. FTP and Mule

 6.5.2. FTP and ServiceMix

 6.6. Connecting to EJB 3

 6.6.1. Using EJB 3 from Mule

 6.6.2. EJB 3 and ServiceMix

 6.7. Summary

 Chapter 7. Web services support

 7.1. Top-down approach web service

 7.1.1. Java implementation of the web service

 7.1.2. Implementing a top-down web service using Mule

 7.1.3. Implementing a top-down web service using ServiceMix

 7.2. Bottom-up approach

 7.2.1. Bottom-up approach using Mule

 7.2.2. Bottom-up approach using ServiceMix

 7.3. Consuming web services

 7.3.1. Consuming web services with Mule

 7.3.2. Consuming web services using ServiceMix

 7.4. Web service standards

 7.4.1. WS-Security

 7.4.2. Using WS-Security with Mule

 7.4.3. Using WS-Security with ServiceMix

 7.4.4. WS-Addressing

 7.4.5. Using WS-Addressing in Mule

 7.4.6. Using WS-Addressing in ServiceMix

 7.5. Summary

 Chapter 8. Implementing enterprise-quality message flows

 8.1. Handling errors in your message flow

 8.1.1. Error handling with Mule

 8.1.2. Error handling in ServiceMix

 8.2. Securing the ESB environment

 8.2.1. Authentication and authorization with Mule

 8.2.2. Authentication and authorization with ServiceMix

 8.3. Making your message flows transactional

 8.3.1. Implementing transactional message flows in Mule

 8.3.2. Implementing transactional message flows in ServiceMix

 8.4. Summary

 3. ESB case studies

 Chapter 9. Implementing a case study using patterns

 9.1. Introducing a design approach for integration projects

 9.1.1. Introducing the Enterprise Integration patterns

 9.1.2. Analyzing a pattern-based design approach

 9.2. Introducing a restaurant table reservation case study

 9.3. Designing the restaurant table reservation solution

 9.3.1. Designing a publish-subscribe message flow

 9.3.2. Designing a filtering and routing message flow

 9.4. Implementing the case study with Mule and ServiceMix

 9.4.1. The Spring and Hibernate building blocks

 9.4.2. Implementing the Mule message flow

 9.4.3. Implementing the ServiceMix message flow

 9.5. Testing and deploying the integration solution

 9.5.1. Using JUnit to test the Mule and ServiceMix flows

 9.5.2. Deploying an integration solution to a production environment

 9.6. Summary

 Chapter 10. Managing and monitoring the ESB

 10.1. System-management Enterprise Integration patterns

 10.1.1. The Wire Tap pattern

 10.1.2. The Message Store pattern

 10.1.3. The Detour pattern

 10.2. Monitoring using JMX

 10.2.1. Using JMX to administer Mule

 10.2.2. Monitoring Mule using MC4J

 10.2.3. Mule Galaxy and Mule HQ

 10.2.4. Using JMX to administer ServiceMix

 10.2.5. Monitoring ServiceMix using MC4J

 10.3. Summary

 Chapter 11. Implementing a process engine in the ESB

 11.1. Introducing the process engine

 11.1.1. The execution environment for processes

 11.1.2. Designing processes for a process engine

 11.2. A process engine case study: booking a day of scuba diving

 11.3. Diving into the messages and services

 11.3.1. Designing the case study message definitions

 11.3.2. Serializing the case study messages to XML with JiBX

 11.3.3. Setting the stage for the case study implementation

 11.4. Implementing a process engine with jBPM and jPDL

 11.4.1. Orchestrating services with jPDL

 11.4.2. Implementing the case study with jBPM and Mule

 11.5. Implementing a process engine with Apache ODE and WS-BPEL

 11.5.1. Orchestrating services with WS-BPEL

 11.5.2. Implementing the case study with Apache ODE and ServiceMix

 11.6. Summary

 Appendix A. ServiceMix 4.0

 The new architecture of ServiceMix 4

 A new project structure with Servicemix 4

 A little background in OSGi

 Getting started with ServiceMix 4

 Appendix B. Differences between Mule 1.4.x and Mule 2.0.x

 XSD-based configuration

 Transport-specific endpoints

 API changes

 Appendix C. Graphical tool support

 Graphical tool support with Mule IDE 2.0

 Graphical tool support with the Enterprise Integration Designer

 Appendix D. Mule component overview

 Mule core elements

 Mule BPM elements

 Mule EJB elements

 Mule email elements

 Mule file elements

 Mule FTP elements

 Mule HTTP elements

 Mule IMAP elements

 Mule JDBC elements

 Mule JMS elements

 Mule POP3 elements

 Mule Quartz elements

 Mule RMI elements

 Mule SMTP elements

 Mule VM elements

 Appendix E. ServiceMix component overview

 ServiceMix bean elements

 ServiceMix cxf-bc elements

 ServiceMix cxf-se elements

 ServiceMix drools elements

 ServiceMix EIP elements

 ServiceMix file elements

 ServiceMix FTP elements

 ServiceMix HTTP elements

 ServiceMix JMS elements

 ServiceMix JSR 181 elements

 ServiceMix Quartz elements

 ServiceMix Saxon elements

 ServiceMix script elements

 ServiceMix TrueZIP elements

 ServiceMix WSN-2005 elements

 ServiceMix XMPP elements

 Appendix F. The Swing test client

 Starting the Swing test client

 Using the Swing test client

 Appendix G. Overview of tools and libraries

 Tools

 Libraries

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Getting different applications to work together has never been fun. It’s not sexy, the rewards are limited, and there is no
 glory. Throughout my career, it seemed as if a stigma was associated with integration—that it was a dirty job, and you pulled
 the short straw if you were working in this area. Personally, I always enjoyed working in integration, and because enterprises
 never throw anything away, getting different applications to work together has become an increasingly essential element of
 IT.

 Things really became interesting when the enterprise service bus (ESB) made its debut.

 The concepts on which the ESB is founded have changed over time. Since IBM first released MQSeries, enterprises have been
 sold on the benefits of decoupling systems using point-to-point message queues. When TIBCO brought Rendezvous to the market,
 it expanded the horizons of messaging by introducing the publish-subscribe model. The Java Message Service (JMS)—born through
 Sun’s Java Community Process (JCP)—set out to unify the point-to-point and publish-subscribe messaging models. It wasn’t long
 before enterprises required more than just messaging; they also needed a way to orchestrate messages between systems and perform
 transformations.

 To address this need, major vendors such as IBM, Oracle, and Microsoft built enterprise application integration (EAI) brokers
 that added message brokering and centralized transformation engines on top of their existing messaging servers. The problem
 with the EAI approach was that it adopted a hub-and-spoke architecture where all data had to flow through the EAI broker.
 Although this worked for many applications, enterprises were soon pushing the boundaries of these systems; it became clear
 that something more flexible, scalable, and distributed was required. Enterprises needed connectivity, transaction management,
 security, and message routing, and they needed to host services that operated on data moving around their systems. The industry
 needed the ESB.

 With the advance of service-oriented architecture (SOA) in the last several years, we’ve seen confusion unfold about what
 SOA really is. One affirmation that has resonated well in the industry is that the ESB is the foundation of SOA. The term
 SOA covers a much broader topic than just technology, but we need technologies like ESBs to realize the benefits of what service
 orientation has to offer. The ESB provides an anchor point for many enterprises that are braving the nebulous ocean of SOA
 marketing, vendor claims, and vaporware. The ESB bridges the gap between old and new. It acts as a mediator between application
 integration and service orientation, enabling enterprises to build new applications and processes from existing technology.

 The ESB has gained in popularity because there is a general understanding of what an ESB is; but if you’re still confused,
 this book will definitely provide clarity. The notion of an ESB involves a common messaging bus that is used to communicate between different systems within an enterprise. Typically, there is a shared messaging format
 on the bus, and adapters between the bus and back-end applications translate data from the proprietary data formats to the
 shared message bus format. The power of this model is that applications can share information while being totally decoupled
 from one another. Additionally, the ESB provides a common platform for handling security, transformations, message routing,
 transactions, and monitoring. This book does a great job of covering each of these topics and dives deep into the detail of
 how to apply these features in the real world.

 I founded the Mule project in 2003 because I was frustrated by the proprietary nature of products available for building ESB
 solutions. In 2001, I was working as an architect for a tier-1 investment bank. I was tasked with building a custom ESB-like
 solution to integrate hundreds of legacy and custom applications. Back then, the term enterprise service bus hadn’t been coined (although by 2002, Sonic Software, Fiorano, and SpiritSoft all staked claim to the term), but what we
 built was in fact an ESB. At the time, the technology choices were limited; you used either an application server or a heavyweight
 EAI solution that required a huge upfront investment in infrastructure, money, and human resources. We wanted something lightweight
 and easy to deploy and manage. Like many enterprises at the time, we built our own abstraction on top of JMS. We discovered
 early on that building our own was an extreme undertaking and a huge burden on our developers. After that experience, I realized
 that the industry needed an open source solution built on open standards.

 The open source model is the perfect choice for developing an ESB. More accurately, open source is perfect for integration.
 After all, ESBs are about surfacing, manipulating, and moving data between applications. Application integration is complex
 on many levels. The permutations of applications, protocols, message formats, environment restrictions, and nuances in the
 way an application (or even a standard) has been implemented cause system integrators an unholy amount of grief. No single
 vendor can realistically claim to understand the intricacies of your application environment, so all the proprietary vendors
 have instead chosen to offer products that make their customers abide by their rules when building an ESB solution. I can
 say from experience that this quickly becomes a problem when the vendor’s approach doesn’t suit your needs. Sometimes, you
 want to get into the code and customize for the problem at hand.

 By providing access to the source code, open source ESBs can alleviate these problems—but the benefits don’t stop there. By
 nature, open source projects are developed to be lean and modular. Developers working on the project don’t have time to maintain
 a huge product, and they want the code base to be accessible to their community to encourage contributions. Given that the
 use cases for ESBs and integration are so varied, it’s impossible to have one vendor test every scenario. It’s far better
 to give the code to a community of active users who provide testing and feedback about their experience with the ESB. That
 same user community has connectivity and message-format requirements far beyond what is provided, so it makes sense to enable
 the users to build support for the more exotic protocols. These extensions can then be committed back to the project for the
 benefit of the rest of the community.

 Since the Mule project was founded in 2003, many open source ESBs have emerged. Each has its own way of doing things, and
 each focuses on different areas. As examples, Apache ServiceMix is built on Java Business Integration (JBI), whereas Apache
 Synapse is built around the Web Services (WS) standards, and Apache Tuscany uses the Service Component Architecture (SCA)
 standard. Mule takes a pragmatic approach by embracing these standards without forcing the use of any of them, giving the
 user a great deal of flexibility when building an ESB solution.

 Choice is usually a good thing for consumers, but with so many choices, it can be difficult to navigate the landscape of open
 source ESBs. I believe this book is a valuable resource for those looking to choose an ESB and wanting a stronger grasp on
 how to implement an ESB using open source projects. I found the case studies in section 3 particularly useful because they
 pull together many of the concepts learned throughout the book.

 This book guides you through a logical journey of discovery and demonstration to deliver a solid understanding of the core
 ESB concepts and how you can use them in the real world. I think that armed with this book and the wealth of open source projects
 available, you’ll be ready to take on any ESB project. Open source has made ESBs a lot more interesting. Go and enjoy yourself!

 ROSS MASON

 Co-Founder & CTO, MuleSource, Inc.

 Founder of the Mule Project

Foreword

 Enterprise service bus is a loosely defined term, and lots of products are claiming to implement the ESB concept. This concept is covered in depth
 in the first chapter of this book; in short, the goal is to provide a distributed and reliable mediation framework that the
 different systems in an IT environment can use to communicate, thus removing the need for a given system to know how to talk
 to the others in a specific way. Integration, which is what ESBs are about, is complicated: Each time you add a system, it
 needs to talk to all the other systems, and ad-hoc integration between the systems has long been considered a bad solution.

 The concept of EAI emerged as a solution, but it led to another set of problems related to using a hub-and-spoke architecture,
 where a single system, the EAI broker, becomes the center of the system and a single point of failure. The next step of this
 evolution led to what is now known as an ESB: Data and exchanges are conveyed from system to system in a single logical bus,
 decoupling all the systems from each other. This leads to a much more maintainable system and can save a lot of time in the
 long term.

 Integration technologies are becoming commodity software, and the rise of open source integration frameworks is becoming increasingly
 important. Open source is now unavoidable; who would think about paying for an XML parser? ESBs aren’t at this point yet,
 but most of the underlying technologies in the integration world are available as open source projects, from JMS brokers to
 SOAP stacks to ESBs. Companies generally use ESBs to convey sensitive data, and they sometimes need advice when they’re developing
 the applications hosted in the ESBs or when they’re putting these applications in production. Even if you don’t immediately
 think of commercial support and open source together, this is one of the main reasons it’s important to have companies that
 can provide consulting, training, and support for such projects; this requirement is now filled by a huge number of open source
 projects.

 In this book, you’ll learn how to use two different open source products classified as ESBs. Having committed on both Mule
 and ServiceMix, I think both projects are awesome and mature, have good communities, and are backed by vendors that can provide
 the needed support. By reading this book, you’ll see that even if the two projects have different configurations and sometimes
 different ways of solving the same problem, you’ll be able to solve your problems with both.

 One of the key differentiators is that ServiceMix implements the Java Business Integration (JBI) specification. JBI defines
 a framework to connect components and make them talk together in a standard way. In the JBI world, components can host business
 logic (a BPEL engine or a rules engine) or handle a particular protocol (HTTP, JMS, and so on). The key benefit of JBI is
 that new components can be wired easily on the bus, because they all abide by the JBI specification. For example, ServiceMix
 doesn’t provide a BPEL engine by itself; instead, you can plug in any JBI-compliant component for BPEL (such as the one provided
 by Apache Ode).

 Even after you’ve learned how to configure and use ServiceMix, at the end of this book, you won’t dive too far into the JBI
 API. The JBI specification doesn’t target end users, but rather is intended to be implemented by ESB vendors and other software
 vendors that want to integrate their products in a JBI-compliant environment, such as a BPEL engine, a business rules engine,
 a transformation engine, or another specific technology. This is, in my mind, the key benefit of JBI.

 JBI 1.0 has some shortcomings: the JBI packaging and classloader architecture, the mandatory use of XML everywhere in the
 bus, and the fact that writing a JBI component isn’t easy. But being part of the Expert Group for JBI 2.0, my hope is that
 those shortcomings will be addressed in the next version of the specification—or even earlier, in ServiceMix 4, which is briefly
 discussed in the appendixes of this book.

 That’s why open source is so attractive: The feedback from the community provides vital input for the next major version of
 a product, and this usually leads to better and more innovative products. Enjoy this book and learning from Tijs and Jos how
 to work with Mule and ServiceMix in a wide variety of integration challenges. You’re also invited to work with the community
 on making these open source ESBs even better!

 GUILLAUME NODET

 Principal Engineer IONA

 Project Lead Apache ServiceMix

Preface

 Working on integration projects used to mean working with EAI products, each of which implemented its own stack of tools with
 proprietary technology. To switch from one EAI product to another meant learning the proprietary technology and toolset from
 that new product. Then, the market changed from EAI to SOA and ESB products, with more focus on open standards that emerged
 in the integration market. Examples of these open standards are Java Message Service (JMS), SOAP, XML, and WS-*. With open
 standards available, more and more open source projects began to implement these specifications.

 Because we enjoyed working with open source frameworks in JEE application development, we watched the progress of integration
 frameworks with a lot of interest. Mule was one of the first projects that provided a large set of integration functionality;
 after a while, it was called an ESB. When we had the chance to design an SOA architecture of a new solution for our current
 employer in 2005, we chose Mule as the foundation product. It was delightful to work with an open source ESB to solve our
 integration needs, because it offered a rich set of integration functionality out of the box. Even when we had to add nonexistent
 functionality, the ease of development was striking.

 At the same time, the JBI specification (JSR 208) was released. It was intended to standardize the ESB infrastructure and
 had the potential to implement an ESB with products from several vendors, with each product suited for its specific task,
 such as routing, transformation, or service orchestration. Although the JBI specification didn’t really take off, some interesting
 products were created. Apache ServiceMix is an excellent example of a JBI implementation; because it makes working with the
 JBI specification simple, we think ServiceMix is a great alternative to Mule. Mule focuses on ease of development with support
 for all kinds of payloads, and it uses an architecture and design model, which isn’t based on a specification. ServiceMix
 implements the JBI specification and therefore focuses on XML payload and the implementation of binding components and service
 engines.

 Mule and ServiceMix have a lot of differences, but they also have common ground that’s focused on integration functionality.
 We noticed the lack of books in the open source integration area, and it occurred to us that we could write a book that covered
 both Mule and ServiceMix; it would provide a good overview of the current state of open source integration products. Because
 we’re developers and are working on client projects all the time, we decided to provide a lot of examples in the book.

 Writing this book has been an intense, but interesting and enjoyable experience. It took a lot of time to implement every
 example, but the result is material that’s freely available to everyone and a good starting point for a Mule or ServiceMix
 project. While we were writing this book, we had a hard time keeping up with the fast development pace of the Mule and ServiceMix
 projects and emerging frameworks like Apache Camel and Spring Integration. But we kept up: This book uses Mule 2.0.2 and ServiceMix
 3.2.1. Please note that there has been a new release of ServiceMix with version 3.2.2. This is just a maintenance release
 which does not change the contents of this book, nor the example implementations.

 We provide a fully implemented development environment with many additional frameworks and libraries, and functionality to
 build and test integration solutions. This book provides a complete approach to working with Mule and ServiceMix, and we hope
 you’ll enjoy reading it and working with the examples.

Acknowledgments

 We appreciate the contributions of many people who have helped us make this book a reality. We couldn’t have written it without
 the discussions, enthusiasm, remarks, and code and chapter reviews of these individuals.

 Special thanks to Andy Verberne, who provided invaluable feedback about the chapters and the code examples. We were also happy
 with the support and feedback we received from the Mule team, especially Ross Mason and Daniel Feist; and from the ServiceMix
 team, particularly Guillaume Nodet and Bruce Snyder. We also want to thank Guy Crets for his comments in the early stages
 of writing this book and for his enthusiasm and support throughout our writing period. We don’t have enough space to mention
 all the people involved, but your help is appreciated.

 At Manning Publications, we’re grateful to our development editor Jeff Bleiel. Jeff was great to work with, and his work improved
 the readability of our manuscript a lot. We also want to thank publisher Marjan Bace for giving us the opportunity to write
 this book and for his no-nonsense comments and remarks, which made this book what it is. Thanks to the Manning production
 team for turning our manuscript into a real book. Finally, we want to thank the reviewers who gave valuable feedback at all
 stages during manuscript development: Edmon Begoli, Martyn Fletcher, Valentin Crettaz, Lajos Moczar, Andrew Oswald, Davide
 Piazza, Rick Wagner, Christian Siegers, Craig Borysowich, Jeff Davis, Holger Hoffstätte, Rodney Biresch, Jeroen Benck-huijsen,
 John Reynolds, Doug Warren, Steve Smith, Hugh Taylor, Dmitri Maximovich, Andrew Perepelytsya, Ross Mason, Dave Corun, Glenn
 Stokol, Scott Stirling, Andrew Cooke, Emmanuel B. Sangalang, and Dan Alford.

 And very special thanks to Ross Mason and Guillaume Nodet for taking the time out of their busy schedules to look at the manuscript
 and to write forewords to our book.

Tijs Rademakers

 I would like to thank my girlfriend Ankie, who recently gave birth to our first child, Liv. Without your support during all
 the hours of writing, this book would have never been written. I promise to be more involved in our little family from now
 on. I also want to thank my parents Wil and Fieke and in-laws Fer and Annie for their love and understanding. Jos, thanks
 for all your commitment, enthusiasm, and knowledge during the years of writing and discussing this book. Also thanks to my
 managers Diego and Hugo for providing time and freedom in my day-to-day job.

Jos Dirksen

 Many people have supported me during the writing of this book. In particular I’d like to thank Tijs for keeping me on my toes
 during the writing of this book. I’d also like to thank the team at Manning for helping us to write and produce this book:
 specifically Jeff, for reviewing and tidying up the chapters, and of course all the reviewers for taking the time to offer
 comments and feedback.

 I also want to express my gratitude to Diego, my boss at Atos Origin, for giving me time to write parts of this book during
 office hours. Another colleague I’d like to thank is Andy, who provided us with an extensive review and also spent much of
 his time doing the final technical review of the book.

 Finally, I want to thank my girlfriend Brigitte—who when this book comes out will be my wife—for not complaining too much
 about the evenings and weekends spent working on the book (and my occasional bad temper).

About this Book

 This book is for everyone interested in open source ESBs in general and Mule and ServiceMix in particular. For consultants
 and architects, this book provides an excellent overview of the functionality provided by Mule and ServiceMix and other open
 source–based integration frameworks. For developers, this book provides numerous code examples and a ready-to-go development
 environment that you can use to start your projects.

 We use Mule 2.0.2 and ServiceMix 3.2.1 in this book. New versions of Mule and ServiceMix will be released at a constant rate;
 for example when this book went to press, ServiceMix had a new maintenance release, version 3.2.2. If you are looking for
 updated examples that will work with newer versions of Mule or ServiceMix, please visit our website at http://www.esbinaction.com.

Roadmap

 Part 1 of the book starts by explaining the core functionalities of an ESB and the project structure and architecture of Mule and
 ServiceMix, including some basic examples. Be sure you don’t skip this part!

	
Chapter 1 introduces the functionality that an ESB is expected to provide. We explain seven core functionalities in detail. We also
 provide an overview of the currently available open source ESBs with a detailed comparison. We finish the chapter with a hello
 world example that uses Mule and ServiceMix.

 	
Chapter 2 explores the architecture of both Mule and ServiceMix. We describe Mule concepts like endpoints, routers, transformers, and
 components and work through examples. With ServiceMix, we introduce the JBI specification and discuss service engines, binding
 components, and the Normalized Message Router (NMR). In this chapter we also provide some examples of how to implement service
 Units to be deployed on ServiceMix.

 	
Chapter 3 introduces three technologies that complement the Mule and ServiceMix open source ESBs: Spring, JiBX, and ActiveMQ. We also
 set up a development environment that includes all the tools and libraries you’ll need throughout the book. The chapter ends
 with Mule and ServiceMix examples that use the three new technologies and test the development environment.

 	
Chapter 4 describes how to develop simple integration solutions with Mule and ServiceMix. We finish this chapter with a description
 of a message flow and a more complex example implementation.

Part 2 discusses the core functionalities of Mule and ServiceMix in more detail, with lots of examples including routing, transformation,
 connectivity, web services, and error handling:

	
Chapter 5 shows how to implement routing, validation, and transformation in Mule and ServiceMix. We also show an alternative implementation
 for routing and validation that uses Apache Synapse.

 	
Chapter 6 discusses the most common connectivity options for Mule and ServiceMix. They include JMS, FTP, File, JDBC, and Mail, and
 we demonstrate their use with lots of practical examples.

 	
Chapter 7 is dedicated to web services functionality. Mule and ServiceMix use Apache CXF (the successor of XFire) as their main web
 services platform. We show examples that use a top-down approach (WSDL to Java) and a bottom-up approach (Java to WSDL).

 	
Chapter 8 explores more complex ESB functionality. We present a number of examples that involve error handling, showing you Mule’s
 and ServiceMix’s extensive ability to handle exceptions. We also discuss security and transactions.

In part 3, we introduce a pattern-based design approach and implement a full case study using Mule and ServiceMix. We also present
 a monitoring and management environment, and we use a case study to demonstrate integration with a process engine:

	
Chapter 9 starts with an introduction to Enterprise Integration patterns and provides a pattern-based design approach you can use in
 open source ESB projects. We also describe a case study with full example implementations in both Mule and ServiceMix.

 	
Chapter 10 talks about the management and monitoring parts of an open source ESB, related to the case study from chapter 9. We explain how to use JMX and JConsole to manage your Mule and ServiceMix environment, and we show how to use MC4J to monitor
 these open source ESBs.

 	
Chapter 11 introduces the use of a process engine together with an ESB. We show how you can use jBPM as a process engine, together with
 Mule as an ESB, to implement a process-driven integration solution. We also explain how to use Apache ODE as a process engine,
 together with ServiceMix as an ESB, for the same example integration solution.

Code conventions

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. We use two dominant languages and markups in this book—Java and XML—and we try to adopt
 a consistent approach. Method and function names, object properties, XML elements, and attributes in text are presented using
 this same font.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases even this was not enough, and listings include line-continuation markers.
 Additionally, many comments have been removed from the listings. Where appropriate, we’ve also cut implementation details
 that distract rather than help tell the story, such as JavaBean setters and getters, import and include statements, and namespace declarations.

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to
 explanations that follow the listing.

Code downloads

 Source code for all of the working examples in this book is available for download from www.manning.com/OpenSourceESBsinAction. Basic setup documentation is provided with the download.

 Because this book covers a wide range of topics related to open source ESBs, we also introduce many tools and frameworks,
 including databases, process engines, LDAP servers, and XML serialization. To make it easier for you to set up the environment,
 we’ve provided an Ant build script that downloads all the necessary tools and frameworks and creates the right directory structure.
 For a full explanation of the project structure, read chapter 3.

Author Online

 The purchase of Open Source ESBs in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/OpenSourceESBsinAction. This page provides information about how to get on the forum once you’re registered, what kind of help is available, and
 the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

About the authors

 TIJS RADEMAKERS is a software architect with more than six years of experience in designing and developing Java and EE applications.
 He works for Atos Origin, a large European system integrator, where he is responsible for SOA and BPM services and knowledge
 development. Tijs has designed and implemented large process- and application-integration solutions, primarily focused on
 open standards. He has extensive product knowledge of open source as well as closed source SOA and enterprise integration
 tools, including Mule, ServiceMix, jBPM, and WebSphere Process Server. Tijs is a regular speaker at Java conferences, where
 he talks about open source integration topics like Mule and ServiceMix. Tijs lives in the Netherlands near Eindhoven with
 his girlfriend and his new daughter, Liv.

 JOS DIRKSEN has been working with Java and J2EE applications for more than six years as a software architect. The last couple
 of years, his focus topics have been open source, security, and quality. He has worked with various open source and commercial
 integration solutions, mostly in the areas of government and healthcare. Jos has a lot of project experience working with
 Mule, Apache Synapse, and Apache Axis2 and has also completed projects based on the integration tooling from IBM. Jos regularly
 gives presentation on open source, Mule, and other related topics. He lives in Eindhoven, the Netherlands, with his wife.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we’re convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: Our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The figure on the cover of Open Source ESBs in Action is captioned “A traveling salesman” and it is taken from a 19th century edition of Sylvain Maréchal’s four-volume compendium
 of regional dress customs published in France. Each illustration is finely drawn and colored by hand.

 The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just
 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside,
 it was easy to identify where they lived and what their station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Understanding ESB functionality

 An enterprise service bus (ESB) is a confusing topic in the modern world of IT. Sometimes it’s referred to as an architectural
 pattern, which describes a flexible and constructive way to approach integration challenges. The ESB seen as a pattern can
 and will be implemented with several different products, each excelling in its own domain like routing, transformation, security,
 and orchestration.

 An ESB from an integration vendor perspective is a product offering that provides integration functionality, a developer toolset,
 and a management environment. These product offerings often have a background in the enterprise application integration (EAI)
 domain.

 Another perspective of an ESB is as an important part of a service-oriented architecture (SOA). From the SOA perspective,
 an ESB can be used as an integration platform that enables existing IT assets and applications to be exposed as services.
 Because the ESB is based on open standards, the proprietary technology of legacy applications can be exposed as services based
 on open and modern technologies like web services and messaging.

 In part 1, we will show the functionality an ESB can offer to solve integration challenges. We take a close look at open source ESBs
 and provide an overview of the open source ESBs currently available. We also introduce two open source ESBs, Mule and Apache
 ServiceMix, and show you how to set up a development environment to work with these ESBs and the examples in this book. Finally,
 we take a first look at how to implement integration functionality and message flows in Mule and ServiceMix.

Chapter 1. The world of open source ESBs

	

 In this chapter:

	Typical ESB functionality

 	Open source ESB overview

 	Mule and ServiceMix

	

If you ask integration specialists and architects to supply one buzzword used in the integration market today, enterprise
 service bus (ESB) would be one of the predominant answers. Concepts like service-oriented architecture (SOA) and business
 process management (BPM) would also be mentioned. These buzzwords sound interesting, but are they just part of the hype in
 the integration market or do they represent real business value?

 As with every buzzword in the integration industry, a sales pitch is involved, but these concepts have a business case. Other
 books are available that focus on SOA (such as Understanding Enterprise SOA by Eric Pulier and Hugh Taylor [Manning, 2005]). In this book we focus on the enterprise service bus, but we also discuss
 some interesting open source products related to SOA and BPM.

 There’s a lot of confusion about what an ESB is, so let’s start off with an overview of the most important functionality that
 should be present in a product calling itself an ESB. Many ESB products are available in the market, from vendors like IBM, TIBCO, Microsoft, and Oracle. Most ESB vendors offer products that have a background in the enterprise application integration
 (EAI) market. As we’ll see in section 1.1, this is not so strange, because ESB functionality has a lot in common with the older EAI products.

 But there are also a number of products available that have been built from the ground up. In this group of products we see
 not only commercial vendors but also open source projects that deliver the functionality needed in an ESB.

 In section 1.5 we examine two open source ESBs (Mule and ServiceMix) that we use in the examples and case studies presented in this book.
 These two open source ESBs have gained a lot of attention in the market and are the two most used open source ESBs in businesses
 around the world today. This means that this book is not a typical cookbook for a specific ESB. Because we show examples involving
 two ESBs, we’re confident that you’ll gain the knowledge and experience you need to use any open source ESB.

1.1. Why do you need an ESB?

 We can’t begin a book about open source ESBs without a good discussion about the use of an ESB within an enterprise. Maybe
 you’ve already read articles or books that introduced the concept of an ESB. If you want to have a solid background, we recommend
 you check out Enterprise Service Bus by David A. Chappell (O’Reilly Media, 2004).

 A lot of the early ESB products had a history in the enterprise application integration market. It was sometimes hard to tell
 the difference between some ESB products and their EAI predecessors!

 However, we can identify two main differences between EAI and ESB products. The first is the change from the hub-and-spoke
 model in EAI products to a bus-based model in ESB products. The hub-and-spoke model is a centralized architecture, where all
 data exchange is processed by a hub, or broker. The hub-and-spoke model can be seen as the successor of the point-to-point
 model (which we discuss in figure 1.1 in a moment). The bus model, on the other hand, uses a distributed architecture, in which the ESB functionality can be implemented
 by several physically separated functions.

 Figure 1.1. The point-to-point model describes an environment where applications are integrated with a unique and custom-made integration
 solution.

 [image:]

 A second main difference between EAI and ESB products is the use of open standards. EAI products like WebSphere Message Broker,
 TIBCO BusinessWorks, and Sonic XQ were mainly based on proprietary technology to implement messaging functionality and transformation
 logic. ESB products are based on open standards, such as Java Message Service (JMS), XML, J2EE Connector Architecture (JCA),
 and web services standards.

 As we mentioned earlier, many current ESB products have a background in the EAI space. So newer versions of WebSphere Message
 Broker (version 6), TIBCO BusinessWorks (version 5), and Sonic ESB (yes, the name has changed) are now marketed as ESBs but
 still have a strong foundation in EAI. In addition, a number of ESBs have been built from the ground up, like WebSphere ESB,
 Cordys, and TIBCO ActiveMatrix Service Grid.

 Because open source ESBs were not yet available during the EAI period, they don’t have a history in the implementation of
 proprietary technology. Many integration specifications like JMS and Java Business Integration (JBI) are available, and open
 source ESBs use these specifications as the foundation for their open source product implementations.

 But why do you need an ESB? Let’s take some time to explore the benefits of an ESB. Then, in section 1.1.2 we look in greater detail at the ESB from an application perspective.

 1.1.1. Benefits of an ESB

 In any discussion of the implementation of an ESB within an organization or department, there’s a need for a management-level
 overview of an ESB. In essence, an ESB is a technical product that solves integration problems. But let’s try to step back
 from the technical aspects of an ESB and talk about some high-level benefits. To show the advantages of an ESB, we start with
 an overview of how applications are integrated without the use of an EAI broker or an ESB. This model (see figure 1.1) is known as point-to-point architecture.

 The application landscape example shown in figure 1.1 is still a common way of dealing with integration problems. In this example, four existing applications are integrated via
 point-to-point integration solutions. For example, the enterprise resource planning (ERP) system needs to have billing information
 from the COBOL application.

 Because the COBOL application is only capable of exporting a file in a batch, a custom-made integration solution is being
 used to transfer the billing information from the exported file to the ERP system. The information also has to be transformed
 to a data format that the ERP system is able to process. For every line drawn between the four existing applications in figure 1.1, a custom integration solution is developed. So an important downside to the point-to-point model is the number of custom-made
 integration solutions that must be developed and maintained.

 The complexity and maintenance cost increase when we add a new application to this application landscape. Imagine that this
 new application must communicate with the ERP, customer relationship management (CRM), and COBOL application as depicted in
 figure 1.1. This means that we need to implement three new integration solutions to be able to integrate this new application into the
 existing environment.

 In this kind of application environment, there are many reasons to think about an integration solution like an ESB (summarized
 in table 1.1). Is there a business driver to integrate applications? In most organizations a real business need exists for integrating
 applications. New products have to be delivered to the market today, not tomorrow. And the IT environment must be able to
 facilitate the business to be able to do this. An ESB can help to increase the flexibility of an IT environment, and therefore
 can help to improve the time-to-market for new products.

 Table 1.1. Reasons to start thinking about an ESB

	
 Reason

 	
 Description

	Necessity to integrate applications
 	There must be a clear business need to integrate applications. Time-to-market and real-time reports are examples of business
 drivers.

	Heterogonous environment
 	When you have to deal with lots of different technologies and protocols, there is a clear need for a central solution that’s
 made to deal with these challenges.

	Reduction of total cost of ownership
 	IT departments are forced to cut maintenance costs to be able to satisfy demands for new products by the business departments.
 A central integration solution can help decrease the management and maintenance costs of the full application landscape.

Here’s another reason to consider ESBs: the application landscape is heterogonous when it comes to technologies and protocols.
 When you have to deal with many different protocols—for example, JMS, FTP, HTTP, SOAP, SMTP, and TCP—it’s difficult to implement
 new integration solutions between applications. An ESB provides protocol or technology adapters, which make it easy to deal
 with a heterogonous IT environment.

 A third reason is the reduction of the total cost of ownership of the full application landscape. In a point-to-point model,
 the management and maintenance of all the integration points can be time-consuming and therefore expensive. It would be less
 time-consuming to have an ESB solution to deal with integration problems so that management and maintenance becomes easier.

 We’ve discussed the point-to-point model and explained the disadvantages of this model. The introduction of an ESB to an application
 landscape could help to deal with the maintenance nightmare and make it easier to add new applications. Let’s go back to the
 application environment example described in figure 1.1. The addition of an ESB to this environment is depicted in figure 1.2.

 Figure 1.2. An application landscape using an ESB to integrate the applications

 [image:]

 What’s most striking in figure 1.2 is the reduction in the number of integration connections among the various applications. Every application is connected
 to the ESB, and the integration logic needed to integrate the COBOL application with the CRM application is implemented within
 the ESB. Note that the ESB landscape shown in figure 1.2 is just a high-level picture. The picture hides the complexity of implementing the integration logic by drawing an ESB layer,
 but complexity remains inside this layer that should be dealt with. The big difference with the point-to-point model is that
 the ESB is designed to deal with integration challenges. Because an ESB provides all kinds of integration functionality, workbenches,
 and management environments out of the box, implementing a new integration flow between applications is made much easier.

 As shown in figure 1.2, adding a new application is also simpler than ever before. The new application is connected to the ESB with the transport
 protocol and technology adapter suited for this application. The integration flows that connect the new application with the
 three existing applications can be handled within the ESB.

 This concludes our discussion about the benefits of an ESB on a high level. Let’s focus a bit more on the technology aspects
 of an ESB, as we take a look at the ESB from an application perspective.

 1.1.2. Using an ESB from an application perspective

 With the rise of Java Message Service (JMS) as a messaging standard, most of the integration products that are currently available
 in the market are built with Java technology. The integration vendors, however, hide this Java technology from the integration
 specialist by offering fancy integration workbenches, which let you use drag-and-drop development. Therefore, integration
 architects and specialists working with these integration products often don’t have a background in Java and Java Enterprise
 Edition (JEE) development.

 This book focuses on a specific kind of ESB, the open source ESB. Open source ESBs are also built on JMS and other Java technologies.
 Although graphical tools are also available for most of the open source ESBs, as we’ll see later in this book, open source
 ESBs are more focused on Java and XML development. In this book we show many code examples that include Java and XML snippets,
 because that’s the typical place to implement integration logic within an open source ESB. This means that you shouldn’t be
 afraid of doing a bit of Java coding and XML configuration when using an open source ESB.

A common JEE application architecture

 Because you likely have a Java background, we’ll look at the use of an ESB from a Java or JEE application in this section.
 To start this discussion, let’s examine a typical JEE application architecture, as shown in figure 1.3.

 Figure 1.3. Here’s a typical example of an application with a three-tier architecture. The application logic is divided into three layers,
 which can be distributed over multiple physical servers to improve scalability and performance if necessary.

 [image:]

 The three-tier architecture approach shown in figure 1.3 is common in JEE or Microsoft .NET applications developed in business-critical environments. The division of the application
 logic into three layers promotes the scalability of an application and should improve the maintainability. All the functionality
 needed for the application shown in figure 1.3 is implemented in the three layers. The only external part necessary is a relational database to retrieve and store the information
 that’s maintained in the application. So would this application architecture benefit from introducing an ESB?

 Well, knowing that the logic implemented in this application isn’t used by other applications, the answer is no. This kind
 of application can be categorized as an isolated application that doesn’t have the need to communicate with other applications.
 In the early years of this century, the architecture of most applications that were developed for large businesses looked
 like the example shown in figure 1.3.

Describing the need for an integration solution

 However, with the demand to improve the flexibility of business processes and the time-to-market for new products and other
 business drivers, applications have to be integrated. The need for a single-client view is an example of the need for application
 integration. Information about clients exists in many businesses scattered across different applications, like CRM applications,
 ERP systems, and legacy applications. When the call center of such a business needs a complete client overview, information
 from all these applications is necessary. And most likely, the call center application is not the only party interested in
 the client view. Figure 1.4 shows an overview of this single-client view example.

 Figure 1.4. Here’s an example where integration between multiple applications is necessary. The call center application needs a single-client
 view from the ERP, CRM, and COBOL applications.

 [image:]

 The example given in figure 1.4 requires a solution that’s capable of retrieving the information of a specific client from the ERP, CRM, and COBOL applications
 and that’s able to consolidate this information into a single-client view and return it to the call center application. We
 have multiple options for implementing such an integration solution.

Adding an additional layer to the application

 One option is to enrich the call center application with logic necessary to create the single-client view. This would mean
 that the application architecture shown in figure 1.3 should be extended with an integration layer. This integration layer is responsible for the retrieval of the client information
 from the three other applications. Although only three applications need to be integrated, a lot of integration logic is necessary.
 You can imagine that the connectivity necessary to integrate the legacy COBOL application is different from the connectivity
 needed for the ERP system. This means that the integration layer of the call center application also needs to support different
 connectivity protocols and likely different message formats as well. The architecture of the call center application would
 then look like the overview in figure 1.5.

 Figure 1.5. The architecture shown in figure 1.3 is extended with an integration layer that provides the logic needed to integrate with other applications.

 [image:]

 The architecture shown in figure 1.5 is not bad per se. If the logic or data of the applications that needs to be integrated won’t be needed in any other application
 within a department or enterprise, a separate integration solution may not be necessary. But implementing different connectivity
 protocols; supporting various message formats; and providing messaging, routing, and transformation functionality is a time-consuming
 exercise. Furthermore, dedicated software is available to solve an integration problem. This is where the ESB product comes
 into the picture.

Using an ESB to implement the integration solution

 When we look at the possibilities for adding an ESB to the architecture shown in figure 1.5, it’s clear that the main difference involves the size of the integration layer and the abstraction that an ESB can provide.
 The integration logic needed for the ERP, CRM, and COBOL applications can be implemented in the ESB solution. Furthermore,
 the ESB can implement the logic needed to create a single-client view. What remains in the integration layer is connectivity
 logic to communicate with the ESB. The advantage is that ESBs support a wide range of connectivity protocols, including industry
 standards like SOAP over JMS or SOAP over HTTP. Figure 1.6 shows the architecture of the call center application with the addition of an ESB for the integration with the three back-end
 applications.

 Figure 1.6. Here we introduce an ESB to the call center architecture. The ESB provides functionality to communicate with the three back-end
 applications and to route the message to the right backend application.

 [image:]

 If we compare figures 1.5 and 1.6, the main difference is where the integration logic for the back-end applications is implemented. In figure 1.5, the integration layer of the call center application implements the integration logic, which translates to a lot of custom
 development. With the addition of an ESB in figure 1.6, the integration logic is centralized in a software component that isn’t part of the call center application. Because ESBs
 offer an environment that’s focused on providing integration functionality, there’s no need for much custom development to
 implement the integration with the three back-end applications.

 In figure 1.6 we show a simplified overview of a call center application that’s integrated with three back-end applications via an ESB.
 The advantages of using an ESB become clearer if we consider multiple applications that need to be integrated with, for example,
 the ERP system and the CRM application. The ESB has already implemented integration logic with these applications, and this
 logic can be reused for other applications that need information from the ERP system or to update data in the CRM application.

 But before we can decide when and when not to use an ESB, let’s first look at the core functionality of an ESB.

1.2. Explaining the core functionalities of an ESB

 ESB is a common integration buzzword nowadays, and there are a lot of definitions used by integration vendors, market analysts,
 and business users. If you want to look for these definitions, just Google “enterprise service bus” and you’ll definitely
 find enough resources for a couple of hours’ reading. We provide you with a practical overview, not an exhaustive list, of what we think are the core functionalities of an ESB. You can then use this overview
 to create your own definition of an ESB. Table 1.2 provides a short overview of the seven core functionalities.

 Table 1.2. Overview of the core functionalities necessary in an ESB

	
 ESB core functionality

 	
 Description

	Location transparency
 	The ESB helps with decoupling the service consumer from the service provider location. The ESB provides a central platform
 to communicate with any application necessary without coupling the message sender to the message receiver.

	Transport protocol conversion
 	An ESB should be able to seamlessly integrate applications with different transport protocols like HTTP(S) to JMS, FTP to
 a file batch, and SMTP to TCP.

	Message transformation
 	The ESB provides functionality to transform messages from one format to the other based on open standards like XSLT and XPath.

	Message routing
 	Determining the ultimate destination of an incoming message is an important functionality of an ESB that is categorized as
 message routing.

	Message enhancement
 	An ESB should provide functionality to add missing information based on the data in the incoming message by using message
 enhancement.

	Security
 	Authentication, authorization, and encryption functionality should be provided by an ESB for securing incoming messages to
 prevent malicious use of the ESB as well as securing outgoing messages to satisfy the security requirements of the service
 provider.

	Monitoring and management
 	A monitoring and management environment is necessary to configure the ESB to be high-performing and reliable and also to monitor
 the runtime execution of the message flows in the ESB.

Next we explore each of these seven core functionalities. The first functionalities that we discuss, location transparency
 and transport protocol conversion, are typical examples of ESB functionality. The ordering of the other core functionalities
 is not really relevant.

 1.2.1. Location transparency

 When a service consumer communicates with a service provider (you can also think of an application here) via the ESB, the
 consumer doesn’t need to know the actual location of the service provider. This means that the service consumer is decoupled
 from the service provider and that a service provider’s new server location has no impact on the service consumer. The core
 functionality of an ESB that provides this capability is known as location transparency.

 You can implement the location transparency within the ESB with a simple XML configuration, a database, or a service registry.
 Your approach depends on your requirements, such as dynamic configuration capabilities and the need for additional information
 about service providers (e.g., quality of service). The simplest implementation of location transparency is the configuration
 of service provider endpoints in a static XML file. This is a common way to implement location transparency in an open source
 ESB. When you need dynamic configuration of service provider locations, you require more advanced configuration options. Dynamic
 configuration can be implemented with a hot-deployment model for location configuration files or with locations stored in
 a database. When you have even more requirements, such as the definition of quality of service and business information about
 a specific service provider, a service registry can provide the necessary capabilities. In this book, we focus on the static
 XML file and the hot-deployment options. Figure 1.7 shows a graphical overview of the options you have available when implementing location transparency with an ESB.

 Figure 1.7. The ESB can use several options to configure and store the location of the CRM client information service. A common option
 is an XML file configuration, but there are alternatives, such as a database or a service registry.

 [image:]

 Figure 1.7 shows a simple case in which an application needs client information from a CRM application. Because an ESB is used, the
 location of the client information service within the CRM application is transparent to the service consumer. Notice that
 when the location of the client information service changes, only the location configuration within the ESB has to be updated.

 1.2.2. Transport protocol conversion

 Another common scenario is one in which we have a service consumer that’s using a different transport protocol than the service
 provider is. You can probably think of a number of cases where you have seen this in practice. Let’s use an example in which
 we have a service consumer that’s communicating via JMS. The service provider is a legacy system that’s only capable of importing and exporting files in a batch. Of course, we can write our own transport protocol
 conversion logic, but wouldn’t it be great if it were offered out of the box? An ESB is capable of converting incoming transport
 protocols to different outgoing transport protocols; we call this ESB core functionality transport protocol conversion. The components in an ESB offering transport protocol conversion are typically referred to as protocol adapters. Figure 1.8 shows the transport protocol conversion of the example we have just discussed: JMS to File.

 Figure 1.8. In this example a client application sends a JMS message to the ESB. A JMS adapter accepts the JMS message and forwards it
 to the file adapter, which writes the content of the JMS message to the file system of a legacy application.

 [image:]

 When dealing with environments with many different transport protocols, an ESB can offer transport protocol conversion, as
 shown in figure 1.8. Of course, a typical ESB doesn’t support all of the transport protocols you may come across in complex integration environments,
 but it does support a wide variety. For protocols that aren’t supported out of the box, you can purchase an adapter from third
 parties or develop a custom adapter.

 1.2.3. Message transformation

 Besides the support for a set of transport protocols, implementing the integration between a service consumer and a service
 provider often requires a transformation of the message format. In the example shown in figure 1.8, the content of the JMS message can’t be forwarded as is to the legacy application. There is a need for logic that transforms
 the message format to the expected format of the service provider. The ESB core functionality that helps with changing the
 message format is known as the message transformation functionality.

 A common technology to transform a message from the source to the target format is Extensible Stylesheet Language Transformation
 (XSLT). XSLT is a World Wide Web Consortium (W3C) recommendation widely adopted in the integration industry, which ensures
 that message transformations written in XSLT are usable in most of the ESBs available in the market. Before the age of open
 standards like XSLT and the use of ESBs, the EAI products, often referred to as brokers, implemented message transformation
 most often with proprietary technology. So message transformation is a good example of the evolution of open standards used
 in integration products. Let’s take a look at a graphical representation of message transformation as a core functionality
 of an ESB in figure 1.9.

 Figure 1.9. An ESB provides the capability to transform the message format of an incoming message to the format expected by the target
 application. In this example the ESB transforms the SOAP message to an EDI message by using a message transformer.

 [image:]

 Message transformation, as shown in figure 1.9, is one of the most used capabilities in ESBs. It’s rare that the message format of an incoming message exactly matches the
 format expected by the target application. The example used in figure 1.9 shows a transformation from a SOAP message to an electronic data interchange (EDI) message. The message transformer that
 performs the message transformation can be implemented with an XSLT style sheet as we already mentioned, but it can also be
 a transformation tool from a third party that’s dedicated to supporting all kinds of EDI-related transformations. Alternatively,
 you can write your own with the application programming interface (API) provided with your ESB product. In chapter 5, we explore how message transformation can be implemented with a number of examples.

 1.2.4. Message routing

 In our examples so far, the target destination of the incoming message was just one possible service provider. But in most
 integration projects, multiple applications are involved that could be the target application of a particular incoming message.
 Based on many kinds of rules and logic, the ESB has to determine which service provider(s) a message must be sent to. The
 core functionality involved with dealing with this kind of logic is known as message routing.

 This message routing functionality is a classification for different kinds of routing capabilities. There is, for example,
 content-based routing, which is used for routing messages to their ultimate destination based on their content. But there
 is also the message filter routing functionality, which is used to prevent certain messages from being sent to a particular
 destination. A third example is the recipient list routing capability, which can be used to send a particular message to multiple
 destinations. Message routing is the ESB core functionality needed in almost every integration implementation. Figure 1.10 shows an example of message routing based on the content of an incoming message.

 Figure 1.10. Message routing involves the logic to determine the target endpoint(s) for an incoming message.

 [image:]

 Message routing can be complex and difficult to implement because knowledge of the routing rules and logic involved is often
 spread across different people. It’s difficult to explain the use of routing rules to businesspeople, although their business
 domain is essential for the definition of a routing rule. The rules and logic involved with message routing is, however, related
 to the functionality of the applications that are integrated. Therefore, a deep understanding of the applications involved
 in an integration project is often necessary to specify the proper routing rules. The example given in figure 1.10 is just a simple one, designed to show what we mean by message routing and content-based routing. In figure 1.10 the insurance request consists of an element named requesttype that specifies the kind of insurance request applied for by the customer using the internet application. Based on the value
 of this element, the message is routed to the travel or the car insurance service. We’ll look at different routing examples
 in greater detail later in this book, starting with chapter 5.

 1.2.5. Message enhancement

 The message transformation process can change a source message format to a target message format. But to be able to create
 the correct outgoing message that will be sent to the target application, you may have to add additional data or convert the
 existing data. A common way to add data to a message is by retrieving it from a database based on certain element values of
 the incoming message. An example of such an element is a client identifier. The destination of the incoming message with the client identifier can be an application that requires some extra client
 information that’s not available in the incoming message. The ESB can then retrieve this information from a database based
 on the client identifier in the incoming message. For data conversion, more custom development is needed in most cases. A
 data conversion example is where the length of the client name has to be reduced to a maximum length of 40 characters. This
 functionality requires a clear message-handling API so that the retrieval and update of a particular message element is made
 easy for a developer.

 The functionality described here can be categorized as a message enhancement capability and is closely related to message transformation. The main difference between these functionalities is that message
 transformation deals with data that’s already available in the incoming message, and message enhancement deals with data that must be retrieved from a (external) data source,
 for example a database. Figure 1.11 shows an example of message enhancement.

 Figure 1.11. In this example of message enhancement, an order message with a client identifier is sent by a client application. The ESB
 retrieves the customer details from the CRM database using the client identifier with message enhancement capability.

 [image:]

 The example shown in figure 1.11 uses a message enhancer that retrieves client information from a database based on the client identifier provided by the
 incoming message. In this typical example, the ESB needs to provide functionality to connect to a database and perform a query
 with parameters provided in the configuration settings. Another functionality that’s used often and that’s part of message
 enhancement is that some custom logic is performed against the incoming message. This custom logic can be implemented with,
 for example, Java code to retrieve data from an external database. We’ll discuss the functionality of message enhancement
 in greater detail in chapter 5.

 1.2.6. Security

 Because ESBs often deal with business-critical integration logic that involves a substantial number of applications, an ESB
 must provide ways to authenticate and authorize incoming messages. For messages that may be intercepted for malicious purposes,
 encryption is an important feature that an ESB must be able to provide. When an ESB doesn’t apply a security model for its
 environment, everybody who can send messages to the starting point of an integration flow, such as a message queue or a web
 service, is able to start this flow with possibly malicious messages. In most situations, an ESB is an internally oriented
 environment, which means that it’s not accessible from outside the organization boundaries, due to firewall settings. This
 means that possible malicious messages can only arrive from within the IT environment of the organization. But when an ESB also offers starting points of
 integration flows to applications outside the boundaries of the organization, security is even more important.

 Let’s first look at an example of security within an ESB (see figure 1.12).

 Figure 1.12. Security involves the confidentiality, integrity, and availability of messages sent over the ESB. This example shows an implementation
 of confidentiality via an authentication mechanism.

 [image:]

 The example in figure 1.12 shows how the authentication inside an ESB can be implemented. Besides authentication, authorization can also be configured
 for an integration flow. By using authorization, the functionality of a service provider can be secured on a method level
 so that, for example, a group of users can be granted different access than an administrator user. Our example also implements
 encryption for the outgoing message before it’s sent to the service provider. This is another part of the security functionality
 an ESB should be able to implement. Service providers can have all kinds of security measures implemented, and an ESB should
 be able to construct an outgoing message that has the right security values set. For example, to ensure that a message can’t
 be read by other parties, a message can be encrypted with the public key of the service provider in the ESB, as in the example
 in figure 1.12. As you can see, security is a broad topic. In chapter 8 we discuss how security can be implemented in an ESB with a number of practical examples.

 1.2.7. Monitoring and management

 The last ESB core functionality that we examine involves managing an ESB environment. This core functionality is different
 from the ones we’ve discussed, as the others were focused on development and runtime capabilities of an ESB. This section
 focuses on the ability to maintain and manage an ESB.

 Because an ESB is a critical piece in a system landscape, the environment must be managed and monitored. This is not that
 different from application servers hosting JEE applications, but an ESB usually integrates a large set of applications not
 only limited to a Java domain. Therefore, if the message size in a queue is exceeding a certain limit, for example, that must
 be detected as early as possible. We categorize this functionality as monitoring and management. A graphical representation of this ESB core functionality appears in figure 1.13.

 Figure 1.13. The ESB is a central product within the environment and therefore monitoring and management capabilities are vital.

 [image:]

 Managing and monitoring an ESB environment can become complex because of the large set of capabilities an ESB provides. Therefore,
 the management and monitoring functionality consists of multiple parts, and each is responsible for a component of the ESB.
 For the messaging layer in the ESB, the management and monitoring environment will, for instance, involve managing the queues
 and monitoring the message size and message throughput of queues. For web services provided by the ESB, monitoring will involve
 such things as whether the web service is up and running and how many calls are made per minute; management will address the
 number of instances that are running for a web service. In chapter 10, we explore examples involving the management and monitoring capabilities of an ESB.

 1.2.8. Core functionality overview

 Well, we covered quite a bit of ground in this section; we hope we didn’t overwhelm you with a theoretical discussion of the
 core functionality of an ESB. We wrote this book with a practical goal in mind: to show how ESBs and, in particular open source
 ESBs, can be used for your own purposes. But we think that a book about ESBs should begin with a clear definition of what
 an ESB is and what it should do. This section defines seven core functionalities an ESB should provide at the very least.
 These core functionalities are by no means a complete list; we didn’t yet mention orchestration and transaction handling.
 These functionalities are important, but we chose the keep the list of core functionalities short—just enough to provide a
 good picture of what an ESB is. In the remaining chapters, we discuss other functionalities.

 You should now be able to arrive at your own opinion as to what an ESB is and how it compares to the definition you found
 on the internet. You can see that some definitions are difficult to understand, and some define an ESB as the ultimate integration solution. But let’s end our theoretical discussion of ESB functionality and move on to practical implementations.
 Next we present an overview of available open source ESBs.

1.3. Researching the open source ESB market

 A lot of definitions you find on the internet are from vendors who are selling ESBs for a substantial license fee. Because
 this book is about open source ESBs, we first discuss the differences between closed source (products with a license fee and a confidential source) and open source ESBs based on the core functionalities we’ve discussed.

 As we see in section 1.3.2, quite a few options are available in the open source market. To provide a good overview of the available open source ESBs,
 we introduce the most important ones in short sections. But let’s begin with a discussion of some open source ESBs myths.
 We include this short discussion because there’s a lack of clarity within the integration market about open source products.

 1.3.1. Demystifying the open source ESB

 Let’s first specify what we mean by open source and so-called closed source ESBs. When we talk about closed source ESBs, we’re
 referring to ESB products that have a usage-based license fee and for which the source code is not freely available. Open
 source ESBs do have a license (like the Apache or GPL license), but don’t have a usage-based license fee and the source code
 is freely available. Although the open source ESB itself is available for free, services and support can be provided for a
 fee.

 Therefore, open source ESBs can be provided by a commercial vendor just like closed source ESBs. Good examples of companies
 making money with open source ESBs are MuleSource (the company behind Mule) and IONA Technologies (which offers support and
 training for Apache ServiceMix with its FUSE ESB product). So let’s explode the myth that open source ESBs lack support and
 training options. The open source ESBs discussed in this book, Mule and ServiceMix, have company backing that provides 24/7
 support and can offer training.

 A second myth is that open source projects in general, including open source ESBs, are led by geeks who are developing interesting
 pieces of software, but lack a quality assurance (QA) model, a decent release roadmap, and a delivery process. Of course,
 open source development means that developers are often working full-time in their day-to-day job and are developing the open
 source projects in their spare time. However, there’s a movement in which full-time open source developers work for a company
 to offer support and training for an open source project. Again, good examples include MuleSource and IONA; in addition, WSO2 (with Apache Synapse) and Sun Microsystems (with Open ESB) fit this picture.

 Because all decent open source projects use a bug-tracking environment like Atlassian’s JIRA (which identifies all closed
 and open bugs and also provides information about the release schedule), a solid foundation for QA is laid. In addition, good
 unit tests, a continuous build environment, and an active community pave the way to well-tested and community-driven releases. With a release roadmap, which consists of several release candidates, the quality
 of the open source ESB can be guaranteed. The community behind the open source ESB is involved in the delivery process of
 a new version. So in conclusion, the great thing about open source projects is that the QA model is open for everyone and
 that you are able to test new releases early in the release process.

 The last myth that we want to discuss is that open source ESBs lack tool support for development and testing. Closed source
 ESBs provide integration workbenches to give developers an abstraction layer that hides the technical implementation. The
 integration workbench provides drag-and-drop development interfaces and wizards to create integration flows. This means that
 the developer is more or less guided in the design and implementation of an integration flow. For open source ESBs, the tool
 support is more basic, with a focus on XML configuration and Java development. This means more or less that there’s no abstraction
 layer to hide the technical implementation. Developers working with open source ESBs therefore need to have more development
 knowledge to implement integration flows. But this also gives developers greater freedom in implementing integration logic
 for their integration solution. And because enterprise integration is difficult and often requires custom integration logic,
 this can be very welcome.

 But does this mean that the myth about tool support is true? No, tool support is available that can ease the development effort
 when working with open source ESBs. In appendix C we show two examples of tool projects that provide graphical support for constructing message flows for Mule and ServiceMix.
 And in chapter 11 we examine two tools that provide graphical drag-and-drop support to construct processes that can be deployed on Mule and
 ServiceMix. So the tool support is growing and will be enhanced in the near future, but admittedly there’s some catching up
 to do when compared to the closed source ESB product offerings. In table 1.3 the myths about open ESBs are summarized.

 Table 1.3. Overview of the myths about open source ESBs

	
 Myth

 	
 Short description

	Lack of support and training
 	Just like the closed source ESBs, 24/7 support and training are available for open source ESBs. Companies like MuleSource,
 IONA, WSO2, Sun, JBoss, and EBM Web-sourcing provide support and training for specific open source ESBs.

	Lack of QA, a decent release calendar, and a delivery process
 	Open source ESBs that we examine in section 1.3.2 have an excellent bug-tracking system, provide unit tests, and are backed by an active community. In addition, a core team
 of developers is often working full-time on the development of the open source ESB. Therefore, the QA model and release process
 are well implemented and also open to everyone who is interested.

	Lack of tool support
 	Open source projects are not famous for their tool support. This is not different for most open source ESBs, so Java and XML
 skills are mandatory for open source integration developers. Tool support is, however, growing, and the NetBeans support for
 open ESB is a great example of an open source ESB with good tool support.

Now, let’s look at the best-of-breed open source ESBs currently available.

 1.3.2. Overview of open source ESBs

 In just a couple of years, we’ve seen quite a few open source ESBs arrive on the market. The adoption of open standards and
 Java specifications like JMS, JCA, XML, JBI, SOAP, and others paved the way for the development of open source ESBs. With
 the specifications available for everyone who is interested, the only things lacking were implementations of these specifications.
 A number of open source projects started to implement specifications like JMS and JBI. These projects provided the foundation
 to build open source ESBs, and eventually several open source ESB projects were launched.

 The problem with providing an overview of open source projects for a particular technology or functionality is that there
 are so many projects out there. This isn’t different for open source ESBs. Therefore, we have only listed the open source
 ESBs that received a lot of attention on the internet and in the integration market. Another criterion is that we focused
 on the open source projects provided by a substantial community, such as Apache, Codehaus, Java.net, and JBoss.

Mule

 After doing the same donkey work at a number of integration projects for setting up an integration infrastructure, Ross Mason
 decided to define a reusable integration platform named Mule (http://mule.codehaus.org). Basing his work on Gregor Hohpe and Bobby Woolf’s book Enterprise Integration Patterns (Addison-Wesley Professional, 2003), Mason implemented a lightweight messaging framework. The central part of Mule is the
 service definitions, which implement the integration logic.

 These services can consist of an inbound and outbound element to configure the input and output connectivity. A service can
 also consist of a component, which can be implemented with all kinds of technologies, including Java and Spring beans. This
 is a big selling point for Java developers who are looking for an integration framework. Most of the development work with
 Mule can be implemented with Java classes, and the messages that flow through the Mule container can be Java messages. Figure 1.14 gives an overview of the functionality provided by Mule.

 Figure 1.14. Overview of the functionality provided by Mule. The figure shows some examples of open source frameworks that can be integrated
 with Mule, including CXF and ActiveMQ.

 [image:]

 Mule offers connectivity for more than 20 transport protocols and integrates with a large number of integration projects,
 including Spring, ActiveMQ, Joram, CXF, Axis, and Drools. Mule chose to not build their architecture on JBI, but implemented their own flexible and lightweight model, focusing
 on productivity and ease of development. After the 1.0 release of Mule in 2005, Mule received more and more market attention
 over the years, resulting in the creation of MuleSource (http://www.mulesource.com), which provides professional services and support for Mule. This product is currently used by a large number of companies
 around the world, including WalMart, Hewlett-Packard, Sony, Deutsche Bank, and CitiBank.

 Mule provides connectivity with JBI containers via a JBI adapter implementation. But the next open source ESB, Apache ServiceMix,
 is fully based on the JBI specification.

Apache ServiceMix

 The foundation for Apache ServiceMix is the JBI specification delivered by the Java Community Process (JCP) under Java Specification
 Request (JSR) 208 in 2005. The purpose of JBI is to define a standard for an integration platform that consists of components
 from multiple vendors and open source projects (in order to prevent vendor lock-in). For integration products adhering to
 the JBI specification, it should be possible to build JBI components that can be deployed on all these JBI-based products.
 A salient detail of the JSR 208 vote was that IBM and BEA abstained, and even today these companies have no integration product
 adhering to the JBI specification. For more details about the JBI specification, see chapter 2, where we discuss the architecture of ServiceMix. Figure 1.15 gives an overview of the functionality provided by ServiceMix.

 Figure 1.15. Overview of the functionality provided by Apache ServiceMix

 [image:]

 After the JBI specification was accepted by the JCP, in late 2005 the Apache ServiceMix project was introduced as an incubator
 project at Apache. The goal of ServiceMix is to provide an ESB that implements the JBI specification, with a focus on flexibility,
 reliability, and breadth of connectivity. ServiceMix includes a large set of JBI components that together supply the ESB core
 functionalities listed in section 1.2. Included are JBI components that support protocols like JMS, HTTP, and FTP, as well as components that implement Hohpe’s
 patterns of enterprise integration, rules, and scheduling.

 In September 2007 the Apache ServiceMix project became a top-level Apache project. The ServiceMix product can be integrated
 with a number of other Apache projects. Apache ActiveMQ is the messaging foundation, which provides reliability and makes
 possible a distributed environment and clustering. ServiceMix can also be integrated with Apache CXF, Apache ODE, Apache Camel,
 Apache Geronimo, JBoss, and any web container. ServiceMix is deployed in many large enterprises around the world, including
 Raytheon, British Telecom, CVS/Pharmacy, Cisco Systems, and Sabre Holdings, just to name a few.

 LogicBlaze was the professional services, support, and training company behind Apache ServiceMix and Apache ActiveMQ. Some
 of the core developers of ActiveMQ and ServiceMix were employed by LogicBlaze. In 2006, LogicBlaze was acquired by IONA Technologies,
 which now provides support, services, and training for ServiceMix and other Apache projects via its FUSE ESB product. The
 FUSE ESB is an open source product based on ServiceMix and includes other products based on Apache ActiveMQ, Apache Camel, and Apache CXF.

OEBPS/01fig04_alt.jpg

OEBPS/01fig05_alt.jpg

OEBPS/01fig02_alt.jpg

OEBPS/01fig03.jpg

OEBPS/manning.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/01fig06_alt.jpg

OEBPS/01fig08_alt.jpg

OEBPS/01fig07_alt.jpg

OEBPS/cover.jpg

OEBPS/01fig10_alt.jpg

OEBPS/01fig09_alt.jpg

OEBPS/01fig12_alt.jpg

OEBPS/01fig11_alt.jpg

OEBPS/01fig14.jpg

OEBPS/01fig13.jpg

OEBPS/01fig15.jpg

