

 [image: cover]

Kotlin in Action

 Dmitry Jemerov
 Svetlana Isakova

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Dan Maharry
Review editor: Aleksandar Dragosavljević
Technical development editor: Brent Watson
Project editor: Kevin Sullivan
Copyeditor: Tiffany Taylor
Proofreader: Elizabeth Martin
Technical proofreader: Igor Wojda
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN 9781617293290

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Introducing Kotlin

 Chapter 1. Kotlin: what and why

 Chapter 2. Kotlin basics

 Chapter 3. Defining and calling functions

 Chapter 4. Classes, objects, and interfaces

 Chapter 5. Programming with lambdas

 Chapter 6. The Kotlin type system

 2. Embracing Kotlin

 Chapter 7. Operator overloading and other conventions

 Chapter 8. Higher-order functions: lambdas as parameters and return values

 Chapter 9. Generics

 Chapter 10. Annotations and reflection

 Chapter 11. DSL construction

 Appendix A. Building Kotlin projects

 Appendix B. Documenting Kotlin code

 Appendix C. The Kotlin ecosystem

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Introducing Kotlin

 Chapter 1. Kotlin: what and why

 1.1. A taste of Kotlin

 1.2. Kotlin’s primary traits

 1.2.1. Target platforms: server-side, Android, anywhere Java runs

 1.2.2. Statically typed

 1.2.3. Functional and object-oriented

 1.2.4. Free and open source

 1.3. Kotlin applications

 1.3.1. Kotlin on the server side

 1.3.2. Kotlin on Android

 1.4. The philosophy of Kotlin

 1.4.1. Pragmatic

 1.4.2. Concise

 1.4.3. Safe

 1.4.4. Interoperable

 1.5. Using the Kotlin tools

 1.5.1. Compiling Kotlin code

 1.5.2. Plug-in for IntelliJ IDEA and Android Studio

 1.5.3. Interactive shell

 1.5.4. Eclipse plug-in

 1.5.5. Online playground

 1.5.6. Java-to-Kotlin converter

 1.6. Summary

 Chapter 2. Kotlin basics

 2.1. Basic elements: functions and variables

 2.1.1. Hello, world!

 2.1.2. Functions

 2.1.3. Variables

 2.1.4. Easier string formatting: string templates

 2.2. Classes and properties

 2.2.1. Properties

 2.2.2. Custom accessors

 2.2.3. Kotlin source code layout: directories and packages

 2.3. Representing and handling choices: enums and “when”

 2.3.1. Declaring enum classes

 2.3.2. Using “when” to deal with enum classes

 2.3.3. Using “when” with arbitrary objects

 2.3.4. Using “when” without an argument

 2.3.5. Smart casts: combining type checks and casts

 2.3.6. Refactoring: replacing “if” with “when”

 2.3.7. Blocks as branches of “if” and “when”

 2.4. Iterating over things: “while” and “for” loops

 2.4.1. The “while” loop

 2.4.2. Iterating over numbers: ranges and progressions

 2.4.3. Iterating over maps

 2.4.4. Using “in” to check collection and range membership

 2.5. Exceptions in Kotlin

 2.5.1. “try”, “catch”, and “finally”

 2.5.2. “try” as an expression

 2.6. Summary

 Chapter 3. Defining and calling functions

 3.1. Creating collections in Kotlin

 3.2. Making functions easier to call

 3.2.1. Named arguments

 3.2.2. Default parameter values

 3.2.3. Getting rid of static utility classes: top-level functions and properties

 3.3. Adding methods to other people’s classes: extension functions and properties

 3.3.1. Imports and extension functions

 3.3.2. Calling extension functions from Java

 3.3.3. Utility functions as extensions

 3.3.4. No overriding for extension functions

 3.3.5. Extension properties

 3.4. Working with collections: varargs, infix calls, and library support

 3.4.1. Extending the Java Collections API

 3.4.2. Varargs: functions that accept an arbitrary number of arguments

 3.4.3. Working with pairs: infix calls and destructuring declarations

 3.5. Working with strings and regular expressions

 3.5.1. Splitting strings

 3.5.2. Regular expressions and triple-quoted strings

 3.5.3. Multiline triple-quoted strings

 3.6. Making your code tidy: local functions and extensions

 3.7. Summary

 Chapter 4. Classes, objects, and interfaces

 4.1. Defining class hierarchies

 4.1.1. Interfaces in Kotlin

 4.1.2. Open, final, and abstract modifiers: final by default

 4.1.3. Visibility modifiers: public by default

 4.1.4. Inner and nested classes: nested by default

 4.1.5. Sealed classes: defining restricted class hierarchies

 4.2. Declaring a class with nontrivial constructors or properties

 4.2.1. Initializing classes: primary constructor and initializer blocks

 4.2.2. Secondary constructors: initializing the superclass in different ways

 4.2.3. Implementing properties declared in interfaces

 4.2.4. Accessing a backing field from a getter or setter

 4.2.5. Changing accessor visibility

 4.3. Compiler-generated methods: data classes and class delegation

 4.3.1. Universal object methods

 4.3.2. Data classes: autogenerated implementations of universal methods

 4.3.3. Class delegation: using the “by” keyword

 4.4. The “object” keyword: declaring a class and creating an instance, combined

 4.4.1. Object declarations: singletons made easy

 4.4.2. Companion objects: a place for factory methods and static members

 4.4.3. Companion objects as regular objects

 4.4.4. Object expressions: anonymous inner classes rephrased

 4.5. Summary

 Chapter 5. Programming with lambdas

 5.1. Lambda expressions and member references

 5.1.1. Introduction to lambdas: blocks of code as function parameters

 5.1.2. Lambdas and collections

 5.1.3. Syntax for lambda expressions

 5.1.4. Accessing variables in scope

 5.1.5. Member references

 5.2. Functional APIs for collections

 5.2.1. Essentials: filter and map

 5.2.2. “all”, “any”, “count”, and “find”: applying a predicate to a collection

 5.2.3. groupBy: converting a list to a map of groups

 5.2.4. flatMap and flatten: processing elements in nested collections

 5.3. Lazy collection operations: sequences

 5.3.1. Executing sequence operations: intermediate and terminal operations

 5.3.2. Creating sequences

 5.4. Using Java functional interfaces

 5.4.1. Passing a lambda as a parameter to a Java method

 5.4.2. SAM constructors: explicit conversion of lambdas to functional interfaces

 5.5. Lambdas with receivers: “with” and “apply”

 5.5.1. The “with” function

 5.5.2. The “apply” function

 5.6. Summary

 Chapter 6. The Kotlin type system

 6.1. Nullability

 6.1.1. Nullable types

 6.1.2. The meaning of types

 6.1.3. Safe call operator: “?.”

 6.1.4. Elvis operator: “?:”

 6.1.5. Safe casts: “as?”

 6.1.6. Not-null assertions: “!!”

 6.1.7. The “let” function

 6.1.8. Late-initialized properties

 6.1.9. Extensions for nullable types

 6.1.10. Nullability of type parameters

 6.1.11. Nullability and Java

 6.2. Primitive and other basic types

 6.2.1. Primitive types: Int, Boolean, and more

 6.2.2. Nullable primitive types: Int?, Boolean?, and more

 6.2.3. Number conversions

 6.2.4. “Any” and “Any?”: the root types

 6.2.5. The Unit type: Kotlin’s “void”

 6.2.6. The Nothing type: “This function never returns”

 6.3. Collections and arrays

 6.3.1. Nullability and collections

 6.3.2. Read-only and mutable collections

 6.3.3. Kotlin collections and Java

 6.3.4. Collections as platform types

 6.3.5. Arrays of objects and primitive types

 6.4. Summary

 2. Embracing Kotlin

 Chapter 7. Operator overloading and other conventions

 7.1. Overloading arithmetic operators

 7.1.1. Overloading binary arithmetic operations

 7.1.2. Overloading compound assignment operators

 7.1.3. Overloading unary operators

 7.2. Overloading comparison operators

 7.2.1. Equality operators: “equals”

 7.2.2. Ordering operators: compareTo

 7.3. Conventions used for collections and ranges

 7.3.1. Accessing elements by index: “get” and “set”

 7.3.2. The “in” convention

 7.3.3. The rangeTo convention

 7.3.4. The “iterator” convention for the “for” loop

 7.4. Destructuring declarations and component functions

 7.4.1. Destructuring declarations and loops

 7.5. Reusing property accessor logic: delegated properties

 7.5.1. Delegated properties: the basics

 7.5.2. Using delegated properties: lazy initialization and “by lazy()”

 7.5.3. Implementing delegated properties

 7.5.4. Delegated-property translation rules

 7.5.5. Storing property values in a map

 7.5.6. Delegated properties in frameworks

 7.6. Summary

 Chapter 8. Higher-order functions: lambdas as parameters and return values

 8.1. Declaring higher-order functions

 8.1.1. Function types

 8.1.2. Calling functions passed as arguments

 8.1.3. Using function types from Java

 8.1.4. Default and null values for parameters with function types

 8.1.5. Returning functions from functions

 8.1.6. Removing duplication through lambdas

 8.2. Inline functions: removing the overhead of lambdas

 8.2.1. How inlining works

 8.2.2. Restrictions on inline functions

 8.2.3. Inlining collection operations

 8.2.4. Deciding when to declare functions as inline

 8.2.5. Using inlined lambdas for resource management

 8.3. Control flow in higher-order functions

 8.3.1. Return statements in lambdas: return from an enclosing function

 8.3.2. Returning from lambdas: return with a label

 8.3.3. Anonymous functions: local returns by default

 8.4. Summary

 Chapter 9. Generics

 9.1. Generic type parameters

 9.1.1. Generic functions and properties

 9.1.2. Declaring generic classes

 9.1.3. Type parameter constraints

 9.1.4. Making type parameters non-null

 9.2. Generics at runtime: erased and reified type parameters

 9.2.1. Generics at runtime: type checks and casts

 9.2.2. Declaring functions with reified type parameters

 9.2.3. Replacing class references with reified type parameters

 9.2.4. Restrictions on reified type parameters

 9.3. Variance: generics and subtyping

 9.3.1. Why variance exists: passing an argument to a function

 9.3.2. Classes, types, and subtypes

 9.3.3. Covariance: preserved subtyping relation

 9.3.4. Contravariance: reversed subtyping relation

 9.3.5. Use-site variance: specifying variance for type occurrences

 9.3.6. Star projection: using * instead of a type argument

 9.4. Summary

 Chapter 10. Annotations and reflection

 10.1. Declaring and applying annotations

 10.1.1. Applying annotations

 10.1.2. Annotation targets

 10.1.3. Using annotations to customize JSON serialization

 10.1.4. Declaring annotations

 10.1.5. Meta-annotations: controlling how an annotation is processed

 10.1.6. Classes as annotation parameters

 10.1.7. Generic classes as annotation parameters

 10.2. Reflection: introspecting Kotlin objects at runtime

 10.2.1. The Kotlin reflection API: KClass, KCallable, KFunction, and KProperty

 10.2.2. Implementing object serialization using reflection

 10.2.3. Customizing serialization with annotations

 10.2.4. JSON parsing and object deserialization

 10.2.5. Final deserialization step: callBy() and creating objects using reflection

 10.3. Summary

 Chapter 11. DSL construction

 11.1. From APIs to DSLs

 11.1.1. The concept of domain-specific languages

 11.1.2. Internal DSLs

 11.1.3. Structure of DSLs

 11.1.4. Building HTML with an internal DSL

 11.2. Building structured APIs: lambdas with receivers in DSLs

 11.2.1. Lambdas with receivers and extension function types

 11.2.2. Using lambdas with receivers in HTML builders

 11.2.3. Kotlin builders: enabling abstraction and reuse

 11.3. More flexible block nesting with the “invoke” convention

 11.3.1. The “invoke” convention: objects callable as functions

 11.3.2. The “invoke” convention and functional types

 11.3.3. The “invoke” convention in DSLs: declaring dependencies in Gradle

 11.4. Kotlin DSLs in practice

 11.4.1. Chaining infix calls: “should” in test frameworks

 11.4.2. Defining extensions on primitive types: handling dates

 11.4.3. Member extension functions: internal DSL for SQL

 11.4.4. Anko: creating Android UIs dynamically

 11.5. Summary

 Appendix A. Building Kotlin projects

 A.1. Building Kotlin code with Gradle

 A.1.1. Building Kotlin Android applications with Gradle

 A.1.2. Building projects that use annotation processing

 A.2. Building Kotlin projects with Maven

 A.3. Building Kotlin code with Ant

 Appendix B. Documenting Kotlin code

 B.1. Writing Kotlin documentation comments

 B.2. Generating API documentation

 Appendix C. The Kotlin ecosystem

 C.1. Testing

 C.2. Dependency injection

 C.3. JSON serialization

 C.4. HTTP clients

 C.5. Web applications

 C.6. Database access

 C.7. Utilities and data structures

 C.8. Desktop programming

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 When I visited JetBrains for the first time in Spring 2010, I came in fairly certain that the world didn’t need another general-purpose
 programming language. I thought that existing JVM languages were good enough, and who in their right mind creates a new language
 anyway? After about an hour discussing production issues in large-scale codebases I was convinced otherwise, and the first
 ideas that later became part of Kotlin were sketched on a whiteboard. I joined JetBrains shortly after to lead the design
 of the language and work on the compiler.

 Today, more than six years later, we have our second release approaching. There are over 30 people on the team and thousands
 of active users, and we still have more exciting design ideas than I can handle easily. But don’t worry, those ideas have
 to pass a rather thorough examination before they get into the language. We want Kotlin of the future to still fit into a
 single reasonably sized book.

 Learning a programming language is an exciting and often very rewarding endeavor. If it’s your first one, you’re learning
 the whole new world of programming through it. If it’s not, it makes you think about familiar things in new terms and thus
 understand them more deeply and on a higher level of abstraction. This book is primarily targeted for the latter kind of reader,
 those already familiar with Java.

 Designing a language from scratch may be a challenging task in its own right, but making it play well with another is a different
 story—one with many angry ogres in it, and some gloomy dungeons too. (Ask Bjarne Stroustrup, the creator of C++, if you don’t
 trust me on that.) Java interoperability (that is, how Java and Kotlin can mix and call each other) was one of the cornerstones
 of Kotlin, and this book pays a lot of attention to it. Interoperability is very important for introducing Kotlin gradually
 to an existing Java codebase. Even when writing a new project from scratch, one has to fit the language into the bigger picture
 of the platform with all of its libraries written in Java.

 As I’m writing this, two new target platforms are being developed: Kotlin is now running on JavaScript VMs enabling full-stack
 web development, and it will soon be able to compile directly to native code and run without any VM at all, if necessary.
 So, while this book is JVM-oriented, much of what you learn from it can be applied to other execution environments.

 The authors have been members of the Kotlin team from its early days, so they are intimately familiar with the language and
 its internals. Their experience in conference presentations, workshops, and courses about Kotlin has enabled them to deliver
 good explanations that anticipate common questions and possible pitfalls. The book explains high-level concepts behind language
 features and provides all the necessary details as well.

 I hope you’ll enjoy your time with our language and this book. As I often say in our community postings: Have a nice Kotlin!

 ANDREY BRESLAV

 LEAD DESIGNER OF KOTLIN AT JETBRAINS

Preface

 The idea of Kotlin was conceived at JetBrains in 2010. By that time, JetBrains was an established vendor of development tools
 for many languages, including Java, C#, JavaScript, Python, Ruby, and PHP. IntelliJ IDEA, the Java IDE that is our flagship
 product, also included plugins for Groovy and Scala.

 The experience of building the tooling for such a diverse set of languages gave us a unique understanding of and perspective
 on the language design space as a whole. And yet the IntelliJ Platform-based IDEs, including IntelliJ IDEA, were still being
 developed in Java. We were somewhat envious of our colleagues on the .NET team who were developing in C#, a modern, powerful,
 rapidly evolving language. But we didn’t see any language that we could use instead of Java.

 What were our requirements for such a language? The first and most obvious was static typing. We don’t know any other way
 to develop a multimillion-line codebase over many years without going crazy. Second, we needed full compatibility with the
 existing Java code. That codebase is a hugely valuable asset for JetBrains, and we couldn’t afford to lose it or devalue it
 through difficulties with interoperability. Third, we didn’t want to accept any compromises in terms of tooling quality. Developer
 productivity is the most important value for JetBrains as a company, and great tooling is essential to achieving that. Finally
 we needed a language that was easy to learn and to reason about.

 When we see an unmet need for our company, we know there are other companies in similar situations, and we expect that our
 solution will find many users outside of JetBrains. With this in mind, we decided to embark on the project of creating a new
 language: Kotlin. As it happens, the project took longer than we expected, and Kotlin 1.0 came out more than five years after
 the first commit to the repository; but now we can be certain that the language has found its audience and is here to stay.

 Kotlin is named after an island near St. Petersburg, Russia, where most of the Kotlin development team is located. In using
 an island name, we followed the precedent established by Java and Ceylon, but we decided to go for something closer to our
 homes. (In English, the name is usually pronounced “cot-lin,” not “coat-lin” or “caught-lin.”)

 As the language was approaching release, we realized that it would be valuable to have a book about Kotlin, written by people
 who were involved in making design decisions for the language and who could confidently explain why things in Kotlin are the
 way they are. This book is a result of that effort, and we hope it will help you learn and understand the Kotlin language.
 Good luck, and may you always develop with pleasure!

Acknowledgments

 First of all, we’d like to thank Sergey Dmitriev and Max Shafirov for believing in the idea of a new language and deciding
 to invest JetBrains’ resources. Without them, neither the language nor this book would exist.

 We would especially like to acknowledge Andrey Breslav, who is the main person to blame for designing a language that’s a
 pleasure to write about (and to code in). Andrey, despite having to lead the continuously growing Kotlin team, was able to
 give us a lot of helpful feedback, which we greatly appreciate. In addition, you can be assured that this book received a
 stamp of approval from the lead language designer, in the form of the foreword that he kindly agreed to write.

 We’re grateful to the team at Manning who guided us through the process of writing this book and helped make the text readable
 and well-structured—particularly our development editor, Dan Maharry, who bravely strove to find time to talk despite our
 busy schedules, as well as Michael Stephens, Helen Stergius, Kevin Sullivan, Tiffany Taylor, Elizabeth Martin, and Marija
 Tudor. The feedback from our technical reviewers, Brent Watson and Igor Wojda, was also invaluable, as were the comments of
 the reviewers who read the manuscript during the development process: Alessandro Campeis, Amit Lamba, Angelo Costa, Boris
 Vasile, Brendan Grainger, Calvin Fernandes, Christopher Bailey, Christopher Bortz, Conor Redmond, Dylan Scott, Filip Pravica,
 Jason Lee, Justin Lee, Kevin Orr, Nicolas Frankel, Paweł Gajda, Ronald Tischliar, and Tim Lavers. Thanks go also to everyone
 who submitted feedback during the MEAP program and in the book’s forum; we’ve improved the text based on your comments.

 We’re grateful to the entire Kotlin team, who had to listen to daily reports like “One more section is finished!” throughout
 the time we spent writing this book. We want to thank our colleagues who helped us plan the book and gave feedback on its
 drafts, especially Ilya Ryzhenkov, Hadi Hariri, Michael Glukhikh, and Ilya Gorbunov. We’d also like to thank our friends who
 not only were supportive but also had to read the text and provide feedback (sometimes in ski resorts during vacations): Lev
 Serebryakov, Pavel Nikolaev, and Alisa Afonina.

 Finally, we’d like to thank our families and cats for making this world a better place.

About this Book

 Kotlin in Action teaches you the Kotlin programming language and how to use it to build applications running on the Java virtual machine and
 Android. It starts with the basic features of the language and proceeds to cover the more distinctive aspects of Kotlin, such
 as its support for building high-level abstractions and domain-specific languages. The book pays a lot of attention to integrating
 Kotlin with existing Java projects and helping you introduce Kotlin into your current working environment.

 The book covers Kotlin 1.0. Kotlin 1.1 has been in development in parallel to the writing of the book, and whenever possible,
 we’ve mentioned the changes made in 1.1. But because the new version is still a work in progress as of this writing, we haven’t
 been able to provide complete coverage. For ongoing updates about the new features and changes, please refer to the online
 documentation at https://kotlinlang.org.

Who should read this book

 Kotlin in Action is primarily focused on developers with some level of Java experience. Kotlin builds on many concepts and techniques from
 Java, and the book strives to get you up to speed quickly by using your existing knowledge. If you’re only just learning Java,
 or if you’re experienced with other programming languages such as C# or Java-Script, you may need to refer to other sources
 of information to understand the more intricate aspects of Kotlin’s interaction with the JVM, but you’ll still be able to
 learn Kotlin using this book. We focus on the Kotlin language as a whole and not on a specific problem domain, so the book
 should be equally useful for server-side developers, Android developers, and everyone else who builds projects targeting the
 JVM.

How this book is organized

 The book is divided into two parts. Part 1 explains how to get started using Kotlin together with existing libraries and APIs:

 	
Chapter 1 talks about the key goals, values, and areas of application for Kotlin, and it shows you the possible ways to run Kotlin
 code.

 	
Chapter 2 explains the essential elements of any Kotlin program, including control structures and variable and function declarations.

 	
Chapter 3 goes into detail about how functions are declared in Kotlin and introduces the concept of extension functions and properties.

 	
Chapter 4 is focused on class declarations and introduces the concepts of data classes and companion objects.

 	
Chapter 5 introduces the use of lambdas in Kotlin and showcases a number of Kotlin standard library functions using lambdas.

 	
Chapter 6 describes the Kotlin type system, with a particular focus on the topics of nullability and collections.

 Part 2 teaches you how to build your own APIs and abstractions in Kotlin and covers some of the language’s deeper features:

 	
Chapter 7 talks about the principle of conventions, which assigns special meaning to methods and properties with specific names, and
 it introduces the concept of delegated properties.

 	
Chapter 8 shows how to declare higher-order functions—functions that take other functions and parameters or return them. It also introduces
 the concept of inline functions.

 	
Chapter 9 is a deep dive into the topic of generics in Kotlin, starting with the basic syntax and going into more-advanced areas such
 as reified type parameters and variance.

 	
Chapter 10 covers the use of annotations and reflection and is centered around JKid, a small, real-life JSON serialization library that
 makes heavy use of those concepts.

 	
Chapter 11 introduces the concept of domain-specific languages, describes Kotlin’s tools for building them, and demonstrates many DSL
 examples.

 There are also three appendices. Appendix A explains how to build Kotlin code with Gradle, Maven, and Ant. Appendix B focuses on writing documentation comments and generating API documentation for Kotlin modules. Appendix C is a guide for exploring the Kotlin ecosystem and finding the latest online information.

 The book works best when you read it all the way through, but you’re also welcome to refer to individual chapters covering
 specific subjects you’re interested in and to follow the cross-references if you run into an unfamiliar concept.

Code conventions and downloads

 The following typographical conventions are used throughout this book:

 	
Italic font is used to introduce new terms.

 	
Fixed-width font is used to denote code samples, as well as function names, classes, and other identifiers.

 	Code annotations accompany many of the code listings and highlight important concepts.

 Many source listings in the book show code together with its output. In those cases, we’ve prefixed the code lines that produce
 the output with >>>, and the output itself is shown as is:

 >>> println("Hello World")
Hello World

 Some of the examples are intended to be complete runnable programs, whereas others are snippets used to demonstrate certain
 concepts and may contain omissions (indicated with ...) or syntax errors (described in the book text or in the examples themselves). The runnable examples can be downloaded as
 a zip file from the publisher’s website at www.manning.com/books/kotlin-in-action. The examples from the book are also preloaded into the online environment at http://try.kotlinlang.org, so you can run any example with just a few clicks directly from your browser.

Author Online

 Purchase of Kotlin in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/books/kotlin-in-action. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contributions to the AO forum remain voluntary (and unpaid). We suggest you ask the authors challenging questions,
 lest their interest stray!

Other online resources

 Kotlin has a lively online community, so if you have questions or want to chat with fellow Kotlin users, you can use the following
 resources:

 	
The official Kotlin forums—https://discuss.kotlinlang.org

 	
Slack chat—http://kotlinlang.slack.com (you can get an invitation at http://kotlinslackin.herokuapp.com)

 	
Kotlin tag on Stack Overflow—http://stackoverflow.com/questions/tagged/kotlin

 	
Kotlin Reddit—www.reddit.com/r/Kotlin

About the Authors

 DMITRY JEMEROV has been working with JetBrains since 2003 and has participated in the development of many products, including IntelliJ IDEA,
 PyCharm, and WebStorm. He was one of earliest contributors to Kotlin, having created the initial version of Kotlin’s JVM bytecode
 generator, and he has given many presentations about Kotlin at events around the world. Right now he leads the team working
 on the Kotlin IntelliJ IDEA plugin.

 SVETLANA ISAKOVA has been part of the Kotlin team since 2011. She worked on the type-inference and overload-resolution subsystems of the compiler.
 Now she’s a technical evangelist, speaking about Kotlin at conferences and working on the online course for Kotlin.

About the Cover Illustration

 The figure on the cover of Kotlin in Action is captioned “Habit of a Russian Lady at Valday in 1764.” The town of Valday is located in the Novgorod Oblast region, on
 the road between Moscow and St. Petersburg. The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern, London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings, heightened
 with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer who
 was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local
 dress customs of the lands he surveyed and mapped; they are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the eighteenth century, and collections
 such as this one were popular, introducing both the tourist and the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 centuries ago. Dress codes have changed, and the diversity by region and country, so rich at one time, has faded away. It
 is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
 traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical
 life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of national costumes three centuries ago, brought back to life
 by Jefferys’ pictures.

Part 1. Introducing Kotlin

 The goal of this part of the book is to get you productive writing Kotlin code that uses existing APIs. Chapter 1 will introduce you to the general traits of Kotlin. In chapters 2-4, you’ll learn how the most basic Java programming concepts—statements, functions, classes, and types—map to Kotlin code,
 and how Kotlin enriches them to make programming more pleasant. You’ll be able to rely on your existing knowledge of Java,
 as well as tools such as IDE coding-assistance features and the Java-to-Kotlin converter, to get up to speed quickly. In chapter 5, you’ll find out how lambdas help you effectively solve some of the most common programming tasks, such as working with collections.
 Finally, in chapter 6, you’ll become familiar with one of the key Kotlin specialties: its support for dealing with null values.

Chapter 1. Kotlin: what and why

 This chapter covers

 	A basic demonstration of Kotlin

 	The main traits of the Kotlin language

 	Possibilities for Android and server-side development

 	What distinguishes Kotlin from other languages

 	Writing and running code in Kotlin

 What is Kotlin all about? It’s a new programming language targeting the Java platform. Kotlin is concise, safe, pragmatic,
 and focused on interoperability with Java code. It can be used almost everywhere Java is used today: for server-side development,
 Android apps, and much more. Kotlin works great with all existing Java libraries and frameworks and runs with the same level
 of performance as Java. In this chapter, we’ll explore Kotlin’s main traits in detail.

1.1. A taste of Kotlin

 Let’s start with a small example to demonstrate what Kotlin looks like. This example defines a Person class, creates a collection of people, finds the oldest one, and prints the result. Even in this small piece of code, you
 can see many interesting features of Kotlin; we’ve highlighted some of them so you can easily find them later in the book. The code is explained briefly, but please don’t worry if something isn’t clear right away. We’ll discuss everything
 in detail later.

 If you’d like to try running this example, the easiest option is to use the online playground at http://try.kotl.in. Type in the example and click the Run button, and the code will be executed.

 Listing 1.1. An early taste of Kotlin

 [image:]

 You declare a simple data class with two properties: name and age. The age property is null by default (if it isn’t specified). When creating the list of people, you omit Alice’s age, so the default value null is used. Then you use the maxBy function to find the oldest person in the list. The lambda expression passed to the function takes one parameter, and you
 use it as the default name of that parameter. The Elvis operator (?:) returns zero if age is null. Because Alice’s age isn’t specified, the Elvis operator replaces it with zero, so Bob wins the prize for being the oldest
 person.

 Do you like what you’ve seen? Read on to learn more and become a Kotlin expert. We hope that soon you’ll see such code in
 your own projects, not only in this book.

1.2. Kotlin’s primary traits

 You probably already have an idea what kind of language Kotlin is. Let’s look at its key attributes in more detail. First,
 let’s see what kinds of applications you can build with Kotlin.

 1.2.1. Target platforms: server-side, Android, anywhere Java runs

 The primary goal of Kotlin is to provide a more concise, more productive, safer alternative to Java that’s suitable in all
 contexts where Java is used today. Java is an extremely popular language, and it’s used in a broad variety of environments,
 from smart cards (Java Card technology) to the largest data centers run by Google, Twitter, LinkedIn, and other internet-scale
 companies. In most of these places, using Kotlin can help developers achieve their goals with less code and fewer annoyances
 along the way.

 The most common areas to use Kotlin are:

 	Building server-side code (typically, backends of web applications)

 	Building mobile applications that run on Android devices

 But Kotlin works in other contexts as well. For example, you can use the Intel Multi-OS Engine (https://software.intel.com/en-us/multi-os-engine) to run Kotlin code on iOS devices. To build desktop applications, you can use Kotlin together with TornadoFX (https://github.com/edvin/tornadofx) and JavaFX.[1]

 1

“JavaFX: Getting Started with JavaFX,” Oracle, http://mng.bz/500y.

 In addition to Java, Kotlin can be compiled to JavaScript, allowing you to run Kotlin code in the browser. But as of this
 writing, JavaScript support is still being explored and prototyped at JetBrains, so it’s out of scope for this book. Other
 platforms are also under consideration for future versions of the language.

 As you can see, Kotlin’s target is quite broad. Kotlin doesn’t focus on a single problem domain or address a single type of
 challenge faced by software developers today. Instead, it provides across-the-board productivity improvements for all tasks
 that come up during the development process. It gives you an excellent level of integration with libraries that support specific
 domains or programming paradigms. Let’s look next at the key qualities of Kotlin as a programming language.

 1.2.2. Statically typed

 Just like Java, Kotlin is a statically typed programming language. This means the type of every expression in a program is known at compile time, and the compiler can
 validate that the methods and fields you’re trying to access exist on the objects you’re using.

 This is in contrast to dynamically typed programming languages, which are represented on the JVM by, among others, Groovy and JRuby. Those languages let you define
 variables and functions that can store or return data of any type and resolve the method and field references at runtime.
 This allows for shorter code and greater flexibility in creating data structures. But the downside is that problems like misspelled
 names can’t be detected during compilation and can lead to runtime errors.

 On the other hand, in contrast to Java, Kotlin doesn’t require you to specify the type of every variable explicitly in your
 source code. In many cases, the type of a variable can automatically be determined from the context, allowing you to omit
 the type declaration. Here’s the simplest possible example of this:

 val x = 1

 You’re declaring a variable, and because it’s initialized with an integer value, Kotlin automatically determines that its
 type is Int. The ability of the compiler to determine types from context is called type inference.

 Following are some of the benefits of static typing:

 	
Performance— Calling methods is faster because there’s no need to figure out at runtime which method needs to be called.

 	
Reliability— The compiler verifies the correctness of the program, so there are fewer chances for crashes at runtime.

 	
Maintainability— Working with unfamiliar code is easier because you can see what kind of objects the code is working with.

 	
Tool support— Static typing enables reliable refactorings, precise code completion, and other IDE features.

 Thanks to Kotlin’s support for type inference, most of the extra verbosity associated with static typing disappears, because
 you don’t need to declare types explicitly.

 If you look at the specifics of Kotlin’s type system, you’ll find many familiar concepts. Classes, interfaces, and generics
 work in a way very similar to Java, so most of your Java knowledge should easily transfer to Kotlin. Some things are new,
 though.

 The most important of those is Kotlin’s support for nullable types, which lets you write more reliable programs by detecting possible null pointer exceptions at compile time. We’ll come back to nullable types later in this chapter and discuss them in detail in
 chapter 6.

 Another new thing in Kotlin’s type system is its support for function types. To see what this is about, let’s look at the main ideas of functional programming and see how it’s supported in Kotlin.

 1.2.3. Functional and object-oriented

 As a Java developer, you’re no doubt familiar with the core concepts of object-oriented programming, but functional programming
 may be new to you. The key concepts of functional programming are as follows:

 	
First-class functions— You work with functions (pieces of behavior) as values. You can store them in variables, pass them as parameters, or return
 them from other functions.

 	
Immutability— You work with immutable objects, which guarantees that their state can’t change after their creation.

 	
No side effects— You use pure functions that return the same result given the same inputs and don’t modify the state of other objects or interact
 with the outside world.

 What benefits can you gain from writing code in the functional style? First, conciseness. Functional code can be more elegant and succinct compared to its imperative counterpart, because working with functions
 as values gives you much more power of abstraction, which lets you avoid duplication in your code.

 Imagine that you have two similar code fragments that implement a similar task (for example, looking for a matching element
 in a collection) but differ in the details (how the matching element is detected). You can easily extract the common part
 of the logic into a function and pass the differing parts as arguments. Those arguments are themselves functions, but you
 can express them using a concise syntax for anonymous functions called lambda expressions:

 [image:]

 The second benefit of functional code is safe multithreading. One of the biggest sources of errors in multithreaded programs is modification of the same data from multiple threads without
 proper synchronization. If you use immutable data structures and pure functions, you can be sure that such unsafe modifications
 won’t happen, and you don’t need to come up with complicated synchronization schemes.

 Finally, functional programming means easier testing. Functions without side effects can be tested in isolation without requiring a lot of setup code to construct the entire
 environment that they depend on.

 Generally speaking, the functional style can be used with any programming language, including Java, and many parts of it are
 advocated as good programming style. But not all languages provide the syntactic and library support required to use it effortlessly;
 for example, this support was mostly missing from versions of Java before Java 8. Kotlin has a rich set of features to support
 functional programming from the get-go. These include the following:

 	
Function types, allowing functions to receive other functions as parameters or return other functions

 	
Lambda expressions, letting you pass around blocks of code with minimum boilerplate

 	
Data classes, providing a concise syntax for creating immutable value objects

 	A rich set of APIs in the standard library for working with objects and collections in the functional style

 Kotlin lets you program in the functional style but doesn’t enforce it. When you need it, you can work with mutable data and
 write functions that have side effects without jumping through any extra hoops. And, of course, working with frameworks that
 are based on interfaces and class hierarchies is just as easy as with Java. When writing code in Kotlin, you can combine both
 the object-oriented and functional approaches and use the tools that are most appropriate for the problem you’re solving.

 1.2.4. Free and open source

 The Kotlin language, including the compiler, libraries, and all related tooling, is entirely open source and free to use for
 any purpose. It’s available under the Apache 2 license; development happens in the open on GitHub (http://github.com/jetbrains/kotlin), and community contributions are welcome. You also have a choice of three open source IDEs for developing your Kotlin applications:
 IntelliJ IDEA Community Edition, Android Studio, and Eclipse are fully supported. (Of course, IntelliJ IDEA Ultimate works
 as well.)

 Now that you understand what kind of language Kotlin is, let’s see how the benefits of Kotlin work in specific practical applications.

1.3. Kotlin applications

 As we mentioned earlier, the two main areas where Kotlin can be used are server-side and Android development. Let’s look at
 those areas in turn and see why Kotlin is a good fit for them.

 1.3.1. Kotlin on the server side

 Server-side programming is a fairly broad concept. It encompasses all of the following types of applications and much more:

 	Web applications that return HTML pages to a browser

 	Backends of mobile applications that expose a JSON API over HTTP

 	Microservices that communicate with other microservices over an RPC protocol

 Developers have been building these kinds of applications in Java for many years and have accumulated a huge stack of frameworks
 and technologies to help build them. Such applications usually aren’t developed in isolation or started from scratch. There’s
 almost always an existing system that is being extended, improved, or replaced, and new code has to integrate with existing
 parts of the system, which may have been written many years ago.

 The big advantage of Kotlin in this environment is its seamless interoperability with existing Java code. Regardless of whether
 you’re writing a new component or migrating the code of an existing service into Kotlin, Kotlin will fit right in. You won’t
 run into problems when you need to extend Java classes in Kotlin or annotate the methods and fields of a class in a certain
 way. And the benefit is that the system’s code will be more compact, more reliable, and easier to maintain.

 At the same time, Kotlin enables a number of new techniques for developing such systems. For example, its support for the
 Builder pattern lets you create any object graph with concise syntax, while keeping the full set of abstraction and code-reuse
 tools in the language.

 One of the simplest use cases for that feature is an HTML generation library, which can replace an external template language
 with a concise and fully type-safe solution. Here’s an example:

 [image:]

 You can easily combine functions that map to HTML tags and regular Kotlin language constructs. You no longer need to use a
 separate template language, with a separate syntax to learn, just to use a loop when generating a page of HTML.

 Another case where you can use Kotlin’s clean, concise DSLs is persistence frameworks. For example, the Exposed framework
 (https://github.com/jetbrains/exposed) provides an easy-to-read DSL for describing the structure of an SQL database and performing queries entirely from Kotlin
 code, with full type checking. Here’s a small example to show you what’s possible:

 [image:]

 We’ll look at these techniques in more detail later in the book, in section 7.5, and in chapter 11.

 1.3.2. Kotlin on Android

 A typical mobile application is much different from a typical enterprise application. It’s much smaller, it’s less dependent
 on integration with existing codebases, and it usually needs to be delivered quickly while ensuring reliable operation on
 a large variety of devices. Kotlin works just as well for projects of that kind.

 Kotlin’s language features, combined with a special compiler plug-in supporting the Android framework, turn Android development
 into a much more productive and pleasurable experience. Common development tasks, such as adding listeners to controls or
 binding layout elements to fields, can be accomplished with much less code, or sometimes with no code at all (the compiler
 will generate it for you). The Anko library (https://github.com/kotlin/anko), also built by the Kotlin team, improves your experience even further by adding Kotlin-friendly adapters around many standard
 Android APIs.

 Here’s a simple example of Anko, just to give you a taste of what Android development with Kotlin feels like. You can put
 this code in an Activity, and a simple Android application is ready!

 [image:]

 Another big advantage of using Kotlin is better application reliability. If you have any experience developing Android applications,
 you’re no doubt familiar with the Unfortunately, Process Has Stopped dialog. This dialog is shown when your application throws
 an unhandled exception—often, a NullPointerException. Kotlin’s type system, with its precise tracking of null values, makes the problem of null pointer exceptions much less pressing. Most of the code that would lead to a NullPointerException in Java fails to compile in Kotlin, ensuring that you fix the error before the application gets to your users.

OEBPS/009fig01_alt.jpg
object CountryTable : IdTable() { ¥ Describes a table
val name = varchar("name”, 250).uniqueIndex() | in the database
val iso = varchar (*iso", 2).uniqueIndex()

}

class Country(id: EntityID) : Entity(id) { 7 Creates a class corresponding
var name: String by CountryTable.name to a database entity
var iso: String by CountryTable.iso

}

val russia = Councry.find { You can query this database
S o aq using pure Kotln code.
.first

Sl (el)

OEBPS/009fig02_alt.jpg
Creates
asimple
ext feld

verticallayout {
val name = editText ()
button(*say Hello®) {
onClick { toast (Hello, ${name.text}!®) }

SIS ERCU, SN R S
the value of the text feld.

Concise APIs for attaching a
stener and showing a toast

OEBPS/006fig01_alt.jpg
findPerson() contains the
fun findAlice() = findperson { it.name == "Alice*) generallogic of finding a person.

fun findBob() = findPerson { it.name == "Bob" } o_l The block i curly braces

identifies the specific
parson you need te fln

OEBPS/008fig01_alt.jpg
Regular
Kotlin loop

SN TSI FersouLiEt \perscns

=

createHTML() .table {
for (person in persons) {
er {
td { +person.name }
td { +person.age }

pristas

]
o]

f

Coilectioncrersona) =

Functions that map
to HTML tags

OEBPS/common01.jpg

OEBPS/004fig01_alt.jpg
“data™
class

Top-level
function

String
template

MG TARES VOLNRLL TS, e DUESN

val age: nt? = null) Nallabe type (Int2);the defaul

fun main(args: Array<Strings) { ke for e Mg

val persons = 1istof (Person (*Alice”),
Person(*Bob*, age = 29)) <—— Named argument

val oldest - persons.maxBy { it.age ?: 0 }

Lambda expression;
princin(*The oldest is: Soldestr) Lol
)

1/ The oldest is: Person(nas

Bob, age

19} o— utegserated teltrhig:

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/cover.jpg
Dmitry Jemerov

Svetlana Isakova

Forewono br Andrey Breslay

| | ETTI

